Randomised Algorithms
Lecture 9-10: Randomised Approximation Algorithms

Thomas Sauerwald (tms41@cam.ac.uk)

Lent 2022

B UNIVERSITY OF
9 CAMBRIDGE

Outline

Randomised Approximation

Approximation Algorithms © Thomas Sauerwald Randomised Approximation

Approximation Ratio for Randomised Approximation Algorithms

Approximation Ratio

A randomised algorithm for a problem has approximation ratio p(n), if
for any input of size n, the expected cost (value) E[C] of the returned
solution and optimal cost C* satisfy:

(521 65) o0

Approximation Algorithms © Thomas Sauerwald Randomised Approximation

Approximation Ratio for Randomised Approximation Algorithms

Approximation Ratio

A randomised algorithm for a problem has approximation ratio p(n), if
for any input of size n, the expected cost (value) E[C] of the returned
solution and optimal cost C* satisfy:

o (ELCL O < 00
N

\

= Maximization problem: >1

ec1
= Minimization problem: EL¢1 > 1

Approximation Algorithms © Thomas Sauerwald Randomised Approximation

Approximation Ratio for Randomised Approximation Algorithms

Approximation Ratio

A randomised algorithm for a problem has approximation ratio p(n), if
for any input of size n, the expected cost (value) E[C] of the returned
solution and optimal cost C* satisfy:

YCLESP

(not covered here...)
Randomised Approximation Schemes 'y

An approximation scheme is an approximation algorithm, which given
any input and e > 0, is a (1 + ¢)-approximation algorithm.

Approximation Algorithms © Thomas Sauerwald Randomised Approximation

Approximation Ratio for Randomised Approximation Algorithms

Approximation Ratio

A randomised algorithm for a problem has approximation ratio p(n), if
for any input of size n, the expected cost (value) E[C] of the returned
solution and optimal cost C* satisfy:

(521 65) o0

(not covered here... j
Randomised Approximation Schemes 'y

An approximation scheme is an approximation algorithm, which given
any input and e > 0, is a (1 + ¢)-approximation algorithm.

= |tis a polynomial-time approximation scheme (PTAS) if for any fixed
e > 0, the runtime is polynomial in n. [For example, O(n2/f).]

= ltis a fully polynomial-time approximation scheme (FPTAS) if the
runtime is polynomial in both 1/ and n. G:or example, O((1/¢€)? - nS)J

Approximation Algorithms © Thomas Sauerwald Randomised Approximation

Outline

MAX-3-CNF

Approximation Algorithms © Thomas Sauerwald MAX-3-CNF

MAX-3-CNF Satisfiability

——— MAX-3-CNF Satisfiability

= Given: 3-CNF formula, e.g.: (x1 VXa VXs) A (X2 VX3V X5) A~ -+

Approximation Algorithms © Thomas Sauerwald MAX-3-CNF

MAX-3-CNF Satisfiability

——— MAX-3-CNF Satisfiability

= Given: 3-CNF formula, e.g.: (x1 VX3 VXa) A (X2 VX3V X5) A= -+

= Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

Approximation Algorithms © Thomas Sauerwald MAX-3-CNF

MAX-3-CNF Satisfiability

——— MAX-3-CNF Satisfiability

clauses as possible.

N

= Given: 3-CNF formula, e.g.: (x1 VX3 VXa) A (X2 VX3V X5) A= -+
= Goal: Find an assignment of the variables that satisfies as many

Relaxation of the satisfiability problem. Want to com-
pute how “close” the formula to being satisfiable is.

—

Approximation Algorithms © Thomas Sauerwald

MAX-3-CNF

MAX-3-CNF Satisfiability

Assume that no literal (including its negation)
appears more than once in the same clause.

—— MAX-3-CNF Satisfiability
= Given: 3-CNF formula, e.g.: (x1 VXs VXa) A (X2 VX3V X5) A - - -

= Goal: Find an assignment of the variables that satisfies as many
clauses as possible. ~

Relaxation of the satisfiability problem. Want to com-
pute how “close” the formula to being satisfiable is.

U

Approximation Algorithms © Thomas Sauerwald MAX-3-CNF 5

MAX-3-CNF Satisfiability

——— MAX-3-CNF Satisfiability

clauses as possible.

[

Assume that no literal (including its negation)
appears more than once in the same clause.

= Given: 3-CNF formula, e.g.: (x1 VXs VXa) A (X2 VX3V X5) A - - -
= Goal: Find an assignment of the variables that satisfies as many

U

N

Relaxation of the satisfiability problem. Want to com-
pute how “close” the formula to being satisfiable is.

Example:

(I VXaVX)A (X1 VXV X)A (X VXV Xs)A (X1 V X2V X3)

Approximation Algorithms © Thomas Sauerwald

MAX-3-CNF 5

MAX-3-CNF Satisfiability

——— MAX-3-CNF Satisfiability

clauses as possible.

[

Assume that no literal (including its negation)
appears more than once in the same clause.

= Given: 3-CNF formula, e.g.: (x1 VXs VXa) A (X2 VX3V X5) A - - -
= Goal: Find an assignment of the variables that satisfies as many

U

N

Relaxation of the satisfiability problem. Want to com-
pute how “close” the formula to being satisfiable is.

Example:

(I VXaVX)A (X1 VXV X)A (X VXV Xs)A (X1 V X2V X3)

N

[x1 =1,x%=0,x =1, x4 =0and xs = 1 satisfies 3 (out of 4 clauses)j

Approximation Algorithms © Thomas Sauerwald

MAX-3-CNF 5

MAX-3-CNF Satisfiability

——— MAX-3-CNF Satisfiability

clauses as possible.

[

Assume that no literal (including its negation)
appears more than once in the same clause.

= Given: 3-CNF formula, e.g.: (x1 VX3 VXa) A (X2 VX3V X5) A= -+
= Goal: Find an assignment of the variables that satisfies as many

U

N

Relaxation of the satisfiability problem. Want to com-
pute how “close” the formula to being satisfiable is.

Example:

(I VXaVX)A (X1 VXV X)A (X VXV Xs)A (X1 V X2V X3)

N

[x1 =1,x%=0,x =1, x4 =0and xs = 1 satisfies 3 (out of 4 clauses)]

Idea: What about assigning each variable uniformly and independently at random?

Approximation Algorithms © Thomas Sauerwald

MAX-3-CNF 5

Analysis

Theorem 35.6
Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Approximation Algorithms © Thomas Sauerwald MAX-3-CNF

Analysis

Theorem 35.6
Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:

Approximation Algorithms © Thomas Sauerwald MAX-3-CNF

Analysis

Theorem 35.6
Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= Foreveryclause i =1,2,..., m, define a random variable:

Y; = 1{clause i is satisfied}

Approximation Algorithms © Thomas Sauerwald MAX-3-CNF

Analysis

Theorem 35.6
Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= Foreveryclause i =1,2,..., m, define a random variable:

Y; = 1{clause i is satisfied}
= Since each literal (including its negation) appears at most once in clause i,

Approximation Algorithms © Thomas Sauerwald MAX-3-CNF

Analysis

Theorem 35.6
Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= Foreveryclause i =1,2,..., m, define a random variable:
Y; = 1{clause i is satisfied}
= Since each literal (including its negation) appears at most once in clause i,

P [clause i is not satisfied] = LA

Approximation Algorithms © Thomas Sauerwald MAX-3-CNF

Analysis

Theorem 35.6
Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= Foreveryclause i =1,2,..., m, define a random variable:
Y; = 1{clause i is satisfied}
= Since each literal (including its negation) appears at most once in clause i,

P [clause i is not satisfied] = LA

= P[clause i is satisfied] = 1 — % = g

Approximation Algorithms © Thomas Sauerwald MAX-3-CNF

Analysis

Theorem 35.6
Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= Foreveryclause i =1,2,..., m, define a random variable:

Y; = 1{clause i is satisfied}
= Since each literal (including its negation) appears at most once in clause i,

P [clause i is not satisfied] = LA

= P[clause i is satisfied] = 1 — % = g

- E(V]=P[Yi=1]-1=_.

Approximation Algorithms © Thomas Sauerwald MAX-3-CNF

Analysis

Theorem 35.6
Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= Foreveryclause i =1,2,..., m, define a random variable:

Y; = 1{clause i is satisfied}
= Since each literal (including its negation) appears at most once in clause i,

P [clause i is not satisfied] = LA

= P[clause i is satisfied] = 1 — % = g

= E(V]=P[Yi=1]-1=_.

= Let Y := 3T, Y; be the number of satisfied clauses. Then,

Approximation Algorithms © Thomas Sauerwald MAX-3-CNF

Analysis

Theorem 35.6
Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= Foreveryclause i =1,2,..., m, define a random variable:

Y; = 1{clause i is satisfied}
= Since each literal (including its negation) appears at most once in clause i,

P [clause i is not satisfied] = LA

= P[clause i is satisfied] = 1 — 1.7
8 8

7

= E[V]=P[Y;=1]-1=¢.

= Let Y := 3T, Y; be the number of satisfied clauses. Then,

E[Y]

Approximation Algorithms © Thomas Sauerwald MAX-3-CNF

Analysis

Theorem 35.6
Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= Foreveryclause i =1,2,..., m, define a random variable:

Y; = 1{clause i is satisfied}
= Since each literal (including its negation) appears at most once in clause i,

P [clause i is not satisfied] = LA

= P[clause i is satisfied] = 1 — % = g

= E(V]=P[Yi=1]-1=_.

= Let Y := 3T, Y; be the number of satisfied clauses. Then,

E[Y] =E{iy,}
i=1

Approximation Algorithms © Thomas Sauerwald MAX-3-CNF

Analysis

Theorem 35.6
Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= Foreveryclause i =1,2,..., m, define a random variable:

Y; = 1{clause i is satisfied}
= Since each literal (including its negation) appears at most once in clause i,

P [clause i is not satisfied] = LA

= P[clause i is satisfied] = 1 — % = g

7
= E[V]=P[Y;=1]-1=¢.
= Let Y := 3T, Y; be the number of satisfied clauses. Then,

E[Y] :E{i)’,}
i=1 Y4

(Linearity of Expectations)

Approximation Algorithms © Thomas Sauerwald MAX-3-CNF

Analysis

Theorem 35.6
Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= Foreveryclause i =1,2,..., m, define a random variable:

Y; = 1{clause i is satisfied}
= Since each literal (including its negation) appears at most once in clause i,

P [clause i is not satisfied] = LA

= P[clause i is satisfied] = 1 — % = g

7
= E[V]=P[Y;=1]-1=¢.
= Let Y := 3T, Y; be the number of satisfied clauses. Then,
m m
E[Y]=E{ZY,}= E[V]
i=1 i=1

Y
(Linearity of Expectations)

Approximation Algorithms © Thomas Sauerwald MAX-3-CNF

Analysis

Theorem 35.6
Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= Foreveryclause i =1,2,..., m, define a random variable:

Y; = 1{clause i is satisfied}
= Since each literal (including its negation) appears at most once in clause i,

P [clause i is not satisfied] = LA

= P[clause i is satisfied] = 1 — % = g

7
= E[V]=P[Y;=1]-1=¢.
= Let Y := 3T, Y; be the number of satisfied clauses. Then,

ElY] =E{ZY,} =Y EvI=>]
i=1] =1 i=1

(Linearity of Expectations)

Approximation Algorithms © Thomas Sauerwald MAX-3-CNF

Analysis

Theorem 35.6
Given an instance of MAX-3-CNF with n variables xi,x2,...,Xx, and m

clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= Foreveryclause i =1,2,..., m, define a random variable:
Y; = 1{clause i is satisfied}
= Since each literal (including its negation) appears at most once in clause i,

P [clause i is not satisfied] = LA

2 2 2 8
. - 1 7
= P [clause i is satisfied] =1 — = = —
8 8
7
= E[V]=P[Y;=1]-1=¢.

= Let Y := 3T, Y; be the number of satisfied clauses. Then,

E[Y] :E{ZY'} => E[Y] =Zg=g-m.
=t 1] i=t i=1

(Linearity of Expectations)

Approximation Algorithms © Thomas Sauerwald MAX-3-CNF

Analysis

Theorem 35.6
Given an instance of MAX-3-CNF with n variables xi,x2,...,Xx, and m

clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= Foreveryclause i =1,2,..., m, define a random variable:
Y; = 1{clause i is satisfied}

= Since each literal (including its negation) appears at most once in clause i,

P[clauseiisnotsa’[isfied]:1-1-1:1
2 2 2 8
= P[clauseiissa'[isfied]:171:Z
8 8
7
= E[V]=P[Y;=1]-1=¢.

= Let Y := 3T, Y; be the number of satisfied clauses. Then,

E[Y] :E{ZY'} => E[Y] =Zg=g-m.
=1 1 i=1 =1 N

[Linearity of Expectations] [maximum number of satisfiable clauses is m]

Approximation Algorithms © Thomas Sauerwald MAX-3-CNF 6

Analysis

Theorem 35.6
Given an instance of MAX-3-CNF with n variables xi,x2,...,Xx, and m

clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Proof:
= Foreveryclause i =1,2,..., m, define a random variable:
Y; = 1{clause i is satisfied}

= Since each literal (including its negation) appears at most once in clause i,

P[clauseiisnotsa’[isfied]:1-1-1:1
2 2 2 8
= P[clauseiissa'[isfied]:171:Z
8 8
7
= E[V]=P[Y;=1]-1=¢.

= Let Y := 3T, Y; be the number of satisfied clauses. Then,

E[Y]:E{Zyi} :ZE[W]=Z§=;m. O
i=1 1 = i=1 N

[Linearity of Expectations] [maximum number of satisfiable clauses is m]

Approximation Algorithms © Thomas Sauerwald MAX-3-CNF 6

Interesting Implications

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8 /7-approximation algorithm.

Approximation Algorithms © Thomas Sauerwald MAX-3-CNF

Interesting Implications

——— Theorem 35.6
Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8 /7-approximation algorithm.

\. J

~

Corollary

For any instance of MAX-3-CNF, there exists an assigment which satis-
fies at least % of all clauses.

Approximation Algorithms © Thomas Sauerwald MAX-3-CNF

Interesting Implications

—— Theorem 35.6
Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8 /7-approximation algorithm.

\. J

~

Corollary

For any instance of MAX-3-CNF, there exists an assigment which satis-
fies at least % of all clauses.

y
[There s w € 2 such that Y(w) > E[Y]]

Approximation Algorithms © Thomas Sauerwald MAX-3-CNF

Interesting Implications

—— Theorem 35.6
Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8 /7-approximation algorithm.

\. J

~

Corollary

For any instance of MAX-3-CNF, there exists an assigment which satis-
fies at least % of all clauses.

1 o ;
[There is w € Q such that Y(w) > E| Y]{ Probabilistic Method: powerful tool to 1

show existence of a non-obvious property.

Approximation Algorithms © Thomas Sauerwald MAX-3-CNF 7

Interesting Implications

—— Theorem 35.6
Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8 /7-approximation algorithm.

\. J

~

Corollary

For any instance of MAX-3-CNF, there exists an assigment which satis-
fies at least % of all clauses.

1 o ;
[There is w € Q such that Y(w) > E| Yl‘{ Probabilistic Method: powerful tool to 1

show existence of a non-obvious property.

