GRAPHICS eiRev]y

Advanced Graphics & Image Processing

Parallel programming in OpenCL

Part 1/3 - OpenCL framework

Rafat Mantiuk
Computer Laboratory, University of Cambridge

Single Program Multiple Data (SPMD)

» Consider the following vector addition example

for(i=0:11){
Cli]=A[i]+B[i]

Serial program:

)
let
moentre task A AP AF dF 4F 4F 4F dF dF v dr ar d
1 FAF 4F dF 4F 4F 4F 4F 4dF dr 4r ar 4

C W AW dF dF dF 4F 4F 4F JF 4v 4F 4r 4

Multiple copies of the same program execute on different data in parallel

for(i=0:3){ for(i=4:7){ for(i=8:11){

SPMD program: CLi]=Ali]+B[i] | C[il=Ali]+B[i]|| Cli]=A[i]+B[i]

multiple copies of the

} ! }
some programrunon AR I N N
e S pAr AR A A A AT AR ar
C

data |

2 From: OpenCL 1.2 University Kit - http://developer.amd.com/partners/university-programs/

Parallel Software — SPMD

» In the vector addition example, each chunk of data could
be executed as an independent thread

» On modern CPUs, the overhead of creating threads is so
high that the chunks need to be large

In practice, usually a few threads (about as many as the number
of CPU cores) and each is given a large amount of work to do

» For GPU programming, there is low overhead for thread
creation, so we can create one thread per loop iteration

3 From: OpenCL 1.2 University Kit -

Parallel Software — SPMD

_ = loop iteration
Single-threaded (CPU)
// there are N elements Time >
fO]f(j_ = O,' 1 < N; i++) TO ooo-
C[i] = A[1] + BI[1i]

Multi-threaded (CPU)

// tid is the thread id TO o 1 2 3
// P is the number of cores T1 4 5 6 7
for(i = 0; 1 < tid*N/P; i++) T2 8 9 10 11

Cli] = A[1] + B[1i] T3 12 13 14 15

Massively Multi-threaded (GPU)

TO
// tid 1s the thread id T1
Cltid] = A[tid] + B[tid] T2
T3

s

From: OpenCL 1.2 University Kit - http://developer.amd.com/partners/university-programs/

Parallel programming frameworks

» These are some of more relevant frameworks for
creating parallelized code

[OpenCL]

[OpenACC]

OpenCL Openc

» OpenCL is a framework for writing parallelized code for
CPUs, GPUs, DSPs, FPGAs and other processors

» Initially developed by Apple, now supported by AMD, IBM,
Qualcomm, Intel and Nvidia

» Versions

Latest: OpenCL 3.0
OpenCL C++ kernel language

SPIR-V as intermediate representation for kernels

Vulcan uses the same Standard Portable Intermediate Representation

AMD, Intel, Nvidia

Mostly supported: OpenCL 1.2
OSX, older GPUs

OpenCL platiorms and drivers

» To run OpenCL code you need:
Generic ICD loader

Platform 1
« (e.g. NVIDIA Driver)

. ’ ICD Loader | Platform 2
Included in the OS (opencldl) [~ ™ (e.g. AMD Driver)
Installable Client Driver 4 Platform3

(e.g. Intel Driver)

From Nyvidia, Intel, etc.

This applies to Windows and Linux, only one platform on Mac

» To develop OpenCL code you need:

OpenCL headers/libraries

Included in the SDKs
Nvidia — CUDA Toolkit
Intel OpenCL SDK

But lightweight options are also available

Programming OpenCL

» OpenCL natively offers C99 API
» But there is also a standard OpenCL C++ AP| wrapper

Strongly recommended — reduces the amount of code

» Programming OpenCL is similar to programming shaders
in OpenGL

Host code runs on CPU and invokes kernels
Kernels are written in C-like programming language
In many respects similar to GLSL

Kernels are passed to API as strings and compiled at runtime
Kernels are usually stored in text files

