Kernels and Tracing

Lecture 2, Part 3: Our lab environment
Prof. Robert N. M. Watson
2022-2023

Our lab platform: RPi4s + FreeBSD 13.x

* 50x Raspberry Pi 4 boards
* Broadcom BCM2711 SoC
* 4x 64-bit A72 ARMvV8-A cores
 8GB DRAM, 64G SD Card

* FreeBSD 13-STABLE

* DTrace tracing tool
 HWPMC counter framework

* Bespoke benchmarks motivating OS
and microarchitectural analysis

* JupyterLab Notebook environment

S o Access remotely via SSH + port
1 forwarding for JupyterlLab interface

2

High-density Cortex A-72 slide

(Some of this information will be useful only for later labs)

The L1 memory system consists of separate instruction and data caches.

Per-Core:

CI r m The L1 instruction memory system has the following features:

C O RT EX®'A7 2 e 48KB 3-way set-associative instruction cache. L 1 I 'Ca C h e : 48 K

e Fixed line length of 64 bytes.

e Parity protection per 16 bits.

Arm CoreSight™ multicore debug and trace

e Instruction cache that behaves as Physically-indexed and physically-tagged (PIPT).
e Least Recently Used (LRU) cache replacement policy.

Corel
e MBIST support.

NEON™
Armv8-A SIMD engine The L1 data memory system has the following features:

32b/64b CPU e 32KB 2-way set-associative data cache. Pe r-co re :
L1 D-Cache: 32K

e Fixed line length of 64 bytes.

48kB I-cache with parity 32kB D-cache w/ECC e ECC protection per 32 bits.

e Datacache thatis PIPT.

e Out-of-order, speculative, non-blocking load requests to Normal memory and non-speculative, non-blocking
load requests to Device memory.

e | RU cache replacement policy.

ACP Nell) L2 cache w/ECC (512kB-4MB) e Hardware prefetcher that generates prefetches targeting both the L1 data cache and the L2 cache.
e MBIST support.
128-bit AMBA®4 ACE or AMBA 5 CHI coherent bus interface The features of the L2 memory system include: S h d .
ared:
e Configurable L2 cache size of 512KB, 1MB, 2MB and 4MB. L2 CaChe' 1M
—>| Branch e Fixed line length of 64 bytes. .
e Physically indexed and tagged cache.
e 16-way set-associative cache structure. P C
) The MMU has the following features: e r_ O re .
Decode,

Fetch > Rename, >

Issue

FP/ASIMD 0 | e 48-entry fully-associative L1 instruction TLB. M M U

Dispatch —DI
_.| PASIVD 1 | e 32-entry fully-associative L1 data TLB for data load and store pipeline| I-TLB: 48, D-TLB: 32,
e 4-way set-associative 1024-entry L2 TLB in each processor. L2-TLB: 1024
Load
_.| e Intermediate table walk caches.
» Store e The TLB entries contain a global indicator or an Address Space Identifier (ASID) to permit
context switches without TLB flushes.
IN ORDER OUT OF ORDER

e The TLB entries contain a Virtual Machine Identifier (VMID) to permit virtual machine 3
* Our benchmarks use only the first core to simplify analysis switches without TLB flushes.

JupyterLab

T * Web-based interactive
T .h ython(++) environment

eoe M- < 0 127001

B+ X O [» = C » Markdown v Python3 O

. . . L] L]
R Advanced Operating Systems: Lab 1 - Getting Started PY
amonth ago with Kernel Tracing u l l S O n e I) W I
amonth ago
This first lab, worth only a small portion of the overall marks, is to teach some baseline skills in using DTrace and
& Jupyter to do OS tracing, analysis, and data ion. You are to explore the assi using L3
] 2022-2023- -
© B 2022-2023-141... 19 days ago this Notebook, but create a new Notebook with only the assigned work to submit a clean version for marking.
[2022-2023-141, amonth ago Please submit a generated PDF of the Notebook, which may be done using File->Print and your web
B 2022-2023-141... amonth ago browser/0S's PDF export functionality.
& distribute.py amonth ago
O iofile amonthags tart by working through the teaching activites below, exploring how DTrace and Python interact to allow us to
O LICENSE amonthago capture and process trace data to understand a simple workload. Then create a new Notebook to answer the
specific exercises at the bottom of this Notebook.
[Makefile amonth ago
O runjupyter amonth ago
1. Running and tracing the workload “w)
In these exercises, we wil use the UNIX dd(1) command used in examples during lecture. dd copies data from [)
stdin to stdout infixed size blocks. We will use a simple invocation that copies zeros from /dev/zero)
into the null device, /dev/null, with a block size of 10MiB in quantity 100.
dd if=/dev/zero of=/dev/null bs=1K count=10000 t t | t | | t
Running dd(1) from Jupyter e X) a a) a l l p O S
We can use Jupyter's ! syntax to run UNIX commands; we will run it without status=none so thata
message is printed when it completes:
ldd if=/dev/zero of=/dev/null bs=1K count=10000 . t I ° I | tt ° °
Running the dtrace(1) command-line tool from Jupyter a a a l I a yS I S p O I l I g I S
We can use the Drace command-line tool via the same syntax. This example counts system calls when running
our dd(1) command. Note that we use execname tofilter probe firings even though s is specified, in .
order to avoid tracing concurrent system activity, including from DTrace and Python. e St O n e W I t J u t e r | a
tdtrace -n 'syscalli:: /execname == "dd"/ { @syscallsprobefuncl = count(); }' —c 'dd if=/dev/zi
2. Capturing DTrace output in Python
L] L]
To better analyse and present DTrace output, we use the python-dtrace module to run DTrace and capture [)
its output directly to Python data structures. ee e
Setting up DTrace module .
First import the python-dtrace module. This must be done once per session: ra ‘ e ‘ O l I I I I I a l l - I n e
from dtrace import DTraceConsumerThread
import subprocess I . . .
Define a DTrace convenience function C I e I It e a S I e r to WO r I(W I t I l
Next, abstract little away from the mechanics of the DTrace module. Callers will need to provide a D script, a
“walker" function to handle data inputs, and a command line to execute. This must be done once per session: f r. I
def dtrace_synchronous(script, walker, cmdline): O Ca S u a u S e
script - D script
walker - Walker routine to receive data
cmdline - Command to run
Simple 0 2 @ NoKernel|ldle Mode: Command @ Ln1,Col1 2022-2023-I41-lab1-flamegraph.ipynb

