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MPhil/Part III L41 vs. Part II AdvOpSys
• These lectures are shared by two separate courses:

• ACS / Part III L41: Advanced Operating Systems
• Part II: Advanced Operating Systems

• The two courses also share an online lab framework 
based on the RPi4, JupyterLabs, DTrace, and HWPMC
• Lab 1 is a tutorial shared by the two courses

• But there are some important differences:
• Key difference 1: Assessed coursework (after lab 1)

• L41 has 2x independently written lab reports
• Part II has 2x short-answer lab assignments

• Key difference 2: Assigned readings
• L41 assigns additional research readings

• Please be sure to use the right material for your course!
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Getting started
• What is an operating system?

• About the module
• Systems research
• Lab assignments / reports

• Kernel dynamics
• Readings for next lecture
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What is an operating system?

[An OS is] low-level software that supports
a computer’s basic functions, such as

scheduling tasks and controlling peripherals.
- Google
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What is an operating system?

- ChatGPT
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What is an operating system?

But that is basically the 1970s definition,
and not at all a contemporary one.

Today’s general-purpose operating systems consist of 
GB of binaries and hundreds of millions of LoC.

Further, when you select an operating system,
you select hardware and software ecosystems.
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What is an operating system?
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General-purpose operating systems
… are for general-purpose computers:
• Servers, workstations, mobile devices
• Run applications – i.e., software unknown at OS design time
• Abstract the hardware, provide services, ‘class libraries’
• E.g., Windows, Apple macOS, Android, iOS, Linux, BSD, …

Userspace Local and remote shells, GUI, management tools, daemons
Run-time linker, system libraries, logging and tracing facilities

– system-call layer –

Kernel System calls, hypercalls, remote procedure call (RPC)*
Processes, filesystems, IPC, sockets, management
Drivers, packets/blocks, protocols, tracing, virtualisation
VM, malloc, linker, scheduler, threads, timers, tasks, locks

* Continuing disagreement on whether distributed-filesystem
servers and window systems ‘belong’ in userspace or the kernel
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Other kinds of operating systems (1/3)

Specialise the OS for a specific application or environment:
• Embedded, real-time operating systems

• Serve a single application in a specific context
• E.g., WiFi access points, medical devices, washing machines, cars

• Small code footprint, real-time scheduling
• Might have virtual memory / process model
• Microkernels or single-address space: VxWorks, RTEMS, L4
• Now also: Linux, BSD (sometimes over a real-time kernel), etc.

• Appliance operating systems
• Apply embedded model to higher-level devices/applications
• File storage appliances, routers, firewalls, ...

• E.g., Juniper JunOS, Cisco IOS, NetApp OnTap, EMC/Isilon
• Under the hood, almost always Linux, BSD, etc.

Key concept: Operating system as a reusable component
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Other kinds of operating systems? (2/3)
What if we rearrange the boxes?
• Microkernels, library operating systems, unikernels

• Shift code from kernel into userspace to reduce Trusted Computing 
Base (TCB); improve robustness/flexibility; ‘bare-metal’ apps

• Early 1990s: Microkernels are king!
• Late 1990s: Microkernels are too slow!

• (But ideas about OS modularity dating from this period are widespread)
• 2000s/2010s: Microkernels are back! But now ‘hypervisors’
• Sometimes: programming-language runtime as OS
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Other kinds of operating systems? (3/3)

• Hypervisors
• Kernels host processes; hypervisors host virtual machines

• Type-1: Standalone hypervisors (e.g., Xen)
• Type-2: Integrated with OS kernel (e.g., KVM)

• Virtualised hardware interface rather than POSIX APIs
• Paravirtualisation reintroduces OS-like APIs for performance
• E.g., System/370, VMware, Xen, KVM, VirtualBox, bhyve, 

Hafnium, ...
• Many microkernel ideas have found a home here

• Containers
• Hosts multiple userspace instances over a common kernel
• Controlled namespaces prevent inappropriate accesses
• Really more about code/ABI (Application Binary Interface) 

distribution and maintenance
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What does an operating system do?

• Key hardware-software surface (w/compiler toolchain)
• Low-level abstractions and services

• Operational model: bootstrap, shutdown, watchdogs
• Process model, IPC: processes, threads, IPC, program model
• Resource sharing: scheduling, multiplexing, virtualisation
• I/O: drivers, local/distributed filesystems, network stack
• Security: authentication, encryption, ACLs, MAC, audit
• Local or remote access: console, window system, SSH
• Libraries: math, protocols, RPC, crypto, UI, multimedia
• Monitoring/debugging: logs, profiling, tracing, debugging

Compiler? Text editor? E-mail package? Web browser? 
Can an operating system be “distributed”?
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Why study operating systems?

