Directed graphs

\[E \subseteq V \times V \]

Undirected graphs

\[E \subseteq \text{subsets of } V \text{ of size } 2 \]
KONIGSBERGA
“Can I go for a stroll around the city on a route that crosses each bridge exactly once?”
“Can I go for a stroll around the city on a route that crosses each bridge exactly once?”
“Is there a path in which every edge appears exactly once?”

\[
g = \{ A: [B, B, D], \\
B: [A, A, C, C, D], \\
C: [B, B, D], \\
D: [A, B, C]\}
\]
PATH-FINDING ALGORITHMS

How should this game agent navigate to the jetty?

1. Draw polygon boundaries around obstacles
2. Divide free space into convex polygons
3. Create a graph, with edges between adjacent polygons
4. Find a path on the graph
5. Draw this path in 2D coordinates on the map (easy, since we’ve used convex polygons)
Q: I’ve seen other games similar to Dwarf Fortress die on their pathfinding algorithms. What do you use and how do you keep it efficient?

A: Yeah, the base algorithm is only part of it. We use A*, which is fast of course, but it’s not good enough by itself. Generally, people have used approaches that add various larger structures on top of the map to cut corners. But we can’t take advantage of these innovations since our map changes so much.

Interview with Tarn Adams (developer) by Ryan Donovan from the StackOverflow blog, Dec 2021
Q. Why did Facebook choose to make CHECKIN a vertex, rather than a USER→LOCATION edge?
Q. What algorithmic questions we might ask about this graph?
What this course is about

- Clever algorithms
- Performance analysis
- What we can model with graphs
- Proving correctness
Right from the beginning, and all through the course, we stress that the programmer's task is not just to write down a program, but that his main task is to give a formal proof that the program he proposes meets the equally formal functional specification.

Edsger Dijkstra (1930—2002)
On the cruelty of really teaching computer science, 1988
Graph notation

A graph consists of a set of vertices V, and a set of edges E.

directed graphs

$v_1 \rightarrow v_2$ is how we write the edge from v_1 to v_2

undirected graphs

$v_1 \leftrightarrow v_2$ is how we write the edge between v_1 and v_2
A directed acyclic graph (DAG) is a directed graph without any cycles.

A forest is an undirected acyclic graph.

A tree is a connected forest.

(An undirected graph is connected if for every pair of vertices there is an edge between them.)

Which of these two graphs is a tree, which a forest?
A directed acyclic graph (DAG) is a directed graph without any cycles.

A forest is an undirected acyclic graph.

A tree is a connected forest.

(An undirected graph is connected if for every pair of vertices there is an edge between them.)
How we can store graphs, in computer code

Array of adjacency lists

```
{1: [2, 5],
  2: [1, 5, 4, 3],
  3: [2, 4],
  4: [3, 2, 5],
  5: [1, 2, 4]
}
```

Adjacency matrix

```
np.array([[0, 1, 0, 0, 1],
          [1, 0, 1, 1, 1],
          [0, 1, 0, 1, 0],
          [0, 1, 1, 0, 1],
          [1, 1, 0, 1, 0]])
```

Storage:

- Array of adjacency lists: $O(|V|+|E|)$
- Adjacency matrix: $O(|V|^2)$
Mini-exercise

- What is the largest possible number of edges in an undirected graph with V vertices?
- and in a directed graph?
- What’s the smallest possible number of edges in a tree with V vertices?
Course pages 2022–23

Algorithms 2

This course is a continuation of Algorithms 1 (which is why these notes start at Section 5, and why the lectures start at Lecture 13).

Lecture notes
- Full notes as printed
- If you spot a mistake in the printed notes, let me know. Corrections will appear here.

Announcements, Q&A, tick submission — Moodle

Schedule
This is the planned lecture schedule. It will be updated as and when actual lectures deviate from schedule. Links are to prerecorded videos. Slides will be uploaded the night before a lecture, and re-uploaded after the lecture with annotations made during the lecture.