Kernels can be precompiled into SPIR from OpenCL 2.1

Example: Step 1 - Select device

Get all Select Get all Select
Platforms Platform Devices Device

//get all platforms (drivers)

std::vector<cl::Platform> all platforms;

cl::Platform::get(&all platforms);

if (all platforms.size() == 8){
std::cout << " No platforms found. Check OpenCL installation!\n"“;
exit(1);

¥
cl::Platform default platform = all platforms[©];

std::cout << "Using platform: " << default platform.getInfo<CL_PLATFORM NAME>() << "\n";

[/get default device of the default platform
std::vector<cl::Device> all devices;
default platform.getDevices(CL DEVICE TYPE ALL, &all devices);
if (all devices.size() == @){
std::cout << " No devices found. Check OpenCL installation!\n";
exit(1);
¥
cl::Device default device = all devices[©];
std::cout << "Using device: " << default _device.getInfo<CL_DEVICE _NAME>() << "\n";

Example: Step 2 - Build program

Create Load sources Create Build
context (usually from files) Program Program

cl::Context context({ default device });

cl::Program: :5Sources sources;

// kernel calculates for each element C=A+B

std::string kernel code =
" kernel void simple_add{(glebal const int* A, _ global const int* B, _ global int* C) {"
" int index = get global id(@);"
G C[index] = A[index] + B[index];"

my o, m
2 »

sources.push_back({ kernel code.c_str(}, kernel code.length() })};

cl::Program program{context, sources);

try {
program.build({ default device });

¥
catch (cl::Error err) {
std::cout << " Error building: " <<
program.getBuildInfo<CL_PROGRAM BUILD LOG>{(default device) << "\n";
exit(1);

Example: Step 3 - Create Buffers and
COpPYy memory

Create Create Enqueue
Buffers Queue Memory Copy

// create buffers on the device

cl: :Buffer buffer A{context, CL_MEM READ WRITE, sizeof(int) * 18);
cl::Buffer buffer B(context, CL_MEM READ WRITE, sizeof(int) * 18);
cl::Buffer buffer C{context, CL_MEM READ WRITE, sizeof(int) * 10);

int A[]

T8, 1@y 85 A5, B, W 8,9 1
ink Bf] =18, 1,2, @, 1, 2, @

¥ 3 3 3 1? 2? E] };

¥ ¥ ¥

[//create queue to which we will push commands for the device.
cl: :CommandQueue queue(context, default device);

J/write arrays A and B to the device
queue.enqueuelWriteBuffer(buffer A, CL_TRUE, @, sizeof(int) * 10, A);
queue .enqueuelriteBuffer(buffer B, CL_TRUE, @, sizeof(int) * 18, B);

Example: Step 4 - Execute Kernel and
retrieve the results

Create
Kernel

Set Kernel

) ‘ Arguments

—

Kern

Enqueue

Enqueue
el memory copy

cl::Kernel kernel(program, "simple add");

kernel.setArg(®, buffer A};
kernel.setArg(l, buffer B});
kernel.setArg(2, buffer C});

queue.enqueueNDRangeKernel (kernel, cl::NullRange, cl::NDRange(18), cl::NullRange);

int C[1€];

[//read result C from the device to array C
queue.enqueueReadBuffer(buffer C, CL TRUE, @, sizeof(int) * 18, C);

queue.finish();

std: :cout << " result: \n";
for {ink i = 9; 3¢ 10; 3:8)]
std::cout << C1] << " ";

¥
std::cout << std::endl;

Our Kernel was

kernel wvoid simple add({ read only const intk 4,
__read only const int* B,

Wwrite only int*) {

int index = get global id({C});
Clindex]=A[index]4+E[index]

OpenCL API Class Diagram

» Platform — Nvidia CUDA Platform |1
» Device — GeForce 1080 - e
» Program — collection of T — Command Quee l‘i—o" 2 S]

kernels j *]
» Buffer or Image — device - - | 0. 1%

: . * X
memory Device ID]‘ Context [}
| —>0 *<

» Sampler — how to .T i

interpolate values for o , 3

Program |x MemObject

Image | - {abstract} _x
» Command Queue — put a 1% Sampler

sequence of operations — | ‘}

there Kernel I B]

