directed graphs undirected graphs

o\ . o\ e
7 -\
e Y

EClV XV E € subsets of V of size 2

KONIGSBERGA

o w K A |
_ ;.'}.\J_\. [‘. . fo
- 4 "‘“ 14 v_ . :;.t .
-‘w;-i ' . <
n -
s Fatay {% R ,4- -
e | "

o I '}-’m::' ;

oy)»\

.’- i _ o ¥ ’ .
" g+ “ Y T"- W 0y ’ --‘ 0 A} § 3‘
f"".'(-l“""““" . Vi e "-n ..m

—
;‘.{‘:,": h§ 9*5 "i{ﬁ‘ {'1 .'7 "")’)t “L’

1.!.\‘ T

_ A ARy B e Tt q

o .
- T . . &
{4 ';”. . ‘ . & ™ .‘, a3 &3 “.‘ "l?‘ “, \ 'S N . 1 hg ‘.K '_ o] oy i\lc
. :?. ' -”f’f . ")v"y\‘? \t“‘) \ ‘ : .' -.'. “'_ ae 1 < b § sL.

4 ‘ I’RL:“V“”L‘ AN ‘\‘s b \“ yL I (AL |}

'f,' o M"y‘.m? 4‘3.1: 34,,4.§?}4, ‘ T
LJ"’?"‘N, "/“ #" e g

':‘:::i’ ‘\Q?‘)\¢

’

'”. ' ﬁ 2 ‘31"" *l‘:vdr”:‘.n\ e Vo)[

. "‘*!&_ Pt - B ..)"-'v". \w-‘x—-—.

y Q?é-}i %t:l &u? -u§ \.P" T

-
9

£ 44
Y >»4 bsmg."r R iwu. & nwvﬂ‘"i“‘h"
!)- '1§—" } - - , I » “3*{"1 }: 1.\1\ ﬁ‘r’g
MDY congy vy TP T /w,;xk.,“-m
| I' . :._: l.' ¢': .' \‘f
{ % ML : ""i '”1’ !

—
— —\ ..
- e I N " !
Y:‘)r.' “ ﬁIJh(“.‘i-’.' "' ~ !‘.t * ; \l -.‘-;_,' \."x k,
e ey Y Sy
4 ,/ d ,nL '3.. s ?

“Can I go for a stroll around the city on a route that crosses each bridge exactly once?”

| ﬁ\‘.:.' '_ -‘ - pe Y
PN e P '.1“ fels
. ... A:ﬁ ?‘{‘.’ I" - N
s ¥ h {% S \..5
S "" ? -‘ ot) N3 - y ‘
) {’} '.r"‘").‘» LR 7. Y.
"’ S e \ "’
=y I ‘ ? T"- _‘” A 1y ’ -v-‘ ‘} §
,"'\'t—r"(-)_v-v-.i: ﬁ - y L£‘§ Q‘I ﬂ'\\ q\l\l
b 3d 4 -at" 4‘ é‘ > -s). ¢ -"q- e e .
c%!‘- 8 N , / 7‘ xl" l ‘A‘-\Y‘ . \\‘ ‘tf ‘}"

'\ ¥ 3 s] b - » . 3 . 123 ,-V.
J{ "4.?.0 Ve -y ; 3 _":") .,'n)"',y&? \f‘ \n) nn A \ ‘\ x. 1

; .) I‘RL:“V“”‘ TS e by o \‘

'f,' £ 9 ey e 4‘3-5 b bachely

LS o T i /ﬂ(ry *l'“* -f
. f A‘?"":::i' ‘\Q?‘)\¢

A Y *‘:v«r’:* A\ -.‘_.Q_ ,[

A
i‘*“. - ...- v . - \""‘\ [N i . X -

':w.i\; . daig u;.;.u; Wi Al

o A0y, ,
ol A a.,,& }5&.&‘1&’"}‘ i"'“" Q-’L g_; f&;y}‘\'t;';f" }n Y
” "'l .
Sl 2 5 "”‘t- L ’**" "m x"Q} - j';.,;
Ch ' y /_:‘. A-" T € f
'3“ [: - foce 4 :{
| — "‘, :::‘ ’ . e — — b o — 4
- B XS
-#‘{-’J;.'._!"’ .. ') M’.—'r i
;_é el é".y ' & .-I;,_(-x’.\i_ﬂ ‘*1 3 .’&-t ‘; - "~§_ S
vrmﬂv"u:}* > m,***r
rL