Corollary

Any instance of MAX-3-CNF with at most 7 clauses is satisfiable.

Approximation Algorithms © Thomas Sauerwald MAX-3-CNF 7

Interesting Implications

—— Theorem 35.6
Given an instance of MAX-3-CNF with n variables xi, x2,...,Xx, and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8 /7-approximation algorithm.

\. J

~

Corollary

For any instance of MAX-3-CNF, there exists an assigment which satis-
fies at least % of all clauses.

1 o ;
[There is w € Q such that Y(w) > E| Y]{ Probabilistic Method: powerful tool to 1

show existence of a non-obvious property.

Corollary

Any instance of MAX-3-CNF with at most 7 clauses is satisfiable.

I

[Follows from the previous Corollary.]

Approximation Algorithms © Thomas Sauerwald MAX-3-CNF 7

Expected Approximation Ratio

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xy, x2,...,x, and m
clauses, the randomised algorithm that sets each variable independently
at random is a polynomial-time randomised 8/7-approximation algorithm.

Approximation Algorithms © Thomas Sauerwald MAX-3-CNF

Expected Approximation Ratio

Theorem 35.6
Given an instance of MAX-3-CNF with n variables xy, x2,...,x, and m
clauses, the randomised algorithm that sets each variable independently

at random is a polynomial-time randomised 8/7-approximation algorithm.
A

L

[One could prove that the probability to satisfy (7/8) - m clauses is at least 1/(8m)J

Approximation Algorithms © Thomas Sauerwald MAX-3-CNF

Expected Approximation Ratio

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xy, x2,...,x, and m
clauses, the randomised algorithm that sets each variable independently

at random is a polynomial-time randomised 8/7-approximation algorithm.
A

L

[One could prove that the probability to satisfy (7/8) - m clauses is at least 1/(8m)]

1

E[Y]=%~E[Y|x1=1]+

Y is defined as in
the previous proof.

Approximation Algorithms © Thomas Sauerwald MAX-3-CNF

Expected Approximation Ratio

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xy, x2,...,x, and m
clauses, the randomised algorithm that sets each variable independently

at random is a polynomial-time randomised 8/7-approximation algorithm.
A

L

[One could prove that the probability to satisfy (7/8) - m clauses is at least 1/(8m)]

1

E[Y]:%~E[Y|x1:1]+

Y is defined as in
the previous proof.

[One of the two conditional expectations is at least E [Y]]

Approximation Algorithms © Thomas Sauerwald MAX-3-CNF 8

Expected Approximation Ratio

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xy, x2,...,x, and m
clauses, the randomised algorithm that sets each variable independently

at random is a polynomial-time randomised 8/7-approximation algorithm.
A

L

[One could prove that the probability to satisfy (7/8) - m clauses is at least 1/(8m)J

1

E[Y]:%~E[Y|x1:1]+

Y is defined as in
the previous proof.

[One of the two conditional expectations is at least E | Y]]
/]

Algorithm: Assign x; so that the conditional
expectation is maximized and recurse.

Approximation Algorithms © Thomas Sauerwald MAX-3-CNF 8

Expected Approximation Ratio

Theorem 35.6
Given an instance of MAX-3-CNF with n variables xy, x2,...,x, and m
clauses, the randomised algorithm that sets each variable independently

at random is a polynomial-time randomised 8/7-approximation algorithm.
A

L

[One could prove that the probability to satisfy (7/8) - m clauses is at least 1/(8m)]

E[Y]:%~E[Y|x1:1]+%-E[Y|x1:O].

Y is defined as in
the previous proof.

[One of the two conditional expectations is at least E [Y]J

GREEDY-3-CNF(¢, n, m)
1: forj=1,2,...,n

2: Compute E[Y | x1 =vi...,X—1 = Vj_1,x=1]

3: Compute E[Y | X1 =w1,...,X_1 = Vj_1,X = 0]

4: Let x; = v; so that the conditional expectation is maximized
5: return the assignment vy, vo, ..., v,

Approximation Algorithms © Thomas Sauerwald MAX-3-CNF 8

Analysis of GREEDY-3-CNF(¢, n, m)

Theorem
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.

Approximation Algorithms © Thomas Sauerwald MAX-3-CNF

Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.]

Theorem 1/
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.]

Approximation Algorithms © Thomas Sauerwald MAX-3-CNF

Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.]

Theorem 1/
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.]
Proof:

Approximation Algorithms © Thomas Sauerwald MAX-3-CNF

Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.]

Theorem 1/
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.]
Proof:

= Step 1: polynomial-time algorithm

Approximation Algorithms © Thomas Sauerwald MAX-3-CNF

Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.]

Theorem 1/
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.]

Proof:
= Step 1: polynomial-time algorithm
= Initerationj=1,2,...,n, Y = Y(¢) averages over 2n—j+1 assignments

Approximation Algorithms © Thomas Sauerwald MAX-3-CNF

Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.]

Theorem 1/
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.]

Proof:
= Step 1: polynomial-time algorithm
= Initerationj=1,2,...,n, Y = Y(¢) averages over 2n—j+1 assignments
= A smarter way is to use linearity of (conditional) expectations:

E[Y|X1 :V1,‘..,XJ;1 :fohxj:‘l}

Approximation Algorithms © Thomas Sauerwald MAX-3-CNF

Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.]

Theorem 1/
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.]

Proof:
= Step 1: polynomial-time algorithm
= Initerationj=1,2,...,n, Y = Y(¢) averages over 2n—j+1 assignments
= A smarter way is to use linearity of (conditional) expectations:

m
E[YIxi=wv,....x_1=v_,x=1] => E[Yi|xi=vi,...,X_1=V_1,x5=1]
i=1

Approximation Algorithms © Thomas Sauerwald MAX-3-CNF 9

Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.]

Theorem 1/
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.]

Proof:
= Step 1: polynomial-time algorithm
= Initerationj=1,2,...,n, Y = Y(¢) averages over 2n—j+1 assignments
= A smarter way is to use linearity of (conditional) expectations:

m
E[YIxi=wv,....x_1=v_,x=1] => E[Yi|xi=vi,...,X_1=V_1,x5=1]
i=1

computable in O(1)

Approximation Algorithms © Thomas Sauerwald MAX-3-CNF 9

Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.]

Theorem 1/
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.]

Proof:
= Step 1: polynomial-time algorithm v/
= Initerationj=1,2,...,n, Y = Y(¢) averages over 2n—j+1 assignments
= A smarter way is to use linearity of (conditional) expectations:

m
E[YIxi=wv,....x_1=v_,x=1] => E[Yi|xi=vi,...,X_1=V_1,x5=1]
i=1

computable in O(1)

Approximation Algorithms © Thomas Sauerwald MAX-3-CNF 9

Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.]

Theorem 1/
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.]

Proof:
= Step 1: polynomial-time algorithm v/
= Initerationj=1,2,...,n, Y = Y(¢) averages over 2n—j+1 assignments
= A smarter way is to use linearity of (conditional) expectations:

m
E[YIxi=wv,....x_1=v_,x=1] => E[Yi|xi=vi,...,X_1=V_1,x5=1]
i=1

= Step 2: satisfies at least 7/8 - m clauses

Approximation Algorithms © Thomas Sauerwald MAX-3-CNF 9

Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.]

Theorem 1/
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.]

Proof:
= Step 1: polynomial-time algorithm v/
= Initerationj=1,2,...,n, Y = Y(¢) averages over 2n—j+1 assignments
= A smarter way is to use linearity of (conditional) expectations:

m
E[YIxi=wv,....x_1=v_,x=1] => E[Yi|xi=vi,...,X_1=V_1,x5=1]
i=1

= Step 2: satisfies at least 7/8 - m clauses
= Due to the greedy choice in each iterationj =1,2,...,n,

Approximation Algorithms © Thomas Sauerwald MAX-3-CNF 9

Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.]

Theorem 1/
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.]

Proof:
= Step 1: polynomial-time algorithm v/
= Initerationj=1,2,...,n, Y = Y(¢) averages over 2n—j+1 assignments
= A smarter way is to use linearity of (conditional) expectations:

m
E[YIxi=wv,....x_1=v_,x=1] => E[Yi|xi=vi,...,X_1=V_1,x5=1]
i=1

= Step 2: satisfies at least 7/8 - m clauses
= Due to the greedy choice in each iterationj =1,2,...,n,

E[Y|xt=vi. ., 51 =Vi_,5=V]| 2E[Y|Xx1=v,...,%_1 = V1]

Approximation Algorithms © Thomas Sauerwald MAX-3-CNF 9

Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.]

Theorem 1/
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.]

Proof:
= Step 1: polynomial-time algorithm v/
= Initerationj=1,2,...,n, Y = Y(¢) averages over 2n—j+1 assignments
= A smarter way is to use linearity of (conditional) expectations:

m
E[YIxi=wv,....x_1=v_,x=1] => E[Yi|xi=vi,...,X_1=V_1,x5=1]
i=1

= Step 2: satisfies at least 7/8 - m clauses

= Due to the greedy choice in each iterationj =1,2,...,n,
E[Y|xt=vi. ., 51 =Vi_,5=V]| 2E[Y|Xx1=v,...,%_1 = V1]
SE[Y|x1=v,....X_2=V_2]

Approximation Algorithms © Thomas Sauerwald MAX-3-CNF 9

Analysis of GREEDY-3-CNF(¢, n, m)

[This algorithm is deterministic.]

Theorem 1/
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.]

Proof:
= Step 1: polynomial-time algorithm v/
= Initerationj=1,2,...,n, Y = Y(¢) averages over 2n—j+1 assignments
= A smarter way is to use linearity of (conditional) expectations:

m
E[YIxi=wv,....x_1=v_,x=1] => E[Yi|xi=vi,...,X_1=V_1,x5=1]
i=1

= Step 2: satisfies at least 7/8 - m clauses

= Due to the greedy choice in each iterationj =1,2,...,n,
E[Y|xt=vi. ., 51 =Vi_,5=V]| 2E[Y|Xx1=v,...,%_1 = V1]
SE[Y|x1=v,....X_2=V_2]
>E[Y]

Approximation Algorithms © Thomas Sauerwald MAX-3-CNF 9

Analysis of GREEDY-3-CNF(¢, n, m)
[This algorithm is deterministic.]

[

Theorem
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.]

Proof:
= Step 1: polynomial-time algorithm v/
= Initerationj=1,2,...,n, Y = Y(¢) averages over 2n—j+1 assignments
= A smarter way is to use linearity of (conditional) expectations:

m
E[YIxi=wv,....x_1=v_,x=1] => E[Yi|xi=vi,...,X_1=V_1,x5=1]
i=1

= Step 2: satisfies at least 7/8 - m clauses

= Due to the greedy choice in each iterationj =1,2,...,n,
E[Y|xt=vi. ., 51 =Vi_,5=V]| 2E[Y|Xx1=v,...,%_1 = V1]
SE[Y|x1=v,....X_2=V_2]
7
>E[Y]==--m
8

Approximation Algorithms © Thomas Sauerwald MAX-3-CNF

Analysis of GREEDY-3-CNF(¢, n, m)
[This algorithm is deterministic.]

[

Theorem
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.]

Proof:
= Step 1: polynomial-time algorithm v/
= Initerationj=1,2,...,n, Y = Y(¢) averages over 2n—j+1 assignments
= A smarter way is to use linearity of (conditional) expectations:

m
E[YIxi=wv,....x_1=v_,x=1] => E[Yi|xi=vi,...,X_1=V_1,x5=1]
i=1

= Step 2: satisfies at least 7/8 - m clauses v’

= Due to the greedy choice in each iterationj =1,2,...,n,
E[Y|xt=vi. ., 51 =Vi_,5=V]| 2E[Y|Xx1=v,...,%_1 = V1]
SE[Y|x1=v,....X_2=V_2]
7
>E[Y]==--m
8

Approximation Algorithms © Thomas Sauerwald MAX-3-CNF

Analysis of GREEDY-3-CNF(¢, n, m)
[This algorithm is deterministic.]

[

Theorem
| GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.]

Proof:
= Step 1: polynomial-time algorithm v/
= Initerationj=1,2,...,n, Y = Y(¢) averages over 2n—j+1 assignments
= A smarter way is to use linearity of (conditional) expectations:

m
E[YIxi=wv,....x_1=v_,x=1] => E[Yi|xi=vi,...,X_1=V_1,x5=1]
i=1

= Step 2: satisfies at least 7/8 - m clauses v’

= Due to the greedy choice in each iterationj =1,2,...,n,
E[Y|xt=vi. ., 51 =Vi_,5=V]| 2E[Y|Xx1=v,...,%_1 = V1]
SE[Y|x1=v,....X_2=V_2]
7
zE[Y]:g-m]

Approximation Algorithms © Thomas Sauerwald MAX-3-CNF

Run of GREEDY-3-CNF (¢, n, m)

(X VXe VX)) A VXeVX) A (X1 VXe VX)) AT VXV X) A VX VX)) A VXV Xs) A (X VXeV Xa) A(XT VX2V X3) A(Xi VX3V Xa) A (Xe VX3V Xa)

Approximation Algorithms © Thomas Sauerwald MAX-3-CNF 10

Run of GREEDY-3-CNF (¢, n, m)

(X VXe VX)) A VXeVX) A (X1 VXe VX)) AT VXV X) A VX VX)) A VXV Xs) A (X VXeV Xa) A(XT VX2V X3) A(Xi VX3V Xa) A (Xe VX3V Xa)

Approximation Algorithms © Thomas Sauerwald MAX-3-CNF 10

Run of GREEDY-3-CNF (¢, n, m)

(X VXe VX)) A VXeVX) A (X1 VXe VX)) AT VXV X) A VX VX)) A VXV Xs) A (X VXeV Xa) A(XT VX2V X3) A(Xi VX3V Xa) A (Xe VX3V Xa)

Approximation Algorithms © Thomas Sauerwald MAX-3-CNF 10

Run of GREEDY-3-CNF (¢, n, m)

(X VXe VX)) A VXeVX) A (X1 VXe VX)) AT VXV X) A VX VX)) A VXV Xs) A (X VXeV Xa) A(XT VX2V X3) A(Xi VX3V Xa) A (Xe VX3V Xa)

Approximation Algorithms © Thomas Sauerwald MAX-3-CNF 10

Run of GREEDY-3-CNF (¢, n, m)

(0 MX TR A O NFTTE) A (XN TR A RV X V X)) A (N Ta) ARV XV Xa) ARV xe V Xa) A GFV Xz V Xs) A (X M Ra) A (X V X V Xa)

Approximation Algorithms © Thomas Sauerwald MAX-3-CNF 10

Run of GREEDY-3-CNF (¢, n, m)

TATATAGGY X)) ATA(RVXB)A (X VXs)A(XaVX3) ATA (X2 VX5V Xa)

Approximation Algorithms © Thomas Sauerwald MAX-3-CNF 10

Run of GREEDY-3-CNF (¢, n, m)

TATATAGGY X)) ATA(RVXB)A (X VXs)A(XaVX3) ATA (X2 VX5V Xa)

Approximation Algorithms © Thomas Sauerwald MAX-3-CNF 10

Run of GREEDY-3-CNF (¢, n, m)

TATATAGGY X)) ATA(RVXB)A (X VXs)A(XaVX3) ATA (X2 VX5V Xa)