5. Graphs and path finding

- Lecture 13 5.1 Graphs (14:27) code — graphs
- Lecture 14 5.4 Dijkstra’s algorithm (15:25) plus proof (24:01)
- Lecture 15 5.5 Algorithms and proofs (9:29)
How to learn effectively

PASSIVE LEARNING
- attend lectures
- read code snippets, watch animations, see examples
- read notes, watch videos

ACTIVE LEARNING
- copy out the lecturer’s hand-writing
- annotate printed code snippets and examples (using page numbers)

REFLECTIVE LEARNING
- mini-exercises and example sheets
- optional ticks
- skeptical reading
For any teaching session where your contribution is mandatory or expected, we must seek your consent to be recorded.

You are not obliged to give this consent, and you have the right to withdraw your consent after it has been given.

https://www.educationalpolicy.admin.cam.ac.uk/supporting-students/policy-recordings/recordings-student-information-sheet
SECTION 5.2

Depth-first search
start vertex s
def visit(v):
 print("visiting", v)
 for w in v.neighbours:
 visit(w)

visit(A)

visiting A
visiting B
visiting A
visiting B...

RecursionError: maximum recursion depth exceeded

def visit_tree(v, v_parent):
 print("visiting", v, "from", v_parent)
 for w in v.neighbours:
 if w != v_parent:
 visit_tree(w, v)

visit_tree(D, None)

visiting D from None
visiting C from D
visiting A from C
visiting D from A...

RecursionError: maximum recursion depth exceeded
dfs_recurse(g, D):

visit(D):

 neighbours = [H, C, A]

visit(H):

 neighbours = [D]
 don’t visit D
 return from visit(H)

visit(C):

 neighbours = [D, A]
 don’t visit D
 visit(A):
 ...
Ariadne’s thread ... but why not just teleport?
visit all vertices reachable from s

def dfs(g, s):
 for v in g.vertices:
 v.seen = False
 toexplore = Stack([s])
 s.seen = True

 while not toexplore.is_empty():
 v = toexplore.popright()
 for w in v.neighbours:
 if not w.seen:
 toexplore.pushright(w)
 w.seen = True
Analysis of running time for stack-based dfs

```python
# visit all vertices reachable from s
def dfs(g, s):
    for v in g.vertices:
        v.seen = False
toexplore = Stack([s])
s.seen = True

    while not toexplore.is_empty():
        v = toexplore.popright()
        for w in v.neighbours:
            if not w.seen:
                toexplore.pushright(w)
                w.seen = True
```

Analysis of running time:

- **O(V)** for initializing seen values and pushing the starting vertex.
- **O(V)** for while loop: run at most once per vertex.
- **O(E)** for nested loop: run for every edge we visit, once per each vertex.

Total: **O(V+E)**
Analysis of running time for recursive dfs

```python
# visit all vertices reachable from s
def dfs_recurse(g, s):
    for v in g.vertices:
        v.visited = False
        visit(s)

def visit(v):
    v.visited = True
    for w in v.neighbours:
        if not w.visited:
            visit(w)
```

Analysis of running time for recursive dfs

```
# visit all vertices reachable from s
def dfs_recurse(g, s):
    for v in g.vertices:
        v.visited = False
        visit(s)

def visit(v):
    v.visited = True
    for w in v.neighbours:
        if not w.visited:
            visit(w)
```

- `for v in g.vertices:` \(O(V)\)
- `for w in v.neighbours:` \(O(E)\)

