page 45

KRUSKAL'S ALGORITHM /’\.

Given a forest we’ve built so far,

1. look at all the edges that would join two fragments /‘\./0<
of the forest .\ / °

2. pick the lowest-weight one and add it to the tree,
thereby joining two fragments

3. Assert: the forest we have so far is part of some -
minimum spanning tree °
Repeat until we have a spanning tree. °
g °
‘ ‘
\ °
. °
°
\ .

page 45

def kruskal(g):

KRUSKAL'S ALGORITHM tree_edges = []
. , . partition = DisjointSet()
Given a forest we’ve built so far, For W i @ vertiees:

partition.addsingleton(v)

1. look at all the edges that would join two fragments , ,
edges = sorted(g.edges, sortkey = A(u,v,weight): weight)

of the forest —
2. pick the lowest-weight one Qadd it to the tree, ey é“;VéZ‘:iifiiﬁh;tiQtiiiﬁ%ﬁ;: %
thereby joining two fragments q = partition.getsetwith(v)
3. Assert: the forest we have so far is part of some i [p 1= ge
.. . tree_edges.append((u,v))
minimum spanning tree ey
Repeat until we have a spanning tree.

Don’t recompute these
edges every iteration.

Just pre-sort the list of all -)
edges, then ignore those that
are within-fragment.

page 46

Tﬂd coxf O (V + E -+ ‘E /‘J E) def kruskal(g):
tree_edges = []
partition = DisjointSet()

' crod ,,VL . for v in g.vertices: z €4
€re e ’ @ e 4 partition.addsingleton(v) o)
E >, V", => V ya E‘” edges = sorted(g.edges, sortkey = A(u,v,weight): weight)
for (edgeweight) in g.edges ‘ﬁ\\
or (u,v, wei in g. :
E s ‘iV (V"'\ = |9 tE 2 I"’] \4 p = partition.getsetwith(u) O(EIQJ E)
g = partition.getsetwith(v)
if p !=q:
tree_edges.append((u,v)) (o) (E)
;-dd royt (@) (E {oJ V) partition.merge(p, 9q)

The abstract data type DisjointSet stores
a collection of disjoint sets, and supports

o sk w addsingleton(v)
oGy »» " p = getsetwith(v)
gy »t " merge(p,q)

SECTION 6.7
Topological sort

File

flilx’

o -

Paste

~

Clipboard

Home Insert Draw

Alignment

Total Income
COGS

Gross Profit
Gross Margin

Consolidated Expenses - Amazon

Operating Profit
Operating Margin

DETAILED Income - Amazon

Page Layout

Formulas

@ %9

-0 .00
<._UD -0

Y Number

#DIV/0!

_Last-Year

#DIV/0!

Data Review View Help

fEA conditional Formatting v

% Format as Table v
@CEII Styles v

Styles

Operating Profit
Operating Margin

failed Tcome--Amazon

&2 Share {1 Comments

Elnsert ~ Z - QVV ’
B~ O~

EDelete ~ oet
nalyze

@ Format v ‘) v Data

Cells Editing Analysis

#DIV/0!

2019Q4

#DIV/0!

2019Q4

page 47

DEFINITION

Given a directed graph, a total ordering is an ordering of the vertices such
that if there is an edge v — u in the graph, then v < u in the ordering.

PROBLEM STATEMENT

Find a total ordering, if one exists.

0 o L_/VC_/V
o—»o/l
\ /’\
@ A . T d
C (/3
\/

/ o T ﬂ °7’/‘ this?qrggﬂ%dsa cycle,
Q\) o no total order is
(r] 6_/ &rf«l ovolen ,:a;}%‘?&ble

def dfs_recurse(g, s):
for v in g.vertices:
v.visited = False
visit(s)

def visit(v):
v.visited = True
for w in v.neighbours:
if not w.visited:
visit(w)

attempt 1: depth-first search

This might not even
visit all vertices, so it
might not produce a
total order.

def dfs_recurse_all(g):
for v in g.vertices:
v.visited = False
for v in g.vertices:
if not v.visited:
visit(v)

def visit(v):
v.visited = True
for w in v.neighbours:
if not w.visited:
visit(w)

attempt 2: comprehensive depth-first search

def dfs_recurse_all(g):
for v in g.vertices:
v.visited = False
for v in g.vertices:
if not v.visited:
visit(v)

def visit(v):
v.visited = True
for w in v.neighbours:
if not w.visited:
visit(w)

attempt 2: comprehensive depth-first search
Some edges point

backwards - not a
total order.