Approximation Algorithms © Thomas Sauerwald MAX-3-CNF 10

Run of GREEDY-3-CNF (¢, n, m)

TATATA(XGV Xa) AT ARG A (XY X3) A (X K5) AT A (XY X5V Xg)

Approximation Algorithms © Thomas Sauerwald MAX-3-CNF 10

Run of GREEDY-3-CNF (¢, n, m)

TAATAGGY X)ATATA(B)ATATA(GV Xa)

Approximation Algorithms © Thomas Sauerwald MAX-3-CNF 10

Run of GREEDY-3-CNF (¢, n, m)

TAATAGGY X)ATATA(B)ATATA(GV Xa)

Approximation Algorithms © Thomas Sauerwald MAX-3-CNF 10

Run of GREEDY-3-CNF (¢, n, m)

TAATAGGY X)ATATA(B)ATATA(GV Xa)

??7?|.8.75
x1 =0 x1 =1
07??] 8.625 12?7] 8.875

X2:O X2:1 X2:O X2:1

1072] 9 1172) 8.75
x3 =0 X3 =1 x3 =0 x3 =1 x3 =0 X3 =1 x3 =0 x3 =1
SNEAYS SFAYS STAYS SFAYS SNEAYS SFAYS INFAYS SNEAYS
Il \ Il \ 4 \ l \ Il

I \ 4 \ Il \

[e) - [e) - [«) - (@) - [« [« - [« - (<) -

Approximation Algorithms © Thomas Sauerwald MAX-3-CNF

Run of GREEDY-3-CNF (¢, n, m)

TATATACEY I AT AT A) AT AT AGEV Xs)

??7?|.8.75
x3 =0 x; =1
07??] 8.625 12?7] 8.875
X2:O X2:1 X2:O X2:1
1072] 9 127] 8.75
x3 =0 X3 =1 x3 =0 x3 =1 x3 =0 X3 =1 x3 =0 x3 =1
w) o (o) () (i
SNEAYS SFAYS STAYS SFAYS SNEAYS SFAYS INFAYS SNEAYS

Il \ Il \ I \ l \! I \ I \ 4 \ Il \

(=] - (e} - (=} -~ (e} - (<) -
D

Approximation Algorithms © Thomas Sauerwald MAX-3-CNF 10

Run of GREEDY-3-CNF (¢, n, m)

ITATATATATATAOATATAL

2777

x1 =0
0???| 8.625
X2:O X2:1
x3 =0 X3 =1 x3 =0 x3 =1
NTAYS &T\F NFAES ST\ %

Il \ Il \ I \ l \!

(<) -

[e) - (@) - [« - (<)
fo))

8.75
X1 =1
1772?| 8.875
Xo = 0 Xo = 1
10??| 9 11?2?] 8.75
X3:0 X3:1 X3:0 X3:1
100?| 9 101?| 9 110? 1112
NFAYS NFAYS AR NTARS

I \ 4 \ 4 \ Il \

Approximation Algorithms © Thomas Sauerwald

MAX-3-CNF 10

Run of GREEDY-3-CNF (¢, n, m)

ITATATATATATAOATATAL

??7?|.8.75
x1 =0 x1 =1
07??| 8.625 12?7] 8.875
X2:O X2:1 X2:O X2:1
o) o) 875
x3 =0 X3 =1 x3 =0 x3 =1 x3 =0 X3 =1 x3 =0 x3 =1
@)) @) [(@ (e [[
NTAYS & \% NFAYS NTAYS NTAYS NTAYS STAYS NTAYS
Il \ Il \ 4 \ l \ I \ 4 \

4 \ Il \

S -~ o =
on)(oo) ()]

-

[e) - (@) - [« - (<)
9 9

(<) -

() -

Approximation Algorithms © Thomas Sauerwald

MAX-3-CNF

Run of GREEDY-3-CNF (¢, n, m)

ITATATATATATAOATATAL

??7?|.8.75
x3 =0 x1 =1
07??| 8.625 12?7] 8.875
X2 =0 X2 =1 X2 =0 X2 =1

1072] 9 1172) 8.75
x3 =0 X3 =1 x3 =0 x3 =1 x3 =0 X3 =1 x3 =0 x3 =1

100?| 9 101?] 9 110?

¥ &T\Z NAY SAY

\ 4 \ 4 \ Il \

-

o - o - o -

Approximation Algorithms © Thomas Sauerwald

MAX-3-CNF

Run of GREEDY-3-CNF (¢, n, m)

ITATATATATATAOATATAL

??7?|.8.75
x3 =0 x1 =1
07??| 8.625 12?7] 8.875

X2 =0 X2 =1 X2 =0 X2 =1

1072] 9 1172) 8.75
x3 =0 X3 =1 x3 =0 x3 =1 x3 =0 X3 =1 x3 =0 x3 =1
NTAYS & \% NFAYS NTAYS NTAYS NTAYS STAYS NTAYS
Il \ Il \ 4 \ l

\ I \ I \ I

[e) - o - [« - o - o
=
10 9

\ Il \

S - [} =

Approximation Algorithms © Thomas Sauerwald MAX-3-CNF

Run of GREEDY-3-CNF (¢, n, m)

ITATATATATATAOATATAL

??7?|.8.75
x1 =0 x1 =1
0???] 8.625 17??] 8.875

X2:O X2:1 X2:0 X2:1

00??| 8 01??| 9.25 10??] 9 11??] 8.75
x3 =0 X3 =1 x3 =0 x3 =1 x3 =0 X3 =1 x3 =0 x3 =1

000?| 8 001?| 8 010?| 9 011?f 9.5 100?| 9 101?] 9 110?| 9 111?| 8.5

SNEAYS SFAYS STAYS NFAYS NVAYS NFAYS INFAYS SNEAYS
Il \ Il \ 4 \ l \ I \ 4 \ 4 \ Il \
o -+ O -+ O -+ o -+ o - o -+ o - o -
8 8 9 7 9 9 10 9 9 9 9 9 9 9 8 9

Approximation Algorithms © Thomas Sauerwald MAX-3-CNF

Run of GREEDY-3-CNF (¢, n, m)

ITATATATATATAOATATAL

??7?|.8.75
x1 =0 x1 =1
0???) 8.625 17??] 8.875
X2:O X2:1 X2:0 X2:1
00??| 8 01??| 9.25 10??] 9 11??] 8.75
x3 =0 X3 =1 x3 =0 x3 =1 x3 =0 X3 =1 x3 =0 x3 =1
000?| 8 001?| 8 010?| 9 011?f 9.5 100?| 9 101?] 9 110?| 9 111?| 8.5
SNEAYS SFAYS STAYS NVANS NVAYS NFAYS INFAYS SNEAYS
Il \ Il \ 4 \ l \ I \ 4 \ 4 \ Il \
o -+ O -+ O -+ o -+ o - o -+ o - o -
@)
8 8 9 7 9 9 10 9 9 9 9 9 9 9 8 9

Approximation Algorithms © Thomas Sauerwald MAX-3-CNF

Run of GREEDY-3-CNF (¢, n, m)

ITATATATATATAOATATAL

??7?|.8.75
x1 =0
0???) 8.625
Xo = 0 Xo = 1
00??| 8 01??] 9.25
x3 =0 X3 =1 x3 =0 x3 =1 x3 =0
000?| 8 001?| 8 010?| 9 011?] 9.5 100?
SNEAYS SFAYS STAYS NVANS NVAYS

Il \ Il \ I \ l \! I

[e) - o - [« - o - o
e
8 8 9 7 9 9 10 9 9

9

>

Xq =1
17??] 8.875
Xo = 0 Xo = 1
10??] 9 117?| 8.75
X3 =1 x3 =0 x3 =1
9 101?] 9 110?| 9 111?| 8.5
SFAYS INFAYS SNEAYS

&

I \ 4 \ Il \

(e - () - () -
9 9 9 9 8 9

[Returned solution satisfies 9 out of 10 clauses, but the formula is satisfiable.]

Approximation Algorithms © Thomas Sauerwald

MAX-3-CNF

MAX-3-CNF: Concluding Remarks

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xy, X2, ..., x, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Approximation Algorithms © Thomas Sauerwald MAX-3-CNF

MAX-3-CNF: Concluding Remarks

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xy, X2, ..., x, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Theorem

GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.

Approximation Algorithms © Thomas Sauerwald MAX-3-CNF

MAX-3-CNF: Concluding Remarks

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xy, X2, ..., x, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Theorem

GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.

Theorem (Hastad’97)

For any ¢ > 0, there is no polynomial time 8/7 — ¢ approximation al-
gorithm of MAX3-CNF unless P=NP.

Approximation Algorithms © Thomas Sauerwald MAX-3-CNF

MAX-3-CNF: Concluding Remarks

Theorem 35.6

Given an instance of MAX-3-CNF with n variables xy, X2, ..., x, and m
clauses, the randomised algorithm that sets each variable independently
at random is a randomised 8/7-approximation algorithm.

Theorem

GREEDY-3-CNF(¢, n, m) is a polynomial-time 8/7-approximation.

Theorem (Hastad’97)

For any € > 0, there is no polynomial time 8/7 — ¢ approximation al-
gorithm of MAX3-CNF unless P=NP.

N

\
[Essentially there is nothing smarter than just guessing!J

Approximation Algorithms © Thomas Sauerwald MAX-3-CNF

Outline

Weighted Vertex Cover

Approximation Algorithms © Thomas Sauerwald

Weighted Vertex Cover

The Weighted Vertex-Cover Problem

Vertex Cover Problem

= Given: Undirected, vertex-weighted graph G = (V, E)

= Goal: Find a minimum-weight subset V' C V such
that if (u,v) € E(G),thenue V' orve V.

(=) >
NG‘
w

« ()
~(=2)

Approximation Algorithms © Thomas Sauerwald Weighted Vertex Cover

The Weighted Vertex-Cover Problem

Vertex Cover Problem

= Given: Undirected, vertex-weighted graph G = (V, E)

= Goal: Find a minimum-weight subset V' C V such
that if (u,v) € E(G),thenue V' orve V.

(2)®
N@‘
w

@
~(=2)

Approximation Algorithms © Thomas Sauerwald Weighted Vertex Cover

The Weighted Vertex-Cover Problem

Vertex Cover Problem

= Given: Undirected, vertex-weighted graph G = (V, E)

= Goal: Find a minimum-weight subset V' C V such
that if (u,v) € E(G),thenue V' orve V.

(20>
N@‘
w

« ()
~(2)

Approximation Algorithms © Thomas Sauerwald Weighted Vertex Cover

The Weighted Vertex-Cover Problem

Vertex Cover Problem

= Given: Undirected, vertex-weighted graph G = (V, E)

= Goal: Find a minimum-weight subset V' C V such
thatif (u,v) € E(G), thenu e V' orve V.
N\

A\

(This is (still) an NP-hard problem.]

(20>
NG‘
w

« ()
~(2)

Approximation Algorithms © Thomas Sauerwald Weighted Vertex Cover

The Weighted Vertex-Cover Problem

Vertex Cover Problem

= Given: Undirected, vertex-weighted graph G = (V, E)

= Goal: Find a minimum-weight subset V' C V such
thatif (u,v) € E(G), thenu e V' orve V.
N\

A\

[This is (still) an NP-hard problem.]

Applications:

(20>
NG‘
w

« ()
~(2)

Approximation Algorithms © Thomas Sauerwald Weighted Vertex Cover

The Weighted Vertex-Cover Problem

3
4
Vertex Cover Problem
= Given: Undirected, vertex-weighted graph G = (V, E) e‘
= Goal: Find a minimum-weight subset V' C V such e
thatif (u,v) € E(G), thenu e V' orve V. >
N

A\

(This is (still) an NP-hard problem.] ° 0
3 1

Applications:

= Every edge forms a task, and every vertex represents a person/machine
which can execute that task

Approximation Algorithms © Thomas Sauerwald Weighted Vertex Cover 13

The Weighted Vertex-Cover Problem

3
4
Vertex Cover Problem
= Given: Undirected, vertex-weighted graph G = (V, E) e‘
= Goal: Find a minimum-weight subset V' C V such e
thatif (u,v) € E(G), thenu e V' orve V. >
N

A\

(This is (still) an NP-hard problem.] ° 0
3 1

Applications:

= Every edge forms a task, and every vertex represents a person/machine
which can execute that task

= Weight of a vertex could be salary of a person

Approximation Algorithms © Thomas Sauerwald Weighted Vertex Cover 13

The Weighted Vertex-Cover Problem

3
4
Vertex Cover Problem
= Given: Undirected, vertex-weighted graph G = (V, E) e‘
= Goal: Find a minimum-weight subset V' C V such e
thatif (u,v) € E(G), thenu e V' orve V. >
N

A\

(This is (still) an NP-hard problem.] ° 0
3 1

Applications:
= Every edge forms a task, and every vertex represents a person/machine
which can execute that task
= Weight of a vertex could be salary of a person
= Perform all tasks with the minimal amount of resources

Approximation Algorithms © Thomas Sauerwald Weighted Vertex Cover

A Greedy Approach working for Unweighted Vertex Cover

APPROX-VERTEX-COVER(G)

1 C=9

2 E =G.E

3 while E' # 0

4 let (1, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

Approximation Algorithms © Thomas Sauerwald Weighted Vertex Cover

A Greedy Approach working for Unweighted Vertex Cover

APPROX-VERTEX-COVER (G)

1 C=9

2 E =G.E

3 while E' # 0

4 let (1, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

N
[This algorithm is a 2-approximation for unweighted graphs!]

Approximation Algorithms © Thomas Sauerwald Weighted Vertex Cover

A Greedy Approach working for Unweighted Vertex Cover

APPROX-VERTEX-COVER(G)

1 C=9

2 E =G.E

3 while E' # 0

4 let (1, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

100

& @ O ©
T 1t 1 1

Approximation Algorithms © Thomas Sauerwald Weighted Vertex Cover

A Greedy Approach working for Unweighted Vertex Cover

APPROX-VERTEX-COVER (G)

1 C=9

2 E =G.E

3 while E' # 0

4 let (1, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

100

® © O ©
1 1 1 1
N
[Computed solution has weight 101]

Approximation Algorithms © Thomas Sauerwald Weighted Vertex Cover

A Greedy Approach working for Unweighted Vertex Cover

APPROX-VERTEX-COVER (G)

1 C=9

2 E =G.E

3 while E' # 0

4 let (1, v) be an arbitrary edge of E’

5 C =CU{u,v}

6 remove from E’ every edge incident on either u or v
7 return C

100

® © O ©
1 1 1 1
)
[Optimal solution has weight 4]

Approximation Algorithms © Thomas Sauerwald Weighted Vertex Cover

Invoking an (Integer) Linear Program

Idea: Round the solution of an associated linear program.

Approximation Algorithms © Thomas Sauerwald Weighted Vertex Cover

Invoking an (Integer) Linear Program

Idea: Round the solution of an associated linear program.

——— 0-1 Integer Program

veVv

minimize > w(v)x(v)

subject to x(u) +x(v) > 1

x(v)

foreach (u,v) € E
e {0,1} foreachv e V

Approximation Algorithms © Thomas Sauerwald

Weighted Vertex Cover

Invoking an (Integer) Linear Program

Idea: Round the solution of an associated linear program.

