

Display Technologies

Advanced Graphics and Image Processing

Rafał Mantiuk Computer Laboratory, University of Cambridge

Overview

Temporal aspects

- Latency in VR
- Eye-movement
- Hold-type blur
- 2D displays
 - D spatial light modulators
 - High dynamic range displays

Latency in VR

- Sources of latency in VR
 - ► IMU ~I ms
 - Inertial Measurement Unit
 - sensor fusion, data transfer
 - rendering: depends on complexity of scene & GPU – a few ms
 - data transfer again
 - Display
 - 60 Hz = 16.6 ms;
 - 70 Hz = 11.1 ms;
 - ▶ 120 Hz = 8.3 ms.

Target latency

- Maximum acceptable: 20ms
- Much smaller (5ms) desired for interactive applications

Example

- I 6 ms (display) + I 6 ms (rendering) + 4 ms (orientation tracking) = 36 ms latency total
- At 60 deg/s head motion, IKxIK, 100deg fov display:
 - I9 pixels error
 - Too much

Post-rendering image warp (time warp)

- To minimize end-to-end latency
- The method:
 - get current camera pose
 - render into a larger raster than the screen buffer
 - get new camera pose
 - warp rendered image using the latest pose, send to the display
 - D image translation
 - D image warp
 - 3D image warp
- Original paper from Mark et al.
 1997, also Darsa et al. 1997
 - Meta: Asynchronous Time Warp

Eye movement - basics

Fixation

Eye movement - basics

160-300 deg/s

Eye movement - basics

Smooth Pursuit Eye Motion (SPEM)

Up to 80 deg/s The tracking is imperfect

- especially at higher velocities
- and for unpredictable motion

Retinal velocity

- The eye tracks moving objects
 - Smooth Pursuit Eye Motion (SPEM) stabilizes images on the retina
 - But SPEM is imperfect
- Loss of sensitivity mostly caused by imperfect SPEM
 - SPEM worse at high velocities

Spatio-velocity contrast sensitivity

Kelly's model [1979]

Motion sharpening

 The visual system "sharpens" objects moving at speeds of 6 deg/s or more

Potentially a reason why VR appears sharper than it actually is

Hold-type blur

- The eye smoothly follows a moving object
- But the image on the display is "frozen" for 1/60th of a second

Hold-type blur

- The eye smoothly follows a moving object
- But the image on the display is "frozen" for 1/60th of a second

Original scene

With hold-type blur

Hold-type blur

- The eye smoothly follows a moving object
- But the image on the display is "frozen" for 1/60th of a second

Low persistence displays

- Most VR displays flash an image for a fraction of frame duration
- This reduces hold-type blur
- And also reduces the perceived lag of the rendering

Black frame insertion

Which invader appears sharper?

- A similar idea to low-persistence displays in VR
- Reduces hold-type blur

Flicker

Critical Flicker Frequency

- The lowest frequency at which flickering stimulus appears as a steady field
- Measured for full-on / off presentation
- Strongly depends on luminance
 big issue for HDR VR headsets
- Increases with eccentricity
- and stimulus size
- It is possible to detect flicker even at 2kHz
 - For saccadic eye motion

[Hartmann et al. 1979]

Overview

Temporal aspects

- Latency in VR
- Eye-movement
- Hold-type blur
- D displays
 - D spatial light modulators
 - High dynamic range displays

Cathode Ray Tube

Spectral Composition

three different phosphors

- saturated and natural colors
- inexpensive
- high contrast and brightness

[from wikipedia]

Liquid Chrystal Displays (LCD)

Twisted neumatic LC cell

In-plane switching cell (IPS)

Figure from: High Dynamic Range Imaging by E. Reinhard et al.

LCD

- color may change with the viewing angle
- contrast up to 3000:1
- higher resolution results in smaller fill-factor
- color LCD transmits only up to 8% (more often close to 4-5%) light when set to full white

LCD temporal response

- Experiment on an IPS LCD screen
- We rapidly switched between two intensity levels at 120Hz
- Measured luminance integrated over 1s
- The top plot shows the difference between expected $\left(\frac{I_{t-1}+I_t}{2}\right)$ and measured luminance
- The bottom plot: intensity measurement for the full brightness and half-brightness display settings

Digital Micromirror Devices (DMDs/DLP)

Texas Instruments

- 2-D array of mirrors
- Truly digital pixels
- Grey levels via Pulse-Width Modulation