def dfs_recurse_all(g):
for v in g.vertices:
v.visited = False
for v in g.vertices:
if not v.visited:
visit(v)

def visit(v):
v.visited = True

for w in v.neighbours:

if not w.visited:
visit(w)

attempt 2: comprehensive depth-first search

dfs_recurse_all()

&

M s

it(d)

olrs e ndon s

Tooe—————

visit (4 retuokg

def

def

toposort(g):
for v in g.vertices:
v.visited = False

totalorder =
for v in g.vertices:
if not v.visited:
visit(v, totalorder)
return totalorder

visit(v, totalorder):
v.visited = True

for w in v.neighbours:
if not w.visited:
visit(w, totalorder)
totalorder.append(v)

visit(b)
visit(a)

1

1

1

1

/ 1
dfs_recurse_all()

:

:

1

1

et afoveley = [')

visit(f)

visit(c)

visit(e)

visit(d)

8]

visit(g)

visit(i)

visit(h)

page 48

00 |

def toposort(g):
for v in g.vertices:
v.visited = False

totalorder = []
for v in g.vertices:

if not v.visited: Given a DAG g, this algorithm produces a
visit(v, totalorder) totalorder such that for every edge v; = v5,

return totalorder

v, appears to the right of v, in totalorder.

visit(v, totalorder):
v.visited = True

for w in v.neighbours:
if not w.visited:
visit(w, totalorder)
totalorder.append(v)

depth-first search
breadth-first search
Dijkstra’s algorithm
Bellman-Ford algorithm
dynamic programming
Johnson's algorithm

Ford-Fulkerson algorith

matchings

Prim’s algorit?n\
Kruskal's algoritihm
topological sort

4 4

translation strategy

QUESTION. How might we segment
this image into “handsome stoat” and
“background”?

1. define a grid

ALATATAS]

LAY

s eREn e n 1

AATATA AT A EE AR A

m/\/u\‘/\"l\/\'l»

CarEN IS

AT ACATAYARRORD AR AT PAT A AT AYAYE
SISy

Srgegesayases Ve

,c,\,\,m'm_\/)mw-:,‘,W ;
RURR AR S

2

2. measure dissimilarity along edges

e
TREEN LS
[EE S EE s)

.......... ‘ XXX ’ PR ¥y : ¥) (R R R RN R
...... YATAY X . v ¢ ¥ YAYAY SATATAY e ek eey

...... - 4 » ./ ¥ . CRR R Y ' (A REERES & N J

b k F S8 0 8088

PR R L
LA ER S 5 R
‘e EERS S
-

3. run Kruskal’s algorithm, and
stop when the forest it’s
building has just a few trees

|
'r.'""v'xi"'a

AN sce s a e s e
ERE R AR SR

S S
S s e R e R s S R R R R R S R s

~

2. measure dissimilarity along edges

3. ask the user to label some “stoat”
points and some “background” points

4. set up a flow network

sinke
SOUrCe

O

O

5. find a minimum-capacity cut

sinke
SOUrCe

O

98 Algorithms 2 2022-23 rank-sim © X +

C @ vle.cam.ac.uk/mod/vpl/views/submissionslist.php?id=18069212&group=-18&...

UNIVERSITY OF
CAMBRIDGE

First name

1 7/

Surname

!

Kevin Xie

Milos Puric

Katy
Thackray

Elizabeth
Ho

Paul
DSouza

Submitted
on |

Sunday, 5
March 2023,
5:06 PM

Sunday, 5
March 2023,
5:33 PM

Wednesday, 1
March 2023,
1:03 AM

Friday, 3
March 2023,
2:24 PM

Sunday, 5
March 2023,
3:59 PM

Sunday, 5
March 2023,
3:38 PM

Saturday, 4
March 2023,
1:45 PM

Submissions

!

22

Grade 4
76.76 / 100.00

(76.75909009751997)

68.70 / 100.00
(68.69996961985618)

65.41/100.00
(65.41160210284743)

65.18 / 100.00
(65.18324383627447)

64.98 / 100.00
(64.97779892836748)

0.00 7/ 100.00

0.00 7/ 100.00

1=

w @

Evaluator

!

Automatic
grade

Automatic
grade

Automatic
grade

Automatic
grade

Automatic
grade

Automatic
grade

Automatic
grade

Evaluated on

!

Sunday, 5
March 2023,
5:07 PM

Sunday, 5
March 2023,
5:33 PM

Wednesday,
March 2023,
1:03 AM

Friday, 3
March 2023,
2:24 PM

Sunday, 5
March 2023,
3:59 PM

Sunday, 5
March 2023,
3:38 PM

Sunday, 5
March 2023,
9:12 AM

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