The OS plays a central role in whole-system design when 
building efficient, effective, and secure systems:
• Strong influence on whole-system performance
• Critical foundation for computer security
• Exciting programming techniques, algorithms, problems

• Virtual memory; network stack; filesystem; run-time linker; …

• Co-evolves with platforms, applications, users
• Multiple active research communities
• Reusable techniques for building complex systems
• Boatloads of fun (best text adventure ever)
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Where is the OS research?
A sub-genre of systems research:
• Evolving hardware-software interfaces

• New computation models/architectures
• New kinds of peripheral devices

• Integration with programming languages and runtimes
• Concurrent/parallel programming models; scheduling
• Security and virtualisation
• Networking, storage, and distributed systems
• Tracing and debugging techniques
• Formal modeling and verification
• As a platform for other research – e.g., mobile systems
Venues: SOSP, OSDI; ATC; EuroSys; HotOS; FAST; NSDI; 
HotNets; ASPLOS; USENIX Sec.; ACM CCS; IEEE SSP; …
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What are the research questions?
Just a few examples: By changing the OS, can I…
• Create new abstractions for new hardware?
• Make my application run faster by…

• Better masking latency?
• Using parallelism more effectively?
• Exploiting new storage mediums?
• Adopting distributed-system ideas in local systems?

• Make my application more {reliable, energy efficient}
• Limit {security, privacy} impact of exploited programs?
• Use new language/analysis techniques in new ways?

Systems research focuses on evaluation with respect to 
applications or workloads: How can we measure 
whether it is {faster, better, ...}?
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Teaching operating systems

• Two common teaching tropes:
• Trial by fire: in micro, recreate classic elements of operating 

systems: microkernels with processes, filesystems, etc.
• Research readings course: read, present, discuss, and write 

about classic works in systems research
• This module adopts elements of both styles while:

• mitigating the risk of OS kernel hacking in a short course
• working on real-world systems rather than toys; and
• targeting research skills not just operating-system design

• Trace and analyse real systems driven by specially 
crafted benchmarks
• Possible only because of (fairly) recent developments in 

tracing and hardware-based performance analysis tools
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Aims of the module (1/2)

Teaching methodology, skills, and knowledge
required to understand and perform research on 
contemporary operating systems by…
• Employing systems methodology and practice
• Exploring real-world systems artefacts through 

performance and functional evaluation/analysis
• Developing scientific writing skills (L41 only)
• Reading original systems research (L41 only)
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Aims of the module (2/2)
On completion of this module, students should:
• Have an understanding of high-level OS kernel 

structure. 
• Gained insight into hardware-software interactions 

for compute and I/O.
• Have practical skills in system tracing and 

performance analysis.
• Have been exposed to research ideas in system 

structure and behaviour. (L41 only)
• Have learned how to write systems-style 

performance evaluations. (L41 only)
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Prerequisites
We will take for granted:
• High-level knowledge of OS terminology from an 

undergraduate course (or equivalent); e.g.,:
• What schedulers do
• What processes are … and how they differ from threads
• What Inter-Process Communication (IPC) does
• How might a simple filesystem might work

• Reasonable fluency in reading multithreaded C
• Good working knowledge of Python
• Comfort with the UNIX command-line environment
• Undergraduate skills with statistics

(mean/median/mode/stddev/t-tests/linear regression/boxplots/scatterplots ... )

You can pick up some of this as you go (e.g., IPC, Python, 
or t-tests), but will struggle if you are missing several 20



Module structure –
four complementary strands
• Lectures (⨉5: 4 in-person 2-hour slots, 1 prerecorded)

• Theory, methodology, architecture, and practice

• Assigned research and applied readings
• Selected portions of module texts – learn skills, methodology
• Related research readings – research exposure (L41 only)

• In-person lab exercises (⨉3 labs, prerecorded lecturelets)
• Short prerecorded lecturelet introduces each lab
• RPi4 cluster to run experiments (one board per student)
• 6⨉ Module demonstrators available to answer questions

• First lab assignment
• Acclimate to platform
• Learn essential skills to perform later labs (e.g., DTrace, Jupyter)

• Later lab assignments (Part II – ⨉2) or reports (L41 – ⨉2)
• Based on experiments done in lab exercises
• Develop scientific + writing skills suitable for systems research (L41)

