Randomised Algorithms

Lecture 6-7: Linear Programming

Thomas Sauerwald (tms41@cam.ac.uk)

Lent 2022

Introduction

A Simple Example of a Linear Program

Formulating Problems as Linear Programs

Standard and Slack Forms

Simplex Algorithm

Finding an Initial Solution

Introduction

- linear programming is a powerful tool in optimisation
- inspired more sophisticated techniques such as quadratic optimisation, convex optimisation, integer programming and semi-definite programming
- we will later use the connection between linear and integer programming to tackle several problems (Vertex-Cover, Set-Cover, TSP, satisfiability)

Outline

Introduction

A Simple Example of a Linear Program

Formulating Problems as Linear Programs

Standard and Slack Forms

Simplex Algorithm

Finding an Initial Solution

Linear Programming (informal definition) -

- maximise or minimise an objective, given limited resources (competing constraint)
- constraints are specified as (in)equalities
- objective function and constraints are linear

A Simple Example of a Linear Optimisation Problem

- Laptop
 - selling price to retailer: 1,000 GBP
 - glass: 4 units
 - copper: 2 units
 - rare-earth elements: 1 unit

1

- Smartphone
 - selling price to retailer: 1,000 GBP
 - glass: 1 unit
 - copper: 1 unit
 - rare-earth elements: 2 units
- You have a daily supply of:
 - glass: 20 units
 - copper: 10 units
 - rare-earth elements: 14 units
 - (and enough of everything else...)

How to maximise your daily earnings?

The Linear Program

Formal Definition of Linear Program -

• Given a_1, a_2, \ldots, a_n and a set of variables x_1, x_2, \ldots, x_n , a linear function f is defined by

$$f(x_1, x_2, \ldots, x_n) = a_1 x_1 + a_2 x_2 + \cdots + a_n x_n.$$

- Linear Equality: $f(x_1, x_2, ..., x_n) = b$ Linear Inequality: $f(x_1, x_2, ..., x_n) \ge b$ Linear Constraints
- Linear-Progamming Problem: either minimise or maximise a linear function subject to a set of linear constraints

Finding the Optimal Production Schedule

Exercise: Which aspect did we ignore in the formulation of the linear program?

Finding the Optimal Production Schedule

While the same approach also works for higher-dimensions, we need to take a more systematic and algebraic procedure.

Introduction

A Simple Example of a Linear Program

Formulating Problems as Linear Programs

Standard and Slack Forms

Simplex Algorithm

Finding an Initial Solution

Shortest Paths

Maximum Flow

- Maximum Flow Problem -

- Given: directed graph G = (V, E) with edge capacities $c : E \to \mathbb{R}^+$ (recall c(u, v) = 0 if $(u, v) \notin E$), pair of vertices $s, t \in V$
- Goal: Find a maximum flow $f: V \times V \to \mathbb{R}$ from *s* to *t* which satisfies the capacity constraints and flow conservation

Minimum-Cost Flow

Figure 29.3 (a) An example of a minimum-cost-flow problem. We denote the capacities by c and the costs by a. Vertex s is the source and vertex t is the sink, and we wish to send 4 units of flow from s to t. (b) A solution to the minimum-cost flow problem in which 4 units of flow are sent from s to t. For each edge, the flow and capacity are written as flow/capacity.

 $\begin{array}{c|c} \begin{array}{c|c} \text{Minimum Cost Flow as LP} \\ \hline \text{minimise} & \sum_{(u,v)\in E} a(u,v) f_{uv} \\ \text{subject to} \\ & f_{uv} & \leq & c(u,v) & \text{for } u,v\in V, \\ & \sum_{v\in V} f_{vu} - \sum_{v\in V} f_{uv} & = & 0 & \text{for } u\in V\setminus\{s,t\}, \\ & \sum_{v\in V} f_{sv} - \sum_{v\in V} f_{vs} & = & d, \\ & f_{uv} & \geq & 0 & \text{for } u,v\in V. \end{array}$

Real power of Linear Programming comes from the ability to solve **new problems**!

