
Advanced Operating Systems:
Lab 3 – TCP

General Information

Prof. Robert N. M. Watson

2022-2023

The goals of this lab are to:

• Investigate the effects of network latency on TCP state-machine transitions (Part II only)

• Investigate the effects of network latency on TCP performance, and in particular interactions with conges-
tion control. (L41 only)

To do this, you will:

• Employ the same benchmark used in Lab 2, but in the TCP socket mode.

• Use FreeBSD’s DUMMYNET facility to simulate network latencies on the loopback interface.

• Use DTrace to inspect both network packet data and internal protocol control-block state.

1 Assignment documents
This document provides Lab 3 background and technique information.

Part II students should perform the assignment found in Advanced Operating Systems: Lab 3 – TCP – Part II
Assignment.

L41 students should perform the assignment found in Advanced Operating Systems: Lab 3 – TCP – L41 Assign-
ment. Follow the lab-report guidance found in L41: Lab Reports, and use the lab-report LaTeX template,
l41-labreport-template.tex.

2 Background: The Transmission Control Protocol (TCP)
The Transmission Control Protocol (TCP) protocol provides reliable, bi-directional, ordered octet (byte) streams
over the Internet Protocol (IP) between two communication endpoints.

2.1 The TCP 4-tuple
TCP connections are built between a pair of IP addresses, identifying host network interfaces, and port numbers
selected by applications (or automatically by the kernel) on either endpoint. Collectively, the two addresses and
port numbers that uniquely identify a TCP connection are referred to as the TCP 4-tuple, which is used to look up
internal connection state.

While other models are possible, typical TCP use has one side play the role of a server, which provides some
network-reachable service on a well-known port. The other side is the client, which builds a connection to the
service from a local ephemeral port. Ephemeral ports are allocated randomly (historically, sequentially).

1

2.2 Sockets
The BSD (and now POSIX) sockets API offers a portable and simple interface for TCP/IP client and server
programming:

• The server opens a socket using the socket(2) system call, binds a well-known or previously negotiated
port number using bind(2), and performs listen(2) to begin accepting new connections, returned as
additional connected sockets from calls to accept(2).

• The client application similarly calls socket(2) to open a socket, and connect(2) to connect to a
target address and port number.

• Once open, both sides can use system calls such as read(2), write(2), send(2), and recv(2) to
send and receive data over the connection. In our case, the server sends data and the client receives data.

• The close(2) system call both initiates a connection close (if not already closed) and releases the socket
– whose state may persist for some further period to allow data to drain and prevent premature re-use of the
4-tuple.

2.3 Acknowledgment, loss, and retransmit
TCP identifies every byte in one direction of a connection via a sequence number. Data segments contain a
starting sequence number and length, describing the range of transmitted bytes. Acknowledgment packets contain
the sequence number of the byte that follows the last contiguous byte they are acknowledging. Acknowledgments
are piggybacked onto data segments traveling in the opposite direction to the greatest extent possible to avoid
additional packet transmissions. The TCP sender is not permitted to discard data until it has been explicitly
acknowledged by the sender, so that it can retransmit packets that may have been lost. When and how agressively
to retransmit are complex topics heavily impacted by congestion control.

3 Background: TCP transmission control

3.1 TCP flow control and congestion control
TCP specifies two rate-control mechanisms:

Flow control allows a receiver to limit the amount of unacknowledged data transmitted by the remote sender,
preventing receiver buffers from being overflowed. This is implemented via window advertisements sent
via acknowledgments back to the sender. When using the sockets API, the advertised window size is based
on available space in the receive socket buffer, meaning that it will be sensitive to both the size configured
by the application (using socket options) and the rate at which the application reads data from the buffer.

Contemporary TCP implementations auto-resize socket buffers if a specific size has not been requested
by the application, avoiding use of a constant default size that may substantially limit overall performance
(as the sender may not be able to fully fill the bandwidth-delay product of the network)1. Note that this
requirement for large buffer sizes is in tension with local performance behaviour explored in prior IPC labs.