Buffer Image

» Event — to notify that 4 l |

something has been done *¢

From: OpenCL API 1.2 Reference Card

Platform model

» The host is whatever the OpenCL library runs on

Usually x86 CPUs for both NVIDIA and AMD

» Devices are processors that the library can talk to

CPUs, GPUs, DSPs and generic accelerators
» For AMD

All CPUs are combined into a single device (each core is a compute unit

and processing element)

Each GPU is a separate device

03
0

Processing
5

Element
*,

Host

== &

11

//
Compute Unit

Compute Device

Execution model

» Each kernel executes on |ID, 2D or 3D array (NDRange)
» The array is split into work-groups

» Work items (threads) in each work-group share some local
memory

work-group size S,

» Kernel can querry
get global id(dim)

work-group {wx, wy,)

get group id (dlm) {,"‘ work-item work-item
get_local_id (dim) ,”’, (W S##Fy Wy Sps P) AR (W Sps,4F Wy SypsF)
J {sx,sy,? {0, 0} {sx,sy) (Sy-1.0)
» Work items are not

£
’ r "
e i : work-group size Sy

bound to any memory

M work-item work-item
entlt)’ NDHangesizeG}, R PP, .
(Unlike GLSL Shaders) iER(E H“ :-—-u“ (5050 =(0.871) | " | (5.8 =(8¢1.8,1)

I J
I =

NDRange size Gx

Memory model

» Host memory

Usually CPU memory, device does
not have access to that memory

» Global memory [__global]

Device memory, for storing large

data

» Constant memory [__constant]

v

Fast, accessible to all work-items
(threads) within a workgroup

» Private memory [__private]

Accessible to a single work-item

(thread)

OpenCL Device

p-

|

Private
Memory

Private
Memory

Private
Memory

Private
Memory

[Work Item }[Work Item]

[Work Item J[Work Item]

Local Memory J { Local Memory J

Local memory [__local]

Workgroup

Workgroup

Global/Constant Memory

Host Memory

Host

Memory objects

7

cl::image | DBuffer

J

/v[cl::Memory }\ /

| ciBuffer |

cl::lmage

[cl::BufferGL] [cI::BufferRenderGL] [cl::lmage | D

[cl::lmage2D] [cl::lmage2D]

This diagram is incomplete — there are more memory objects

» Buffer
ArrayBuffer in OpenGL

Accessed directly via C pointers

» Image
Texture in OpenGL
Access via texture look-up function

Can interpolate values, clamp, etc.

Programming model

» Data parallel programming
Each NDRange element is assigned to a work-item (thread)

Each kernel can use vector-types of the device (float4, etc.)

» Task-parallel programming

Multiple different kernels can be executed in parallel

» Command queue

CL_QUEUE OUT OF ORDER EXEC MODE ENABLE
clCreateCommandQueue (Execute out-of-order if specified, in order otherwise
cl context context,

cl device id device, \\\\\,/////

cl _command_queue_properties properties,
cl int* errcode_ret)

Provides means to both synchronize kernels and execute them in parallel

Big Picture

OpenCL

-

Context
g ¢ $ $
Programs Kernels ects Command Queues
‘ é I ’

 kemel void Images Il-l Buffers I'I = -
S mephoe “:::m » CPU mlum arg[0] value In Out of
mmﬂ ® — Order Order
(nu-mmw(o); — mm argl1] valve Queue | Queue

. arg[2] value

GPU

Compile code ,

£ Copyright Khronos Group, 2009 - Page 15

19

GRAPHICS eiRev]y

Advanced Graphics & Image Processing

Parallel programming in OpenCL

Part 2/3 — Thread mapping

Rafat Mantiuk
Computer Laboratory, University of Cambridge

Thread Mapping

» By using different mappings, the same thread can be

assigned to access different data elements

The examples below show three different possible mappings of
threads to data (assuming the thread id is used to access an

element)

int tid =

Mapp|ng get global id(1) *
get global size(0) +
get global id(0);