Introduction

A Simple Example of a Linear Program

Formulating Problems as Linear Programs

Standard and Slack Forms

Simplex Algorithm

Finding an Initial Solution

Standard and Slack Forms

- 1. The objective might be a minimisation rather than maximisation.
- 2. There might be variables without nonnegativity constraints.
- 3. There might be equality constraints.
- 4. There might be inequality constraints (with \geq instead of \leq).

Goal: Convert linear program into an equivalent program which is in standard form

Equivalence: a correspondence (not necessarily a bijection) between solutions.

1. The objective might be a minimisation rather than maximisation.

minimise	$-2x_{1}$	+	3 <i>x</i> 2			
subject to						
	<i>X</i> ₁	+	<i>X</i> ₂	=	7	
	<i>X</i> ₁	_	$2x_2$	\leq	4	
	<i>X</i> ₁			\geq	0	
	,	₩ ₩	gate o	bject	ive fun	ction
maximise	$2x_1$	_	3 <i>x</i> 2			
subject to						
	<i>X</i> ₁	+	<i>x</i> ₂	=	7	
	<i>X</i> ₁	-	2 <i>x</i> ₂	\leq	4	
	<i>X</i> 1			\geq	0	

2. There might be variables without nonnegativity constraints.

3. There might be equality constraints.

maximise $2x_1$ $3x_2'$ +3x₂" subject to $+ x'_2 \\ - 2x'_2$ $- x_2'' + 2x_2''$ $\begin{array}{rrrr} = & 7 \\ \leq & 4 \\ \geq & 0 \end{array}$ *X*1 *X*1 x_1, x_2', x_2'' Replace each equality by two inequalities. maximise $2x_1$ $3x_2'$ $+ 3x_{2}''$ _ subject to $\overline{X_2'}$ X_2' $egin{array}{ccc} - & x_2'' \ - & x_2'' \ + & 2x_2'' \end{array}$ $\begin{array}{ccc} \leq & 7\\ \geq & 7\\ \leq & 4\\ \geq & 0 \end{array}$ X_1 *X*1 $2x_2'$ X1 _ x_1, x_2', x_2''

Standard and Slack Forms

4. There might be inequality constraints (with \geq instead of \leq).

maximise subject to	2 <i>x</i> ₁	_	3 <i>x</i> ₂ ′	+	3 <i>x</i> ₂ ''		
	<i>X</i> ₁	+	X_2'	_	X2''	<	7
	<i>x</i> ₁	+	x'2	_	x2"	2	7
	<i>X</i> 1	—	$2x_{2}'$	+	$2x_{2}^{\prime\prime}$	\leq	4
	<i>X</i> ₁	$, x_{2}', x_{2}'$	$\zeta_{2}^{\prime\prime}$		_	\geq	0
		₩ ₩	egate	respe	ective in	nequa	lities.
maximise subject to	2 <i>x</i> ₁	-	3 <i>x</i> ₂ ′	+	3 <i>x</i> 2′′		
	<i>X</i> ₁	+	x_2'	_	x2''	\leq	7
	$-x_{1}$	_	x_2'	+	x''	\leq	-7
	<i>X</i> 1	—	$2x_{2}'$	+	$2x_{2}^{\prime\prime}$	\leq	4
	<i>X</i> ₁	, x ₂ ', x	<" -		_	\geq	0

Standard and Slack Forms

Rename	variable	e nan	nes (fo	r con	sisten	cy).)
			J				
maximise subject to	2 <i>x</i> ₁	_	3 <i>x</i> ₂	+	3 <i>x</i> ₃		
	<i>X</i> ₁	+	<i>X</i> 2	_	<i>X</i> 3	\leq	7
	$-x_{1}$	_	<i>X</i> 2	+	<i>X</i> 3	\leq	-7
	<i>x</i> ₁	_	$2x_2$	+	$2x_{3}$	\leq	4
	<i>X</i> 1	$, x_2, x_2$	x 3			\geq	0

It is always possible to convert a linear program into standard form.