——— 0-1 Integer Program

minimize > w(v)x(v)

veVv

subject to x(u)+x(v) > 1 for each (u,v) € E
x(v) {0,1} foreachv e V

m

Linear Program

minimize > w(v)x(v)

veV
subject to x(u)+x(v) > 1 for each (u,v) € E
x(v) [0,1] foreachv e V

m

Approximation Algorithms © Thomas Sauerwald Weighted Vertex Cover

Invoking an (Integer) Linear Program

Idea: Round the solution of an associated linear program.

——— 0-1 Integer Program

minimize > w(v)x(v)

veVv
subject to x(u)+x(v) > 1 for each (u,v) € E
x(v) € {0,1} foreachv e V

optimum is a lower bound on the optimal
weight of a minimum weight-cover.

Linear Program

—
minimize > w(v)x(v)
veV
subject to x(u)+x(v) > 1 for each (u,v) € E
x(v) € [0,1] foreachv e V

Approximation Algorithms © Thomas Sauerwald Weighted Vertex Cover

Invoking an (Integer) Linear Program

Idea: Round the solution of an associated linear program.

——— 0-1 Integer Program

minimize > w(v)x(v)

veVv

subject to x(u)+x(v) > 1 for each (u,v) € E
x(v) € {0,1} foreachv e V

optimum is a lower bound on the optimal
weight of a minimum weight-cover.

Linear Program

—
minimize > w(v)x(v)
veV
subject to x(u)+x(v) > 1 for each (u,v) € E
x(v) € [0,1] foreachv e V
A2

Rounding Rule: if x(v) > 1/2 then round up, otherwise round down.]'

Approximation Algorithms © Thomas Sauerwald Weighted Vertex Cover

The Algorithm

APPROX-MIN-WEIGHT-VC (G, w)

1 C=9

2 compute X, an optimal solution to the linear program
3 foreachv eV

4 ifx(v) >1/2

5 C =CU{}

6 return C

Approximation Algorithms © Thomas Sauerwald Weighted Vertex Cover

The Algorithm

APPROX-MIN-WEIGHT-VC (G, w)
cC=9
compute X, an optimal solution to the linear program
for eachv € V
ifx(v) >1/2
C =CuU{y}
return C

[Y R R S

Theorem 35.7

APPROX-MIN-WEIGHT-VC is a polynomial-time 2-approximation al-
gorithm for the minimum-weight vertex-cover problem.

Approximation Algorithms © Thomas Sauerwald Weighted Vertex Cover

The Algorithm

APPROX-MIN-WEIGHT-VC (G, w)
cC=9
compute X, an optimal solution to the linear program
for eachv € V
ifx(v) >1/2
C =CuU{y}
return C

[Y R R S

Theorem 35.7
APPROX-MIN-WEIGHT-VC is a polynomial-time 2-approximation al-
gorithm for the minimum-weight vertex-cover problem.

A

L
[is polynomial-time because we can solve the linear program in polynomial time]

Approximation Algorithms © Thomas Sauerwald Weighted Vertex Cover 16

Example of APPROX-MIN-WEIGHT-VC

[Y(a) — X(b) = X(e) = 1, %(d) = 1, %(c) = o]
vV

3
b

4
(@)
()
2

@

3

fractional solution of LP
with weight = 5.5

Approximation Algorithms © Thomas Sauerwald

Weighted Vertex Cover

Example of APPROX-MIN-WEIGHT-VC

[Y(a) =X(b) =x(e) = % x(d) =1,x(c) = O] [x(a) =x(b) = x(e) =1, x(d) =1, x(c) = 0]
4 =

3 3
b b

4 4
(@) (@)
Rounding
— e

()
2

2

3 1 3

fractional solution of LP rounded solution of LP
with weight = 5.5 with weight = 10

Approximation Algorithms © Thomas Sauerwald Weighted Vertex Cover 17

Example of APPROX-MIN-WEIGHT-VC

[Y(a) =X(b) =x(e) = % x(d) =1,x(c) = OJ [x(a) =x(b) = x(e) =1, x(d) =1, x(c) = 0]
4 =
3 3 3

b b b

4 4 4
(@) (@) (@)
Rounding
— e

() O
2 2

2

3 1 3 1 3

fractional solution of LP rounded solution of LP optimal solution
with weight = 5.5 with weight = 10 with weight = 6

Approximation Algorithms © Thomas Sauerwald Weighted Vertex Cover 17

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):

Approximation Algorithms © Thomas Sauerwald Weighted Vertex Cover

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):

Approximation Algorithms © Thomas Sauerwald Weighted Vertex Cover

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
= Let C* be an optimal solution to the minimum-weight vertex cover problem

Approximation Algorithms © Thomas Sauerwald Weighted Vertex Cover

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so

Approximation Algorithms © Thomas Sauerwald Weighted Vertex Cover 18

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so

zZF < w(C)

Approximation Algorithms © Thomas Sauerwald Weighted Vertex Cover 18

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so

zZF < w(C)

= Step 1: The computed set C covers all vertices:

Rounding

Approximation Algorithms © Thomas Sauerwald Weighted Vertex Cover 18

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so
zZF < w(C)

= Step 1: The computed set C covers all vertices:
= Consider any edge (u, v) € E which imposes the constraint x(u) + x(v) > 1

Approximation Algorithms © Thomas Sauerwald Weighted Vertex Cover 18

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so

zZF < w(C)
= Step 1: The computed set C covers all vertices:

= Consider any edge (u, v) € E which imposes the constraint x(u) + x(v) > 1
= at least one of Xx(u) and x(v) is at least 1/2

Approximation Algorithms © Thomas Sauerwald Weighted Vertex Cover 18

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so

zZF < w(C)
= Step 1: The computed set C covers all vertices:

= Consider any edge (u, v) € E which imposes the constraint x(u) + x(v) > 1
= at least one of X(v) and X(v) is at least 1/2 = C covers edge (u, v)

Approximation Algorithms © Thomas Sauerwald Weighted Vertex Cover 18

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so

zZF < w(C)

= Step 1: The computed set C covers all vertices:
= Consider any edge (u, v) € E which imposes the constraint x(u) + x(v) > 1
= at least one of X(v) and X(v) is at least 1/2 = C covers edge (u, v)

= Step 2: The computed set C satisfies w(C) < 2z*:

Approximation Algorithms © Thomas Sauerwald Weighted Vertex Cover 18

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so

zZF < w(C)

= Step 1: The computed set C covers all vertices:
= Consider any edge (u, v) € E which imposes the constraint x(u) + x(v) > 1
= at least one of X(v) and X(v) is at least 1/2 = C covers edge (u, v)

= Step 2: The computed set C satisfies w(C) < 2z*:

Approximation Algorithms © Thomas Sauerwald Weighted Vertex Cover 18

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so

zZF < w(C)

= Step 1: The computed set C covers all vertices:
= Consider any edge (u, v) € E which imposes the constraint x(u) + x(v) > 1
= at least one of X(v) and X(v) is at least 1/2 = C covers edge (u, v)

= Step 2: The computed set C satisfies w(C) < 2z*:

Approximation Algorithms © Thomas Sauerwald Weighted Vertex Cover 18

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so

zZF < w(C)

= Step 1: The computed set C covers all vertices:
= Consider any edge (u, v) € E which imposes the constraint x(u) + x(v) > 1
= at least one of X(v) and X(v) is at least 1/2 = C covers edge (u, v)

= Step 2: The computed set C satisfies w(C) < 2z*:

Approximation Algorithms © Thomas Sauerwald Weighted Vertex Cover 18

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so

zZF < w(C)
= Step 1: The computed set C covers all vertices:

= Consider any edge (u, v) € E which imposes the constraint x(u) + x(v) > 1
= at least one of X(v) and X(v) is at least 1/2 = C covers edge (u, v)

= Step 2: The computed set C satisfies w(C) < 2z*:
* * _ vl 1
w(C)>z" =Y wvx(v) > > w)- 5

veV veV:x(v)>1/2

Approximation Algorithms © Thomas Sauerwald Weighted Vertex Cover 18

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so

zZF < w(C)

= Step 1: The computed set C covers all vertices:
= Consider any edge (u, v) € E which imposes the constraint x(u) + x(v) > 1
= at least one of X(v) and X(v) is at least 1/2 = C covers edge (u, v)

= Step 2: The computed set C satisfies w(C) < 2z*:
- . - 11
w(C)>z" =Y wvx(v) > > w)- 5 =3W(O).

veV veV:x(v)>1/2

Approximation Algorithms © Thomas Sauerwald Weighted Vertex Cover 18

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so

zZF < w(C)

= Step 1: The computed set C covers all vertices:
= Consider any edge (u, v) € E which imposes the constraint x(u) + x(v) > 1
= at least one of X(v) and X(v) is at least 1/2 = C covers edge (u, v)

= Step 2: The computed set C satisfies w(C) < 2z*:
- . - 11
w(C)>z" =Y wvx(v) > > w)- 5=5W(0).

veV veV:x(v)>1/2

Approximation Algorithms © Thomas Sauerwald Weighted Vertex Cover 18

Approximation Ratio

Proof (Approximation Ratio is 2 and Correctness):
= Let C* be an optimal solution to the minimum-weight vertex cover problem
= Let z* be the value of an optimal solution to the linear program, so

zZF < w(C)

= Step 1: The computed set C covers all vertices:
= Consider any edge (u, v) € E which imposes the constraint x(u) + x(v) > 1
= at least one of X(v) and X(v) is at least 1/2 = C covers edge (u, v)

= Step 2: The computed set C satisfies w(C) < 2z*:
w(C)>z" =Y wvx(v) > > w)- % = %W(C). O

veV veV:x(v)>1/2

Approximation Algorithms © Thomas Sauerwald Weighted Vertex Cover 18

Outline

Weighted Set Cover

Approximation Algorithms © Thomas Sauerwald

Weighted Set Cover

The Weighted Set-Covering Problem

Set Cover Problem

» Given: set X and a family of subsets F,
and a cost function ¢ : F — R"
= Goal: Find a minimum-cost subset
CCF
st. xX=[JS

Sec

Approximation Algorithms © Thomas Sauerwald

Weighted Set Cover

20

The Weighted Set-Covering Problem

Set Cover Problem Ss

= Given: set X and a family of subsets F, ol ®
and a cost function ¢ : F — R"

Sz

* Goal: Find a minimum-cost subset

CCF
st. xX=[JS

Sum over the costs
of all sets in C sec

°
! S

o oo =

(s

Approximation Algorithms © Thomas Sauerwald Weighted Set Cover 20

The Weighted Set-Covering Problem

[] [] []
Set Cover Problem Ss
= Given: set X and a family of subsets F, ol ® o)
and a cost function ¢ : F — R"
* Goal: Find a minimum-cost subset ° P S P
CCF]
Sum over the costs | S-t: X = U S. ° ° °
of all sets in C sec
L S
Ss 5

S S S5 S S5 Sg
c:2 3 3 5 1 2

Approximation Algorithms © Thomas Sauerwald Weighted Set Cover 20

The Weighted Set-Covering Problem

[] [] []
Set Cover Problem S
= Given: set X and a family of subsets F, d ® bl
and a cost function ¢ : F — R"
» Goal: Find a minimum-cost subset PY Y Se °
CCF]
Sum over the costs | S-t: X= U S. o o o
of all sets in C sec
L S
Ss 5

Si S S5 S S5 S
Remarks: c:2 3 3 5 12
= generalisation of the weighted vertex-cover problem

= models resource allocation problems

Approximation Algorithms © Thomas Sauerwald Weighted Set Cover 20

Setting up an Integer Program

Exercise: Try to formulate the integer program and linear program of
the weighted SET-COVER problem (solution on next slide!)

Approximation Algorithms © Thomas Sauerwald Weighted Set Cover

21

Setting up an Integer Program

——— 0-1 Integer Program

minimize > c(S)y(S)
seF
subject to SToyS) = for each x € X
SeF: xeS
y(S) € {0,1} foreach Se F

Approximation Algorithms © Thomas Sauerwald

Weighted Set Cover

21

Setting up an Integer Program

——— 0-1 Integer Program

minimize > c(S)y(S)
ser
subject to SToyS) = for each x € X
SeF: xe8
y(S) € {0,1} foreach Se F
Linear Program
minimize > e(S)y(S)
Ser
subject to dToys) = for each x € X
SeF: xeS
y(S) € [0,1] foreach S e F

Approximation Algorithms © Thomas Sauerwald

Weighted Set Cover

21

Back to the Example

° ° °
Si
° e |0
S
o| (o _ZJ
° ° °
&) 55
81 Sg 83 S4 85 SG
c 2 3 5 1 2

Approximation Algorithms © Thomas Sauerwald

Weighted Set Cover

22

Back to the Example

[J [J
Si
o e
S,

. _ZJ

[J [J

S3 Ss
81 82 S4 S5 SG
c: 2 3 5 1 2
y(): t1/2 12 1/2 1/2 A 1/2

Approximation Algorithms © Thomas Sauerwald

Weighted Set Cover

22

Back to the Example

° ° °
S
° e |0
S,

o| (o _ZJ

° ° °

S3 Ss
81 Sg 83 S4 85 SG
C: 2 3 3 5 1 2
y): 12 1/2 1/2 1/2 1 1)2

Cost equals 8.5

Approximation Algorithms © Thomas Sauerwald

Weighted Set Cover

22

Back to the Example

° ° °
S,
° e |0
S
o| (o _ZJ
° ° °
&) 55
81 Sg 83 34 85 SG
c: 2 3 3 5 1 2
y(): 1/2 1/2 1/2 1/2 1 1/2 < Costequals 85
N

7\

[The strategy employed for Vertex-Cover would take all 6 sets!]

Approximation Algorithms © Thomas Sauerwald

Weighted Set Cover

22

Back to the Example

° ° °
Sy

[
&

[

S1 Sg 83 S4 85 SG
C: 2 3 3 5 1 2
y(): 1/2 1/2 1/2 1/2 1 172 Costequals 8.5
N\

7\

[The strategy employed for Vertex-Cover would take all 6 sets!]
N\

7 X

[Even worse: If all y’s were below 1/2, we would not even return a valid cover!]

Approximation Algorithms © Thomas Sauerwald Weighted Set Cover 22

Randomised Rounding

S1 Sg 83 84 85 86
c: 2 3 3 5 1 2
y(): 1/2 1/2 1/2 1/2 1 1/2

Approximation Algorithms © Thomas Sauerwald Weighted Set Cover

23

Randomised Rounding

C:

y():

Sy
2
1/2

Sy
3
1/2

Ss3
3
1/2

Si S S
5 1 2
12 1 1)2

' Idea: Interpret the y-values as probabilities for picking the respective set. '

Approximation Algorithms © Thomas Sauerwald

Weighted Set Cover

23

Randomised Rounding

S1 Sg 83 84 85 86
c: 2 3 3 5 1 2
y): 1/2 1/2 1/2 1/2 1 1/2

' Idea: Interpret the y-values as probabilities for picking the respective set. '

Randomised Rounding

= Let C C F be a random set with each set S being included
independently with probability y(S).