0
Thread IDs 4

8

12| 13

21 From: OpenCL 1.2 University Kit -

Ww N = O

N o o b~

int tid =
get global id(0) *
get global size(l) +
get global id(1);

10

1

12
13
14

15

int group_size =
get local size(0) *
get local size(1);

int tid =
get_group id(1l) *
get num groups (0) *
group_size +

get group id(0) *
group_size +

get local id(1) *
get local size(0) +
get local id(0)
0 1 4 5
2 3 6 7
8 9 12 | 13
10| 11 | 14 | 15
*assuming 2x2 groups

Thread Mapping

» Consider a serial matrix multiplication algorithm

for (i1=0; i1< M; il++)
for (i2=0; i2< N; i2++)
for (i3=0; 13< P; 13++)
Clil][i2] += A[il][i13]xB[i3][i2];

» This algorithm is suited for output data decomposition
We will create N x M threads

Effectively removing the outer two loops

Each thread will perform P calculations

The inner loop will remain as part of the kernel

» Should the index space be MxN or NxM!?

22 From: OpenCL 1.2 University Kit -

Thread Mapping

» Thread mapping |: with an MxN index space, the kernel would be:

Mapping for C

int tx = get_global_id(0); 0 4 8 12

int ty = get_global_id(1); 1 5| 9 13

for (13=0; 13<P; 13++) 2 6 10 14
Cltx][ty] += Altx][i3]*B[i3][ty I; 3| 7

11| 15

» Thread mapping 2: with an NxM index space, the kernel would be:

Mapping for C

int tx = get_global_id (0); ol 1] 2| 3

int ty = get_global_id (1);
for (i3=0; 13<P;i3++) 4| 5| 6| 7

Clty J[tx] +=Alty][13]«B[i3][tx]; 182 193 :: :;

» Both mappings produce functionally equivalent versions of the program

23 From: OpenCL 1.2 University Kit -

Thread Mapping

» This figure shows the execution of the two thread mappings
on NVIDIA GeForce 285 and 8800 GPUs

5 1 r
Mapping 1 on 8800 —— | = | '
Mapping 2 on 8800 ----x--- |
Mapping 1 on 285 -—-#-- f .
4 Mapping 2 on 285 ----@--- J"
) /
j=. !
S /
(o]
@ /
& 3t / 7
@ / X
£ Ve i
L d v, "/
.5 2 r X
5
Q
@
> p
ni i
1 A" X
; I < ol
o ,/-',-‘_-_;‘_'..'1-"*" -) I
0 L --—:f:.—.:;i:-' £ e s oG 1

256 512 768 1024 1280 1536 1792 2048
Size of one dimension

» Notice that mapping 2 is far superior in performance for both
GPUs

24 From: OpenCL 1.2 University Kit -

Thread Mapping

» The discrepancy in execution times between the
mappings is due to data accesses on the global memory
bus

Assuming row-major data, data in a row (i.e., elements in
adjacent columns) are stored sequentially in memory

To ensure coalesced accesses, consecutive threads in the same
wavefront should be mapped to columns (the second
dimension) of the matrices

This will give coalesced accesses in Matrices B and C

For Matrix A, the iterator i3 determines the access pattern for row-
major data, so thread mapping does not affect it

25 From: OpenCL 1.2 University Kit -

GRAPHICS eiRev]y

Advanced Graphics & Image Processing

Parallel programming in OpenCL

Part 3/3 — Reduction

Rafat Mantiuk
Computer Laboratory, University of Cambridge

Reduction

» GPU offers very good float reduce_sum(float* input, int length)
performance for tasks {
in which the results are
stored independently

float accumulator = input[0];
for(int i = 1; i < length; i++)
accumulator += input[i];

Process N data items return accumulator;

and store in N memory }

location
» But many common operations require reducing N values into | or few values
sum, min, max, prod, min, histogram, ...