Converting Standard Form into Slack Form (1/3)

Converting Standard Form into Slack Form (2/3)

maximise subject to	2 <i>x</i> ₁	_	3 <i>x</i> 2	+	3 <i>x</i> a	3			
	<i>X</i> ₁	+	<i>X</i> 2	_	Xa	3 ≤	7	,	
	$-x_{1}$	_	<i>X</i> ₂	+	Xa	3 ≤	-7	,	
	<i>X</i> ₁	_	$2x_2$	+	$2x_3$	3 ≤	4	-	
	,	$x_1, x_2,$	<i>X</i> 3			\geq	0)	
				Intro	duce	slack	variat	oles	
maximise subject to	2 <i>x</i> ₁	-	3 <i>x</i> ₂	+	3 <i>x</i> ₃				
	<i>X</i> 4	=	7	_	<i>X</i> 1	_	<i>X</i> 2	+	<i>X</i> 3
	X 5	=	-7	+	<i>X</i> 1	+	<i>X</i> 2	_	<i>X</i> 3
	<i>x</i> ₆	=	4	_	<i>X</i> ₁	+	$2x_{2}$	_	$2x_3$
	x	1, X 2,	$x_3, x_4,$	x 5, x 6	6	\geq	0		

maximise subject to	2 <i>x</i> ₁	-	3 <i>x</i> 2	+	3 <i>x</i> ₃				
	<i>X</i> 4	=	7	_	<i>X</i> ₁	_			
	X 5	=	-7	+	<i>X</i> ₁	$^+$			
	<i>x</i> ₆	=	4	—	<i>X</i> ₁	+			
	,	$X_1, X_2, X_3, X_4, X_5, X_6$							

Use variable z to denote objective function \downarrow and omit the nonnegativity constraints.

*X*2

*X*2

0

+

 X_3

*X*3 _ $2x_2 -$

 $2x_3$

	Ζ	=			2 <i>x</i> ₁	—	3 <i>x</i> 2	+	3 <i>x</i> 3				
	<i>X</i> 4	=	7	—	<i>X</i> 1	—	<i>X</i> 2	+	Х3				
	<i>X</i> 5	=	-7	+	<i>X</i> ₁	+	<i>x</i> ₂	_	<i>X</i> 3				
	<i>x</i> ₆	=	4	_	<i>X</i> ₁	+	$2x_{2}$	_	2 <i>x</i> ₃				
	<u>/</u>												
This	This is called slack form.												

Basic and Non-Basic Variables

Slack Form (Formal Definition) —

Slack form is given by a tuple (N, B, A, b, c, v) so that

$$egin{aligned} z &= v + \sum_{j \in N} c_j x_j \ x_i &= b_i - \sum_{j \in N} a_{ij} x_j \ & ext{for } i \in B, \end{aligned}$$

and all variables are non-negative.

Variables/Coefficients on the right hand side are indexed by *B* and *N*.

Slack Form (Example)

	Ζ	=	28	_	<u>x₃</u> 6	_	<u>x</u> 5 6	-	$\frac{2x_{6}}{3}$			
	<i>x</i> ₁	=	8	+	$\frac{x_{3}}{6}$	+	<u>x</u> 5 6	_	<u>x₆ 3</u>			
	<i>X</i> 2	=	4	_	$\frac{8x_3}{3}$	_	$\frac{2x_{5}}{3}$	+	<u>x</u> 6 3			
	<i>X</i> ₄	=	18	_	<u>x</u> 3 2	+	<u>x</u> 5 2					
Slack Form	n Nota	tion -										
$\bullet B = \{1, 2, 4\}, N = \{3, 5, 6\}$												
$A = \begin{pmatrix} a_{13} & a_{15} & a_{16} \\ a_{23} & a_{25} & a_{26} \\ a_{43} & a_{45} & a_{46} \end{pmatrix} = \begin{pmatrix} -1/6 & -1/6 & 1/3 \\ 8/3 & 2/3 & -1/3 \\ 1/2 & -1/2 & 0 \end{pmatrix}$												
$b = \begin{pmatrix} b_1 \\ b_2 \\ b_4 \end{pmatrix} = \begin{pmatrix} 8 \\ 4 \\ 18 \end{pmatrix}, \ c = \begin{pmatrix} c_3 \\ c_5 \\ c_6 \end{pmatrix} = \begin{pmatrix} -1/6 \\ -1/6 \\ -2/3 \end{pmatrix}$												
■ <i>v</i> = 28												