“Can I go for a stroll around the city on a route that crosses each bridge exactly once?”

v‘ 3 \‘.,‘ s Xt
,\.

e B
2 et N | A4

:“-""} W :
: 'h ': ‘75“‘{“‘-«\

e BT LV AN
";‘LN""* S, ‘(‘;L:; ;‘\

‘«r"a."-}-““ 4o
o r—"d =3

.1{ {-’ku’) # vvs-,.,

o, RS

i 8

Y : 1“ ;r b‘b‘ tr' ﬁ"w /
}3'{ Hf'}t / ia. 4

PR 5

5
TTLAA LR v‘\f-ua N

AT 4
‘o';k-‘-. ;' ""’* 4

5-,-,» &) I .5 \
¢ -~ R :
P secange - ! -

e }

W)?TPQ-'?;"? ;s 1

= .,,:«Mtq aels

3 ey ey P st R 2
. ‘i’”'j -

. \"i

*--'m

:-)-..4

'\\ '\uh‘s ()&
".’. :'_ S .. Hﬁ‘s ‘(!\N"‘

39 yig. 0B 03

: ":“J“!L LI \;.4

‘j (XJ? l R
?\Bm.,.‘ aEs

qr-vq #‘Pﬁ“"

T
"‘“’/ 55 "3 “'“.ﬂ“n'sr:'y

Sy

——— O

'\
N C Jj“"f,., [TaY s

"vaff““‘*%ﬁ‘
5 = L e

5 “3 g 1'\1;'mﬂ§
N “.J Q‘si':

l“..‘t,’)o
ww '

‘,4'1 T
e ﬁ
L’\i *

{A:

“Is there a path in which every edge appears exactly once?”

B,B,D1,

A,A,C,C,D],
B,B,D1, \\>

O O W

A,B,C1}

PATH-FINDING ALGORITHMS

How should this game agent navigate
to the jetty?

ke wh e

Draw polygon boundaries around obstacles

Divide free space into convex polygons

Create a graph, with edges between adjacent polygons
Find a path on the graph

Draw this path in 2D coordinates on the map

(easy, since we’ve used convex polygons)

Dwarf Fortress

Q: I've seen other games similar to Dwarf Fortress die on their
pathfinding algorithms. What do you use and how do you
keep it efficient?

A: Yeah, the base algorithm is only part of it. We use A*,
which is fast of course, but it’s not good enough by itself.

Generally, people have used approaches that add various
larger structures on top of the map to cut corners. But we
can’t take advantage of these innovations since our map
changes so much.

Interview with Tarn Adams (developer) by Ryan Donovan from the
StackOverflow blog, Dec 2021

was at the|Golden Gate Bridge|with
Cathy: Wish we were there! likes this

id: 105, otype: USER id: 534, otype: LOCATION Q Why dld FaCEbOOk ChOOSE to

name: Alice name: Golden Gate Bridge

loc: 37.49N, 122.28W make CHECKIN a vertex, rather
than a USER—LOCATION edge?

NIDID3IHD

id: 244, otype: USER

name: Bob TAGGED

TAGGED_AT id: 632, otype: CHECKIN

id: 379, otype: USER
name: Cathy

0/9TTSPEET -awih
LINININOD :9dA30

id: 771, otype: COMMENT

id: 471, otype: USER text: Wish we were there!

name: David LIKED_BY

was at the|Golden Gate Bridge|with
Cathy: Wish we were there! likes this

id: 105, otype: USER id: 534, otype: LOCATION Q. What algorithmic questions

name: Alice name: Golden Gate Bridge

sy we might ask about this graph?