» Those operations require an efficient implementation of reduction

» The following slides are based on AMD’s OpenCL™ Optimization Case Study: Simple Reductions

http://developer.amd.com/resources/articles-whitepapers/opencl-optimization-case-study-simple-reductions/

Reduction tree for the min operation

__kernel :
void reduce min(_ global Float® buffer, » barrier ensures that all threads
__local float* scratch, (work units) in the local group
__const int length, . .
" global float* result) { reach that point before execution
int global index = get global id(9); continue
int local index = get _local id(@); . .
// Load data into local memory » Each iteration of the for loop
if (global_index < length) { computes next level of the
scratch[local_index] = buffer[global_index]; . .
} else { reduction pyramid
scratch[local_index] = INFINITY;
}
barrier(CLK_LOCAL_MEM_FENCE); Local memory
for(int offset = get_local_size(9) / 2;
offset > 0; offset >>= 1) { O 1/2|3|4[5|6]7

if (local_index < offset) {
float other = scratch[local index + offset];
float mine = scratch[local_index];

Parallel Reduction
Tree for Commutative

scratch[local index] = (mine < other) ? mine : Qpergtay
other;

}
barrier(CLK_LOCAL_MEM_FENCE);

} |

if (local_index == 0) { } SIMD Utilization for
result[get group_id(@)] = scratch[0]; [Reduction Tree

}

}

Multistage reduction

» The local memory is usually \ A A AAAA AL
limited (e.g. 50kB), which - e
restricts the maximum size of
the array that can be processed

» Therefore, for large arrays need
to be processed in multiple
stages

The result of a local memory
reduction is stored in the array
and then this array is reduced

Two-stage reduction

Stage 1 Different colours denote different threads
Global memory

0/1|2|3|4|5|6|7|0|1|2(3[4|5|6|7|0(1[2|3]|4|5|6|7

Local memory __kernel

Stage 2 void reduce(__global float* buffer,
9 0]112]314151617 __local float* scratch,

__const int length,
__global float* result) {

int global index = get global id(9);
float accumulator = INFINITY;
// Loop sequentially over chunks of input

vector
. . . while (global_index < length) {
» First stage: serial reduction by float element = buffer[global_index];
accumulator = (accumulator < element) ?
N concurrent threads accumulator : element;
global index += get global size(9);
Number of threads < data items }

// Perform parallel reduction
[The same code as in the previous example]

» Second stage: parallel reduction
in local memory }

Reduction execution times on CPU/GPU

Reduction Performance on CPU Reduction Performance on GPU

1.00E+11 - Commutative

1.00E+08 ===GPU Optimized
Serial
1.00E+07 / Parallel

1.00E+06 1.00E+08
10000 100000 1000000 10000000 10000 100000 1000000 10000000

Two-phase

1.00E+09 -

1.00E+10 -+

1.00E+09

Reductions/second
Reductions/second

Vectorized

Size Size

» Different reduction algorithm may be optimal for CPU and GPU

» This can also vary from one GPU to another

» The results from: http://developer.amd.com/resources/articles-whitepapers/opencl-
optimization-case-study-simple-reductions/

Better way?

» Halide - a language for image processing and
computational photography

Code written in a high-level language, then translated to
x86/SSE, ARM, CUDA, OpenCL

The optimization strategy defined separately as a schedule

Auto-tune software can test thousands of schedules and
choose the one that is the best for a particular platform

(Semi-)automatically find the best
trade-offs for a particular platform redundant £

y locality
work

Designed for image processing but
similar languages created for other
purposes

parallelism

OpenCL resources
» https://www.khronos.org/registry/OpenCL/

» Reference cards
Google: “OpenCL API Reference Card”

» AMD OpenCL Programming Guide

http://developer.amd.com/wordpress/media/2013/07/AMD _Accelerated Parallel _Processing OC
L _Programming_Guide-2013-06-2|.pdf