Introduction

A Simple Example of a Linear Program

Formulating Problems as Linear Programs

Standard and Slack Forms

Simplex Algorithm

Finding an Initial Solution

Simplex Algorithm _____

- classical method for solving linear programs (Dantzig, 1947)
- usually fast in practice although worst-case runtime not polynomial
- iterative procedure somewhat similar to Gaussian elimination

Basic Idea:

- Each iteration corresponds to a "basic solution" of the slack form
- All non-basic variables are 0, and the basic variables are determined from the equality constraints
- Each iteration converts one slack form into an equivalent one while the objective value will not decrease In that sense, it is a greedy algorithm.
- Conversion ("pivoting") is achieved by switching the roles of one basic and one non-basic variable

 $3x_1 + x_2 +$

maximise subject to

 $2x_3$

Ir	Increasing the value of x_3 would increase the objective v											
-	_	27	1	<i>X</i> 2		X3		3 <i>x</i> ₆				
2	=	21	+	<u>4</u> Xo	Ŧ	2	_	4 Xc				
<i>x</i> ₁	=	9	_	4	-	2	-	$\frac{\lambda_0}{4}$				
<i>X</i> 4	=	21	-	$\frac{3x_2}{4}$	-	$\frac{5x_3}{2}$	+	$\frac{x_6}{4}$				
<i>X</i> 5	=	6	_	<u>3x2</u> 2	_	4 <i>x</i> ₃	+	<u>x₆ 2</u>				
		2										
Basic solution: $(\overline{x_1}, \overline{x_2}, \dots, \overline{x_6}) = (9, 0, 0, 21, 6, 0)$ with objective value 27												

$$z = 27 + \frac{x_2}{4} + \frac{x_3}{2} - \frac{3x_6}{4}$$

$$x_1 = 9 - \frac{x_2}{4} - \frac{5x_3}{2} - \frac{x_6}{4}$$

$$x_4 = 21 - \frac{3x_2}{4} - \frac{5x_3}{2} + \frac{x_6}{4}$$

$$x_5 = 6 - \frac{3x_2}{2} - 4x_3 + \frac{x_6}{2}$$

The third constraint is the tightest and limits how much we can increase x_3 .
Switch roles of x_3 and x_5 :
• Solving for x_3 yields:

$$x_3 = \frac{3}{2} - \frac{3x_2}{8} - \frac{x_5}{4} - \frac{x_6}{8}.$$

• Substitute this into x_3 in the other three equations

Increas	sing th	e val	ue of x ₂	2 wou	ld incre	ease	the obj	ective	e value.	
					1					
	Ζ	=	<u>111</u> 4	+	<u>x</u> 2 16	_	<u>x</u> 5 8	_	<u>11<i>x</i>6</u> 16	
	<i>x</i> ₁	=	<u>33</u> 4	_	<u>x</u> 2 16	+	<u>x</u> 5 8	_	<u>5<i>x</i>6</u> 16	
	<i>x</i> 3	=	<u>3</u> 2	_	$\frac{3x_2}{8}$	_	$\frac{x_5}{4}$	+	$\frac{x_{6}}{8}$	
	<i>X</i> 4	=	<u>69</u> 4	+	<u>3<i>x</i>2</u> 16	+	<u>5x5</u> 8	_	<u>x₆ 16</u>	
				6						
usic solution: $(\bar{\lambda})$	$\overline{X_1}, \overline{X_2}, .$	$\ldots, \overline{x_i}$	$\left(\frac{33}{4}\right) = \left(\frac{33}{4}\right)$	$\frac{3}{2}, 0, \frac{3}{2}$	$, \frac{69}{4}, 0,$	0) wi	th obje	ective	value $\frac{111}{4}$ =	= 27.75

