
KRUSKAL’S ALGORITHM
Given a forest we’ve built so far,

1. look at all the edges that would join two fragments
of the forest

2. pick the lowest-weight one and add it to the tree,
thereby joining two fragments

3. Assert: the forest we have so far is part of some
minimum spanning tree

Repeat until we have a spanning tree.

page 45

1
2
3
4
5
6
7
8
9
10
11
12
13

def kruskal(g):
tree_edges = []
partition = DisjointSet()
for v in g.vertices:

partition.addsingleton(v)
edges = sorted(g.edges, sortkey = 𝜆(u,v,weight): weight)

for (u,v,edgeweight) in g.edges:
p = partition.getsetwith(u)
q = partition.getsetwith(v)
if p != q:

tree_edges.append((u,v))
partition.merge(p, q)

KRUSKAL’S ALGORITHM
Given a forest we’ve built so far,

1. look at all the edges that would join two fragments
of the forest

2. pick the lowest-weight one and add it to the tree,
thereby joining two fragments

3. Assert: the forest we have so far is part of some
minimum spanning tree

Repeat until we have a spanning tree.

Don’t recompute these
edges every iteration.

Just pre-sort the list of all
edges, then ignore those that
are within-fragment.

page 45

1
2
3
4
5
6
7
8
9
10
11
12
13

def kruskal(g):
tree_edges = []
partition = DisjointSet()
for v in g.vertices:

partition.addsingleton(v)
edges = sorted(g.edges, sortkey = 𝜆(u,v,weight): weight)

for (u,v,edgeweight) in g.edges:
p = partition.getsetwith(u)
q = partition.getsetwith(v)
if p != q:

tree_edges.append((u,v))
partition.merge(p, q)

The abstract data type DisjointSet stores
a collection of disjoint sets, and supports

▪ addsingleton(v)
▪ p = getsetwith(v)
▪ merge(p,q)

page 46

SECTION 6.7

Topological sort

a d

b

c

q

p

r

DEFINITION
Given a directed graph, a total ordering is an ordering of the vertices such
that if there is an edge 𝑣 → 𝑢 in the graph, then 𝑣 < 𝑢 in the ordering.

PROBLEM STATEMENT
Find a total ordering, if one exists.

This graph has a cycle,
so no total order is
possible.

page 47

1
2
3
5
6
7
8
9
10
11

def dfs_recurse(g, s):
for v in g.vertices:

v.visited = False
visit(s)

def visit(v):
v.visited = True
for w in v.neighbours:

if not w.visited:
visit(w)

a

b c

d

e

f

g

i

h

attempt 1: depth-first search

This might not even
visit all vertices, so it
might not produce a
total order.

1
2
3
4
5
6
7
8
9
10
11
12

def dfs_recurse_all(g):
for v in g.vertices:

v.visited = False
for v in g.vertices:

if not v.visited:
visit(v)

def visit(v):
v.visited = True
for w in v.neighbours:

if not w.visited:
visit(w)

a

b c

d

e

f

g

i

h

attempt 2: comprehensive depth-first search

a

b c

d

e

f

g

i

h

a b c df

1
2
3
4
5
6
7
8
9
10
11
12

def dfs_recurse_all(g):
for v in g.vertices:

v.visited = False
for v in g.vertices:

if not v.visited:
visit(v)

def visit(v):
v.visited = True
for w in v.neighbours:

if not w.visited:
visit(w)

attempt 2: comprehensive depth-first search

Some edges point
backwards – not a
total order.

a

b c

d

e

f

g

i

h

visit(b)

visit(f)

visit(e)

visit(i)

visit(h)

visit(g)

visit(d)

visit(c)

visit(a)

dfs_recurse_all()

1
2
3
4
5
6
7
8
9
10
11
12

def dfs_recurse_all(g):
for v in g.vertices:

v.visited = False
for v in g.vertices:

if not v.visited:
visit(v)

def visit(v):
v.visited = True
for w in v.neighbours:

if not w.visited:
visit(w)

attempt 2: comprehensive depth-first search

a

b c

d

e

f

g

i

h

visit(b)

visit(f)

visit(e)

visit(i)

visit(h)

visit(g)

visit(d)

visit(c)

visit(a)

dfs_recurse_all()

1
2
3
4
5+
6
7
8
9+
10
11
12
13
14
15
16
17+
18

def toposort(g):
for v in g.vertices:

v.visited = False
v.colour = ‘white’

totalorder = []
for v in g.vertices:

if not v.visited:
visit(v, totalorder)

return totalorder

def visit(v, totalorder):
v.visited = True
v.colour = ‘grey’
for w in v.neighbours:

if not w.visited:
visit(w, totalorder)

totalorder.append(v)
v.colour = ‘black’

ab cdef g i h

page 48

1
2
3
4
5+
6
7
8
9+
10
11
12
13
14
15
16
17+
18

def toposort(g):
for v in g.vertices:

v.visited = False
v.colour = ‘white’

totalorder = []
for v in g.vertices:

if not v.visited:
visit(v, totalorder)

return totalorder

def visit(v, totalorder):
v.visited = True
v.colour = ‘grey’
for w in v.neighbours:

if not w.visited:
visit(w, totalorder)

totalorder.append(v)
v.colour = ‘black’

Correctness theorem.
Given a DAG 𝑔, this algorithm produces a
totalorder such that for every edge 𝑣1 → 𝑣2,
𝑣1 appears to the right of 𝑣2 in totalorder.

page 49

depth-first search
breadth-first search
Dijkstra’s algorithm
Bellman-Ford algorithm
dynamic programming
Johnson’s algorithm

Ford-Fulkerson algorithm
matchings
Prim’s algorithm
Kruskal’s algorithm
topological sort

translation strategy

QUESTION. How might we segment
this image into “handsome stoat” and
“background”?

1. define a grid

2. measure dissimilarity along edges

3. run Kruskal’s algorithm, and
stop when the forest it’s

building has just a few trees

2. measure dissimilarity along edges

3. ask the user to label some “stoat”
points and some “background” points

4. set up a flow network

source
sink

5. find a minimum-capacity cut

source
sink

rank-sim
challenge

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

