Advanced Graphics and Image Processing

Models of early visual perception

Part 1/6 – perceived brightness of light

Rafal Mantiuk

Computer Laboratory, University of Cambridge
Many graphics/display solutions are motivated by visual perception

Image & video compression

Display spectral emission - metamerism

Cameras’ Bayer pattern

Halftoning

Display’s subpixels

Color wheel in DLPs
Luminance (again)

- Luminance – measure of light weighted by the response of the achromatic mechanism. Units: cd/m²

\[L_V = \int_{350}^{700} kL(\lambda)V(\lambda)d\lambda \quad k = 683.002 \]
Steven’s power law for brightness

- Stevens (1906-1973) measured the perceived magnitude of physical stimuli
 - Loudness of sound, tastes, smell, warmth, electric shock and brightness
 - Using the magnitude estimation methods
 - Ask to rate loudness on a scale with a known reference
- All measured stimuli followed the power law:
 \[\varphi(I) = kI^a \]
 - Perceived magnitude
 - Exponent
 - Constant
 - Physical stimulus
- For brightness (5 deg target in dark), \(a = 0.3 \)
Steven’s law for brightness
Steven’s law vs. Gamma correction

Stevens’ law
\(a = 0.3 \)

Gamma function
Gamma = 2.2
Advanced Graphics and Image Processing

Models of early visual perception

Part 2/6 – contrast detection

Rafal Mantiuk
Computer Laboratory, University of Cambridge
Detection thresholds

- The smallest detectable difference between
 - the luminance of the object and
 - the luminance of the background
Threshold versus intensity (t.v.i.) function

- The smallest detectable difference in luminance for a given background luminance
t.v.i. measurements – Blackwell 1946
Psychophysics
Threshold experiments

L + ΔL

P = 0.75

Detection threshold

Psychometric function

Luminance difference ΔL
t.v.i function / c.v.i. function / Sensitivity

- The same data, different representation

Threshold vs. intensity

\[
\Delta L = L_{\text{disk}} - L_{\text{background}}
\]

Contrast vs. intensity

\[
T = \frac{\Delta L}{L}
\]

Sensitivity

\[
S = \frac{1}{T} = \frac{L}{\Delta L}
\]
Sensitivity to luminance

- Weber-law – the just-noticeable difference is proportional to the magnitude of a stimulus

\[\frac{\Delta L}{L} = k \]

Typical stimuli:

- The smallest detectable luminance difference
- Background (adapting) luminance

Ernst Heinrich Weber

13
Consequence of the Weber-law

- Smallest detectable difference in luminance
 \[\frac{\Delta L}{L} = k \]

 For \(k = 1\% \)

<table>
<thead>
<tr>
<th>L</th>
<th>(\Delta L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 cd/m²</td>
<td>1 cd/m²</td>
</tr>
<tr>
<td>1 cd/m²</td>
<td>0.01 cd/m²</td>
</tr>
</tbody>
</table>

- Adding or subtracting luminance will have different visual impact depending on the background luminance
- Unlike LDR luma values, luminance values are **not** perceptually uniform!
How to make luminance (more) perceptually uniform?

- Using “Fechnerian” integration

\[
\frac{dR}{dl}(L) = \frac{1}{\Delta L(L)}
\]

Luminance transducer:

\[
R(L) = \int_{L_{\text{min}}}^{L} \frac{1}{\Delta L(l)} \, dl
\]

Detection threshold

Derivative of response
Assuming the Weber law

\[\frac{\Delta L}{L} = k \]

- and given the luminance transducer

\[R(L) = \int \frac{1}{\Delta L(l)} \, dl \]

- the response of the visual system to light is:

\[R(L) = \int \frac{1}{kL} \, dL = \frac{1}{k} \ln(L) + k_1 \]
Fechner law

\[R(L) = a \ln(L) \]

- Response of the visual system to luminance is approximately logarithmic

Gustav Fechner
[From Wikipedia]
But...the Fechner law does not hold for the full luminance range

- Because the Weber law does not hold either
- Threshold vs. intensity function:
Weber-law revisited

- If we allow detection threshold to vary with luminance according to the t.v.i. function:

\[R(L) = \int_{0}^{L} \frac{1}{tvi(l)} \, dl \]

- we can get a more accurate estimate of the “response”:

 \[\Delta L \text{ vs. } \log_{10} \text{background luminance [cd/m}^2\text{]} \]

 \(tvi(L) \)
Fechnerian integration and Stevens’ law

\[R(L) = \int_0^L \frac{1}{tvi(l)} \, dl \]
Applications of JND encoding – R(L)

- **DICOM grayscale function**
 - Function used to encode signal for medial monitors
 - 10-bit JND-scaled (just noticeable difference)
 - Equal visibility of gray levels