21



Outline of module schedule
• Submodule 1: Introduction to kernels and tracing/analysis

• 2 lectures (one prerecorded)
• 2 labs: Introduction to kernel tracing, I/O
• Introduction: OSes, Systems Research, and L41
• The Kernel: Kernel and Tracing

• Submodule 2: The Process Model
• 2 lectures, 2 labs (IPC, PMC)
• The Process Model (1) – Binaries and Processes
• The Process Model (2) – Traps, System Calls, and Virtual Memory

• Submodule 3: The Network Stack (TCP/IP)
• 1 lecture, no lab
• The Network Stack – Sockets, NICs, Work Distribution, and TCP

• Please consult online materials for all deadlines
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The lab platform
• 50x Raspberry Pi 4 boards in a rack
• Broadcom BCM2711 SoC
• 4x 64-bit A72 ARMv8-A cores
• 8GB DRAM, 64G SD Card

• FreeBSD operating system
• DTrace tracing tool
• HWPMC counter framework
• Bespoke potted benchmarks 

motivating OS and microarchitectural 
performance analysis
• Jupyter lab notebook environment

• Remotely accessed via SSH + 
tunneling for Jupyter
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Shared first Lab 1:
Getting started with kernel tracing
• Identical assignment for Part II and L41
• Exercises to get you started on the platform; teach:
• Jupyter Lab Notebooks
• DTrace instrumentation and data collection – in 

particular, tracing and profiling scripts
• Relevant Python plotting tools including Flame Graphs
• And first dirty hands with respect to OS internals

• Submitted only via Moodle; use “Print to PDF” in 
your browser to generate a PDF to submit
• Low proportion of marks (10%): really about 

teaching basic skills you will need for later labs
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Lab Assignments 2 and 3 (Part II only)
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• A series of questions requiring short answers
• Answers consist of written text, selected data, and plots
• Perform your work in the Jupyter lab framework
• Your submission will consist of generated PDF of the 

completed lab notebook – e.g., by printing to a PDF file
• Submissions are accepted only via Moodle

• Ensure that your submission is well presented; e.g.,
• Plots don’t span page boundaries or run off the side
• Plots have clearly labeled axes, data sets, and so on
• Make sure your text is concise and clear, addressing the 

questions that are answered
• Marked based on submitted data, text, and plots
• The third lab assignment (TCP/IP) is optional



Lab Reports 2 and 3 (L41 only)
Lab reports document an experiment and analyse its results – typically 
using one or more hypotheses.
Our lab reports will contain the following sections (see notes, template):

Some formats break out (e.g.) experimental setup vs. methodology, 
and results vs. discussion. The combined format seems to work better 
for systems experimentation as compared to (e.g.) biology.
• The target length is 8 pages excluding appendices, references
• Over-length reports will be penalized – please stop by the limit!
• Appendices will not be read if too long, and should not be essential 

to understanding the core content of the report

1. Title + abstract (1 page) 5. Conclusion (1-2 para)

2. Introduction (1-2 para) 6. References

3. Experimental setup and 
methodology (1-2 pages)

7. Appendices

4. Results and discussion (3-4 pages)
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Module texts – core material
You will need to make frequent reference to these books both 
in the labs and outside of the classroom:

Operating systems: Marshall Kirk McKusick, George V. Neville-Neil, and 
Robert N. M. Watson, The Design and Implementation of the 
FreeBSD Operating System, 2nd Edition, Pearson Education, Boston, 
MA, USA, September 2014.

Performance measurement: Raj Jain, The Art of Computer Systems 
Performance Analysis: Techniques for Experimental Design, 
Measurement, Simulation, and Modeling, Wiley - Interscience, New 
York, NY, USA, April 1991.

Tracing and profiling: Brendan Gregg and Jim Mauro, DTrace: Dynamic 
Tracing in Oracle Solaris, Mac OS X and FreeBSD, Prentice Hall Press, 
Upper Saddle River, NJ, USA, April 2011.

The FreeBSD and DTrace books are available online via vlebooks.com:
https://www.vlebooks.com/Vleweb/Search/Keyword?keyword=freebsd
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Module texts – additional material
If your OS recollections feel a bit hazy:

Operating systems: Abraham Silberschatz, Peter Baer 
Galvin, and Greg Gagne. Operating System Concepts, 
Eighth Edition, John Wiley & Sons, Inc., New York, NY, USA, 
July 2008.