Congestion control allows the sender to avoid overfilling the network path to the receiving host, avoiding unnec-
essary packet loss and negative impacting on other traffic on the network (fairness). This is implemented
via a variety of congestion-detection techniques, depending on the specific algorithm and implementation –
but most frequently, interpretation of packet-loss events as a congestion indicator. When a receiver notices
a gap in the received sequence-number series, it will return a duplicate ACK, which hints to the sender that
a packet has been lost and should be retransmitted2.

TCP congestion control maintains a congestion window on the sender – similar in effect to the flow-control
window, in that it limits the amount of unacknowledged data a sender can place into the network. When a
connection first opens, and also following a timeout after significant loss, the sender will enter slow start, in

1Bandwidth (bits/s) * Round Trip Time (s)
2This is one reason why it is important that underlying network substrates retain packet ordering for TCP flows: misordering may be

interpreted as packet loss, triggering unnecessary retransmission.

2

which the window is ‘opened’ gradually as available bandwidth is probed. The name ‘slow start’ is initially
confusing as it is actually an exponential ramp-up. However, it is in fact slow compared to the original TCP
algorithm, which had no notion of congestion and overfilled the network immediately!

In slow start, TCP performance is directly limited by latency, as the congestion window can be opened only
by receiving ACKs – which require successive round trips. These periods are referred to as latency bound
for this reason, and network latency a critical factor in effective utilisation of path bandwidth.

When congestion is detected (i.e., because the congestion window has gotten above available bandwidth
triggering a loss), a cycle of congestion recovery and avoidance is entered. The congestion window will be
reduced, and then the window will be more slowly reopened, causing the congestion window to continually
(gently) probe for additional available bandwidth, (gently) falling back when it re-exceeds the limit. In the
event a true timeout is experienced – i.e., significant packet loss – then the congestion window will be cut
substantially and slow start will be re-entered.

The steady state of TCP is therefore responsive to the continual arrival and departure of other flows, as
well as changes in routes or path bandwidth, as it detects newly available bandwidth, and reduces use as
congestion is experienced due to over utilisation.

TCP composes these two windows by taking the minimum: it will neither send too much data for the remote
host (flow control), nor for the network itself (congestion control). One limit is directly visible in the packets
themselves (the advertised window from the receiver), but the other must either be intuited from wire traffic,
or given suitable access, monitored using end-host instrumentation – e.g., using DTrace. Two further informal
definitions will be useful:

Latency is the time it takes a packet to get from one endpoint to another. TCP implementations measure Round-
Trip Time (RTT) in order to tune timeouts detecting packet loss. More subtlely, RTT also limits the rate
at which TCP will grow the congestion window, especially during slow start: the window can grow only
as data is acknowledged, which requires round-trip times as ACKs are received. As latency increases,
congestion-window-size growth is limited.

Bandwidth is the throughput capacity of a link (or network path) to carry data, typically measured in bits or bytes
per second. TCP attempts to discover the available bandwidth by iteratively expanding the congestion-
control window until congestion is experienced, and then backing off. The rate at which the congestion-
control window expands is dependent on round trip times; as a result, it may take longer for TCP to achieve
peak bandwidth on higher latency networks.

3.2 TCP and the receive socket buffer
The TCP stack will not advertise a receive window that will not fit in the available space in the socket buffer. This
is calculated by subtracting current buffer occupancy from the socket-buffer limit. In early TCP, the advertised
window was solely present to support flow control, allowing the sender to avoid transmitting data that the recipient
could not reliably buffer.

However, the size of the buffer also has a secondary effect: It limits bandwidth utilization by constraining
the bandwidth-delay product, which must fit within that window. As latency increases, TCP must have more
unacknowledged data in flight in order to fill the pipe, and hence achieve maximum bandwidth. More recent TCP
and sockets implementations allow the socket buffer to be automatically resized based on utilization: as it becomes
more full, the socket-buffer limit is increased to allow the TCP window to open further.