- **HDMI 2.0a (HDR10)**
 - PQ (Perceptual Quantizer) encoding
 - Dolby Vision
 - To encode pixels for high dynamic range images and video
Models of early visual perception

Part 3/6 – spatial contrast sensitivity and contrast constancy

Rafal Mantiuk
Computer Laboratory, University of Cambridge
Resolution and sampling rate

- **Pixels per inch [ppi]**
 - Does not account for vision

- **The visual resolution depends on**
 - screen size
 - screen resolution
 - viewing distance

- **The right measure**
 - Pixels per visual degree [ppd]
 - In frequency space
 - Cycles per visual degree [cpd]
Fourier analysis

- Every N-dimensional function (including images) can be represented as a sum of sinusoidal waves of different frequency and phase.

Think of “equalizer” in audio software, which manipulates each frequency.
Spatial frequency in images

- Image space units: cycles per sample (or cycles per pixel)

What are the screen-space frequencies of the red and green sinusoid?

The visual system units: cycles per degree

If the angular resolution of the viewed image is 55 pixels per degree, what is the frequency of the sinusoids in cycles per degree?
Nyquist frequency

- Sampling density restricts the highest spatial frequency signal that can be (uniquely) reconstructed
 - Sampling density – how many pixels per image/visual angle/…

- Any number of sinusoids can be fitted to this set of samples
 - It is possible to fit an infinite number of sinusoids if we allow infinitely high frequency
Nyquist frequency

- Sampling density restricts the highest spatial frequency signal that can be (uniquely) reconstructed
 - Sampling density – how many pixels per image/visual angle/…

- Any number of sinusoids can be fitted to this set of samples
- It is possible to fit an infinite number of sinusoids if we allow infinitely high frequency
Nyquist frequency

- Sampling density restricts the highest spatial frequency signal that can be (uniquely) reconstructed
 - Sampling density – how many pixels per image/visual angle/…

- Any number of sinusoids can be fitted to this set of samples
- It is possible to fit an infinite number of sinusoids if we allow infinitely high frequency
Nyquist frequency

- Sampling density restricts the highest spatial frequency signal that can be (uniquely) reconstructed
 - Sampling density – how many pixels per image/visual angle/…

- Any number of sinusoids can be fitted to this set of samples
- It is possible to fit an infinite number of sinusoids if we allow infinitely high frequency
Nyquist frequency / aliasing

- Nyquist frequency is the highest frequency that can be represented by a discrete set of uniform samples (pixels)
- Nyquist frequency = 0.5 sampling rate
 - For audio
 - If the sampling rate is 44100 samples per second (audio CD), then the Nyquist frequency is 22050 Hz
 - For images (visual degrees)
 - If the sampling rate is 60 pixels per degree, then the Nyquist frequency is 30 cycles per degree
- When resampling an image to lower resolution, the frequency content above the Nyquist frequency needs to be removed (reduced in practice)
 - Otherwise aliasing is visible
Modeling contrast detection

- Photoreceptors
- Retinal ganglion cells
- Cornea
- Lens
- Glare
- Defocus & Aberrations
- Adaptation
- LGN
- Visual Cortex
- Detection
- Integration
- Contrast masking
- P & M visual pathways
- Color opponency
- Luminance masking
- Spectral sensitivity
- Spatial- / orientation- / temporal-
 - Selective channels

Contrast Sensitivity Function
Campbell & Robson contrast sensitivity chart
Contrast sensitivity function

\[CSF = S(\rho, \theta, \omega, l, i^2, d, e) \]
CSF as a function of spatial frequency
CSF as a function of background luminance
CSF as a function of spatial frequency and background luminance
Contrast constancy

Experiment: Adjust the amplitude of one sinusoidal grating until it matches the perceived magnitude of another sinusoidal grating.

Contrast constancy
No CSF above the detection threshold
CSF and the resolution

- CSF plotted as the detection contrast
 \[\frac{\Delta L}{L_b} = S^{-1} \]
- The contrast below each line is invisible
- Maximum perceivable resolution depends on luminance

Expected contrast in natural images

CSF models:
https://doi.org/10.1117/12.537476
Spatio-chromatic CSF
Spatio-chromatic contrast sensitivity

- CSF as a function of luminance and frequency

Black-White

Red-Green

Violet-Yellow
CSF and colour ellipses

- Colour discrimination as a function of
 - Background colour and luminance [LMS]
 - Spatial frequency [cpd]
 - Size [deg]
Visibility of blur

- The same amount of blur was introduced into light-dark, red-green and blue-yellow colour opponent channels.
- The blur is only visible in light-dark channel.
- This property is used in image and video compression.
 - Sub-sampling of colour channels (4:2:1)
Models of early visual perception

