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The goals of this lab are to:

• Introduce performance analysis methodology.

• Explore user-kernel interactions via system calls and traps.

• Explore the implementation of UNIX pipe IPC, and its optimisation using VM page borrowing.

• Use DTrace and hardware performance counters (HWPMC) to analyse these properties.

• Measure and explore the probe effect for DTrace.

You will do this by using DTrace and HWPMC to analyse the behaviour of a potted, kernel-intensive IPC bench-
mark.

1 Assignment documents
This document provides Lab 2 information common to the Part II and L41 variations of this course. All students
will also want to read Advanced Operating Systems: Lab Setup, which provides information on the lab platform
and how to get started.

Part II students should perform the assignment found in Advanced Operating Systems: Lab 2 – IPC – Part II
Assignment.

L41 students should perform the assignment found in Advanced Operating Systems: Lab 2 – IPC – L41 Assign-
ment. Follow the lab-report guidance found in L41: Lab Reports, and use the lab-report LaTeX template,
l41-labreport-template.tex.

2 Background: POSIX IPC objects
Pipes are an IPC primitive most frequently used between pairs of processes in a UNIX process pipeline: a chain
of processes started by a single command line, whose output and input file descriptors are linked. Although pipes
can be set up between unrelated processes, the primary means of acquiring a pipe is through inheritance across
fork(), meaning that they are used between closely related processes (e.g., with a common parent process). Update:

2023-02-18
In

this lab, we will use pipes between two threads in the same process.
Pipes are used to transmit ordered byte streams: a sequence of bytes sent via one file descriptor that will

be received reliably on another file descriptor without loss or reordering. As with file IPC, the read() and
write() system calls can be used to read and write data on file descriptors for pipes.

It is useful to know that these system calls are permitted to return partial reads and partial writes: i.e., a buffer
of some size (e.g., 1KiB) might be passed as an argument, but only a subset of the requested bytes may be received
or sent, with the actual size returned via the system call’s return value. This may happen if the in-kernel buffers for
the IPC object are too small for the full amount, due to object-specific implementation choices, or if non-blocking
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I/O is enabled. When analysing traces of IPC behaviour, it is important to consider both the size of the buffer
passed and the number of bytes returned in evaluating the behaviour of the system call.

You may wish to read the FreeBSD pipe(2) manual page to learn more about these APIs before proceeding
with the lab. This is installed on your RPi board, and can be read using the command man 2 pipe.

2.1 Virtual-memory optimisations
Pipe IPC normally involves two memory copies: once copying data from the sending process into kernel buffer (us-
ing copyin()), and a second time copying from the kernel buffer into the receiving process (using copyout()).
Contemporary UNIX implementations use virtual-memory page-borrowing optimisations to eliminate the sender-
side copy by borrowing the sender page.

However, there is a trade-off: There are also overheads associated with virtual-memory management, as well
as other behavioural changes required to implement this technique. The kernel therefore has a heuristic threshold
based on message size, which, by default, enables VM optimisations only when messages are 8KiB or above. You
can query and set the threshold using the sysctl management tool:

# sysctl kern.ipc.pipe_mindirect
kern.ipc.pipe_mindirect: 8192
# sysctl kern.ipc.pipe_mindirect=16384
kern.ipc.pipe_mindirect: 8192 -> 16384

This can be done within JupyterLab using the ! operator in the same way that we execute the benchmark itself.

3 Hypotheses
In this lab, we provide you with three hypotheses that you will test and explore through benchmarking:

1. Larger pipe buffer sizes uniformly improve IPC performance.

2. Page-borrowing virtual-memory optimisations always achieve a performance improvement, when enabled
at or above the default 8KiB threshold, relative to the unoptimised baseline.

3. The probe effect associated with using DTrace to trace this workload’s system calls, or use timeer-based
profiling, is negligible, and need not affect our interpretation of trace information.

Update:
2023-02-18

We will test these hypotheses by measuring net throughput between two IPC endpoints in two different threads.
We will calculate performance as the total amount of data transfered divided by the time between the first byte
sent by the sender and the last byte received by the recipient – i.e., a measure of bandwidth. In general, we will
use the bandwidth measurement provided by the benchmark itself, rather than measuring it with DTrace.

We will use DTrace and HWPMC to establish the causes of divergence from these hypotheses, and to explore
the underlying implementations leading to the observed performance behaviour. We will also consider the probe
effect of DTrace in the lab.

4 The benchmark
The IPC benchmark is straightforward: it sets up a pair of IPC endpoints referencing a shared pipe, and then
performs a series of write() and read() system calls on the file descriptors to send (and then receive) a total
number of bytes of data. Data will be sent using a configured userspace buffer size – although as hinted above,
there is no guarantee that a full user buffer will be sent or received in any individual call.