$$z = \frac{111}{4} + \frac{x_2}{16} - \frac{x_5}{8} - \frac{11x_6}{16}$$

$$x_1 = \frac{33}{4} - \frac{x_2}{16} + \frac{x_5}{8} - \frac{5x_6}{16}$$

$$x_3 = \frac{3}{2} - \frac{3x_2}{8} - \frac{x_5}{4} + \frac{x_6}{8}$$

$$x_4 = \frac{69}{4} + \frac{3x_2}{16} + \frac{5x_5}{8} - \frac{x_6}{16}$$
The second constraint is the tightest and limits how much we can increase x_2 .

Switch roles of x_2 and x_3 :

• Solving for x_2 yields:
$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

• Substitute this into x_2 in the other three equations

All coefficients are negative, and hence this basic solution is optimal!

$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

$$x_4 = 18 - \frac{x_3}{2} + \frac{x_5}{2}$$

Basic solution: $(\overline{x_1}, \overline{x_2}, \dots, \overline{x_6}) = (8, 4, 0, 18, 0, 0)$ with objective value 28

Extended Example: Visualization of SIMPLEX

Extended Example: Alternative Runs (1/2)

Ζ	=			3 <i>x</i> 1	+	<i>x</i> ₂	+	2 <i>x</i> ₃
<i>x</i> ₄	=	30	-	<i>x</i> ₁	-	<i>x</i> ₂	-	3 <i>x</i> ₃
<i>x</i> ₅	=	24	_	2 <i>x</i> ₁	-	2 <i>x</i> ₂	—	5 <i>x</i> ₃
<i>x</i> ₆	=	36	_	$4x_{1}$	-	<i>x</i> ₂	_	2 <i>x</i> ₃
				∳ Sw	itch rol	es of x	and	X 5
Ζ	=	12	+	2 <i>x</i> ₁	-	<u>x</u> 3 2	-	<u>x</u> 5 2
<i>x</i> ₂	=	12	-	<i>x</i> ₁	-	$\frac{5x_{3}}{2}$	-	$\frac{x_{5}}{2}$
<i>x</i> ₄	=	18	-	<i>x</i> ₂	-	$\frac{x_3}{2}$	+	<u>x</u> 5 2
<i>x</i> ₆	=	24	_	3 <i>x</i> 1	+	$\frac{x_3}{2}$	+	<u>x</u> 5 2
				Sw	itch rol	es of x	and	<i>x</i> ₆
				¥				
Ζ	=	28	-	$\frac{x_3}{6}$	-	<u>x</u> 5 6	-	$\frac{2x_{6}}{3}$
<i>x</i> ₁	=	8	+	$\frac{x_3}{6}$	+	$\frac{x_{5}}{6}$	-	<u>x₆ 3</u>
<i>x</i> ₂	=	4	_	$\frac{8x_3}{3}$	_	$\frac{2x_{5}}{3}$	+	<u>x₆ 3</u>
<i>x</i> ₄	=	18	-	$\frac{x_3}{2}$	+	<u>x</u> 5 2		

