Randomised Algorithms

Lecture 6-7: Linear Programming

Thomas Sauerwald (tms41@cam.ac.uk)

Lent 2022

Outline

Introduction

A Simple Example of a Linear Program

Formulating Problems as Linear Programs

Standard and Slack Forms

Simplex Algorithm

Finding an Initial Solution

Introduction

- linear programming is a powerful tool in optimisation
- inspired more sophisticated techniques such as quadratic optimisation, convex optimisation, integer programming and semi-definite programming
- we will later use the connection between linear and integer programming to tackle several problems (Vertex-Cover, Set-Cover, TSP, satisfiability)

Outline

Introduction

A Simple Example of a Linear Program

Formulating Problems as Linear Programs

Standard and Slack Forms

Simplex Algorithm

Finding an Initial Solution

What are Linear Programs?

Linear Programming (informal definition) —

- maximise or minimise an objective, given limited resources (competing constraint)
- constraints are specified as (in)equalities
- objective function and constraints are linear

Laptop

- Laptop
 - selling price to retailer: 1,000 GBP

- Laptop
 - selling price to retailer: 1,000 GBP
 - glass: 4 units

Laptop

glass: 4 unitscopper: 2 units

Laptop

glass: 4 units

copper: 2 units

rare-earth elements: 1 unit

Laptop

glass: 4 units

copper: 2 units

rare-earth elements: 1 unit

Smartphone

Laptop

selling price to retailer: 1,000 GBP

glass: 4 units

copper: 2 units

rare-earth elements: 1 unit

Smartphone

selling price to retailer: 1,000 GBP

Laptop

glass: 4 units

copper: 2 units

rare-earth elements: 1 unit

Smartphone

selling price to retailer: 1,000 GBP

glass: 1 unit

Laptop

selling price to retailer: 1,000 GBP

glass: 4 units

copper: 2 units

rare-earth elements: 1 unit

Smartphone

selling price to retailer: 1,000 GBP

glass: 1 unit

copper: 1 unit

Laptop

selling price to retailer: 1,000 GBP

glass: 4 units

copper: 2 units

rare-earth elements: 1 unit

selling price to retailer: 1,000 GBP

glass: 1 unit copper: 1 unit

rare-earth elements: 2 units

Laptop

selling price to retailer: 1,000 GBP

glass: 4 units

copper: 2 units

rare-earth elements: 1 unit

selling price to retailer: 1,000 GBP

glass: 1 unit copper: 1 unit

rare-earth elements: 2 units

You have a daily supply of:

Laptop

selling price to retailer: 1,000 GBP

glass: 4 units

copper: 2 units

rare-earth elements: 1 unit

Smartphone

selling price to retailer: 1,000 GBP

glass: 1 unit copper: 1 unit

rare-earth elements: 2 units

You have a daily supply of:

glass: 20 units

Laptop

- selling price to retailer: 1,000 GBP
- glass: 4 units
- copper: 2 units
- rare-earth elements: 1 unit

Smartphone

- selling price to retailer: 1,000 GBP
- glass: 1 unit
- copper: 1 unit
- rare-earth elements: 2 units

You have a daily supply of:

- glass: 20 units
- copper: 10 units

Laptop

- selling price to retailer: 1,000 GBP
- glass: 4 units
- copper: 2 units
- rare-earth elements: 1 unit

Smartphone

- selling price to retailer: 1,000 GBP
- glass: 1 unit
- copper: 1 unitrare-earth elements: 2 units

- glass: 20 unitscopper: 10 units
- rare-earth elements: 14 units

Laptop

- selling price to retailer: 1,000 GBP
- glass: 4 units
- copper: 2 units
- rare-earth elements: 1 unit

Smartphone

- selling price to retailer: 1,000 GBP
- glass: 1 unit
- copper: 1 unit
- rare-earth elements: 2 units

- glass: 20 units
- copper: 10 units
- rare-earth elements: 14 units
- (and enough of everything else...)

Laptop

- selling price to retailer: 1,000 GBP
- glass: 4 unitscopper: 2 units
- rare-earth elements: 1 unit

Smartphone

- selling price to retailer: 1,000 GBP
- glass: 1 unit copper: 1 unit
- rare-earth elements: 2 units

- glass: 20 units
- copper: 10 units
- rare-earth elements: 14 units
- (and enough of everything else...)

How to maximise your daily earnings?

Linear Program for the Production Problem ——

Linear Program for the Production Problem -

The solution of this linear program yields the optimal production schedule.

Linear Program for the Production Problem —

The solution of this linear program yields the optimal production schedule.

Formal Definition of Linear Program -

Linear Program for the Production Problem -

The solution of this linear program yields the optimal production schedule.

Formal Definition of Linear Program -

• Given a_1, a_2, \ldots, a_n and a set of variables x_1, x_2, \ldots, x_n , a linear function f is defined by

$$f(x_1, x_2, \ldots, x_n) = a_1x_1 + a_2x_2 + \cdots + a_nx_n.$$

Linear Program for the Production Problem -

The solution of this linear program yields the optimal production schedule.