= More precisely, if y denotes the optimal solution of the LP, then we

compute an integral solution y by:

1 with probability y(S)
S) = forall S e F.
y(S) {0 otherwise. orals e

Approximation Algorithms © Thomas Sauerwald Weighted Set Cover

23

Randomised Rounding

S1 82 83 84 85 86
c: 2 3 3 5 1 2
y): 1/2 1/2 1/2 1/2 1 1/2

' Idea: Interpret the y-values as probabilities for picking the respective set. '

Randomised Rounding

= Let C C F be a random set with each set S being included
independently with probability y(S).

= More precisely, if y denotes the optimal solution of the LP, then we

compute an integral solution y by:

J(S) = 1 with pr9bab|||ty y(S) forall Se F.
0 otherwise.

= Therefore, E[y(S)] = ¥(S).

Approximation Algorithms © Thomas Sauerwald Weighted Set Cover 23

Randomised Rounding

C:

y():

Sy
2
1/2

Sy
3
1/2

Ss3
3
1/2

Si S S
5 1 2
12 1 1)2

' Idea: Interpret the y-values as probabilities for picking the respective set. '

Lemma

Approximation Algorithms © Thomas Sauerwald

Weighted Set Cover

23

Randomised Rounding

C:

y():

Sy
2

82 83 84 85 Se
3 3 5 1 2

12 12 12 12 1 1)2

' Idea: Interpret the y-values as probabilities for picking the respective set. '

Lemma

= The expected cost satisfies

E[c(C)]=)_ c(S)-¥(S)

SeF

Approximation Algorithms © Thomas Sauerwald Weighted Set Cover

23

Randomised Rounding

S1 Sg 83 84 85 86
c: 2 3 3 5 1 2
y(): t1/2 12 1/2 1/2 A 1/2

' Idea: Interpret the y-values as probabilities for picking the respective set. '

Lemma

= The expected cost satisfies

E[c(C)]=)_ c(S)-¥(S)

SeF
= The probability that an element x € X is covered satisfies

P[erS]z1—e.

Sec

—_

Approximation Algorithms © Thomas Sauerwald Weighted Set Cover 23

Proof of Lemma

Lemma

Let C C F be a random subset with each set S being included independ-
ently with probability y(S).

= The expected cost satisfies E[¢(C)] = >_gc + €(S) - ¥(S).

= The probability that x is covered satisfies P[x € UgecS] > 1 — }9

Approximation Algorithms © Thomas Sauerwald Weighted Set Cover

24

Proof of Lemma

Lemma

Let C C F be a random subset with each set S being included independ-
ently with probability y(S).

= The expected cost satisfies E[¢(C)] = >_gc + €(S) - ¥(S).

= The probability that x is covered satisfies P[x € UgecS] > 1 — }9

Proof:
= Step 1: The expected cost of the random set C

Approximation Algorithms © Thomas Sauerwald Weighted Set Cover

24

Proof of Lemma

Lemma

Let C C F be a random subset with each set S being included independ-
ently with probability y(S).

= The expected cost satisfies E[¢(C)] = >_gc + €(S) - ¥(S).

= The probability that x is covered satisfies P[x € UgecS] > 1 — }9

Proof:
= Step 1: The expected cost of the random set C

E[c(C)]

Approximation Algorithms © Thomas Sauerwald Weighted Set Cover

24

Proof of Lemma

Lemma

Let C C F be a random subset with each set S being included independ-
ently with probability y(S).

= The expected cost satisfies E[¢(C)] = >_gc + €(S) - ¥(S).

= The probability that x is covered satisfies P[x € UgecS] > 1 — }9

Proof:
= Step 1: The expected cost of the random set C

Efc(C)] =E [ZC(S)}

Sec

Approximation Algorithms © Thomas Sauerwald Weighted Set Cover 24

Proof of Lemma

Lemma

Let C C F be a random subset with each set S being included independ-
ently with probability y(S).

= The expected cost satisfies E[¢(C)] = >_gc + €(S) - ¥(S).

= The probability that x is covered satisfies P[x € UgecS] > 1 — }9

Proof:
= Step 1: The expected cost of the random set C

Efc(C)] =E [ZC(S)} =E [Z 1860'0(8):|

SecC SeF

Approximation Algorithms © Thomas Sauerwald Weighted Set Cover 24

Proof of Lemma

Lemma

Let C C F be a random subset with each set S being included independ-
ently with probability y(S).

= The expected cost satisfies E[¢(C)] = >_gc + €(S) - ¥(S).

= The probability that x is covered satisfies P[x € UgecS] > 1 — }9

Proof:
= Step 1: The expected cost of the random set C

E[c(c)] =E [Zc(a} —E [Z 1s6c~c(3)]
SecC SeF

=> P[Sec]-¢S)

SeF

Approximation Algorithms © Thomas Sauerwald Weighted Set Cover 24

Proof of Lemma

Lemma

Let C C F be arandom subset with each set S being included independ-
ently with probability y(S).

= The expected cost satisfies E[¢(C)] = > g~ ¢(S) - ¥(S).

= The probability that x is covered satisfies P[x € UgecS] > 1 — }9

Proof:
= Step 1: The expected cost of the random set C

Efc(C)] =E [ZC(S)} =E [Z 1860'0(3):|

Sec SeF

=> P[Sec]-¢(S)=D_¥(8)-c(S).

SeF SeF

Approximation Algorithms © Thomas Sauerwald Weighted Set Cover

Proof of Lemma

Lemma

Let C C F be arandom subset with each set S being included independ-
ently with probability y(S).

= The expected cost satisfies E[¢(C)] = > g~ ¢(S) - ¥(S).

= The probability that x is covered satisfies P[x € UgecS] > 1 — }9

Proof:
= Step 1: The expected cost of the random set C v/

Efc(C)] =E [ZC(S)} =E [Z 1860'0(3):|

Sec SeF

=> P[Sec]-¢(S)=D_¥(8)-c(S).

SeF SeF

Approximation Algorithms © Thomas Sauerwald Weighted Set Cover

Proof of Lemma

Lemma

Let C C F be arandom subset with each set S being included independ-
ently with probability y(S).

= The expected cost satisfies E[¢(C)] = > g~ ¢(S) - ¥(S).

= The probability that x is covered satisfies P[x € UgecS] > 1 — }9

Proof:
= Step 1: The expected cost of the random set C v/

Efc(C)] =E [ZC(S)} =E [Z 1860'0(3):|

sec SeF
=> P[Sec]-¢(S)=D_¥(8)-c(S).
Ser SeF
= Step 2: The probability for an element to be (not) covered

Approximation Algorithms © Thomas Sauerwald Weighted Set Cover

24

Proof of Lemma

Lemma

Let C C F be arandom subset with each set S being included independ-
ently with probability y(S).

= The expected cost satisfies E[¢(C)] = > g~ ¢(S) - ¥(S).

= The probability that x is covered satisfies P[x € UgecS] > 1 — }9

Proof:
= Step 1: The expected cost of the random set C v/

Efc(C)] =E [ZC(S)} =E [Z 1860'0(3):|

sec SeF
=> P[Sec]-¢(S)=D_¥(8)-c(S).
Ser SeF
= Step 2: The probability for an element to be (not) covered

P[x & UsecS]

Approximation Algorithms © Thomas Sauerwald Weighted Set Cover

Proof of Lemma

Lemma

Let C C F be arandom subset with each set S being included independ-
ently with probability y(S).

= The expected cost satisfies E[¢(C)] = > g~ ¢(S) - ¥(S).

= The probability that x is covered satisfies P[x € UgecS] > 1 — }9

Proof:
= Step 1: The expected cost of the random set C v/

Efc(C)] =E [ZC(S)} =E [Z 1860'0(3):|

Sec SeF

=> P[Sec]-¢(S)=D_¥(8)-c(S).

SeF SeF
= Step 2: The probability for an element to be (not) covered
Plx¢usecS]l = [] PIS¢c]

SeF: xeS8

Approximation Algorithms © Thomas Sauerwald Weighted Set Cover

Proof of Lemma

Lemma

Let C C F be arandom subset with each set S being included independ-
ently with probability y(S).

= The expected cost satisfies E[¢(C)] = > g~ ¢(S) - ¥(S).

= The probability that x is covered satisfies P[x € UgecS] > 1 — }9

Proof:
= Step 1: The expected cost of the random set C v/

Efc(C)] =E [ZC(S)} =E [Z 1860'0(3):|

sec SeF
=> P[Sec]-¢(S)=D_¥(8)-c(S).
Ser SeF
= Step 2: The probability for an element to be (not) covered

Plx¢UseeSI = [PIS¢cl= [(1-%5)

SeF: xeS SEF: xeS

Approximation Algorithms © Thomas Sauerwald Weighted Set Cover

24

Proof of Lemma

Lemma

Let C C F be arandom subset with each set S being included independ-
ently with probability y(S).

= The expected cost satisfies E[¢(C)] = > g~ ¢(S) - ¥(S).

= The probability that x is covered satisfies P[x € UgecS] > 1 — }9

Proof:
= Step 1: The expected cost of the random set C v/

Efc(C)] =E [ZC(S)} =E [Z 1860'0(3):|

sec SeF
=> P[Sec]-¢(S)=D_¥(8)-c(S).
Ser SeF
= Step 2: The probability for an element to be (not) covered

Plx¢UseeSI = [PIS¢cl= [(1-%5)

SeF: xeS SEF: xeS

(1 + x < e* for any xﬁ

Approximation Algorithms © Thomas Sauerwald Weighted Set Cover

Proof of Lemma

Lemma

Let C C F be arandom subset with each set S being included independ-
ently with probability y(S).

= The expected cost satisfies E[¢(C)] = > g~ ¢(S) - ¥(S).

= The probability that x is covered satisfies P[x € UgecS] > 1 — }9

Proof:
= Step 1: The expected cost of the random set C v/

Efc(C)] =E [ZC(S)} =E [Z 1860'0(3):|

sec SeF
=> P[Sec]-¢(S)=D_¥(8)-c(S).
Ser SeF
= Step 2: The probability for an element to be (not) covered

Plx¢UseeSI = [PIS¢cl= [(1-%5)

SeF: xeS SEF: xeS

< I e
(1 + x < e* for any xﬁ Se7:xes

Approximation Algorithms © Thomas Sauerwald Weighted Set Cover

Proof of Lemma

Lemma

Let C C F be arandom subset with each set S being included independ-
ently with probability y(S).

= The expected cost satisfies E[¢(C)] = > g~ ¢(S) - ¥(S).

= The probability that x is covered satisfies P[x € UgecS] > 1 — }9

Proof:
= Step 1: The expected cost of the random set C v/

Efc(C)] =E [ZC(S)} =E [Z 1860'0(3):|

Sec SeF
=> P[Sec]-¢(S)=D_¥(8)-c(S).
SeF SeF
= Step 2: The probability for an element to be (not) covered
PlxguseeSl=] PIsgcl= [(1-%8)
SeF: xe8 SeF: xeS
< 67Y(S)

(1 + x < e for any xﬁ Serixes
— e~ Lser: xesV(S)

Approximation Algorithms © Thomas Sauerwald Weighted Set Cover 24

Proof of Lemma

Lemma

Let C C F be arandom subset with each set S being included independ-
ently with probability y(S).

= The expected cost satisfies E[¢(C)] = > g~ ¢(S) - ¥(S).

= The probability that x is covered satisfies P[x € UgecS] > 1 — }9

Proof:
= Step 1: The expected cost of the random set C v/

Efc(C)] =E [ZC(S)} =E [Z 1S€C'C(S):|

sec SeF
=> P[Sec]-¢(S)=D_¥(8)-c(S).
Ser SeF
= Step 2: The probability for an element to be (not) covered

Plx¢UseeSI = [PIS¢cl= [(1-%5)

SeF: xeS SEF: xeS

-%(s
< J[e7® ¥ solves the LP!
(1 + x < e* for any xﬁ SeFixes

— g~ 2ser: xes V(5)

Approximation Algorithms © Thomas Sauerwald Weighted Set Cover 24

Proof of Lemma

Lemma

Let C C F be arandom subset with each set S being included independ-
ently with probability y(S).

= The expected cost satisfies E[¢(C)] = > g~ ¢(S) - ¥(S).

= The probability that x is covered satisfies P[x € UgecS] > 1 — }9

Proof:
= Step 1: The expected cost of the random set C v/

Efc(C)] =E [ZC(S)} =E [Z 1S€C'C(S):|

sec SeF
=> P[Sec]-¢(S)=D_¥(8)-c(S).
Ser SeF
= Step 2: The probability for an element to be (not) covered

Plx¢UseeSI = [PIS¢cl= [(1-%5)

SeF: xeS SEF: xeS

-%(s
< J[e7® ¥ solves the LP!
(1 + x < e* for any xﬁ SeFixes

= e 2scr:xesV(8) < g1

Approximation Algorithms © Thomas Sauerwald Weighted Set Cover 24

Proof of Lemma

Lemma

Let C C F be arandom subset with each set S being included independ-
ently with probability y(S).

= The expected cost satisfies E[¢(C)] = > g~ ¢(S) - ¥(S).

= The probability that x is covered satisfies P[x € UgecS] > 1 — }9

Proof:
= Step 1: The expected cost of the random set C v/

Efc(C)] =E [ZC(S)} =E [Z 1S€C'C(S):|

Sec SeF
=> P[Sec]-¢(S)=D_¥(8)-c(S).
SeF SeF
= Step 2: The probability for an element to be (not) covered v/

Plx¢UseeSI = [PIS¢cl= [(1-%5)

SeF: xeS SEF: xeS

-%(s
< J[e7® ¥ solves the LP!
(1 + x < e* for any xﬁ SeFixes

= e 2scr:xesV(8) < g1

Approximation Algorithms © Thomas Sauerwald Weighted Set Cover 24

Proof of Lemma

Lemma

Let C C F be arandom subset with each set S being included independ-
ently with probability y(S).

= The expected cost satisfies E[¢(C)] = > g~ ¢(S) - ¥(S).

= The probability that x is covered satisfies P[x € UgecS] > 1 — }9

Proof:
= Step 1: The expected cost of the random set C v/

Efc(C)] =E [ZC(S)} =E [Z 1S€C'C(S):|

Sec SeF
=> P[Sec]-¢(S)=D_¥(8)-c(S).
SeF SeF
= Step 2: The probability for an element to be (not) covered v/

Plx¢UseeSI = [PIS¢cl= [(1-%5)

SeF: xeS SEF: xeS

-%(s
< J[e7® ¥ solves the LP!
(1 + x < e* for any xﬁ SeFixes

=e 2ser: xes¥(5) < 3_1 O

Approximation Algorithms © Thomas Sauerwald Weighted Set Cover 24

The Final Step

Lemma

Let C C F be arandom subset with each set S being included independ-
ently with probability y(S).

= The expected cost satisfies E[¢(C)] = > s €(S) - ¥(S)-

= The probability that x is covered satisfies P[x € UgecS] > 1 — }9

Approximation Algorithms © Thomas Sauerwald Weighted Set Cover 25

The Final Step

Lemma

Let C C F be arandom subset with each set S being included independ-
ently with probability y(S).

= The expected cost satisfies E[¢(C)] = > g ¢(S) - ¥(S).

= The probability that x is covered satisfies P[x € UgecS] > 1 — ‘5

Z“;

[Problem: Need to make sure that every element is covered!]

Approximation Algorithms © Thomas Sauerwald Weighted Set Cover 25

The Final Step

Lemma

Let C C F be arandom subset with each set S being included independ-
ently with probability y(S).