Extended Example: Alternative Runs (2/2)

$$z = 3x_1 + x_2 + 2x_3$$

$$x_4 = 30 - x_1 - x_2 - 3x_3$$

$$x_5 = 24 - 2x_1 - 2x_2 - 5x_3$$

$$x_6 = 36 - 4x_1 - x_2 - 2x_3$$

$$y$$
Switch roles of x_3 and x_5

$$z = \frac{48}{5} + \frac{11x_1}{5} + \frac{x_2}{5} - \frac{2x_5}{5}$$

$$x_4 = \frac{78}{5} + \frac{x_1}{5} + \frac{x_2}{5} - \frac{2x_5}{5}$$

$$x_3 = \frac{24}{5} - \frac{2x_1}{5} - \frac{2x_2}{5} - \frac{x_5}{5}$$
Switch roles of x_1 and x_5

$$z = \frac{111}{4} + \frac{x_2}{16} - \frac{x_5}{8} - \frac{11x_6}{16}$$

$$z = 28 - \frac{x_3}{5} - \frac{x_5}{5} - \frac{2x_6}{5}$$

$$x_1 = \frac{33}{4} - \frac{x_2}{16} + \frac{x_5}{8} - \frac{5x_6}{16}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

$$x_4 = \frac{69}{4} + \frac{3x_5}{16} + \frac{5x_5}{8} - \frac{x_6}{16}$$

$$x_4 = 18 - \frac{x_6}{2} + \frac{x_5}{2}$$

The Pivot Step Formally

PIVOT(N, B, A, b, c, v, l, e)// Compute the coefficients of the equation for new basic variable x_e . let \widehat{A} be a new $m \times n$ matrix 2 3 $\hat{b}_e = b_l/a_{le}$ Rewrite "tight" equation for each $j \in N - \{e\}$ (Need that $a_{le} \neq 0$! 4 5 $\hat{a}_{ei} = a_{li}/a_{le}$ for enterring variable x_e . 6 $\hat{a}_{el} = 1/a_{le}$ 7 // Compute the coefficients of the remaining constraints. 8 for each $i \in B - \{l\}$ 9 $\hat{b}_i = b_i - a_{ia}\hat{b}_a$ Substituting x_e into for each $j \in N - \{e\}$ 10 other equations. 11 $\hat{a}_{ii} = a_{ii} - a_{ie}\hat{a}_{ei}$ 12 $\hat{a}_{il} = -a_{ie}\hat{a}_{el}$ 13 // Compute the objective function. 14 $\hat{v} = v + c_e \hat{b}_e$ Substituting x_e into for each $i \in N - \{e\}$ 15 objective function. $\hat{c}_i = c_i - c_e \hat{a}_{ei}$ 16 17 $\hat{c}_l = -c_e \hat{a}_{el}$ // Compute new sets of basic and nonbasic variables. 18 19 $\hat{N} = N - \{e\} \cup \{l\}$ Update non-basic 20 $\hat{B} = B - \{l\} \cup \{e\}$ and basic variables 21 return $(\hat{N}, \hat{B}, \hat{A}, \hat{b}, \hat{c}, \hat{\nu})$

Effect of the Pivot Step (extra material, non-examinable)

- Lemma 29.1

Consider a call to PIVOT(N, B, A, b, c, v, l, e) in which $a_{le} \neq 0$. Let the values returned from the call be $(\widehat{N}, \widehat{B}, \widehat{A}, \widehat{b}, \widehat{c}, \widehat{v})$, and let \overline{x} denote the basic solution after the call. Then

1.
$$\overline{x}_i = 0$$
 for each $j \in \widehat{N}$.

2.
$$\overline{x}_e = b_l/a_{le}$$
.

3. $\overline{x}_i = b_i - a_{ie}\widehat{b}_e$ for each $i \in \widehat{B} \setminus \{e\}$.

Proof:

- 1. holds since the basic solution always sets all non-basic variables to zero.
- 2. When we set each non-basic variable to 0 in a constraint

$$x_i = \widehat{b}_i - \sum_{j \in \widehat{N}} \widehat{a}_{ij} x_j,$$

we have $\overline{x}_i = \widehat{b}_i$ for each $i \in \widehat{B}$. Hence $\overline{x}_e = \widehat{b}_e = b_l / a_{le}$.