NIDID3IHD

id: 244, otype: USER

name: Bob TAGGED

TAGGED_AT id: 632, otype: CHECKIN

id: 379, otype: USER
name: Cathy

0/9TTSPEET -awih
LINININOD :9dA30

id: 771, otype: COMMENT

id: 471, otype: USER text: Wish we were there!

name: David LIKED_BY

What this course is about

= (Clever algorithms
" Performance analysis

= What we can model with graphs

" Proving correctness

Right from the bea'-nninj_ ond all }hruujh the
course, we siress Yhol the programmec's lask s
not wust lo write down o program, hut thatl his
mMoin :}E-.E\I-c 15 "Eo'ﬁh;e G ‘E—érmal]::rauf that -l-'he
program he proposes meets the equally %r‘mn‘l
?uni:j‘ic:ﬂn‘l s?eciﬁcahuﬂ.

Edsger Dijkstra (1930—2002)

On the cruelty of really teaching computer
science, 1988

Graph notation
A graph consists of a set of vertices VV, and a set of edges E.

directed graphs undirected graphs

A

V1 — VU, is how we write v, © v, is how we write
the edge from v, to v, the edge between v, and v,

page 4

Which of these two
graphs is a tree,
which a forest?

A directed acyclic = A forestis an undirected acyclic graph

graph (DAG) is a = Atreeis a connected forest

directed graph = (An undirected graph is connected if for every pair of
without any cycles vertices there is an edge between them)

my definitions for
path and cycle?

o
N P
‘\/\ What’s wrong with
®
® ’/

= Adirected acyclic = A forestis an undirected acyclic graph
graph (DAG) is a = Atreeis a connected forest
directed graph = (An undirected graph is connected if for every pair of
without any cycles vertices there is an edge between them)

How we can store graphs, in computer code

Array of adjacency lists

hbhhi
!

Adjacency matrix

|
)

2

,I\J

{1: [2,5], Sta\fﬂ?c :
2: [1,5,4,3],
3: [2,4], o (v|+[H)
4: [3,2,5],
5. [1,2,4]
3
np.array([[0,1,0,0,1],
[1,0,1,1,11, Storag
[0,1,0,1,0], o Vl
[0,1,1,0,11], (] ')
[1,1 @,1,@]])

page 4

Mini-exercise

What is the largest possible number of
edges in an undirected graph with V
vertices?

and in a directed graph?

What'’s the smallest possible number of
edges in a tree with V vertices?

\

»mputer Scienc: X +

@ cl.cam.ac.uk/teaching/222

Department of Computer Science and
Technology

Home The department -~ Research " Admissions Teaching ~ Miscellaneous

Internal information

¢ lecture notes
Course pages 2022-23

s example sheets
Algorithms 2

[sytabus | %* slides

This course is a continuation of Algorithms 1 (which is why these notes start at Section 5, and
why the lectures start at Lecture 13).
Algorithms 2 \/ H k
** ticks
Lecture notes
Preparation for Computer

Science = Full notes as printed

= If you spot a mistake in the printed notes, let me know. Corrections will appear here.

’ .
.0
Databases Announcements, Q&A, tick submission — Moodle «* reco rd In gs

Digital Electronics
9 Schedule
Discrete Mathematics This is the planned lecture schedule. It will be updated as and when actual lectures deviate from
schedule. Links are to prerecorded videos. Slides will be uploaded the night before a lecture, and
Foundations of Computer re-uploaded after the lecture with annotations made during the lecture.
Science

5. Graphs and path finding
Hardware Practical Classes 5, 5.1 Graphs 2 (14127)
5.2 Depth-first search 7 (11:3
Introduction to Graphics 5.3 Breadth-first search 2 (6:

Optional tick: from ex4.q6
OcCaml Practical Classes Lecture 14 5.4 Dikstra's algorithm (2 (15:25) plus proof 2 (24:01)
Lecture 15 5.5 Algorithms and proofs ¢ (9:29)

Object-Oriented 5.6 Bellman-Ford 7 (12:13)

Programming '
2. Che

How to learn effectively

PASSIVE LEARNING

= attend lectures

= read code snippets,
watch animations,
see examples

= read notes,
watch videos

ACTIVE LEARNING

copy out the lecturer’s
hand-writing

annotate printed code
snippets and examples
(using page numbers)

REFLECTIVE LEARNING

mini-exercises and
example sheets

optional ticks

skeptical reading

Pre-recorded videos

iy 25 GF /> Share

ridge University, taught by Damon Wischik.

