Exercise 1: Find a short MATLAB expression to build the matrix

\[B = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 9 & 7 & 5 & 3 & 1 & -1 & -3 \\ 4 & 8 & 16 & 32 & 64 & 128 & 256 \end{pmatrix} \]

Answer: \(b = [1:7; 9:-2:-3; 2.^(2:8)] \)

Exercise 2: Give a MATLAB expression that uses only a single matrix multiplication with \(B \) to obtain

(a) the sum of columns 5 and 7 of \(B \)

Answer: \(b \times [0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1]' \)

(b) the last row of \(B \)

Answer: \([0 \ 0 \ 1] \times b\)

(c) a version of \(B \) with rows 2 and 3 swapped

Answer: \([1 \ 0 \ 0; \ 0 \ 0 \ 1; \ 0 \ 1 \ 0] \times b\)

Exercise 3: Give a MATLAB expression that multiplies two vectors to obtain

(a) the matrix

\[\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \end{pmatrix} \]

Answer: \([1 \ 1 \ 1]' \times (1:5)\)

(b) the matrix

\[\begin{pmatrix} 0 & 0 & 0 \\ 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \\ 4 & 4 & 4 \end{pmatrix} \]

Answer: \((0:4)' \times [1 \ 1 \ 1]\)
Exercise 4: Modify slide 30 to produce tones of falling frequency instead.

Answer: Replace

\[f = f_{\min} \times (f_{\max}/f_{\min}) \times 1; \]

with

\[f = f_{\max} \times (f_{\min}/f_{\max}) \times 1; \]

Exercise 5:

(a) Write down the function \(g(t) \) that has the shape of a sine wave that increases linearly in frequency from 0 Hz at \(t = 0 \) s to 5 Hz at \(t = 10 \) s.

Answer: The instantaneous frequency of function \(g(t) \) at time \(t \) is

\[f(t) = t \times \frac{5 \text{ Hz}}{10 \text{ s}} = \frac{t}{2 \text{ s}^2} \]

and since the phase of a sine wave is \(2\pi \) times the integrated frequency so far, we get

\[g(t) = \sin \left(2\pi \int_0^t f(t') \, dt' \right) = \sin \left(2\pi \frac{t^2}{4 \text{ s}^2} \right) = \sin \left(\frac{\pi t^2}{2 \text{ s}^2} \right) \]

(b) Plot the graph of this function using MATLAB’s `plot` command.

(c) Add to the same figure (this can be achieved using the `hold` command) in a different colour a graph of the same function sampled at 5 Hz, using the `stem` command.

Answer: for (b) and (c)
t = 0:0.01:10;
f = sin(pi*t.^2/2);
plot(t,f);
hold;
t2 = 0:1/5:10;
stem(t2, sin(pi*t2.^2/2), 'r');

(d) [Extra credit] Plot the graph from (c) separately. Can you explain its symmetry? [Hints: sampling theorem, aliasing].

Answer: A sine wave with a frequency f larger than half the sampling frequency f_s cannot be distinguished based on the sample values from a sine wave of frequency $f_s - f$. In other words, the sample values would have looked the same had we replaced the instantaneous frequency $f(t)$ with $f_s/2 - |f_s/2 - f(t)|$, and the latter is symmetric around $f_s/2$, which is in this graph 2.5 Hz and occurs at $t = 5$ s.

[The above is of course just a hand-waving argument, but shall be sufficient for this exercise. There are actually a few more conditions fulfilled here that lead to the exact symmetry of the plot. Firstly, since we started sampling at $t = 0$ s with $f_s = 5$ Hz, the positions of the sample values end up being symmetric around $t = 5$ s. Secondly, at the symmetry point $t = 5$ s, the sine wave was at a symmetric peak from where increasing or decreasing the phase has the same result.]

Exercise 6: Use MATLAB to write an audio waveform (8 kHz sampling frequency) that contains a sequence of nine tones with frequencies 659, 622, 659, 622, 659, 494, 587, 523, and 440 Hz. Append to this waveform a copy of itself in which every other sample has been multiplied by -1. Play the waveform, write it to a WAV file, and use the spectrogram command to plot its spectrogram with correctly labelled time and frequency axis.

Answer:
f = [659 622 659 622 659 494 587 523 440];
fs = 8000; % sampling frequency
d = 0.5; % duration per tone
t = 0:1/fs:d-1/fs;
w = sin(2 * pi * f' * t)/2;
w = w'; w = w(:)';
w = [w, w .* (mod((1:length(w)), 2) * 2 - 1)];
audiowrite('matlab_answer-2.wav', w, fs);
spectrogram(w, 1024, [], [], fs, 'yaxis');