Part 4/6 – lateral inhibition and multi-resolution models

Rafal Mantiuk
Computer Laboratory, University of Cambridge
Mach Bands – evidence for band-pass visual processing

- “Overshooting“ along edges
 - Extra-bright rims on bright sides
 - Extra-dark rims on dark sides
- Due to “Lateral Inhibition“
Centre-surround (Lateral Inhibition)

- “Pre-processing” step within the retina
- Surrounding brightness level weighted negatively
 - A: high stimulus, maximal bright inhibition
 - B: high stimulus, reduced inhibition & stronger response
 - D: low stimulus, maximal inhibition
 - C: low stimulus, increased inhibition & weaker response

Center-surround receptive fields (groups of photoreceptors)
Centre-surround: Hermann Grid

- Dark dots at crossings
- Explanation
 - Crossings (A)
 - More surround stimulation
 (more bright area)
 ⇒ Less inhibition
 ⇒ Weaker response
 - Streets (B)
 - Less surround stimulation
 ⇒ More inhibition
 ⇒ Greater response
- Simulation
 - Darker at crossings, brighter in streets
 - Appears more steady
 - What if reversed?
some further weirdness
Spatial-frequency selective channels

- The visual information is decomposed in the visual cortex into multiple channels
 - The channels are selective to spatial frequency, temporal frequency and orientation
 - Each channel is affected by different "noise" level
 - The CSF is the net result of information being passed in noise-affected visual channels

From: Wandell, 1995
Multi-scale decomposition

Steerable pyramid decomposition
Multi-resolution visual model

- Convolution kernels are band-pass, orientation selective filters

- The filters have the shape of an oriented Gabor function

From: Wandell, 1995
Predicting visible differences with CSF

- We can use CSF to find the probability of spotting a difference between a pair of images X_1 and X_2:

$$p(f[X_1] = f[X_2] | X_1, X_2, CSF)$$

(simplified) Visual Difference Predictor

Applications of multi-scale models

- JPEG2000
 - Wavelet decomposition

- JPEG / MPEG
 - Frequency transforms

- Image pyramids
 - Blending & stitching
 - Hybrid images

Hybrid Images by Aude Oliva
http://cvcl.mit.edu/hybrid_gallery
Models of early visual perception
Part 5/6 – light and dark adaptation

Rafal Mantiuk
Computer Laboratory, University of Cambridge
Light and dark adaptation

- **Light adaptation**: from dark to bright
- **Dark adaptation**: from bright to dark (much slower)
Time-course of adaptation

Bright -> Dark

Dark -> Bright
Temporal adaptation mechanisms

- **Bleaching & recovery of photopigment**
 - Slow asymmetric (light -> dark, dark -> light)
 - Reaction times (1-1000 sec)
 - Separate time-course for rods and cones

- **Neural adaptation**
 - Fast
 - Approx. symmetric reaction times (10-3000 ms)

- **Pupil**
 - Diameter varies between 3 and 8 mm
 - About 1:7 variation in retinal illumination
Night and daylight vision

Vision mode:

<table>
<thead>
<tr>
<th>SCOTOPIC</th>
<th>MESOPIC</th>
<th>PHOTOPIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>rod activity</td>
<td>cone activity</td>
<td></td>
</tr>
</tbody>
</table>

-6 -4 -2 0 2 4 6 8

Luminance [log cd/m²]

Mode properties:
- SCOTOPIC: monochromatic vision, limited visual acuity
- MESOPIC: good color perception, good visual acuity
- PHOTOPIC: monochromatic vision, limited visual acuity

Luminous efficiency

Rod: $V'(\lambda)$
Cone: $V(\lambda)$
Models of early visual perception

Part 6/6 – high(er) level vision

Rafal Mantiuk
Computer Laboratory, University of Cambridge
Simultaneous contrast
High-Level Contrast Processing
High-Level Contrast Processing

Checker-shadow illusion:
The squares marked A and B
are the same shade of gray.

Edward H. Adelson
Shape Perception

- Depends on surrounding primitives
 - Directional emphasis
 - Size emphasis
Shape Processing: Geometrical Clues

- Automatic geometrical interpretation
 - 3D perspective
 - Implicit scene depth

http://www.panoptikum.net/optischetaeuschnngen/index.html
Impossible Scenes

• Escher et al.
 – Confuse HVS by presenting contradicting visual clues
 – Local vs. global processing

http://www.panoptikum.net/optischetaeuschungen/index.html
caused by saccades, motion from dark to bright areas
Law of closure
References

 - Available online: https://foundationsofvision.stanford.edu/

 - Section 2.4
 - Available online: http://www.cl.cam.ac.uk/~rkm38/hdri_book.html