3. After substituting into the other constraints, we have

$$\overline{x}_i = \widehat{b}_i = b_i - a_{ie}\widehat{b}_e.$$

Questions:

- How do we determine whether a linear program is feasible?
- What do we do if the linear program is feasible, but the initial basic solution is not feasible?
- How do we determine whether a linear program is unbounded?
- How do we choose the entering and leaving variables?

Example before was a particularly nice one!

The formal procedure SIMPLEX

The formal procedure SIMPLEX

SIMPLEX(A, b, c)(N, B, A, b, c, v) =INITIALIZE-SIMPLEX(A, b, c)2 let Δ be a new vector of length *m* 3 while some index $j \in N$ has $c_i > 0$ choose an index $e \in N$ for which $c_e > 0$ 4 5 for each index $i \in B$ **if** $a_{ie} > 0$ 6 7 $\Delta_i = b_i / a_{ie}$ 8 else $\Delta_i = \infty$ 9 choose an index $l \in B$ that minimizes Δ_i if $\Delta_l == \infty$ 10 11 return "unbounded"

Proof is based on the following three-part loop invariant:

- 1. the slack form is always equivalent to the one returned by INITIALIZE-SIMPLEX,
- 2. for each $i \in B$, we have $b_i \ge 0$,

l emma 29 2 -

3. the basic solution associated with the (current) slack form is feasible.

Suppose the call to INITIALIZE-SIMPLEX in line 1 returns a slack form for which the basic solution is feasible. Then if SIMPLEX returns a solution, it is a feasible solution. If SIMPLEX returns "unbounded", the linear program is unbounded.

Termination

iteratio

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

$$z = x_1 + x_2 + x_3$$

$$x_4 = 8 - x_1 - x_2$$

$$x_5 = x_2 - x_3$$

$$\downarrow Pivot with x_1 entering and x_4 leaving$$

$$z = 8 + x_3 - x_4$$

$$x_1 = 8 - x_2 - x_3$$

$$\downarrow Pivot with x_3 entering and x_5 leaving$$

$$z = 8 + x_2 - x_4$$

$$x_5 = x_2 - x_3$$

$$\downarrow Pivot with x_3 entering and x_5 leaving$$

$$z = 8 + x_2 - x_4 - x_5$$

$$x_1 = 8 - x_2 - x_4$$

$$x_3 = x_2 - x_4$$

Simplex Algorithm

Exercise: Execute one more step of the Simplex Algorithm on the tableau from the previous slide.

Termination and Running Time

It is theoretically possible, but very rare in practice.

Cycling: SIMPLEX may fail to terminate.

Anti-Cycling Strategies

- 1. Bland's rule: Choose entering variable with smallest index
- 2. Random rule: Choose entering variable uniformly at random
- 3. Perturbation: Perturb the input slightly so that it is impossible to have two solutions with the same objective value

Replace each b_i by $\hat{b}_i = b_i + \epsilon_i$, where $\epsilon_i \gg \epsilon_{i+1}$ are all small.

Lemma 29.7

Assuming INITIALIZE-SIMPLEX returns a slack form for which the basic solution is feasible, SIMPLEX either reports that the program is unbounded or returns a feasible solution in at most $\binom{n+m}{m}$ iterations.

Every set *B* of basic variables uniquely determines a slack form, and there are at most $\binom{n+m}{m}$ unique slack forms.

Introduction

A Simple Example of a Linear Program

Formulating Problems as Linear Programs

Standard and Slack Forms

Simplex Algorithm

Finding an Initial Solution

Finding an Initial Solution

Geometric Illustration

Formulating an Auxiliary Linear Program

 $\sum_{i=1}^{n} c_i x_i$ maximise subject to $\begin{array}{rcl} \sum_{j=1}^{n} a_{ij} x_{j} & \leq & b_{i} & \text{ for } i = 1, 2, \dots, m, \\ x_{i} & > & 0 & \text{ for } j = 1, 2, \dots, n \end{array}$ Formulating an Auxiliary Linear Program maximise $-X_0$ subject to $\begin{array}{rcl} \sum_{j=1}^{n} a_{ij} x_{j} - x_{0} & \leq & b_{i} & \text{ for } i = 1, 2, \dots, m, \\ x_{i} & > & 0 & \text{ for } j = 0, 1, \dots, n \end{array}$ - Lemma 29.11 Let L_{aux} be the auxiliary LP of a linear program L in standard form. Then L is feasible if and only if the optimal objective value of L_{aux} is 0.