4 Using DTrace to trace TCP state
FreeBSD’s DTrace implementation contains a number of probes pertinent to TCP, which you may use in addition
to system-call and other probes you have employed in prior labs:

fbt::syncache add:entry FBT probe when a SYN packet is received for a listening socket, which will lead to a
SYN cache entry being created. The third argument (args[2]) is a pointer to a struct tcphdr.

fbt::syncache expand:entry FBT probe when a TCP packet converts a pending SYN cookie or SYN cache
connection into a full TCP connection. The third argument (args[2]) is a pointer to a struct tcphdr.

3

fbt::tcp do segment:entry FBT probe when a TCP packet is received in the ‘steady state’. The second argument
(args[1]) is a pointer to a struct tcphdr that describes the TCP header (see RFC 893). You will want
to classify packets by port number to ensure that you are collecting data only from the flow of interest (port
10141), and associating collected data with the right direction of the flow. Do this by checking TCP header
fields th sport (source port) and th dport (destination port) in your DTrace predicate. In addition,
the fields th seq (sequence number in transmit direction), th ack (ACK sequence number in return
direction), and th win (TCP advertised window) will be of interest. The fourth argument (args[3]) is a
pointer to a struct tcpcb that describes the active connection.

fbt::tcp state change:entry FBT probe that fires when a TCP state transition takes place. The first argument
(args[0]) is a pointer to a struct tcpcb that describes the active connection. The tcpcb field
t state is the previous state of the connection. Access to the connection’s port numbers at this probe
point can be achieved by following t inpcb->inp inc.inc ie, which has fields ie fport (foreign,
or remote port) and ie lport (local port) for the connection. The second argument (args[1]) is the
new state to be assigned.

When analysing TCP states, the D array tcp state string can be used to convert an integer state to a
human-readable string (e.g., 0 to TCPS CLOSED). For these probes, the port number will be in network byte
order; the D function ntohs() can be used to convert to host byte order when printing or matching values in
th sport, th dport, ie lport, and ie fport. Note that sequence and acknowledgment numbers are cast
to unsigned integers. When analysing and graphing data, be aware that sequence numbers can (and will) wrap due
to the 32-bit sequence space.

4.1 Tracing connections: Packets and internal TCP state
The tcp do segment FBT probe allows us to track TCP input in the steady state. In some portions of
this lab, you will take advantage of access to the TCP control block (tcpcb structure – args[3] to the
tcp do segment FBT probe) to gain additional insight into TCP behaviour. The following fields may be
of interest:

snd wnd On the sender, the last received advertised flow-control window.

snd cwnd On the sender, the current calculated congestion-control window.

snd ssthresh On the sender, the current slow-start threshold – if snd cwnd is less than or equal to
snd ssthresh, then the connection is in slow start; otherwise, it is in congestion avoidance.

When writing DTrace scripts to analyse a flow in a particular direction, you can use the port fields in the TCP
header to narrow analysis to only the packets of interest. For example, when instrumenting tcp do segment
to analyse received acknowledgments, it will be desirable to use a predicate of /args[1]->th dport ==
htons(10141)/ to select only packets being sent to the server port (e.g., ACKs), and the similar (but subtly
different) /args[1]->th sport == htons(10141)/ to select only packets being sent from the server
port (e.g., data). Note that you will wish to take care to ensure that you are reading fields from within the tcpcb
at the correct end of the connection – the ‘send’ values, such as last received advertised window and congestion
window, are properties of the server, and not client, side of this benchmark, and hence can only be accessed from
instances of tcp do segment that are processing server-side packets.

