
directed graphs undirected graphs

𝐸 ⊆ 𝑉 × 𝑉 𝐸 ⊆ subsets of 𝑉 of size 2

K O N I G S B E R G A

“Can I go for a stroll around the city on a route that crosses each bridge exactly once?”

A

B

C

D

“Can I go for a stroll around the city on a route that crosses each bridge exactly once?”

A

B

C

D

g = {A: [B,B,D],
B: [A,A,C,C,D],
C: [B,B,D],
D: [A,B,C]}

“Is there a path in which every edge appears exactly once?”

How should this game agent navigate
to the jetty?

PATH-FINDING ALGORITHMS

1. Draw polygon boundaries around obstacles
2. Divide free space into convex polygons
3. Create a graph, with edges between adjacent polygons
4. Find a path on the graph
5. Draw this path in 2D coordinates on the map

(easy, since we’ve used convex polygons)

Dwarf Fortress
Q: I’ve seen other games similar to Dwarf Fortress die on their
pathfinding algorithms. What do you use and how do you
keep it efficient?

A: Yeah, the base algorithm is only part of it. We use A*,
which is fast of course, but it’s not good enough by itself.

Generally, people have used approaches that add various
larger structures on top of the map to cut corners. But we
can’t take advantage of these innovations since our map
changes so much.

Interview with Tarn Adams (developer) by Ryan Donovan from the
StackOverflow blog, Dec 2021

FR
IEN

D
FR

IEN
D

Alice was at the Golden Gate Bridge with Bob

Cathy: Wish we were there! David likes this

Alice Golden Gate Bridge Bob

Cathy David

id: 105, otype: USER
name: Alice

id: 244, otype: USER
name: Bob

id: 379, otype: USER
name: Cathy

id: 471, otype: USER
name: David

FR
IEN

D
FR

IEN
D

FR
IEN

D
FR

IEN
D

FR
IEN

D
FR

IEN
D

id: 534, otype: LOCATION
name: Golden Gate Bridge
loc: 37.49N, 122.28W

id: 632, otype: CHECKIN

id: 771, otype: COMMENT
text: Wish we were there!

C
H

EC
K

IN
LO

C

TAGGED_AT
TAGGED

LIKES
LIKED_BY

o
typ

e: C
O

M
M

N
ET

tim
e:1

3
3

4
5

1
1

6
7

0

Q. Why did Facebook choose to
make CHECKIN a vertex, rather
than a USER→LOCATION edge?

FR
IEN

D
FR

IEN
D

Alice was at the Golden Gate Bridge with Bob

Cathy: Wish we were there! David likes this

Alice Golden Gate Bridge Bob

Cathy David

id: 105, otype: USER
name: Alice

id: 244, otype: USER
name: Bob

id: 379, otype: USER
name: Cathy

id: 471, otype: USER
name: David

FR
IEN

D
FR

IEN
D

FR
IEN

D
FR

IEN
D

FR
IEN

D
FR

IEN
D

id: 534, otype: LOCATION
name: Golden Gate Bridge
loc: 37.49N, 122.28W

id: 632, otype: CHECKIN

id: 771, otype: COMMENT
text: Wish we were there!

C
H

EC
K

IN
LO

C

TAGGED_AT
TAGGED

LIKES
LIKED_BY

o
typ

e: C
O

M
M

N
ET

tim
e:1

3
3

4
5

1
1

6
7

0

Q. What algorithmic questions
we might ask about this graph?

▪ Clever algorithms

▪ Performance analysis

▪ What we can model with graphs

▪ Proving correctness

What this course is about

Edsger Dijkstra (1930—2002)
On the cruelty of really teaching computer
science, 1988

Graph notation
A graph consists of a set of vertices 𝑉, and a set of edges 𝐸.

directed graphs undirected graphs

𝑣1 → 𝑣2 is how we write
the edge from 𝑣1 to 𝑣2

𝑣1 ↔ 𝑣2 is how we write
the edge between 𝑣1 and 𝑣2

page 4

▪ A directed acyclic
graph (DAG) is a
directed graph
without any cycles

▪ A forest is an undirected acyclic graph
▪ A tree is a connected forest
▪ (An undirected graph is connected if for every pair of

vertices there is an edge between them)

Which of these two
graphs is a tree,
which a forest?

page 4

▪ A directed acyclic
graph (DAG) is a
directed graph
without any cycles

▪ A forest is an undirected acyclic graph
▪ A tree is a connected forest
▪ (An undirected graph is connected if for every pair of

vertices there is an edge between them)

What’s wrong with
my definitions for
path and cycle?

1 2

3
4

5

{1: [2,5],
2: [1,5,4,3],
3: [2,4],
4: [3,2,5],
5: [1,2,4]
}

Array of adjacency lists

Adjacency matrix

np.array([[0,1,0,0,1],
[1,0,1,1,1],
[0,1,0,1,0],
[0,1,1,0,1],
[1,1,0,1,0]])

How we can store graphs, in computer code page 4

Mini-exercise
▪ What is the largest possible number of

edges in an undirected graph with 𝑉
vertices?

▪ and in a directed graph?

▪ What’s the smallest possible number of
edges in a tree with 𝑉 vertices?