Proof.

- " \Rightarrow ": Suppose *L* has a feasible solution $\overline{x} = (\overline{x}_1, \overline{x}_2, \dots, \overline{x}_n)$
 - x
 ₀ = 0 combined with x
 is a feasible solution to L_{aux} with objective value 0.
 Since x
 ₀ ≥ 0 and the objective is to maximise -x
 ₀, this is optimal for L_{aux}
- "⇐": Suppose that the optimal objective value of L_{aux} is 0
 - Then $\overline{x}_0 = 0$, and the remaining solution values $(\overline{x}_1, \overline{x}_2, \dots, \overline{x}_n)$ satisfy L.

- Let us illustrate the role of x₀ as "distance from feasibility"
- We will also see that increasing *x*₀ enlarges the feasible region.

For the animation see the full slides.

Now the Feasible Region of the Auxiliary LP in 3D

For the animation see the full slides.

- Let us now modify the original linear program so that it is not feasible
- ⇒ Hence the auxiliary linear program has only a solution for a sufficiently large $x_0 > 0!$

For the animation see the full slides.

Now the Feasible Region of the Auxiliary LP in 3D

For the animation see the full slides.

INITIALIZE-SIMPLEX

Example of INITIALIZE-SIMPLEX (1/3)

Example of INITIALIZE-SIMPLEX (3/3)

$$z = -x_{0}$$

$$x_{2} = \frac{4}{5} - \frac{x_{0}}{5} + \frac{x_{1}}{5} + \frac{x_{4}}{5}$$

$$x_{3} = \frac{14}{5} + \frac{4x_{0}}{5} - \frac{9x_{1}}{5} + \frac{x_{4}}{5}$$

$$(2x_{1} - x_{2} = 2x_{1} - (\frac{4}{5} - \frac{x_{0}}{5} + \frac{x_{1}}{5} + \frac{x_{4}}{5})$$

$$y = -\frac{4}{5} + \frac{9x_{1}}{5} - \frac{x_{4}}{5}$$

$$z = -\frac{4}{5} + \frac{9x_{1}}{5} - \frac{x_{4}}{5}$$

$$x_{2} = \frac{14}{5} - \frac{9x_{1}}{5} + \frac{x_{4}}{5}$$
Basic solution $(0, \frac{4}{5}, \frac{14}{5}, 0)$, which is feasible!

- Lemma 29.12 -

If a linear program L has no feasible solution, then INITIALIZE-SIMPLEX returns "infeasible". Otherwise, it returns a valid slack form for which the basic solution is feasible.

 Theorem 29.13 (Fundamental Theorem of Linear Programming)

 Any linear program *L*, given in standard form, either

 1. has an optimal solution with a finite objective value,

 2. is infeasible, or

 3. is unbounded.

If L is infeasible, SIMPLEX returns "infeasible". If L is unbounded, SIMPLEX returns "unbounded". Otherwise, SIMPLEX returns an optimal solution with a finite objective value.

Proof requires the concept of duality, which is not covered in this course (for details see CLRS3, Chapter 29.4)

Linear Programming and Simplex: Summary and Outlook

Linear Programming _

extremely versatile tool for modelling problems of all kinds

basis of Integer Programming, to be discussed in later lectures

Which of the following statements are true?

- 1. In each iteration of the Simplex algorithm, the objective function increases.
- 2. There exist linear programs that have exactly two optimal solutions.
- 3. There exist linear programs that have infinitely many optimal solutions.
- 4. The Simplex algorithm always runs in worst-case polynomial time.