The benchmark will set up IPC objects and threads, sample the start time using clock gettime(), perform
the IPC loop, and then sample the finish time using clock gettime(). Optionally, both the average bandwidth
across the IPC object, and also more verbose information about the benchmark configuration, may be displayed.
A single, dynamically linked binary will be used in this lab: ipc-benchmark.
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5 Getting started
It is possible to run the following commands from both the UNIX shell prompt, and also from within JupyterLab.
For your labs, we generally recommend the latter. Either way, all commands will be run as the root user. Example
command lines are prefixed with the # symbol signifying the shell prompt.

5.1 Obtaining the benchmark
The laboratory IPC benchmark source code has been preinstalled onto your RPi4 board. Once you have logged
into your RPi4 (see Advanced Operating Systems: Lab Setup), you can find it in:

/advopsys-packages/labs/2022-2023-advopsys-lab2.tbz.

We recommend untarring this file into the /data directory on your board:

# cd /data ; tar -xzvf /advopsys-packages/labs/2022-2023-advopsys-lab2.tbz

5.2 Compiling the benchmark
Once you have obtained the benchmark, you need to compile it before you can begin work. Log into your RPi4
(see Advanced Operating Systems: Lab Setup) and build the bundle:

# make -C ipc

5.3 Benchmark arguments
If you run the benchmark without arguments, a small usage statement will be printed, which will also identify the
default IPC object type, IPC buffer, and total IPC sizes configured for the benchmark:

# ipc/ipc-benchmark
ipc-benchmark [-Bgjqsv] [-b buffersize] [-i pipe|local|tcp] [-n iterations]

[-p tcp_port] [-P arch|dcache|instr|tlbmem] [-t totalsize] mode

Modes (pick one - default 1thread):
1thread IPC within a single thread
2thread IPC between two threads in one process
2proc IPC between two threads in two different processes
describe Describe the hardware, OS, and benchmark configurations

Optional flags:
-B Run in bare mode: no preparatory activities
-g Enable getrusage(2) collection
-i pipe|local|tcp Select pipe, local sockets, or TCP (default: pipe)
-j Output as JSON
-p tcp_port Set TCP port number (default: 10141)
-P arch|dcache|instr|tlbmem Enable hardware performance counters
-q Just run the benchmark, don’t print stuff out
-s Set send/receive socket-buffer sizes to buffersize
-v Provide a verbose benchmark description
-b buffersize Specify the buffer size (default: 131072)
-n iterations Specify the number of times to run (default: 1)
-t totalsize Specify the total I/O size (default: 16777216)

In your experiments, you will need to be careful to hold most variables constant in order to isolate the effects
of specific variables. For example, you will need to vary the kern.ipc.pipe mindirect and buffer size
while holding the total size constant.

In addition to a set of arguments specifying parameters for the benchmark itself, which will feel familiar from
the prior lab, there is a new argument (-P) to request that hardware performance counters be measured around the
benchmark run.

3



5.4 Running the benchmark
Once built, you can run the benchmark binary as follows, with command-line arguments specifying various bench-
mark parameters:

# ipc/ipc-benchmark

For this assignment, you will run the benchmark in only one of its operational modes (2thread) and IPC types
(pipe). You will vary buffer size and the virtual-memory optimisation threshold, kern.ipc.pipe mindirect.

5.5 Benchmark mode
While this benchmark supports multiple modes of operation, this lab will use only one mode:

2thread Run the benchmark between two threads within one process: one as a ‘sender’ and the other as a ‘re-
ceiver’, with the sender capturing the first timestamp, and the receiver capturing the second. System calls
are blocking, meaning that if the in-kernel buffer fills during a write(), then the sender thread will sleep;
if the in-kernel buffer empties during a read(), then the receiver thread will sleep.

5.6 Benchmark configuration flags
These flags configure benchmarking and data collection:

-b buffersize Specify an alternative userspace IPC buffer size in bytes – the amount of memory allocated to hold
to-be-sent or received IPC data. The same buffer size will be used for both sending and receiving. The total
IPC size must be a multiple of buffer size.

-g Collect getrusage() statistics, such as sampled user and system time, as well as message send and receive
statistics.

-i ipctype Specify the IPC object to use in the benchmark; for the purposes of this lab, specify only pipe (the
default).

-n iterations Specify the number of times to run the benchmark loop, reporting on each independently.

-P mode Enable performance counters across the IPC loop. See the document, Advanced Operating System:
Hardware Performance Counters (HWPMC) for information on the available modes and their interpretation.

-t totalsize Specify an alternative total IPC size in bytes. The total IPC size must be a multiple of userspace IPC
buffer size.