= The expected cost satisfies E[¢(C)] = > s €(S) - ¥(S)-

= The probability that x is covered satisfies P[x € UgecS] > 1 — ‘5

Z;

[Problem: Need to make sure that every element is covered!]

Idea: Amplify this probability by taking the union of Q(log n) random sets C.

Approximation Algorithms © Thomas Sauerwald Weighted Set Cover 25

The Final Step

Lemma

Let C C F be arandom subset with each set S being included independ-
ently with probability y(S).

= The expected cost satisfies E[¢(C)] = > g ¢(S) - ¥(S).
= The probability that x is covered satisfies P[x € UgecS] > 1 — ‘5

Z;

[Problem: Need to make sure that every element is covered!]

Idea: Amplify this probability by taking the union of Q(log n) random sets C.

WEIGHTED SET COVER-LP(X, F,c)
: compute y, an optimal solution to the linear program
cC=0
: repeat 2In ntimes
foreach Se F
let C = C U {S} with probability y(S)
return C

o ahwh 2

Approximation Algorithms © Thomas Sauerwald Weighted Set Cover 25

The Final Step

Lemma

Let C C F be arandom subset with each set S being included independ-
ently with probability y(S).

= The expected cost satisfies E[¢(C)] = > g ¢(S) - ¥(S).
= The probability that x is covered satisfies P[x € UgecS] > 1 — ‘5

Z;

[Problem: Need to make sure that every element is covered!]

Idea: Amplify this probability by taking the union of Q(log n) random sets C.

WEIGHTED SET COVER-LP(X, F,c)

1: compute y, an optimal solution to the linear program
22C=10

3: repeat 2In ntimes

4: foreach S e F

5: let C = C U {S} with probability y(S) __~_
6: return C

clearly runs in polynomial-time!j

Approximation Algorithms © Thomas Sauerwald Weighted Set Cover 25

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 15 the returned set C is a valid cover of X.
* The expected approximation ratio is 2In(n).

Approximation Algorithms © Thomas Sauerwald Weighted Set Cover

26

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 15 the returned set C is a valid cover of X.
* The expected approximation ratio is 2In(n).

Proof:

Approximation Algorithms © Thomas Sauerwald Weighted Set Cover 26

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 15 the returned set C is a valid cover of X.
* The expected approximation ratio is 2In(n).

Proof:
= Step 1: The probability that C is a cover

Approximation Algorithms © Thomas Sauerwald Weighted Set Cover 26

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 15 the returned set C is a valid cover of X.
* The expected approximation ratio is 2In(n).

Proof:
= Step 1: The probability that C is a cover
= By previous Lemma, an element x € X is covered in one of the 2Inn
iterations with probability at least 1 — 15 so that

Approximation Algorithms © Thomas Sauerwald Weighted Set Cover 26

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 15 the returned set C is a valid cover of X.
* The expected approximation ratio is 2In(n).

Proof:

= Step 1: The probability that C is a cover
= By previous Lemma, an element x € X is covered in one of the 2Inn
iterations with probability at least 1 — 15 so that

1 2lnn
PIx¢ UseeS] < (5)

Approximation Algorithms © Thomas Sauerwald Weighted Set Cover 26

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 15 the returned set C is a valid cover of X.
* The expected approximation ratio is 2In(n).

Proof:
= Step 1: The probability that C is a cover
= By previous Lemma, an element x € X is covered in one of the 2Inn
iterations with probability at least 1 — 15 so that

1 2lnn 1
Plxguseesl< (5) =

n2’

Approximation Algorithms © Thomas Sauerwald Weighted Set Cover 26

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 15 the returned set C is a valid cover of X.
* The expected approximation ratio is 2In(n).

Proof:
= Step 1: The probability that C is a cover
= By previous Lemma, an element x € X is covered in one of the 2Inn
iterations with probability at least 1 — 15 so that
1 2Inn 1
P[XgUSecs]S (;) :?
= This implies for the event that all elements are covered:

Approximation Algorithms © Thomas Sauerwald Weighted Set Cover 26

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 15 the returned set C is a valid cover of X.
* The expected approximation ratio is 2In(n).

Proof:

= Step 1: The probability that C is a cover
= By previous Lemma, an element x € X is covered in one of the 2Inn
iterations with probability at least 1 — 15 so that
1 2Inn 1
P[XgUSecs]S (;) :?
= This implies for the event that all elements are covered:

P[X =UsecS] =

Approximation Algorithms © Thomas Sauerwald Weighted Set Cover 26

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 15 the returned set C is a valid cover of X.
* The expected approximation ratio is 2In(n).

Proof:

= Step 1: The probability that C is a cover
= By previous Lemma, an element x € X is covered in one of the 2Inn
iterations with probability at least 1 — 15 so that
1 2Inn 1
P[XgUSecs]S (;) :?
= This implies for the event that all elements are covered:

P[X =UsccS]=1-P [U {X€U3ec3}]

xeX

Approximation Algorithms © Thomas Sauerwald Weighted Set Cover 26

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 15 the returned set C is a valid cover of X.
* The expected approximation ratio is 2In(n).

Proof:

= Step 1: The probability that C is a cover
= By previous Lemma, an element x € X is covered in one of the 2Inn
iterations with probability at least 1 — 15 so that
1 2Inn 1
P[XgUSecs]S (;) :?
= This implies for the event that all elements are covered:

P[X =UsccS]=1-P [U {X€U3ec3}]

xeX

[P[AUB] < P[A]+P[B]>

Approximation Algorithms © Thomas Sauerwald Weighted Set Cover

26

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 15 the returned set C is a valid cover of X.
* The expected approximation ratio is 2In(n).

Proof:

= Step 1: The probability that C is a cover
= By previous Lemma, an element x € X is covered in one of the 2Inn
iterations with probability at least 1 — 15 so that
1 2Inn 1
P[XgUSecs]S (;) :?
= This implies for the event that all elements are covered:

P[X =UsccS]=1-P [U {X€U3ec3}]

xeX

[P[AUB] < P[A]+P[B]> >1-% P[x¢UsecS]

xeX

Approximation Algorithms © Thomas Sauerwald Weighted Set Cover 26

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 15 the returned set C is a valid cover of X.
* The expected approximation ratio is 2In(n).

Proof:

= Step 1: The probability that C is a cover
= By previous Lemma, an element x € X is covered in one of the 2Inn
iterations with probability at least 1 — 15 so that
1 2Inn 1
P[XgUSecs]S (;) :?
= This implies for the event that all elements are covered:

P[X =UsccS]=1-P [U {X€U3ec3}]

xeX

[P[AUB] < P[A]+P[B]> >1- 3 P[x¢UsecS] 21—n~%

xeX

Approximation Algorithms © Thomas Sauerwald Weighted Set Cover 26

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 15 the returned set C is a valid cover of X.
* The expected approximation ratio is 2In(n).

Proof:

= Step 1: The probability that C is a cover
= By previous Lemma, an element x € X is covered in one of the 2Inn
iterations with probability at least 1 — 15 so that
1 2Inn 1
P[XgUSecs]S (;) :?
= This implies for the event that all elements are covered:

P[X =UsccS]=1-P [U {X€U3ec3}]

xeX

(PlavBI < PLAI+PIBI S > 1 S PLxgusces] 21-n- b =1~

1
xeX n

Approximation Algorithms © Thomas Sauerwald Weighted Set Cover

26

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 15 the returned set C is a valid cover of X.
* The expected approximation ratio is 2In(n).

Proof:

= Step 1: The probability that C is a cover v/
= By previous Lemma, an element x € X is covered in one of the 2Inn
iterations with probability at least 1 — 15 so that
1 2Inn 1
P[XgUSecs]S (;) :?
= This implies for the event that all elements are covered:

P[X =UsccS]=1-P [U {X€U3ec3}]

xeX

(PlavBI < PLAI+PIBI S > 1 S PLxgusces] 21-n- b =1~

1
xeX n

Approximation Algorithms © Thomas Sauerwald Weighted Set Cover

26

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 15 the returned set C is a valid cover of X.
* The expected approximation ratio is 2In(n).

Proof:

= Step 1: The probability that C is a cover v/
= By previous Lemma, an element x € X is covered in one of the 2Inn
iterations with probability at least 1 — 15 so that
1 2Inn 1
P[XgUSecs]S (;) :?
= This implies for the event that all elements are covered:

P[X =UsccS]=1-P [U {X€U3ec3}]

xeX

1
(Praver <pral+pial b 21 SRl fuseeS] 21 =1
= Step 2: The expected approximation ratio

1
o

Approximation Algorithms © Thomas Sauerwald Weighted Set Cover 26

Analysis of WEIGHTED SET COVER-LP

Theorem
= With probability at least 1 — 15 the returned set C is a valid cover of X.
* The expected approximation ratio is 2In(n).

Proof:

= Step 1: The probability that C is a cover v/
= By previous Lemma, an element x € X is covered in one of the 2In n

iterations with probability at least 1 — 15 so that
1 2Inn 1
Plxguseesl< (5) =

n2’
= This implies for the event that all elements are covered:

P[X =UsccS]=1-P [U {X€U3ec3}]

xeX

1
o

[P[AUB] < P[A]+P[3]> >1-Y P[x¢UsecS] 21_,7.%:1

xeX

= Step 2: The expected approximation ratio
= By previous lemma, the expected cost of one iteration is } g » ¢(S) - ¥(S).

Approximation Algorithms © Thomas Sauerwald Weighted Set Cover

Analysis of WEIGHTED SET COVER-LP

Theorem
= With probability at least 1 — 15 the returned set C is a valid cover of X.
* The expected approximation ratio is 2In(n).

Proof:

= Step 1: The probability that C is a cover v/
= By previous Lemma, an element x € X is covered in one of the 2In n

iterations with probability at least 1 — 15 so that
1 2Inn 1
Plxguseesl< (5) =

n2’
= This implies for the event that all elements are covered:

P[X =UsccS]=1-P [U {X€U3ec3}]

xeX

1
o

[P[AUB] < P[A]+P[3]> >1-Y P[x¢UsecS] 21_,7.%:1

xeX

= Step 2: The expected approximation ratio
= By previous lemma, the expected cost of one iteration is } g » ¢(S) - ¥(S).

= Linearity = E[c(C)] < 2In(n) - > sc 7 ¢(S) - ¥(S)

Approximation Algorithms © Thomas Sauerwald Weighted Set Cover

Analysis of WEIGHTED SET COVER-LP

Theorem
= With probability at least 1 — 15 the returned set C is a valid cover of X.
* The expected approximation ratio is 2In(n).

Proof:

= Step 1: The probability that C is a cover v/
= By previous Lemma, an element x € X is covered in one of the 2In n

iterations with probability at least 1 — 15 so that
1 2Inn 1
Plxguseesl< (5) =

n2’
= This implies for the event that all elements are covered:

P[X =UsccS]=1-P [U {X€U3ec3}]

xeX

1
o

[P[AUB] < P[A]+P[3]> >1-Y P[x¢UsecS] 21_,7.%:1

xeX

= Step 2: The expected approximation ratio
= By previous lemma, the expected cost of one iteration is } g » ¢(S) - ¥(S).

= Linearity = E[c(C)] < 2In(n) - > scx ¢(S) - y(S) < 2In(n) - ¢(C*)

Approximation Algorithms © Thomas Sauerwald Weighted Set Cover

Analysis of WEIGHTED SET COVER-LP

Theorem
= With probability at least 1 — 15 the returned set C is a valid cover of X.
* The expected approximation ratio is 2In(n).

Proof:

= Step 1: The probability that C is a cover v/
= By previous Lemma, an element x € X is covered in one of the 2In n

iterations with probability at least 1 — 15 so that
1 2Inn 1
Plxguseesl< (5) =

n2’
= This implies for the event that all elements are covered:

P[X =UsccS]=1-P [U {X€U3ec3}]

xeX

1
o

[P[AUB] < P[A]+P[3]> >1-Y P[x¢UsecS] 21_,7.%:1

xeX

= Step 2: The expected approximation ratio v/
= By previous lemma, the expected cost of one iteration is } g » ¢(S) - ¥(S).

= Linearity = E[¢(C)] < 2In(n) - > scx ¢(S) - y(S) < 2In(n) - ¢(C*)

Approximation Algorithms © Thomas Sauerwald Weighted Set Cover

Analysis of WEIGHTED SET COVER-LP

Theorem

* The expected approximation ratio is 2In(n).

= With probability at least 1 — 15 the returned set C is a valid cover of X.

Proof:

= Step 1: The probability that C is a cover v/
= By previous Lemma, an element x € X is covered in one of the 2In n

iterations with probability at least 1 — 15 so that
1 2Inn 1
Plxguseesl< (5) =

n2’
= This implies for the event that all elements are covered:

P[X =UsccS]=1-P [U {X€U3ec3}]

xeX

[P[AUB] < P[A]+P[3]> >1-Y P[x¢UsecS] 21_,7.%:1

xeX

= Step 2: The expected approximation ratio v/

= By previous lemma, the expected cost of one iteration is } g » ¢(S) - ¥(S).

= Linearity = E[¢(C)] < 2In(n) - > scx ¢(S) - y(S) < 2In(n) - ¢(C*)

1
o

a

Approximation Algorithms © Thomas Sauerwald Weighted Set Cover

26

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 15 the returned set C is a valid cover of X.
* The expected approximation ratio is 2In(n).

[By Markov's inequality, P [¢(C) < 4In(n) - ¢(C*)] > 1/2.]

Approximation Algorithms © Thomas Sauerwald Weighted Set Cover 26

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 15 the returned set C is a valid cover of X.
* The expected approximation ratio is 2In(n).

[By Markov’s inequality, P[¢(C) < 4In(n) - c(C*)] > 1/2.]

Hence with probability at least 1 — 1 — 1 > 1,
solution is within a factor of 4 In(n) of the optimum.

Approximation Algorithms © Thomas Sauerwald Weighted Set Cover

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 15 the returned set C is a valid cover of X.
* The expected approximation ratio is 2In(n).

[By Markov’s inequality, P[¢(C) < 4In(n) - c(C*)] > 1/2.]

Hence with probability at least 1 — 1 — 1 > 1, probability could be further
solution is within a factor of 4 In(n) of the optimum. increased by repeating

Approximation Algorithms © Thomas Sauerwald Weighted Set Cover 26

Analysis of WEIGHTED SET COVER-LP

Theorem

= With probability at least 1 — 15 the returned set C is a valid cover of X.
* The expected approximation ratio is 2In(n).

[By Markov's inequality, P [¢(C) < 4In(n) - ¢(C*)] > 1/2.]