Formal Definition of Linear Program -

• Given a_1, a_2, \ldots, a_n and a set of variables x_1, x_2, \ldots, x_n , a linear function f is defined by

$$f(x_1, x_2, \ldots, x_n) = a_1x_1 + a_2x_2 + \cdots + a_nx_n.$$

- Linear Equality: $f(x_1, x_2, \dots, x_n) = b$
- Linear Inequality: $f(x_1, x_2, ..., x_n) \ge b$

Linear Program for the Production Problem -

The solution of this linear program yields the optimal production schedule.

Formal Definition of Linear Program -

• Given a_1, a_2, \ldots, a_n and a set of variables x_1, x_2, \ldots, x_n , a linear function f is defined by

$$f(x_1, x_2, ..., x_n) = a_1x_1 + a_2x_2 + ... + a_nx_n.$$

- Linear Equality: $f(x_1, x_2, ..., x_n) = b$ Linear Inequality: $f(x_1, x_2, ..., x_n) \ge b$ Linear Constraints

Linear Program for the Production Problem -

The solution of this linear program yields the optimal production schedule.

Formal Definition of Linear Program -

• Given a_1, a_2, \ldots, a_n and a set of variables x_1, x_2, \ldots, x_n , a linear function f is defined by

$$f(x_1, x_2, \ldots, x_n) = a_1 x_1 + a_2 x_2 + \cdots + a_n x_n.$$

- Linear Equality: $f(x_1, x_2, ..., x_n) = b$ Linear Inequality: $f(x_1, x_2, ..., x_n) \ge b$ Linear Constraints
- Linear-Progamming Problem: either minimise or maximise a linear function subject to a set of linear constraints

Any setting of x_1 and x_2 satisfying all constraints is a feasible solution

 $x_2 \geq 0$

 χ_2

Graphical Procedure: Move the line $x_1 + x_2 = z$ as far up as possible.

Exercise: Which aspect did we ignore in the formulation of the linear program?

Graphical Procedure: Move the line $x_1 + x_2 = z$ as far up as possible.

While the same approach also works for higher-dimensions, we need to take a more systematic and algebraic procedure.

Outline

Introduction

A Simple Example of a Linear Program

Formulating Problems as Linear Programs

Standard and Slack Forms

Simplex Algorithm

Finding an Initial Solution

Single-Pair Shortest Path Problem

■ Given: directed graph G = (V, E) with edge weights $w : E \to \mathbb{R}$, pair of vertices $s, t \in V$

Single-Pair Shortest Path Problem

- Given: directed graph G = (V, E) with edge weights $w : E \to \mathbb{R}$, pair of vertices $s, t \in V$
- Goal: Find a path of minimum weight from s to t in G

Single-Pair Shortest Path Problem

- Given: directed graph G = (V, E) with edge weights $w : E \to \mathbb{R}$, pair of vertices $s, t \in V$
- Goal: Find a path of minimum weight from s to t in G

$$p = (v_0 = s, v_1, \dots, v_k = t)$$
 such that $w(p) = \sum_{i=1}^k w(v_{k-1}, v_k)$ is minimised.

Single-Pair Shortest Path Problem

- Given: directed graph G = (V, E) with edge weights $w : E \to \mathbb{R}$, pair of vertices $s, t \in V$
- Goal: Find a path of minimum weight from s to t in G

$$p = (v_0 = s, v_1, \dots, v_k = t)$$
 such that $w(p) = \sum_{i=1}^k w(v_{k-1}, v_k)$ is minimised.

Single-Pair Shortest Path Problem -

- Given: directed graph G = (V, E) with edge weights $w : E \to \mathbb{R}$, pair of vertices $s, t \in V$
- Goal: Find a path of minimum weight from s to t in G

$$p = (v_0 = s, v_1, \dots, v_k = t)$$
 such that $w(p) = \sum_{i=1}^k w(v_{k-1}, v_k)$ is minimised.

- Shortest Paths as LP -

subject to

Single-Pair Shortest Path Problem -

- Given: directed graph G = (V, E) with edge weights $w : E \to \mathbb{R}$, pair of vertices $s, t \in V$
- Goal: Find a path of minimum weight from s to t in G

$$p = (v_0 = s, v_1, \dots, v_k = t)$$
 such that $w(p) = \sum_{i=1}^k w(v_{k-1}, v_k)$ is minimised.

Shortest Paths as LP -

subject to

$$d_v \le d_u + w(u,v)$$
 for each edge $(u,v) \in E$, $d_s = 0$.

Single-Pair Shortest Path Problem -

- Given: directed graph G = (V, E) with edge weights $w: E \to \mathbb{R}$, pair of vertices $s, t \in V$
- Goal: Find a path of minimum weight from s to t in G

$$p = (v_0 = s, v_1, \dots, v_k = t)$$
 such that $w(p) = \sum_{i=1}^k w(v_{k-1}, v_k)$ is minimised.