Total: \(O(V+E)\)
SECTION 5.2
Breadth-first search / finding shortest path
distance from $A = 0$

distance from $A = 1$

distance from $A = 2$
Visit all the vertices in g reachable from start vertex s

def bfs(g, s):
 for v in g.vertices:
 v.seen = False
 toexplore = Queue([s])
 s.seen = True

 while not toexplore.is_empty():
 v = toexplore.popleft()
 for w in v.neighbours:
 if not w.seen:
 toexplore.pushright(w)
 w.seen = True
Find a path from s to t, if one exists

def bfs_path(g, s, t):
 for v in g.vertices:
 (v.seen, v.come_from) = (False, None)

 while not toexplore.is_empty():
 v = toexplore.popleft()
 for w in v.neighbours:
 if not w.seen:
 toexplore.pushright(w)
 (w.seen, w.come_from) = (True, v)

 if t.come_from has not been set:
 there is no path from s to t
 else:
 reconstruct the path from s to t, working backwards
Analysis of running time for stack-based dfs

```python
# visit all vertices reachable from s
def dfs(g, s):
    for v in g.vertices:
        v.seen = False
    to_explore = Stack([s])
    s.seen = True
    while not to_explore.is_empty():
        v = to_explore.popright()
        for w in v.neighbours:
            if not w.seen:
                to_explore.pushright(w)
                w.seen = True
```

Analysis of running time for bfs

```python
# Visit all the vertices in g reachable from start vertex s
def bfs(g, s):
    for v in g.vertices:
        v.seen = False
    to_explore = Queue([s])
    s.seen = True
    while not to_explore.is_empty():
        v = to_explore.popleft()
        for w in v.neighbours:
            if not w.seen:
                to_explore.pushright(w)
                w.seen = True
```

Analysis of running time

- **dfs**
 - Time complexity: \(O(V + E)\)
 - **O(V)**: for visiting each vertex
 - **O(E)**: for visiting each edge

- **bfs**
 - Time complexity: \(O(V + E)\)
 - **O(V)**: for visiting each vertex
 - **O(E)**: for visiting each edge

Notes

- Both algorithms have the same time complexity of \(O(V + E)\).
- The choice between dfs and bfs depends on the problem requirements.
Schedule

This is the planned lecture schedule. It will be updated as and when actual lectures deviate from schedule. Links are to prerecorded videos. Slides will be uploaded the night before a lecture, and re-uploaded after the lecture with annotations made during the lecture.

5. Graphs and path finding

Lecture 13
5, 5.1 Graphs (14:27) code — graphs
5.2 Depth-first search (11:37)
5.3 Breadth-first search (6:43)
Optional tick: bfs-all from ex4.q6

Lecture 14
5.4 Dijkstra's algorithm (15:25) plus proof (24:01)

Lecture 15
5.5 Algorithms and proofs (9:29)
5.6 Bellman-Ford (12:13)
Optional challenge: chatgpt-bfs
Optional tick: bf-cycle from ex4.q19

Lecture 16
5.7 Dynamic programming (13:06)
5.8 Johnson's algorithm (13:43)
Example sheet 4 [pdf]

6. Graphs and subgraphs

Lecture 17
6.1 Flow networks (9:31) code — subgraphs
6.2 Ford-Fulkerson algorithm (31:55)
Question 6. Modify breadth-first search on the website, for you to check.

Algorithms tick: bfs-all

Find All Shortest Paths

Breadth-first search can be used to find a shortest path between a pair of vertices. Modify the standard \texttt{bfs_path} algorithm so that it returns \textit{all} shortest paths.

\textit{Please submit a source file \texttt{bfs_all.py} on Moodle.} It should implement a function

\begin{verbatim}
shortest_paths(g, s, t)

Find all shortest paths from \texttt{s} to \texttt{t}
Return a list of paths, each path a list of vertices starting with \texttt{s} and
\end{verbatim}

The graph \texttt{g} is stored as an adjacency dictionary, for example \(g = \{ 0: \{1, 2\}, 1: \{\}, 2: \{1, 0\} \} \). It has a key for every vertex, and the corresponding value is the set of that vertex's neighbours.
EXERCISE: Read the notes / watch the video for section 5.3, to familiarize yourself with Dijkstra’s algorithm.

We will spend Monday’s lecture going through the proof of correctness.
not yet seen

distance

visited

start