Hence with probability at least 1 — 1 — 1 > 1, probability could be further
solution is within a factor of 4 In(n) of the optimum. increased by repeating

Typical Approach for Designing Approximation Algorithms based on LPs

Approximation Algorithms © Thomas Sauerwald Weighted Set Cover 26

Outline

MAX-CNF

Approximation Algorithms © Thomas Sauerwald

MAX-CNF

27

MAX-CNF

Recall:

MAX-3-CNF Satisfiability

= Given: 3-CNF formula, e.g.: (x1 VXs VXa) A (X2 VX3V X5) A -+

= Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

—— MAX-CNF Satisfiability (MAX-SAT)

Approximation Algorithms © Thomas Sauerwald MAX-CNF

28

MAX-CNF

Recall:

MAX-3-CNF Satisfiability

= Given: 3-CNF formula, e.g.: (x1 VXs VXa) A (X2 VX3V X5) A -+

= Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

—— MAX-CNF Satisfiability (MAX-SAT)

= Given: CNF formula, e.g.: (X1 VXa) A (X2 VX3V Xa V X5) A -+ -

= Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

Approximation Algorithms © Thomas Sauerwald MAX-CNF

28

MAX-CNF

Recall:

MAX-3-CNF Satisfiability

= Given: 3-CNF formula, e.g.: (x1 VXa VXa) A (X2 VX3V X5) A - -

= Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

—— MAX-CNF Satisfiability (MAX-SAT)
= Given: CNF formula, e.g.: (X1 VXa) A (X2 VX3V Xa V X5) A -+ -

= Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

N

Why study this generalised problem?

Approximation Algorithms © Thomas Sauerwald MAX-CNF

28

MAX-CNF

Recall:

MAX-3-CNF Satisfiability

= Given: 3-CNF formula, e.g.: (x1 VXa VXa) A (X2 VX3V X5) A - -

= Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

—— MAX-CNF Satisfiability (MAX-SAT)
= Given: CNF formula, e.g.: (X1 VXa) A (X2 VX3V Xa V X5) A -+ -

= Goal: Find an assignment of the variables that satisfies as many
clauses as possible.

N

Why study this generalised problem?

= Allowing arbitrary clause lengths makes the problem more interesting
(we will see that simply guessing is not the best!)

= a nice concluding example where we can practice previously learned approaches

Approximation Algorithms © Thomas Sauerwald MAX-CNF 28

Approach 1: Guessing the Assignment

Assign each variable true or false uniformly and independently at random.

Approximation Algorithms © Thomas Sauerwald MAX-CNF 29

Approach 1: Guessing the Assignment

Assign each variable true or false uniformly and independently at random.

[Recall: This was the successful approach to solve MAX-3-CNF!]

Approximation Algorithms © Thomas Sauerwald MAX-CNF 29

Approach 1: Guessing the Assignment

Assign each variable true or false uniformly and independently at random.

[Recall: This was the successful approach to solve MAX-3-CNF!]

Analysis

For any clause i which has length ¢,
P [clause i is satisfied] =1 — 27" := .

In particular, the guessing algorithm is a randomised 2-approximation.

Approximation Algorithms © Thomas Sauerwald MAX-CNF 29

Approach 1: Guessing the Assignment

Assign each variable true or false uniformly and independently at random.

[Recall: This was the successful approach to solve MAX-3-CNF!]

Analysis

For any clause i which has length ¢,
P [clause i is satisfied] =1 — 27" := .

In particular, the guessing algorithm is a randomised 2-approximation.

Proof:

Approximation Algorithms © Thomas Sauerwald MAX-CNF 29

Approach 1: Guessing the Assignment

Assign each variable true or false uniformly and independently at random.

[Recall: This was the successful approach to solve MAX-3-CNF!]

Analysis

For any clause i/ which has length ¢,
P[clause i is satisfied] =1 — 27 := ay.

In particular, the guessing algorithm is a randomised 2-approximation.

Proof:
= First statement as in the proof of Theorem 35.6. For clause i not to be
satisfied, all £ occurring variables must be set to a specific value.

Approximation Algorithms © Thomas Sauerwald MAX-CNF 29

Approach 1: Guessing the Assignment

Assign each variable true or false uniformly and independently at random.

[Recall: This was the successful approach to solve MAX-3-CNF!]

Analysis

For any clause i/ which has length ¢,
P[clause i is satisfied] =1 — 27 := ay.

In particular, the guessing algorithm is a randomised 2-approximation.

Proof:
= First statement as in the proof of Theorem 35.6. For clause i not to be
satisfied, all £ occurring variables must be set to a specific value.
= As before, let Y := 3", Y; be the number of satisfied clauses. Then,

ZY":|_ZE[Y"]222_2'm' O
i=1 i=1 i=1

Approximation Algorithms © Thomas Sauerwald MAX-CNF 29

E[Y]=E

Approach 2: Guessing with a “Hunch” (Randomised Rounding)

First solve a linear program and use fractional values for a biased coin flip.

Approximation Algorithms © Thomas Sauerwald MAX-CNF 30

Approach 2: Guessing with a “Hunch” (Randomised Rounding)

First solve a linear program and use fractional values for a biased coin flip.

[The same as randomised rounding!]

Approximation Algorithms © Thomas Sauerwald MAX-CNF 30

Approach 2: Guessing with a “Hunch” (Randomised Rounding)

First solve a linear program and use fractional values for a biased coin flip.

[The same as randomised rounding!]

— 0-1 Integer Program

m

maximize Z z

i=1
subjectto > yi+ > (1-y)

>z foreachi=1,2,...,m

ject jec;
zi € {0,1} foreachi=1,2,...,m
y, € {0,1} foreachj=1,2,...,n

Approximation Algorithms © Thomas Sauerwald MAX-CNF 30

Approach 2: Guessing with a “Hunch” (Randomised Rounding)

First solve a linear program and use fractional values for a biased coin flip.

[The same as randomised rounding!]

— 0-1 Integer Program

m

maximize Z z

i=1
subjectto > yi+ > (1-y)
ject jec

[

C; is the index set of the un- ¥
q .]
negated variables of clause i.

2

m m

Z foreachi=1,2,...

{0,1} foreachi=1,2,...
{0,1} foreachj=1,2,...

Approximation Algorithms © Thomas Sauerwald

MAX-CNF

30

Approach 2: Guessing with a “Hunch” (Randomised Rounding)

— 0-1 Integer Program

m
maximize Z z [

These auxiliary variables are used to
reflect whether a clause is satisfied or not

[

i=1
V/d
subjectto > y+ > (1-y) > z foreachi=1,2,...,m
ject jec
1 zi e {01} foreachi=1,2,....m
C; is the index set of the un- y, € {01} foreachj=1,2,....n
negated variables of clause i. ' B

First solve a linear program and use fractional values for a biased coin flip.

(The same as randomised rounding!]

Approximation Algorithms © Thomas Sauerwald MAX-CNF

30

Approach 2: Guessing with a “Hunch” (Randomised Rounding)

First solve a linear program and use fractional values for a biased coin flip.

(The same as randomised rounding!]

— 0-1 Integer Program
o m These auxiliary variables are used to
maximize > z; reflect whether a clause is satisfied or not
i=1
V/d
subjectto > y+ > (1-y) > z foreachi=1,2,....m
ject jec
1 zi e {01} foreachi=1,2,....m
C; is the index set of the un- y, € {01} foreachj=1,2,....n
negated variables of clause i. ' B

= |n the corresponding LP each € {0, 1} is replaced by € [0, 1]
= Let @,%) be the optimal solution of the LP
= Obtain an integer solution y through randomised rounding oi@)

Approximation Algorithms © Thomas Sauerwald MAX-CNF 30

Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

P [clause i is satisfied] > <1 - (

1
-7

)

Approximation Algorithms © Thomas Sauerwald

MAX-CNF

31

Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

. i 1\¢\ —
P [clause i is satisfied] > <1 - (1 — Z)) - Zj.

Proof of Lemma (1/2):

Approximation Algorithms © Thomas Sauerwald MAX-CNF 31

Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

. i 1\¢\ —
P [clause i is satisfied] > (1 - (1 — Z)) - Zj.

Proof of Lemma (1/2):

= Assume w.l.0.g. all literals in clause i appear non-negated
(otherwise replace every occurrence of x; by X; in the whole formula)

Approximation Algorithms © Thomas Sauerwald MAX-CNF

31

Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

. i 1\¢\ —
P [clause i is satisfied] > (1 - (1 — Z)) - Zj.

Proof of Lemma (1/2):

= Assume w.l.0.g. all literals in clause i appear non-negated
(otherwise replace every occurrence of x; by X; in the whole formula)

= Further, by relabelling assume C; = (x; V- -+ V X¢)

Approximation Algorithms © Thomas Sauerwald MAX-CNF

31

Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

. i 1\¢\ —
P [clause i is satisfied] > (1 - (1 — Z)) - Zj.

Proof of Lemma (1/2):

= Assume w.l.0.g. all literals in clause i appear non-negated
(otherwise replace every occurrence of x; by X; in the whole formula)

= Further, by relabelling assume C; = (x1 V -+ - V X¢)

= P|[clause iis satisfied] =

Approximation Algorithms © Thomas Sauerwald MAX-CNF

Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

. i 1\¢\ —
P [clause i is satisfied] > (1 - (1 — Z)) - Zj.

Proof of Lemma (1/2):

= Assume w.l.0.g. all literals in clause i appear non-negated
(otherwise replace every occurrence of x; by X; in the whole formula)
= Further, by relabelling assume C; = (x1 V -+ - V X¢)
£
= P[clause i is satisfied] =1 — [[P[y; is false]
j=1

Approximation Algorithms © Thomas Sauerwald MAX-CNF 31

Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

. i 1\¢\ —
P [clause i is satisfied] > (1 - (1 — Z)) - Zj.

Proof of Lemma (1/2):
= Assume w.l.0.g. all literals in clause i appear non-negated
(otherwise replace every occurrence of x; by X; in the whole formula)

= Further, by relabelling assume C; = (x1 V -+ - V X¢)
£ L
= P[clause iis satisfied] =1 - [[P[yjisfalse] =1 -] (1 -¥))

J=1 J=1

Approximation Algorithms © Thomas Sauerwald MAX-CNF 31

Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

L i 1\¢
P [clause i is satisfied] > (1 - (1 — Z)) - Zj.

Proof of Lemma (1/2):
= Assume w.l.0.g. all literals in clause i appear non-negated
(otherwise replace every occurrence of x; by X; in the whole formula)
= Further, by relabelling assume C; = (x1 V -+ - V X¢)
£ L
= P[clause iis satisfied] =1 — [[P[yjisfalse] =1 -] (1 -¥))
j=1 j=1

Arithmetic vs. geometric mean:
a + ...+ a

> Yar x ... X ax.
. > Va K

Approximation Algorithms © Thomas Sauerwald MAX-CNF 31

Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

L i 1\¢
P [clause i is satisfied] > (1 - (1 — Z)) - Zj.

Proof of Lemma (1/2):

= Assume w.l.0.g. all literals in clause i appear non-negated
(otherwise replace every occurrence of x; by X; in the whole formula)

= Further, by relabelling assume C; = (x1 V -+ - V X¢)

L L
= P[clause iis satisfied] =1 — [[P[yjisfalse] =1 -] (1 -¥))
j=1 j=1
Arithmetic vs. geometric mean: o1 _v. 4
et o 7 sy (2=
ﬁzvax‘.‘xak. Vi

Approximation Algorithms © Thomas Sauerwald MAX-CNF 31

Analysis of Randomised Rounding

Lemma
For any clause i of length ¢,

L i 1\¢
P [clause i is satisfied] > (1 - (1 — Z)) - Zj.

Proof of Lemma (1/2):

= Assume w.l.0.g. all literals in clause i appear non-negated
(otherwise replace every occurrence of x; by X; in the whole formula)

= Further, by relabelling assume C; = (x1 V -+ - V X¢)
£ L

= P[clause iis satisfied] =1 — [[P[yjisfalse] =1 -] (1 -¥))

J=1 J=1

Arithmetic vs. geometric mean: L = £
1 <Zj_1£1__ ;))
o

AW M X ar
— ¢
(B3
= 14

k
Approximation Algorithms © Thomas Sauerwald MAX-CNF

v

31

Analysis of Randomised Rounding

Lemma
For any clause i of length ¢,

L i 1\¢
P [clause i is satisfied] > (1 - (1 - Z)) - Zj.

Proof of Lemma (1/2):
= Assume w.l.0.g. all literals in clause i appear non-negated
(otherwise replace every occurrence of x; by X; in the whole formula)

= Further, by relabelling assume C; = (X, V.- -V Xe)

£ L
= P[clause iis satisfied] =1 — [[P[yjisfalse] =1 -] (1 -¥))

J=1 J=1

Arithmetic vs. geometric mean: 1 o\ ¢
a; + ...+ a >1— M
ﬁzﬁ/zﬁx‘.‘xak. = ¢

Approximation Algorithms © Thomas Sauerwald MAX-CNF

31

Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

. i 1\¢\ —
P [clause i is satisfied] > (1 - (1 — —)) - Zj.

Proof of Lemma (2/2):
= So far we have shown:

N
P[clause i is satisfied] > 1 — (1 - 7)

Approximation Algorithms © Thomas Sauerwald MAX-CNF 31

Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

. i 1\¢\ —
P [clause i is satisfied] > (1 - (1 — —)) - Zj.

Proof of Lemma (2/2):
= So far we have shown:

N
P[clause i is satisfied] > 1 — (1 - 7)

= Forany ¢ > 1, define g(z) := 1 — (1 —2)".

Approximation Algorithms © Thomas Sauerwald MAX-CNF 31

Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

. i 1\¢\ —
P [clause i is satisfied] > (1 - (1 — 7)) - Zj.

Proof of Lemma (2/2):
= So far we have shown:

S\ ¢
P[clause i is satisfied] > 1 — (1 — %)

= Forany ¢ > 1, define g(z) :=1— (1 — %)é. This is a_concave function
with g(0) =0 and g(1) _1—(Z)

Approximation Algorithms © Thomas Sauerwald MAX-CNF 31

Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

. i 1\¢\ —
P [clause i is satisfied] > (1 - (1 — 7)) - Zj.

Proof of Lemma (2/2):
= So far we have shown:

S\ ¢
P[clause i is satisfied] > 1 — (1 — ﬁ)

= Forany ¢ > 1, define g(z) :=1— (1 — %)é. This is a concave function

with g(0) = 0 and g(1) = 1 (1 z) 92)

Approximation Algorithms © Thomas Sauerwald MAX-CNF 31

Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

. i 1\¢\ —
P [clause i is satisfied] > (1 - (1 — 7)) - Zj.

Proof of Lemma (2/2):
= So far we have shown:

S\ ¢
P[clause i is satisfied] > 1 — (1 — ﬁ)

= Forany ¢ > 1, define g(z) :=1— (1 — %)é. This is a concave function
4
with g(0) = 0and g(1) =1 (1 1) =: 4. 9(2)

- forany ze[0,1] 1-(1-4)°

Approximation Algorithms © Thomas Sauerwald MAX-CNF 31

Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,
L e . 1\¢\ —
P [clause i is satisfied] > (1 - (1 — Z)) - Zj.

Proof of Lemma (2/2):
= So far we have shown:

S\ ¢
P[clause i is satisfied] > 1 — (1 — ﬁ)

= Forany ¢ > 1, define g(z) := 1 — (1 — 2)". This is a concave function
£
with g(0) = 0and g(1) =1 (1 1) =: 4. 92)

= g(z)>p -z foranyze[0,1] 1-(1-1)

= Therefore, P [clause i is satisfied] > 3, - Z;.

Approximation Algorithms © Thomas Sauerwald MAX-CNF 31

Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

. i 1\¢\ —
P [clause i is satisfied] > (1 - (1 — 7)) - Zj.

