
KRUSKAL’S ALGORITHM
Given a forest we’ve built so far,

1. look at all the edges that would join two fragments 
of the forest

2. pick the lowest-weight one and add it to the tree,
thereby joining two fragments

3. Assert: the forest we have so far is part of some 
minimum spanning tree

Repeat until we have a spanning tree.
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def kruskal(g):
tree_edges = []
partition = DisjointSet()
for v in g.vertices:

partition.addsingleton(v)
edges = sorted(g.edges, sortkey = 𝜆(u,v,weight): weight)

for (u,v,edgeweight) in g.edges:
p = partition.getsetwith(u)
q = partition.getsetwith(v)
if p != q:

tree_edges.append((u,v))
partition.merge(p, q)

KRUSKAL’S ALGORITHM
Given a forest we’ve built so far,

1. look at all the edges that would join two fragments 
of the forest

2. pick the lowest-weight one and add it to the tree,
thereby joining two fragments

3. Assert: the forest we have so far is part of some 
minimum spanning tree

Repeat until we have a spanning tree.

Don’t recompute these 
edges every iteration.

Just pre-sort the list of all 
edges, then ignore those that 
are within-fragment.
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def kruskal(g):
tree_edges = []
partition = DisjointSet()
for v in g.vertices:

partition.addsingleton(v)
edges = sorted(g.edges, sortkey = 𝜆(u,v,weight): weight)

for (u,v,edgeweight) in g.edges:
p = partition.getsetwith(u)
q = partition.getsetwith(v)
if p != q:

tree_edges.append((u,v))
partition.merge(p, q)

The abstract data type DisjointSet stores 
a collection of disjoint sets, and supports

▪ addsingleton(v)
▪ p = getsetwith(v)
▪ merge(p,q)
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SECTION 6.7

Topological sort
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DEFINITION
Given a directed graph, a total ordering is an ordering of the vertices such 
that if there is an edge 𝑣 → 𝑢 in the graph, then 𝑣 < 𝑢 in the ordering.

PROBLEM STATEMENT
Find a total ordering, if one exists.

This graph has a cycle, 
so no total order is 
possible.
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def dfs_recurse(g, s):
for v in g.vertices:

v.visited = False
visit(s)

def visit(v):
v.visited = True
for w in v.neighbours:

if not w.visited:
visit(w)
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attempt 1: depth-first search

This might not even 
visit all vertices, so it 
might not produce a 
total order.
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def dfs_recurse_all(g):
for v in g.vertices:

v.visited = False
for v in g.vertices:

if not v.visited:
visit(v)

def visit(v):
v.visited = True
for w in v.neighbours:

if not w.visited:
visit(w)
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attempt 2: comprehensive depth-first search
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def dfs_recurse_all(g):
for v in g.vertices:

v.visited = False
for v in g.vertices:

if not v.visited:
visit(v)

def visit(v):
v.visited = True
for w in v.neighbours:

if not w.visited:
visit(w)

attempt 2: comprehensive depth-first search

Some edges point 
backwards – not a 
total order.
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visit(b)

visit(f)

visit(e)

visit(i)

visit(h)

visit(g)

visit(d)

visit(c)

visit(a)

dfs_recurse_all()
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def dfs_recurse_all(g):
for v in g.vertices:

v.visited = False
for v in g.vertices:

if not v.visited:
visit(v)

def visit(v):
v.visited = True
for w in v.neighbours:

if not w.visited:
visit(w)

attempt 2: comprehensive depth-first search



a

b c

d

e

f

g

i

h

visit(b)

visit(f)

visit(e)

visit(i)

visit(h)

visit(g)

visit(d)

visit(c)

visit(a)

dfs_recurse_all()
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def toposort(g):
for v in g.vertices:

v.visited = False
# v.colour = ‘white’

totalorder = []
for v in g.vertices:

if not v.visited:
visit(v, totalorder)

return totalorder

def visit(v, totalorder):
v.visited = True
# v.colour = ‘grey’
for w in v.neighbours:

if not w.visited:
visit(w, totalorder)

totalorder.append(v)
# v.colour = ‘black’

ab cdef g i h
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def toposort(g):
for v in g.vertices:

v.visited = False
# v.colour = ‘white’

totalorder = []
for v in g.vertices:

if not v.visited:
visit(v, totalorder)

return totalorder

def visit(v, totalorder):
v.visited = True
# v.colour = ‘grey’
for w in v.neighbours:

if not w.visited:
visit(w, totalorder)

totalorder.append(v)
# v.colour = ‘black’

Correctness theorem.
Given a DAG 𝑔, this algorithm produces a 
totalorder such that for every edge 𝑣1 → 𝑣2, 
𝑣1 appears to the right of 𝑣2 in totalorder.
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depth-first search
breadth-first search
Dijkstra’s algorithm
Bellman-Ford algorithm
dynamic programming
Johnson’s algorithm

Ford-Fulkerson algorithm
matchings
Prim’s algorithm
Kruskal’s algorithm
topological sort

translation strategy



QUESTION. How might we segment 
this image into “handsome stoat” and 
“background”?



1. define a grid



2. measure dissimilarity along edges



3. run Kruskal’s algorithm, and 
stop when the forest it’s 

building has just a few trees



2. measure dissimilarity along edges



3. ask the user to label some “stoat” 
points and some “background” points



4. set up a flow network

source
sink



5. find a minimum-capacity cut

source
sink



rank-sim 
challenge
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