Advanced Operating Systems: Lab 2 – IPC **L41 Assignment**

Prof. Robert N. M. Watson 2022-2023

Your lab report will explore the behaviour of UNIX pipe IPC across a range of buffer sizes, the impact of VM optimisation, and the potential probe effect arising from using performance counters.

Approach

The following questions are with respect to a fixed total IPC size of 16MiB (the default for the benchmark). Take measurements across a spectrum of powers-of-two buffer buffer sizes between 64 bytes and 16MiB. Use 2thread mode, and the -i pipe IPC type in all experiments. To explore the impact of virtual-memory optimisation, also vary the value of kern.ipc.pipe_mindirect across the buffer-size space, considering how the optimisation affects each potential buffer size.

Submitting your completed assignment

Your submitted lab report will be a single PDF file using the the L41 lab-report LaTeX provided. All submissions are via the course's Moodle page.

Data collection

First, gather data on the performance of pipe IPC with various configurations of the VM optimisation feature:

- Create a plot illustrating how pipe IPC performance changes across a range of buffer sizes, using the default kern.ipc.pipe_mindirect threshold.
- Create a plot showing the performance of two data sets across a range of buffer sizes: one with VM optimisations enabled, and the other disabled.

Explore pipe performance using OS-based techniques to understand the performance curves in these plots:

- Create two plots drawing on message sent and received information gathered using getrusage (2) across a range of buffer sizes: one with, and the other without, VM optimisations.
- Partition and analyse the IPC performance plots; then use DTrace profiling and, as necessary, tracing (e.g., of system calls, context switches), to explore and explain OS behaviors across a range of buffer sizes.

Now extend your analysis to include hardware performance counters as well as the results of DTrace analysis:

• Explore how varying buffer sizes, as well as configuration of VM optimisation, affects the architectural and micro-architectural aspects of cache and memory behaviour.

Conclude your data collection by gathering data on the probe effect associated with performance-counter use:

• Explore the impact of the probe effect on your investigation, focusing on how DTrace may have changed the behavior of the benchmark and impacted the accuracy of our analysis.

Lab report

In your lab report, evaluate the lab hypotheses (see *Advanced Operating Systems: Lab 2 – IPC – General Information*) in light of this data and analysis, as well as using other data you may have collected.