
Advanced Operating Systems:
Lab 1 – Getting Started with Kernel Tracing

Part II and L41 Assignment

Prof. Robert N. M. Watson

2022-2023

This first lab exercise introduces you to DTrace, asking you to take a series of basic kernel measurements and
present the results in a JupyterLab Notebook. Unlike Lab 2 and Lab 3 assignments, this exercise is a tutorial
shared by Part II and L41 courses. You will:

• Step through a set of example DTrace and Python scripts collecting and illustrating results from a simple
dd(1) workload.

• Complete a set of short exercises set out in a Jupyter Lab Notebook, building on those examples.

• Capture data using several different DTrace providers including systrace (system-call tracing), fbt (function
boundary tracing), and profile (timer-based profiling).

• Present this data using standard Python plotting mechanisms as well as Flame Graphs.

• Submit a generated PDF of these results for assessment and comments.

These skills will support your future labwork.

1 Assignment documents
All students should read Advanced Operating Systems: Lab Setup, which provides information on the lab platform
and how to get started.

2 Background: DTrace
DTrace, or Dynamic Tracing, is an OS feature to dynamically instrument software behaviour on supporting oper-
ating systems. As explored in Lecture 2, DTrace is highly programmable, with its D programming language used
to specify instrumentation points, conditions for data capture, and specific actions to take when those conditions
hold. You can refer to Advanced Operating Systems: DTrace Quick Start for a quick tutorial to get you started,
lecture slides and recordings, and the original research paper by Cantrill et al.

3 Getting started
Before you start, please review the Advanced Operating Systems: Lab Setup document, including how to log into
your RPi4, how to extract the first lab bundle, and how to run JupyterLab.

It is possible to run the following commands from both the UNIX shell prompt, and also from within Jupyter-
Lab. For your labs, we generally recommend the latter. Either way, all commands will be run as the root user.
Example command lines are prefixed with the # symbol signifying the shell prompt.

1

4 The JupyterLab notebook template
We have populated the directory /advopsys-packages/labs with the Lab 1 JupyterLab tarball, which you
will unpack into the /data directory. You will also use /data as the working directory for JupyterLab.

cd /data
tar -xzf /advopsys-packages/labs/2022-2023-advopsys-lab1.tbz

This will extract the file 2022-2023-advopsys-lab1.ipynb, which you will use to explore example trac-
ing and plotting scripts that we have prepared for you.

5 The assignment
In this exercise, we use the command-line tool dd(1), as also shown in Lecture 2, to explore some of the
tracing techniques available via DTrace. We will then take those DTrace results and analyse them in a JupyterLab
Notebook to build skills with that framework and its integration with DTrace, as well as Python plotting tools.

In later labs, we will use bespoke microbenchmarks as the targets of analysis; these also contain internal
instrumentation to report performance data as well as collect statistics on their operation. This will provide more
precise bracketing of the benchmark behaviour, as well as easy access to I/O or IPC statistics already captured by
the kernel, and with lower probe effect than with DTrace.

5.1 Example executions, tracing, and plotting
First, step through the examples in the Lab 1 JupyterLab notebook that we provide. These explore how to execute
the benchmark from within JupyterLab, using DTrace from both the command line and within Python, how to
plot with Matplotlib and our own Flamegraph module, and several potential uses of DTrace to collect data about
a running program including system-call tracing and timer-based profiling.

5.2 Exercises
Start by creating a new JupyterLab notebook clearly labeled with the current exercise number, name, your own
name, and the date. Now complete the following exercises, including your D script with each piece of generated
output, allowing us to see how you collected the data that you are presenting. Alongside your code blocks tracing
the workload and presenting your results, use markdown blocks to both label which exercise is being addressed,
and also to describe your work and conclusions. Ensure that plots are suitably labeled with units / scale, data-
set labels, and indications of key thresholds or inflection points. Marks are directly awarded for clear, succinct
presentation of your work.

1. Plot two histograms using matplotlib, one each showing the distribution of system-call wall-clock execution
times for read(2) and write(2) system calls for our dd(1) workload. To do this, instrument the
system-call entry and return probes for each of the two system calls. What do the distributions of these two
data sets look like?

2. Plot a flamegraph illustrating stack traces to kernel uma zalloc arg(9) calls made throughout the ker-
nel as dd(1) runs, instrumented using the DTrace fbt provider’s function entry probes. What portion of
execution drives the most slab memory allocations?

3. Plot two flamegraphs profiling stack traces using the profile-4997 probe, once for our dd(1)workload
with the default count of 10000 blocks, and a second time with a modified count of 1000 blocks. How does
proportional execution time of various kernel functions differ between these two similar workloads?

4. Measure the probe effect of using time profiling on our workload; what is the percentage overhead that
results from using DTrace in this way? As illustrated in Lecture 2, collect multiple samples, and comment
on the statistical strength of your measured difference. Use the Print menu option on JupyterLab’s File
menu to generate a PDF with your report. Ensure that your output is not truncated by a page edge in the
resulting PDF document.

2