JupyterLab — the Ul P Drop-down menu

Executed cell

(number) \

Current cell

™~

Unexecuted cell

(no number) \

selects cell type
Buffer size: 8388608

Buffer size: 16777216

'Benchmark run completed'

Plot th llected dat
ot the collected data . Markdown cell

Finally, we generate a plot using matplotlib , consisting of medians and error bars based on IQR:

: figl, ax = plt.subplots()

ax.set_title("buffer size vs. bandwidth") C d II
x_coords
y_coords
low_errs
high_errs = []

for x in [2xxv for v in range(25)]:
x_coords.append(x)
y_coords.append(medians [x])
low_errs.append(qls [x])
high_errs.append(q3s[x])

ax.set_xscale("log")
ax.errorbar(x_coords, y_coords, [low_errs, high_errs])
plt.show()

166 buffer size vs. bandwidth

12 Cell output

08
06
04

02

e — Ctrl-Enter in a cell executes it
In execution cells show [*]

Create an annotated plot

In analysing this plot, it is worth considering key inflection points: Points on the plot where there are behavioural changes, and what they
reflect. We can directly annotate those points on the plot using avxline .

In the next plot, we've manually placed several vertical lines at points where the data you collect is likely to experience inflection points.
If they don't line up, check that you are collecting data as expected.

Be sure to take note of the linear Y axis and exponential X axis, and consider its implications for data analysis.

This content the same as the above cell
figl, ax = plt.subplots()
ax.set_title("buffer size vs. bandwidth")

Connecting to your board

* You will be assignhed a dedicated RPi4; its hostname will be
in the form rpi4-0XX.advopsys.cl.cam.ac.uk
* You will be contacted directly regarding your board assignment
and how to collect login credentials

* The RPi4 nodes are accessible via SSH from within the
CUDN (Cambridge University Data Network)

* This will apply to most students working from colleges / the
department

* |f you are not directly connected, you can:

e Use the UIS or CL VPNs
* Hop using SSH via another system on the CUDN (e.g., slogin-serv)

* You will run all parts of the lab as the root user

» Exercise care; we can re-image toasted boards, or assliFn you a

replacement, but data you may have on the board will be lost

* Please get in touch directly (and quickly) if you are having
prolblems accessing your RPi4 board remotely; test this
early

Web access over SSH

* In addition to logging in via SSH, you will use SSH to
port forward the JupyterLab web interface:
ssh -L8080:127.0.0.1:8080 root@rpi4-0XX.advopsys.cl.cam.ac.uk

* This command allows software on your workstation to
connect to 127.0.0.1:8080 and be transparently
connected to the same port on the remote system

* |.e., by connecting to http://127.0.0.1:8080

 Now run JupyterLab on your RPi4 using the following
command (typically with a cwd of /data):

jupyter-lab --allow-root -—-no-browser --port=8080
* JupyterLab will print out the URL to use it starts

 The URL includes a cookie specific to a session of
JupyterLab; there is a new URL each time you run it

http://127.0.0.1:8888/

Notes on the execution environment

 /data is where you should store notebooks, output, etc.

* This is where we will look for it if we need to help you, or want to
check your work during marking

 [fusr/src/sys contains synchronized kernel source code

* You are running as root — please be careful not to hose the
board you’ve been assigned
* We can remotely re-image, but your data will be lost
* DTrace can have a significant impact on performance for
some scripts — e.g., instrumenting “:::” (all probes)
* Try not to render your board unresponsive, if possible
* We can remotely reset, but it risks data loss

* Please back up your data to your personal machine

How to contact us

e Preferred: Course slack
e advopsys.slack.com

* Also possible: Email to the lecturer
* robert.watson@cl.cam.ac.uk

Wrapping up

* |In this lecture, we have:
* DTrace, the kernel tracing facility we will use
* The probe effect and its impact
* Our lab environment

e Our next lecture will explore:
* The process model
* The practical implications of the process model

* Readings for the next lecture:

* McKusick, et al: Chapter 4 (Process Management)
* Anderson, et al. 1992. (L41 only)