25

Liquid Crystal on Silicon (LCoS)

basically a reflective LCD

 standard component in projectors and head mounted displays

used e.g. in Google Glass

26

Scanning Laser Projector

- maximum contrast
- scanning rays
- very high power lasers needed for high brightness

http://elm-chan.org/works/vlp/report_e.html

3-chip vs. Color Wheel Display

- color wheel
 - cheap
 - time sequenced colors
 - color fringes with motion/video
- ► 3-chip
 - complicated setup
 - no color fringes

OLED

- based on electrophosphorescence
- large viewing angle
- the power consumption varies with the brightness of the image
- fast (< I microsec)</pre>
- arbitrary sizes
- life-span can be short
 - Worst for blue OLEDs

Active matrix OLED

- Commonly used in mobile phones (AMOLED)
- Very good contrast
 - But the screen more affected by glare than LCD
- But limited brightness
 - The brighter is OLED, the shorter is its live-span

Temporal characteristic

A single uniform white frame @24/25/30 Hz

Bird-bath optics for near-eye displays

More reading: https://kguttag.com/2017/03/03/near-eye-bird-bathoptics-pros-and-cons-and-immys-different-approach/

Google Glass

Pros:

- Simple, efficient design Cons:
- Cannot be scaled up easily

32

Diffractive waveguides

US 2016/0231568

Microsoft Hololens

(19) (12)	Unite Paten Saarikko	(10) Pub. No.: US 2016/0231568 A (43) Pub. Date: Aug. 11, 2014				
(54)	WAVEGU	IDE	(52)) U.S. Cl.		
(71)	Applicant:	Microsoft Technology Licensing, LLC, Redmond, WA (US)		CPC		
(72)	Inventors:	Pasi Saarikko, Espoo (FI); Pasi Kostamo, Espoo (FI)	(57) A wa			
(21)	Appl. No.: 14/617,697		a display system and arranged to guide light from a light engine onto an eye of a user to make an image visible to th user, the light guided through the waveguide by reflection a			
(22)	Filed:	Feb. 9, 2015		the front and rear surfaces. A first portion of the front or real surface has a structure which causes light to change phase upon reflection from the first portion by a first amount 4		
Publication Classification			second portion of the same surface has a different structure			
(51)	Int. Cl. G02B 27/0 G02B 5/18 F21V 8/00	DI (2006.01) B (2006.01) D (2006.01)	whic seco amo a di betw	Which causes light to change phase upon reflection from the second portion by a second amount different from the firs amount. The first portion is offset from the second portion b a distance which substantially matches the differenc between the second amount and the first amount.		

Electronic Paper

www.eink.com

Cross Section of Electronic-Ink Microcapsules

Prototype HDR display (2004)

35

Cambridge experimental HDR display

- 35,000 cd/m² peak luminance
- 0.01 cd/m² black level
- LCD resolution: 2048x1536
- Backlight (DLP) resolution: 1024x768
- Geometric-calibration with a DSLR camera
- Display uniformity compensation
- Bit-depth of DLP and LCD extended to 10 bits using spatiotemporal dithering

Modern HDR displays

- Modulated LED array
- Conventional LCD
- Image compensation

Low resolution x LED Array

High resolution _ High Dynamic Colour Image

Range Display

HDR Display

- Two spatial modulators
 - Ist modulator contrast 1000:1
 - > 2nd modulator contrast 1000:1
 - Combined contrast 1000,000:1

- Idea: Replace constant backlight of LCD panels with an array of LEDs
 - Very few (about 1000) LEDs sufficient
 - Every LED intensity can be set individually
 - Very flat form factor (fits in standard LCD housing)
- Issue:
 - LEDs larger than LCD pixels
 - This limits maximum local contrast

Receive Image

Drive LED

Divide Image by LED light field to obtain LCD values

Output Luminance is the product of LED light field and LCD transmission (modest error)

Receive Image

Drive LED

Divide Image by LED light field to obtain LCD values

Output Luminance is the product of LED light field and LCD transmission (Problematic error)

Maximum perceivable contrast

- Globally very high (5-6 orders of magnitude)
 - That is why we create these displays!
- Locally can be low: 150:1
- Point-spread function of human eye
 - Refer to "HDR and tone mapping" lecture
 - Consequence: high contrast edges cannot be perceived at full contrast

Veiling Glare (Camera)

Veiling Luminance masks imperfection

43

HDR rendering algorithm - high level

Simplified HDR rendering algorithm

Rendering Algorithm

References

- HAINICH, R.R. AND BIMBER, O. 2011. Displays: Fundamentals and Applications. CRC Press.
- SEETZEN, H., HEIDRICH, W., STUERZLINGER, W., ET AL. 2004. High dynamic range display systems. ACM Transactions on Graphics 23, 3, 760.
- Visual motion test for high-frame-rate monitors:
 - https://www.testufo.com/