To calculate the length of a segment in the probe, you can use the tcp:::send probe to trace the ip length
field in the ipinfo t structure (args[2]):

typedef struct ipinfo {
uint8_t ip_ver; /* IP version (4, 6) */
uint16_t ip_plength; /* payload length */
string ip_saddr; /* source address */
string ip_daddr; /* destination address */

} ipinfo_t;

As is noted in the DTrace documentation for this probe this ip plength is the expected IP payload length
so no further corrections need be applied.

4

Data for graphs in this assignment is typically gathered at (or close to) one endpoint in order to provide timeline
consistency – i.e., the viewpoint of just the client or the server, not some blend of the two time lines. As we will
be measuring not just data from packet headers, but also from the TCP implementation itself, we recommend
gathering most data close to the sender. As described here, it may seem natural to collect information on data-
carrying segments on the receiver (where they are processed by tcp do segment), and to collect information
on ACKs on the server (where they are similarly processes). However, given a significant latency between client
and server, and a desire to plot points coherently on a unified real-time X axis, capturing both at the same endpoint
will make this easier.

It is similarly worth noting that tcp do segment’s entry FBT probe is invoked before the ACK or data
segment has been processed – so access to the tcpcb will take into account only state prior to the packet that
is now being processed, not that data itself. For example, if the received packet is an ACK, then printed tcpcb
fields will not take that ACK into account.

4.2 Sample DTrace script
The following script prints out, for each received TCP segment beyond the initial SYN handshake, the sequence
number, ACK number, and state of the TCP connection prior to full processing of the segment:

Update:
2023-03-02

dtrace -n ’fbt::tcp_do_segment:entry {
printf("%u %u %s",

(unsigned int)args[1]->th_seq,
(unsigned int)args[1]->th_ack,
tcp_state_string[args[3]->t_state]);

}’

This script can be extended to match flows on port 10141 in either direction as needed.

4.3 DTrace ARMv8-A probe argument limitation
Due to a limitation of the DTrace implementation on FreeBSD/arm64, at most five probe arguments are available.
This impacts some tcp and fbt probes that have larger numbers of probes.

5 Hypotheses
In this lab, we provide you with this hypothesis that you will test and explore through benchmarking:

• Network stacks implement the TCP state machine as specified. (Part II only)

• Transitions through the TCP state machine are insensitive to latency. (Part II only)

• Longer round-trip times extend the period over which TCP slow start takes place, but TCP is able to achieve
equivalent throughput through rapid identification of, and adaptation to, available bandwidth. (L41 only)

We will test these hypothese by measuring net throughput between two TCP endpoints in two different threads.
We will use DTrace to establish the causes of divergence from these hypotheses, and to explore the underlying
implementations leading to the observed performance behavior.

6 The benchmark
The IPC benchmark introduced in Lab 2, ipc-benchmark, also supports a tcp IPC type that requests use of
TCP over the loopback interface. Use of a fixed TCP port number makes it easy to identify and classify exper-
imental packets on the loopback interface using packet-sniffing tools such as tcpdump, for latency simulation
using DUMMYNET, and also via DTrace predicates. We recommend TCP port 10141 for this purpose. Data
segments carrying benchmark data from the sender (the server) to the receiver (the client) will have a source port
of 10141, and acknowledgements from the receiver to the sender will have a destination port of 10141.

5

7 Getting Started
You do not need to recompile ipc-benchmark for Lab 3.

7.1 Obtaining example Jupyter notebooks
Update:
2023-03-02

Example Jupyter notebooks have been preinstalled onto your RPi4 board. Once you have logged into your RPi4
(see Advanced Operating Systems: Lab Setup), you can find them in:

/advopsys-packages/labs/2022-2023-advopsys-lab3.tbz

We recommend untarring this file into the /data directory on your board (-k was used not to overwrite your
existing files):

cd /data ; tar -xzvkf /advopsys-packages/labs/2022-2023-advopsys-lab3.tbz

After extracting the archive, you should see the following files:

• 2022-2023-advopsys-lab3-partii.ipynb with a sample Graphviz code for Part II students

• 2022-2023-advopsys-lab3-dtrace.ipynb with a sample DTrace code for both Part II and L41
students

7.2 Running the benchmark
As before, you can run the benchmark using the ipc-benchmark command, specifying various benchmark
parameters. This lab requires you to:

• Use -i tcp to select the TCP benchmark mode

• Use 2thread mode (as described in Lab 2)

• Hold the total I/O size (16M) constant

• Use verbose mode to report additional benchmark configuration data (-v)

• Use JSON machine-readable output mode (-j)

• Collect getrusage() information (-g)

• As needed, set the buffer size (-b bufferisze)

Be sure to pay specific attention to the parameters specified in the experimental questions, and carefully check
DUMMYNET settings.

7.3 Example benchmark command
This command instructs the IPC benchmark to perform a transfer over TCP in 2-thread mode, generating output
in JSON, and printing additional benchmark configuration information:

ipc/ipc-benchmark -j -v -i tcp 2thread

8 Configuring the kernel

8.1 netisr worker CPU pinning
In the default FreeBSD kernel configuration, a single kernel netisr thread is responsible for deferred dispatch,
including loopback input processing. In our experimental configuration, we pin that thread to CPU 0, where we
also run the IPC benchmark. This simplifies tracing and analysis in your assignment. We have put this setting in
the boot-loader configuration file for you, and no further action.

6

8.2 Flushing the TCP host cache
FreeBSD implements a host cache that stores sampled round-trip times, bandwidth estimates, and other informa-
tion to be used across different TCP connections to the same remote host. Normally, this feature allows improved
performance as, for example, by allowing past estimates of bandwidth to trigger a transition from slow start to
steady state without ‘overshooting’, potentially triggering significant loss. However, in the context of this lab,
carrying of state between connections reduces the independence of our experimental runs. The IPC benchmark
flushes the TCP host cache before each iteration is run, preventing information that may affect congestion-control
decisions from being carried between runs.

8.3 IPFW and DUMMYNET
To control latency for our experimental traffic, we will employ the IPFW firewall for packet classification, and
the DUMMYNET traffic-control facility to pass packets over simulated ‘pipes’. To configure 2× one-way DUM-
MYNET pipes, each imposing a 10ms one-way latency, run the following commands as root:

ipfw pipe config 1 delay 10
ipfw pipe config 2 delay 10

During your experiments, you will wish to change the simulated latency to other values, which can be done by
reconfiguring the pipes. Do this by repeating the above two commands but with modified last parameters, which
specify one-way latencies in milliseconds (e.g., replace ‘10’ with ‘5’ in both commands). The total Round-Trip
Time (RTT) is the sum of the two latencies – i.e., 10ms in each direction comes to a total of 20ms RTT. Note
that DUMMYNET is a simulation tool, and subject to limits on granularity and precision. Next, you must assign
traffic associated with the experiment, classified by its TCP port number and presence on the loopback interface
(lo0), to the pipes to inject latency:

ipfw add 1 pipe 1 tcp from any 10141 to any out via lo0
ipfw add 2 pipe 2 tcp from any to any 10141 out via lo0

You should configure these firewall rules only once per boot.

8.4 Configuring the loopback MTU
Network interfaces have a configured Maximum Transmission Unit (MTU) – the size, in bytes, of the largest
packet that can be sent. For most Ethernet and Ethernet-like interfaces, the MTU is typically 1,500 bytes, although
larger ‘jumbograms’ can also be used in LAN environments. The loopback interface provides a simulated network
interface carrying traffic for loopback addresses such as 127.0.0.1 (localhost), and typically uses a larger
(16K+) MTU. To allow our simulated results to more closely resemble LAN or WAN traffic, run the following
command as root to set the loopback-interface MTU to 1,500 bytes after each boot:

ifconfig lo0 mtu 1500

7