If you want to learn a bit more about architecture 
and measurement:

Performance measurement and diagnosis: Brendan 
Gregg, Systems Performance: Enterprise and the Cloud, 
Prentice Hall Press, Upper Saddle River, NJ, USA, October 
2013.
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The kernel: “Just a C program”?
• I claimed that the kernel was mostly “just a C program”
• This is indeed mostly true, especially in higher-level subsystems

30

Userspace Kernel
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The kernel: not just any C program

• Core kernel: ≈3.4M LoC in ≈6,450 files
• Kernel runtime: Run-time linker, object model, scheduler, 

memory allocator, threads, debugger, tracing, I/O routines, 
timekeeping

• Base kernel: VM, process model, IPC, VFS w/20+ filesystems, 
network stack (IPv4/IPv6, 802.11, ATM, …), crypto framework

• Includes roughly ≈70K lines of assembly over ≈6 architectures
• Alternative C runtime – e.g., SYSINIT, curthread
• Highly concurrent – really very, very concurrent
• Virtual memory makes pointers .. odd
• Debugging features – e.g., WITNESS lock-order verifier
• Device drivers: ≈3.0M LoC in ≈3,500 files

• 415 device drivers (may support multiple devices)
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Spelunking the kernel

• Kernel source lives in /usr/src/sys:
• kern/ – core kernel features
• sys/ – core kernel headers
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% ls
Makefile ddb/            libkern/        nfs/            teken/
amd64/          dev/            mips/           nfsclient/      tests/
arm/            dts/            modules/        nfsserver/      tools/
arm64/          fs/             net/            nlm/            ufs/
bsm/            gdb/            net80211/       ofed/           vm/
cam/            geom/           netgraph/       opencrypto/     x86/
cddl/           gnu/            netinet/        powerpc/        xdr/
compat/         i386/           netinet6/       riscv/          xen/
conf/           isa/            netipsec/       rpc/
contrib/        kern/           netpfil/        security/
crypto/         kgssapi/        netsmb/         sys/

% ls kern
Make.tags.inc kern_sendfile.c subr_prng.c
Makefile kern_sharedpage.c subr_prof.c
bus_if.m kern_shutdown.c subr_rangeset.c
capabilities.conf kern_sig.c subr_rman.c
clock_if.m kern_switch.c subr_rtc.c
cpufreq_if.m kern_sx.c subr_sbuf.c
...



How work happens in the kernel
• Kernel code executes concurrently in multiple threads

• User threads in the kernel (e.g., a system call)
• Shared worker threads (e.g., callouts)
• Subsystem worker threads (e.g., network-stack workers)
• Interrupt threads (e.g., Ethernet interrupt handling)
• Idle threads
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# procstat -at
PID    TID COMM             TDNAME           CPU  PRI STATE   WCHAN

0 100000 kernel swapper -1   84 sleep swapin
0 100006 kernel dtrace_taskq -1   84 sleep -

...
10 100002 idle - -1  255 run -
11 100003 intr swi3: vm 0   36 wait -
11 100004 intr swi4: clock (0)   -1   40 wait -
11 100005 intr swi1: netisr 0    -1   28 wait -

...
11 100018 intr intr16: ti_adc0    0   20 wait -
11 100019 intr intr91: ti_wdt0    0   20 wait -
11 100020 intr swi0: uart -1   24 wait -

...
739 100064 login            - -1  108 sleep   wait
740 100079 csh - -1  140 sleep ttyin
751 100089 procstat - 0  140 run -



Work processing and distribution
• Many operations begin with system calls in a user thread
• But may trigger work in many other threads; for example:

• Triggering a callback in an interrupt thread when I/O is complete
• Eventually writing back data to disk from the buffer cache
• Delayed transmission if TCP isn’t able to send immediately

• We will need to be careful about these things, as not all 
work we are analysing will be in the obvious user thread
• Multiple mechanisms provide this asynchrony; e.g.:
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callout Closure called after wall-clock delay

eventhandler Closure called for key global events

task Closure called .. eventually

SYSINIT Function called when module loads/unloads

* Where closure in C means: function pointer, opaque data pointer



Wrapping up
• In this lecture, we have:

• Explored the idea of an operating system
• Detailed the structure of the course and its expectations
• The dynamics of kernel execution (just a taster)

• Our next prerecorded lecture (intended to be watched 
before you start on Lab 1) will explore:
• DTrace, the kernel tracing facility we will use
• The probe effect and its impact
• Our lab environment

• Readings for the next lecture:
• Paper - Cantrill, et al. 2004
• McKusick, et al. Chapter 3 (Kernel Subsystems)
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