❖ lecture notes

❖ example sheets

❖ slides

❖ ticks

❖ recordings

PASSIVE LEARNING

▪ attend lectures

▪ read code snippets,
watch animations,
see examples

▪ read notes,
watch videos

ACTIVE LEARNING

▪ copy out the lecturer’s
hand-writing

▪ annotate printed code
snippets and examples
(using page numbers)

REFLECTIVE LEARNING

▪ mini-exercises and
example sheets

▪ optional ticks

▪ skeptical reading

How to learn effectively

For any teaching session where your

contribution is mandatory or expected, we

must seek your consent to be recorded.

You are not obliged to give

this consent, and you have the right

to withdraw your consent after it has

been given.

https://www.educationalpolicy.admin.cam.ac.uk/
supporting-students/policy-recordings/
recordings-student-information-sheet

Pre-recorded videos Consent to recordings of
live lectures

SECTION 5.2

Depth-first search

start vertex 𝑠

A

B C D

E F G H

1 def visit(v):
2 print("visiting", v)
3 for w in v.neighbours:
4 visit(w)
5

6 visit(A)

visiting A
visiting B
visiting A
visiting B
...
RecursionError:
maximum recursion depth exceeded

page 6

A

B C D

E F G H

1 def visit_tree(v, v_parent):
2 print("visiting", v, "from", v_parent)
3 for w in v.neighbours:
4 if w != v_parent:
6 visit_tree(w, v)
7

8 visit_tree(D, None)

visiting D from None
visiting C from D
visiting A from C
visiting D from A
...
RecursionError:
maximum recursion depth exceeded

A

B C D

E F G H

1 # visit all vertices reachable from s

2 def dfs_recurse(g, s):
3 for v in g.vertices:
4 v.visited = False
5 visit(s)
6

7 def visit(v):
8 v.visited = True
9 for w in v.neighbours:

10 if not w.visited:
11 visit(w)

dfs_recurse(g, D):
| visit(D):
| | neighbours = [H, C, A]
| | visit(H):
| | | neighbours = [D]
| | | don’t visit D
| | | return from visit(H)
| | visit(C)
| | | neighbours = [D, A]
| | | don’t visit D
| | | visit(A):
| | | | ...

page 6

Ariadne’s thread ... but why not just teleport?

A

B C D

E F G H

1 # visit all vertices reachable from s

2 def dfs(g, s):
3 for v in g.vertices:
4 v.seen = False
5 toexplore = Stack([s])
6 s.seen = True
7

8 while not toexplore.is_empty():
9 v = toexplore.popright()

10 for w in v.neighbours:
11 if not w.seen:
12 toexplore.pushright(w)
13 w.seen = True

page 7

1 # visit all vertices reachable from s

2 def dfs(g, s):
3 for v in g.vertices:
4 v.seen = False
5 toexplore = Stack([s])
6 s.seen = True
7

8 while not toexplore.is_empty():
9 v = toexplore.popright()

10 for w in v.neighbours:
11 if not w.seen:
12 toexplore.pushright(w)
13 w.seen = True

Analysis of running time
for stack-based dfs

page 7

1 # visit all vertices reachable from s

2 def dfs_recurse(g, s):
3 for v in g.vertices:
4 v.visited = False
5 visit(s)
6

7 def visit(v):
8 v.visited = True
9 for w in v.neighbours:

10 if not w.visited:
11 visit(w)

Analysis of running time
for recursive dfs

page 6

SECTION 5.2

Breadth-first search /
finding shortest path

A

B

C

D

E

distance from A = 0

distance from A = 1

distance from A = 2

A

B

C

D

E

page 9

1 # Visit all the vertices in g reachable from start vertex s
2 def bfs(g, s):
3 for v in g.vertices:
4 v.seen = False
5 toexplore = Queue([s])
6 s.seen = True
7

8 while not toexplore.is_empty():
9 v = toexplore.popleft()

10 for w in v.neighbours:
11 if not w.seen:
12 toexplore.pushright(w)
13 w.seen = True

page 9

A

B D

CE

1 # Find a path from s to t, if one exists
2 def bfs_path(g, s, t):
3 for v in g.vertices:
4 (v.seen, v.come_from) = (False, None)

...

10 while not toexplore.is_empty():
11 v = toexplore.popleft()
12 for w in v.neighbours:
13 if not w.seen:
14 toexplore.pushright(w)
15 (w.seen, w.come_from) = (True, v)
...

19 if t.come_from has not been set:
20 there is no path from s to t
21 else:
22 reconstruct the path from s to t,
23 working backwards

page 10

1 # visit all vertices reachable from s

2 def dfs(g, s):
3 for v in g.vertices:
4 v.seen = False
5 to_explore = Stack([s])
6 s.seen = True
7

8 while not to_explore.is_empty():
9 v = toexplore.popright()

10 for w in v.neighbours:
11 if not w.seen:
12 toexplore.pushright(w)
13 w.seen = True

Analysis of running time
for stack-based dfs

1 # Visit all the vertices in g reachable from start vertex s
2 def bfs(g, s):
3 for v in g.vertices:
4 v.seen = False
5 toexplore = Queue([s])
6 s.seen = True
7

8 while not toexplore.is_empty():
9 v = toexplore.popleft()

10 for w in v.neighbours:
11 if not w.seen:
12 toexplore.pushright(w)
13 w.seen = True

Analysis of running time for bfs

EXERCISE: Read the notes / watch the video for
section 5.3, to familiarize yourself with Dijkstra’s
algorithm.

We will spend Monday’s lecture going through
the proof of correctness.

not yet seen

distance

visited

0312546789

start

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6: PATH-FINDING ALGORITHMS
	Slide 7
	Slide 8
	Slide 9
	Slide 10: What this course is about
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18: How to learn effectively
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