5.7 Output flags
The following arguments control output from the benchmark:

-j Generate output as JSON, allowing it to be more easily imported into the Jupyter Lab framework, as well as
other data-processing tools.

-v Verbose mode causes the benchmark to print additional information, such as the time measurement, buffer size,
and total IPC size.

5.8 Example benchmark commands
This command performs a simple IPC benchmark using a pipe, default total IPC size, and 16KiB buffer between
two threads:

# ipc/ipc-benchmark -i pipe -b 16384 2thread

As with the I/O benchmark, additional information can be requested using verbose mode:

# ipc/ipc-benchmark -v -i pipe 2thread
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This command instructs the IPC benchmark to capture information on memory instructions issued when operating
on a pipe with a 512-byte buffer from two processes:

# ipc/ipc-benchmark -i pipe -b 512 -P tlbmem 2thread

This command performs the same benchmark while tracking L1 data-cache and L2 cache hits and refills:

# ipc/ipc-benchmark -i pipe -b 512 -P dcache 2thread

This command performs the same benchmark while tracking architectural loads, stores, function returns, and
exception returns:

# ipc/ipc-benchmark -i pipe -b 512 -P arch 2thread

During performance analysis, you will primarily want to run the benchmark using a command line such as the
following:

# ipc/ipc-benchmark -g -j -n 2 -i pipe 2thread
{

"benchmark_samples": [
{

"bandwidth": 1007235.62,
"time": "0.016266303",
"stime": "0.019953",
"utime": "0.000000",
"msgsnd": 128,
"msgrcv": 256,
"nvcsw": 262,
"nivcsw": 256

},
{

"bandwidth": 1013240.88,
"time": "0.016169897",
"stime": "0.019269",
"utime": "0.000000",
"msgsnd": 128,
"msgrcv": 256,
"nvcsw": 262,
"nivcsw": 256

}
]

}

This run of ipc-benchmark transfers 16MiB of data between two processes using pipe IPC, running the bench-
mark loop twice, collecting additional getrusage information, and prints the results in JSON for input into
Python.

You will notice that the wall-clock execution time (time) is slightly more than the sum of user time (utime)
and system time (stime). This imprecision likely occurs for two reasons: (1) wall-clock time is measured using
a precise clock, and the utime and stime metrics are gathered via sampling; and (2) the two sets of data can’t
be collected atomically as a single system call, so getrusage information includes execution time to collect the
wall-clock timestamp.

5.9 Assignment parameters
For the purposes of this assignment, please:

• Hold the total IPC size (totalsize) constant at 16MiB.
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• Measure power-of-two buffer sizes (buffersize) values from 64 bytes to 16MiB (inclusive).

• Use only the 2thread mode.

• Use only the pipe IPC type.

• Disregard the -B, -p, and -s arguments.

6 Notes on using DTrace
Update:
2023-02-18

On the whole, this lab will be concerned with just measuring the IPC loop, rather than whole-program behaviour.
It is useful to know that the system call clock gettime() is both run immediately before, and immediately
after, the IPC loop:

/* Instrument the ’return’ probe for this invocation. */
if (__sys_clock_gettime(CLOCK_REALTIME, &sap->sa_starttime) < 0)

xo_err(EX_OSERR, "FAIL: __sys_clock_gettime");

/* ... benchmark ... */

/* Instrument the ’entry’ probe for this invocation. */
if (__sys_clock_gettime(CLOCK_REALTIME, &finishtime) < 0)

xo_err(EX_OSERR, "FAIL: __sys_clock_gettime");

In this benchmark, these events may occur in different threads or processes, as the sender performs the initial
timestamp before transmitting the first byte over IPC, and the receiver performs the final timestamp after receiving
the last byte over IPC. You may wish to bracket tracing between a return probe for the former, and an entry probe
for the latter; see below for further details.

As with the last lab, you will want to trace the key system calls of the benchmark: read() and write().
For example, it may be sensible to inspect quantize() results for both the execution time distributions of the
system calls, and the amount of data returned by each (via arg0 in the system-call return probe).

You may also want to investigate scheduling events using the sched provider. This provider instruments a
variety of scheduling-related behaviours, but it may be of particular use to instrument its on-cpu and off-cpu
events, which reflect threads starting and stopping execution on a CPU.

You can also instrument sleep and wakeup probes to trace where threads go to sleep waiting for new data
in an empty kernel buffer (or for space to place new data in a full buffer). When tracing scheduling, it is useful to
inspect both the process ID (pid) and thread ID (tid) to understand where events are taking place.