LET'S BUILD GPT.
FROM SCRATCH.
IN CODE.

SPELLEDOUT.

arch Depth First Search
Algorithm | Graph...

Consent to recordings of
live lectures

https://www.educationalpolicy.admin.cam.ac.uk/
supporting-students/policy-recordings/
recordings-student-information-sheet

For any teaching session where your
contribution is mandatory or expected, we
must seek your consent to be recorded.

You are not obliged to give

this consent, and you have the right
to withdraw your consent after it has
been given.

SECTION 5.2

Depth-first search

e &ta rt vertex s

S O A W N =

()
(8) O L)
O f—© &

gt visit(y
prig#("visiting" 4#V)
or w in v.neigifoours:
visit(w)

visit(A)

visiting A
VISItIng 45
VISIting A
visityig B

RecursionError:
maximum recursifn depth exceeded

L N OO b~ w NN =

()
GG\Q
O O——© &

def visit_tree(v, v_parent):
print("visiting", v, "from", v_parent)
for w in v.neighbours:
if w != v_parent:
visit_tree(w, v)

visit_tree(D, None)

visiting D from None
visiting C from D
visiting A from C
visiting D from A

RecursionError:
maximum recursion depth exceeded

page 6

- & W 0 N o O b~ W NDo=

—_

page 6

()
GG\Q

dfs_recurse(g, D):

visit(D):
G G G 0 neighbours = [H, C, AJ
VISIt(H):
neighbours = [D]
visit all vertices reachable from s don’t visit D
def dfs_recurse(g, s): return from visit(H)
for v in g.vertices: .
v.visited = False y151 t(C)
visit(s) neighbours = [D, AJ
don’t visit D
def visit(v): VISIit(A):
v.visited = True |

for w in v.neighbours:
if not w.visited:
visit(w)

Ariadne’s thread ... but why not just teleport?

—_

cOo N O O A W N

10
11
12
13

visit all vertices reachable from s
def dfs(g, s):

for v in g.vertices:

v.seen = False
toexplore = Stack([s])
s.seen = True

while not toexplore.is_empty():
v = toexplore.popright()
for w in v.neighbours:
if not w.seen:
toexplore.pushright(w)
w.seen = True

®| <—

@<=

page 7

—_

O 00 N O U1 A W N

10
11
12
13

Analysis of running time
for stack-based dfs

visit all vertices reachable from s
def dfs(g, s):

for v in g.vertices:)/ O(V>
v.seen = False

toexplore = Stack([s]) c)(W)
s.seen = True

while not toexplore.is_empty(): '],_.- oA WAOS{

v = toexplore.popright()
for w in v.neighbours:
if not w.seen:
toexplore.pushright(w)
w.seen = True

s

fun fav wevy edge

verrex we Visif,

on(R Per verten, $o OCV)

Ve theﬁ

so

oE)

tord O+ E)

page 7

O 00 N O U A W N =

10

Analysis of running time

for recursive dfs

visit all vertices reachable from s

def dfs_recurse(g, s):
for v in g.vertices:

v.visited = False

visit(s)

def visit(v):
v.visited = True

]o(v)

__ run ok most onw pex vertex <o O(\/)

for w in v.neighbours:
if not w.visited:]_ O(E)

visit(w)

Toted: O(N*FE)

page 6

SECTION 5.2

Breadth-first search /
finding shortest path

04/',((L

A $€ 2

distance from A =0

distance from A=1

distance from A =2

page 9

page 9

Visit all the vertices in g reachable from start vertex s
def bfs(g, s):

for v in g.vertices:

v.seen = False @ @ @ @ @

toexplore = Queue([s])

s.seen = True ﬁ

while not toexplore.is_empty():
v = toexplore.popleft()
for w in v.neighbours:
if not w.seen:
toexplore.pushright(w)
w.seen = True

|page10

Find a path from s to t, if one exists
def bfs_path(g, s, t):
for v in g.vertices:
(v.seen, v.come_from) = (False, None) (A: @ @ @ @
=

while not toexplore.is_empty():
v = toexplore.popleft()
for w in v.neighbours:
if not w.seen:

toexplore.pushright(w)
(w.seen, w.come_from) = (True, v)
if t.come_from has not been set: 9
there is no path from s to t
else:

reconstruct the path from s to t,
working backwards @

Analysis of running time for bfs

Visit all the vertices in g reachable from start vertex s
def bfs(g, s):
for v in g.vertices:
v.seen = False

toexplore = Queue([s]) ‘)
. . . s.seen = True O(V+£
Analysis of running time
) while not toexplore.is_empty(): oM a4
for stack-based dfs v o toenplor JEEEIES .
1 # visit all vertices reachable from s for w in v.neighbours: f‘ 1%5
2 def dfs(g, s): if not w.seen: '
3 for v in g.vertices:)__,,_—- C)(\/) toexplore.pushright(w)
4 v.seen = False w.seen = True
5 to_explore = Stack([s1) ‘ c><‘)
6 s.seen = True)
7 v
verces, so OC
8 while not to_explore.is_empty(): :I,_, ok wost once per erees,
9 v = toexplore.popright()
10 for w in v.neighbours:
11 if not w.seen:]/ rfun fo/ {Ne'y QA‘jL ot oq'-u/ 7
12 toexplore.pushright(w) verrex Wwe \isif, o O(E)
13 w.seen = True

Eated O(\/"'E)

E{S Department of Computer Scienc. X +

< C @ cl.cam.ac.uk/teaching/2223/Algorithm2/materials.html

Schedule

This is the planned lecture schedule. It will be updated as and when
actual lectures deviate from schedule. Links are to prerecorded
videos. Slides will be uploaded the night before a lecture, and re-
uploaded after the lecture with annotations made during the lecture.

5. Graphs and path finding
Lecture 13 5, 5.1 Graphs ¥ (14:27) code — graphs
5.2 Depth-first search & (11:37)

Optional tick £bfs-all from ex4.q6

Lecture 14 5.4 Dikstra's alt esisass :25) plus proof & (24:01)

Lecture 15 5.5 Algorithms and proofs & (9:29)
5.6 Bellman-Ford & (12:13)

Optional challenge: chatgpt-bfs
Optional tick: bf-cycle from ex4.q19

Lecture 16 5.7 Dynamic programming % (13:06)
5.8 Johnson's algorithm & (13:43)

Example sheet 4 [pdf]

6. Graphs and subgraphs

Example sheet 4

& Algorithms tick bfs-all X + v B = ~

< C @& clcam.acuk/teaching/2223/Algorithm2/ticks/bfs-all.html Q Y %w 0 O 40O W » 0O ‘
Question 6. Modify b Fse
website, for you to cheg Algorlth ms tick: bfs-all

Find All Shortest Paths

Breadth-first search can be used to find a shortest path between a pair of vertices.
Modify the standard bfs_path algorithm so that it returns all shortest paths.

Please submit a source file bfs_all.py on Moodle. It should implement a function

shortest paths(g, s, t)

4

The graph g is stored as an adjacency dictionary, forexample g = {0:{1,2}, 1:{},
2:{1,0}}.Ithas a key for every vertex, and the corresponding value is the set of that
vertex’s neighbours.

EXERCISE: Read the notes / watch the video for
section 5.3, to familiarize yourself with Dijkstra’s
algorithm.

We will spend Monday’s lecture going through
the proof of correctness.

| CANTEBRIGIA, ¢
‘y.ri(;r.'_r'z}frgf _/bré_;!f;ﬁ." & ool - i < s T

1 i ords celeberrimi nom A ¥ o/ ¥] N o AN A R . E i
s NP i SRR E P CERL RN Nt ot . @ notyetseen
‘ rwf@mm..-w,r@}i_som.f' . ey cier o G R TN b N ; e
nataiAd Grania, fowo s g5l : 4 : D Ly : 1R 3 s I .
vizino, Catrgrans; Sac i &) iy 4. \ . 2 — Mo bt 7 M . distance '
| Q.‘H‘i‘l’. g‘ e F X r g % | A 3 \ s, g

@ visited

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6: PATH-FINDING ALGORITHMS
	Slide 7
	Slide 8
	Slide 9
	Slide 10: What this course is about
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18: How to learn effectively
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