Proof of Lemma (2/2):
= So far we have shown:

S\ ¢
P[clause i is satisfied] > 1 — (1 — ﬁ)

= Forany ¢ > 1, define g(z) := 1 — (1 — 2)". This is a concave function
£
with g(0) = 0and g(1) =1 (1 1) =: 4. 92)

= g(z)>p -z foranyze[0,1] 1-(1-1)

= Therefore, P [clause i is satisfied] > 3. - Z;. O

Approximation Algorithms © Thomas Sauerwald MAX-CNF 31

Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

P [clause i is satisfied] > (1 — (1 _

——— Theorem

Randomised Rounding yields a 1/(1 — 1/e) =~ 1.5820 randomised ap-
proximation algorithm for MAX-CNF.

\

~

Approximation Algorithms © Thomas Sauerwald MAX-CNF

31

Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

. i 1\¢\ —
P [clause i is satisfied] > (1 - (1 — 7)) - Zj.

——— Theorem

Randomised Rounding yields a 1/(1 — 1/e) =~ 1.5820 randomised ap-
proximation algorithm for MAX-CNF.

\

~

Proof of Theorem:

Approximation Algorithms © Thomas Sauerwald MAX-CNF

31

Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

. i 1\¢\ —
P [clause i is satisfied] > (1 - (1 — 7)) - Zj.

——— Theorem

Randomised Rounding yields a 1/(1 — 1/e) =~ 1.5820 randomised ap-
proximation algorithm for MAX-CNF.

\

~

Proof of Theorem:
= Forany clause i = 1,2,...,m, let ¢; be the corresponding length.

Approximation Algorithms © Thomas Sauerwald MAX-CNF

31

Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

. i 1\¢\ —
P [clause i is satisfied] > (1 - (1 — 7)) - Zj.

——— Theorem

Randomised Rounding yields a 1/(1 — 1/e) =~ 1.5820 randomised ap-
proximation algorithm for MAX-CNF.

\

~

Proof of Theorem:

= Forany clause i = 1,2,...,m, let ¢; be the corresponding length.
= Then the expected number of satisfied clauses is:

E(Y]=Y E[]>

i=1

Approximation Algorithms © Thomas Sauerwald MAX-CNF

31

Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

. i 1\¢\ —
P [clause i is satisfied] > (1 - (1 — 7)) - Zj.

——— Theorem

Randomised Rounding yields a 1/(1 — 1/e) =~ 1.5820 randomised ap-
proximation algorithm for MAX-CNF.

\

~

Proof of Theorem:

= Forany clause i = 1,2,...,m, let ¢; be the corresponding length.
= Then the expected number of satisfied clauses is:

E[Y]iE[Y,»]z i@i(hél,)[i)’z

= i=1

Approximation Algorithms © Thomas Sauerwald MAX-CNF

31

Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

. i 1\¢\ —
P [clause i is satisfied] > (1 - (1 — 7)) - Zj.

——— Theorem

Randomised Rounding yields a 1/(1 — 1/e) =~ 1.5820 randomised ap-
proximation algorithm for MAX-CNF.

\

~

Proof of Theorem:

= Forany clause i = 1,2,...,m, let ¢; be the corresponding length.
= Then the expected number of satisfied clauses is:

m m AR TR
E[Y]=Y E[Y]> Z<1 -(1-7))-222(176) 'z
i=1 i=1 ! 7=
By Lemma [Since (1-1/x)< 1/e]

Approximation Algorithms © Thomas Sauerwald MAX-CNF

31

Analysis of Randomised Rounding

Lemma

For any clause i of length ¢,

. i 1\¢\ —
P [clause i is satisfied] > (1 - (1 — 7) > - Zj.

——— Theorem

Randomised Rounding yields a 1/(1 — 1/e) =~ 1.5820 randomised ap-
proximation algorithm for MAX-CNF.

~

\

Proof of Theorem:

= Forany clause i = 1,2,...,m, let ¢; be the corresponding length.
= Then the expected number of satisfied clauses is:

E[YliE[Yi]Z i<1(12i)ll)-z:‘2i(1;)-z;zr\(1;>-OPT

i i=1 / =1
F)j . LP solution at least
X
By Lemma [Slnce (1—=1/x) < 1/6] [as good as optimum]

Approximation Algorithms © Thomas Sauerwald MAX-CNF 31

Approach 3: Hybrid Algorithm

Summary

= Approach 1 (Guessing) achieves better guarantee on longer clauses
= Approach 2 (Rounding) achieves better guarantee on shorier clauses

Approximation Algorithms © Thomas Sauerwald MAX-CNF

32

Approach 3: Hybrid Algorithm

Summary
= Approach 1 (Guessing) achieves better guarantee on longer clauses
= Approach 2 (Rounding) achieves better guarantee on shorter clauses

/)
/L

[Idea: Consider a hybrid algorithm which interpolates between the two approaches]

Approximation Algorithms © Thomas Sauerwald MAX-CNF 32

Approach 3: Hybrid Algorithm

Summary

= Approach 1 (Guessing) achieves better guarantee on longer clauses
= Approach 2 (Rounding) achieves better guarantee on shorter clauses

/)

/L

[Idea: Consider a hybrid algorithm which interpolates between the two approaches]

HYBRID-MAX-CNF (e, n, m) /7:‘
1: Let b € {0,1} be the flip of a fair coin e T\
. ~=/C
2: If b = 0 then perform random guessing \4
3: If b = 1 then perform randomised rounding 6 e =
4: return the computed solution dc 2

Approximation Algorithms © Thomas Sauerwald MAX-CNF 32

Approach 3: Hybrid Algorithm

Summary

= Approach 1 (Guessing) achieves better guarantee on longer clauses
= Approach 2 (Rounding) achieves better guarantee on shorter clauses

/)

/L

[Idea: Consider a hybrid algorithm which interpolates between the two approaches]

HYBRID-MAX-CNF (e, n, m) /\/a‘
i+ Let b € {0,1} be the flip of a fair coin Ty <
. ~3Y¢ (o)
2: If b = 0 then perform random guessing \4
3: If b = 1 then perform randomised rounding 6 e c
4: return the computed solution dc 2

Algorithm sets each variable x; to TRUE with prob.
Note, however, that variables are not independently assigned!

Approximation Algorithms © Thomas Sauerwald MAX-CNF 32

Analysis of Hybrid Algorithm

Theorem

HYBRID-MAX-CNF(p, n,m) is a randomised!423Japprox. algorithm.

Approximation Algorithms © Thomas Sauerwald MAX-CNF

33

Analysis of Hybrid Algorithm

Theorem

HYBRID-MAX-CNF(p, n,m) is a randomised 4 /3-approx. algorithm.

Proof:

Approximation Algorithms © Thomas Sauerwald MAX-CNF 33

Analysis of Hybrid Algorithm

Theorem

HYBRID-MAX-CNF(p, n,m) is a randomised 4 /3-approx. algorithm.

Proof:
= It suffices to prove that clause / is satisfied with probability at least 3/4 - Z;

Approximation Algorithms © Thomas Sauerwald MAX-CNF 33

Analysis of Hybrid Algorithm

Theorem

HYBRID-MAX-CNF(p, n,m) is a randomised 4 /3-approx. algorithm.

Proof:

= |t suffices to prove that clause i is satisfied with probability at least 3/4 - Z;
= For any clause i of length ¢:

Approximation Algorithms © Thomas Sauerwald MAX-CNF 33

Analysis of Hybrid Algorithm

Theorem

HYBRID-MAX-CNF(p, n,m) is a randomised 4 /3-approx. algorithm.

Proof:

= |t suffices to prove that clause i is satisfied with probability at least 3/4 - Z;
= For any clause i of length ¢:
= Algorithm 1 satisfies it with probability 1 — 2—¢ =0y > oy Zj.

Approximation Algorithms © Thomas Sauerwald MAX-CNF 33

Analysis of Hybrid Algorithm

Theorem

HYBRID-MAX-CNF(p, n,m) is a randomised 4 /3-approx. algorithm.

Proof:

= |t suffices to prove that clause i is satisfied with probability at least 3/4 - Z;
= For any clause i of length ¢:
=5 Algorithm 1 satisfies it with probability 1 —2—¢ = oy > ay - Z;. ﬂ_

Algorithm 2 satisfies it with probability g, - Z;. ’a \ (\ \ \
o 2

Approximation Algorithms © Thomas Sauerwald MAX-CNF 33

Analysis of Hybrid Algorithm

Theorem

HYBRID-MAX-CNF(p, n,m) is a randomised 4 /3-approx. algorithm.

Proof:

= |t suffices to prove that clause i is satisfied with probability at least 3/4 - Z;
= For any clause i of length ¢:

= Algorithm 1 satisfies it with probability 1 — 2% = a; > ay - Z;.

= Algorithm 2 satisfies it with probability 3, - Z;.

= HYBRID-MAX-CNF(p, n, m) satisfies it with probability

1

4 1
50 Zi+ 5 -

Approximation Algorithms © Thomas Sauerwald MAX-CNF 33

Analysis of Hybrid Algorithm

Theorem

HYBRID-MAX-CNF(p, n,m) is a randomised 4 /3-approx. algorithm.

Proof:
= |t suffices to prove that clause i is satisfied with probability at least 3/4 - Z;
= For any clause i of length ¢:
= Algorithm 1 satisfies it with probability 1 —2=¢ = a, > ay - Z;.
= Algorithm 2 satisfies it with probability 3, - Z;.
= HYBRID-MAX-CNF(p, n, m) satisfies it with probability % coy - Zp+ % - Be - Zj.

= Note 232t = 3/4 for ¢ € {1,2},

Approximation Algorithms © Thomas Sauerwald MAX-CNF 33

Analysis of Hybrid Algorithm

Theorem

HYBRID-MAX-CNF(p, n,m) is a randomised 4 /3-approx. algorithm.

Proof:
= |t suffices to prove that clause i is satisfied with probability at least 3/4 - Z;
= For any clause i of length ¢:
= Algorithm 1 satisfies it with probability 1 —2=¢ = a, > ay - Z;.
= Algorithm 2 satisfies it with probability 3, - Z;.
= HYBRID-MAX-CNF(p, n, m) satisfies it with probability % coy - Zp+ % - Be - Zj.

= Note 2324 = 3/4 for ¢ € {1,2}, and for £ > 3, .15 > 3/4 (see figure)

N

0 + + + e
1 2 3 4

Approximation Algorithms © Thomas Sauerwald MAX-CNF

33

Analysis of Hybrid Algorithm

Theorem

HYBRID-MAX-CNF(p, n,m) is a randomised 4 /3-approx. algorithm.

Proof:

= |t suffices to prove that clause i is satisfied with probability at least 3/4 - Z;
= For any clause i of length ¢:

= Algorithm 1 satisfies it with probability 1 —2=¢ = a, > ay - Z;.

= Algorithm 2 satisfies it with probability 3, - Z;.

= HYBRID-MAX-CNF(p, n, m) satisfies it with probability % coy - Zp+ % - Be - Zj.

= Note 232t = 3/4 for ¢ € {1,2}, and for £ > 3, 1P > 3/4 (see figure)

0.5

0

1 2 3 4

Approximation Algorithms © Thomas Sauerwald MAX-CNF 33

Analysis of Hybrid Algorithm

Theorem

HYBRID-MAX-CNF(p, n,m) is a randomised 4 /3-approx. algorithm.

Proof:

= |t suffices to prove that clause i is satisfied with probability at least 3/4 - Z;
= For any clause i of length ¢:

= Algorithm 1 satisfies it with probability 1 —2=¢ = a, > ay - Z;.

= Algorithm 2 satisfies it with probability 3, - Z;.

= HYBRID-MAX-CNF(p, n, m) satisfies it with probability % coy - Zp+ % - Be - Zj.

= Note 232t = 3/4 for ¢ € {1,2}, and for £ > 3, 1P > 3/4 (see figure)

0.5

0

1 2 3 4

Approximation Algorithms © Thomas Sauerwald MAX-CNF 33

Analysis of Hybrid Algorithm

Theorem

HYBRID-MAX-CNF(p, n,m) is a randomised 4 /3-approx. algorithm.

Proof:
= |t suffices to prove that clause i is satisfied with probability at least 3/4 - Z;
= For any clause i of length ¢:
= Algorithm 1 satisfies it with probability 1 —2=¢ = a, > ay - Z;.
= Algorithm 2 satisfies it with probability 3, - Z;.
= HYBRID-MAX-CNF(p, n, m) satisfies it with probability‘iaz < Zi+ % - Be - Zj. l

= Note 2324 = 3/4 for ¢ € {1,2}, and for £ > 3, .15 > 3/4 (see figure)

Approximation Algorithms © Thomas Sauerwald MAX-CNF 33

Analysis of Hybrid Algorithm

Theorem

HYBRID-MAX-CNF(p, n,m) is a randomised 4 /3-approx. algorithm.

Proof:
= |t suffices to prove that clause i is satisfied with probability at least 3/4 - Z;
= For any clause i of length ¢:
= Algorithm 1 satisfies it with probability 1 —2=¢ = a, > ay - Z;.
= Algorithm 2 satisfies it with probability 3, - Z;.
= HYBRID-MAX-CNF(p, n, m) satisfies it with probability % coy - Zp+ % - Be - Zj.

= Note 232t = 3/4 for ¢ € {1,2}, and for £ > 3, 1P > 3/4 (see figure)

Approximation Algorithms © Thomas Sauerwald MAX-CNF 33

Analysis of Hybrid Algorithm

Theorem

HYBRID-MAX-CNF(p, n,m) is a randomised 4 /3-approx. algorithm.

Proof:

= |t suffices to prove that clause i is satisfied with probability at least 3/4 - Z;
= For any clause i of length ¢:
= Algorithm 1 satisfies it with probability 1 —2=¢ = a, > ay - Z;.
= Algorithm 2 satisfies it with probability 3, - Z;.
= HYBRID-MAX-CNF(p, n, m) satisfies it with probability % coy - Zp+ % - Be - Zj.
= Note 2324 = 3/4 for ¢ € {1,2}, and for £ > 3, .15 > 3/4 (see figure)
= = HYBRID-MAX-CNF (¢, n, m) satisfies it with prob. at IeastE/4-E,- S O

Approximation Algorithms © Thomas Sauerwald MAX-CNF 33

MAX-CNF Conclusion

Summary
= Since ap = 2 =3/4, we cannot achieve a better approximation
ratio than 4/3 by combining Algorithm 1 & 2 in a different way
= The 4/3-approximation algorithm can be easily derandomised
= |dea: use the conditional expectation trick for both Algorithm 1 & 2 and
output the better solution
= The 4/3-approximation algorithm applies unchanged to a weighted
version of MAX-CNF, where each clause has a non-negative weight

= Even MAX-2-CNF (every clause has length 2) is NP-hard!

Approximation Algorithms © Thomas Sauerwald MAX-CNF

34

Exercise (easy): Consider a minimisation problem, where x is the
optimal cost of the LP relaxation, y is the optimal cost of the IP and z
is the solution obtained by rounding the LP solution. Which of the
following statements are true?

1.z<x <Yy,
2. x<y<z
3. y<x<z
4. y < z<x.

Approximation Algorithms © Thomas Sauerwald MAX-CNF

35

	Randomised Approximation
	MAX-3-CNF
	Weighted Vertex Cover
	Weighted Set Cover
	MAX-CNF