By its very nature, the probe effect is hard to investigate, as the probe effect does, of course, affect investigation
of the effect itself! However, one simple way to approach the problem is to analyse the results of performance
benchmarking with and without DTrace scripts running. When exploring the probe effect, it is important to
consider not just the impact on bandwidth average/variance, but also on systemic behaviour: for example, when
performing more detailed tracing, causing the runtime of the benchmark to increase, does the number of context
switches increase, or the distribution of read() return values? In general, our interest will be in the overhead of
probes rather than the overhead of terminal I/O from the DTrace process – you may wish to suppress that output
during the benchmark run so that you can focus on probe overhead.

6.1 Example D script
Update:
2023-02-18

Bracketing in our DTrace script will allow us to focus tracing and profiling on the IPC loop itself, and not the
other inevitable activities of the program – run-time linking, benchmark setup, etc. If you configure the bench-
mark for a single execution (-n 1), then you can bracket tracing between a return probe of the first call to
clock gettime(), and the entry probe of the second call. For example, you might wish to include some-
thing like the following in your DTrace scripts:

BEGIN {
/* Initialise scalar (global) variables. */
in_benchmark = 0;
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done = 0;
}

syscall::clock_gettime:return
/execname == "ipc-benchmark" && !in_benchmark && !done/
{

in_benchmark = 1;
}

syscall::clock_gettime:entry
/execname == "ipc-benchmark" && in_benchmark && !done/
{

in_benchmark = 0;
done = 1;

}

probe:of:your:choice
/execname == "ipc-benchmark" && in_benchmark/
{

/* Only perform this data collection if running within the benchmark. */
}

END
{

/* Print summary statistics here. */
exit(0);

}

If you use more than one iteration per run of the benchmark program, you will need to extend this script to take
that into account. Additionally, remember that:

• In case you would like to trace multiple system calls in a single D script, it might be problematic to parse D
script output and distinguish data between system calls. Since D associative arrays can be indexed by a list
of values of any type, you might consider adding a key with a string indicating what case your data refer to;

• For syscall:::entry probes, arg0, . . . , argN variables refer to system call arguments;

• For syscall:::return probes, arg0, arg1 refer to system call return values;

• The errno variable is set to 0 if a system call succeeded or a non-zero value if it failed;

• The pid variable is set to a process ID of the current process, e.g., the process running the sender and
receiver threads in our case.

• The tid variable is set to the thread ID of the current thread, e.g., a sender thread or a receiver thread in
our case.

The following code snippet presents the above suggestions:

syscall::read:entry
/execname == "ipc-benchmark" && in_benchmark/
{

@["read-request", arg2] = count();
}

syscall::write:return
/execname == "ipc-benchmark" && in_benchmark && errno == 0/
{

@["write-response", arg0] = count();
}
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7 Further notes
Quiescing system state Ensure that your experimental setup quiesces other activity on the system, and uses
a suitable number of benchmark runs. Drop the first run of each set, which may experience one-time startup
expenses, such as loading pages of the benchmark from disk.

Note on graphs in this lab assignment or lab report Because of the large amounts of data (and number of data
sets) explored in this lab, you will need to pay significant attention in writing your lab assignment or lab report
to how you present data visually. Graphs should make visual arguments, and how a set of graphs are plotted can
support (or confuse) that argument. Make sure all graphs are clearly presented with labels and textual descriptions
helping the reader identify the points you think are important.

When two graphs have the same independent variable (e.g., buffer size), it is important that they use the same X
axis in terms of labelling and scale – and ideally also visual layout. Graphs with the same X axis will often benefit
from being arranged so that they align vertically stack on the page, such that inflection points can be visually
compared. This might useful, for example, if attempting to argue that inflection points in microarchitectural
counters (e.g., cache or TLB misses) relate to resulting performance change (e.g., in bandwidth).

The objective is that visual artifacts, such as convergence, divergence, or intersections of lines have meaning
when interpreting the graph. We therefore also discourage combining data with multiple Y-axis interpretations
in the same plot – instead, use adjacent plots. Be sure to clearly label all lines, utilize shading of regions, point
symbols, and colours to ensure that related data is grouped visually, and unrelated data is clearly distinct. If you
have trouble distinguishing the different data sets, then there are too many data sets on the graph.

Experiments to run Although the benchmark contains a number of modes and further options, use only the
modes specifically identified in the assignment for your work. For example, please do not evaluate 2proc be-
haviour, as that work will not be marked or assessed, and may distract from the assignment goals.

Benchmark execution time The benchmark can run for a considerable period of time – especially if we are
scanning a parameter space, and using multiple runs. You may wish to initially experiment using a smaller
number (e.g., 3) and get tea. For the final measurement, a larger number is desirable (e.g., 7). For short runs, plan
on a cup of tea. For long runs, plan on having dinner.

8


