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KRUSKAL'S ALGORITHM /’\.

Given a forest we’ve built so far,

1. look at all the edges that would join two fragments /‘\./0<
of the forest .\ / °

2. pick the lowest-weight one and add it to the tree,
thereby joining two fragments

3. Assert: the forest we have so far is part of some -
minimum spanning tree °
Repeat until we have a spanning tree. °
g °
‘ ‘
\ °
. °
°
\ .
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def kruskal(g):

KRUSKAL'S ALGORITHM tree_edges = []
. , . partition = DisjointSet()
Given a forest we’ve built so far, For W i @ vertiees:

partition.addsingleton(v)

1. look at all the edges that would join two fragments , ,
edges = sorted(g.edges, sortkey = A(u,v,weight): weight)

of the forest —
2. pick the lowest-weight one Qadd it to the tree, ey é“;VéZ‘:iifiiﬁh;tiQtiiiﬁ%ﬁ;: %
thereby joining two fragments q = partition.getsetwith(v)
3. Assert: the forest we have so far is part of some i [p 1= ge
.. . tree_edges.append((u,v))
minimum spanning tree ey
Repeat until we have a spanning tree.

Don’t recompute these
edges every iteration.

Just pre-sort the list of all -)
edges, then ignore those that
are within-fragment.
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Tﬂd coxf O (V + E -+ ‘E /‘J E) def kruskal(g):
tree_edges = []
partition = DisjointSet()

' crod ,,VL . for v in g.vertices: z €4
€re e ’ @ e 4 partition.addsingleton(v) o )
E >, V", => V ya E‘” edges = sorted(g.edges, sortkey = A(u,v,weight): weight)
for ( edgeweight) in g.edges ‘ﬁ\\
or (u,v, wei in g. :
E s ‘iV (V"'\ = |9 tE 2 I"’] \4 p = partition.getsetwith(u) O(EIQJ E)
g = partition.getsetwith(v)
if p !=q:
tree_edges.append((u,v)) (o) (E)
;-dd royt (@) (E {oJ V) partition.merge(p, 9q)

The abstract data type DisjointSet stores
a collection of disjoint sets, and supports

o sk w addsingleton(v)
oGy »» " p = getsetwith(v)
gy »t " merge(p,q)




SECTION 6.7
Topological sort
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DEFINITION

Given a directed graph, a total ordering is an ordering of the vertices such
that if there is an edge v — u in the graph, then v < u in the ordering.

PROBLEM STATEMENT

Find a total ordering, if one exists.

0 o L\_/VC\_/V
o—»o/l
\ /’\
@ A . T d
C (/3
\/

/ o T ﬂ °7’/‘ this?qrggﬂ%dsa cycle,
Q\ ) o no total order is
(r] 6\_/ &rf«l ovolen ,:a;}%‘?&ble



def dfs_recurse(g, s):
for v in g.vertices:
v.visited = False
visit(s)

def visit(v):
v.visited = True
for w in v.neighbours:
if not w.visited:
visit(w)

attempt 1: depth-first search

This might not even
visit all vertices, so it
might not produce a
total order.



def dfs_recurse_all(g):
for v in g.vertices:
v.visited = False
for v in g.vertices:
if not v.visited:
visit(v)

def visit(v):
v.visited = True
for w in v.neighbours:
if not w.visited:
visit(w)

attempt 2: comprehensive depth-first search



def dfs_recurse_all(g):
for v in g.vertices:
v.visited = False
for v in g.vertices:
if not v.visited:
visit(v)

def visit(v):
v.visited = True
for w in v.neighbours:
if not w.visited:
visit(w)

attempt 2: comprehensive depth-first search
Some edges point

backwards - not a
total order.




def dfs_recurse_all(g):
for v in g.vertices:
v.visited = False
for v in g.vertices:
if not v.visited:
visit(v)

def visit(v):
v.visited = True

for w in v.neighbours:

if not w.visited:
visit(w)

attempt 2: comprehensive depth-first search

dfs_recurse_all()

&

M s

it(d)

olrs e ndon s

Tooe—————

visit (4 retuokg



def

def

toposort(g):
for v in g.vertices:
v.visited = False

totalorder =
for v in g.vertices:
if not v.visited:
visit(v, totalorder)
return totalorder

visit(v, totalorder):
v.visited = True

for w in v.neighbours:
if not w.visited:
visit(w, totalorder)
totalorder.append(v)

visit(b)
visit(a)

1

1

1

1

/ 1
dfs_recurse_all()

:

:

1

1

et afoveley = [ ')

visit(f)

visit(c)

visit(e)

visit(d)

8]

visit(g)

visit(i)

visit(h)
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def toposort(g):
for v in g.vertices:
v.visited = False

totalorder = []
for v in g.vertices:

if not v.visited: Given a DAG g, this algorithm produces a
visit(v, totalorder) totalorder such that for every edge v; = v5,

return totalorder

v, appears to the right of v, in totalorder.

visit(v, totalorder):
v.visited = True

for w in v.neighbours:
if not w.visited:
visit(w, totalorder)
totalorder.append(v)




depth-first search
breadth-first search
Dijkstra’s algorithm
Bellman-Ford algorithm
dynamic programming
Johnson's algorithm

Ford-Fulkerson algorith

matchings

Prim’s algorit?n\
Kruskal's algoritihm
topological sort

4 4

translation strategy




QUESTION. How might we segment
this image into “handsome stoat” and
“background”?




1. define a grid
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2. measure dissimilarity along edges
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3. run Kruskal’s algorithm, and
stop when the forest it’s
building has just a few trees
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2. measure dissimilarity along edges




3. ask the user to label some “stoat”
points and some “background” points




4. set up a flow network
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5. find a minimum-capacity cut
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