Shortest Paths as I P =

$$d_t$$

$$egin{array}{lcl} \emph{d}_v & \leq & \emph{d}_u & + & \emph{w}(\emph{u},\emph{v}) & \mbox{for each edge } (\emph{u},\emph{v}) \in \emph{E}, \ \emph{d}_s & = & 0. \end{array}$$

for each edge
$$(u, v) \in E$$
,

$$d_s = 0$$
.

Single-Pair Shortest Path Problem -

- Given: directed graph G = (V, E) with edge weights $w: E \to \mathbb{R}$, pair of vertices $s, t \in V$
- Goal: Find a path of minimum weight from s to t in G

$$p = (v_0 = s, v_1, \dots, v_k = t)$$
 such that $w(p) = \sum_{i=1}^k w(v_{k-1}, v_k)$ is minimised.

Shortest Paths as I P =

maximise subject to d_t

this is a maxim-

 $\leq d_u + w(u,v)$ for each edge $(u,v) \in E$, = 0.

isation problem!

Single-Pair Shortest Path Problem

- Given: directed graph G = (V, E) with edge weights $w : E \to \mathbb{R}$, pair of vertices $s, t \in V$
- Goal: Find a path of minimum weight from s to t in G

$$p = (v_0 = s, v_1, \dots, v_k = t)$$
 such that $w(p) = \sum_{i=1}^k w(v_{k-1}, v_k)$ is minimised.

Shortest Paths as LP —

maximise d_t subject to

 d_v

 $d_s \leq d_u$ $d_s = 0.$

Recall: When Bellman-Ford terminates, all these inequalities are satisfied.

 $\leq d_u + w(u,v)$ for each edge $(u,v) \in E$,

Single-Pair Shortest Path Problem

- Given: directed graph G = (V, E) with edge weights $w : E \to \mathbb{R}$, pair of vertices $s, t \in V$
- Goal: Find a path of minimum weight from s to t in G

$$p = (v_0 = s, v_1, \dots, v_k = t)$$
 such that $w(p) = \sum_{i=1}^k w(v_{k-1}, v_k)$ is minimised.

Shortest Paths as LP Recall: When Bellman-Ford terminates, all these inequalities are satisfied. Subject to $d_v \leq d_u + w(u,v) \text{ for each edge } (u,v) \in E,$ this is a maximisation problem! Solution \overline{d} satisfies $\overline{d}_v = \min_{u \in (u,v) \in E} \{\overline{d}_u + w(u,v)\}$

Maximum Flow Problem -

• Given: directed graph G=(V,E) with edge capacities $c:E\to\mathbb{R}^+$ (recall c(u,v)=0 if $(u,v)\not\in E$), pair of vertices $s,t\in V$

Maximum Flow Problem

• Given: directed graph G=(V,E) with edge capacities $c:E\to\mathbb{R}^+$ (recall c(u,v)=0 if $(u,v)\not\in E$), pair of vertices $s,t\in V$

Maximum Flow Problem

- Given: directed graph G = (V, E) with edge capacities $c : E \to \mathbb{R}^+$ (recall c(u, v) = 0 if $(u, v) \notin E$), pair of vertices $s, t \in V$
- Goal: Find a maximum flow $f: V \times V \to \mathbb{R}$ from s to t which satisfies the capacity constraints and flow conservation

- Maximum Flow Problem

- Given: directed graph G = (V, E) with edge capacities $c : E \to \mathbb{R}^+$ (recall c(u, v) = 0 if $(u, v) \notin E$), pair of vertices $s, t \in V$
- Goal: Find a maximum flow $f: V \times V \to \mathbb{R}$ from s to t which satisfies the capacity constraints and flow conservation

Maximum Flow Problem -

- Given: directed graph G = (V, E) with edge capacities $c : E \to \mathbb{R}^+$ (recall c(u, v) = 0 if $(u, v) \notin E$), pair of vertices $s, t \in V$
- Goal: Find a maximum flow $f: V \times V \to \mathbb{R}$ from s to t which satisfies the capacity constraints and flow conservation

Maximum Flow as LP

Extension of the Maximum Flow Problem

Minimum-Cost-Flow Problem

Extension of the Maximum Flow Problem

Minimum-Cost-Flow Problem -

• Given: directed graph G = (V, E) with capacities $c : E \to \mathbb{R}^+$, pair of vertices $s, t \in V$, cost function $a : E \to \mathbb{R}^+$, flow demand of d units

Extension of the Maximum Flow Problem

Minimum-Cost-Flow Problem

- Given: directed graph G = (V, E) with capacities $c : E \to \mathbb{R}^+$, pair of vertices $s, t \in V$, cost function $a : E \to \mathbb{R}^+$, flow demand of d units
- Goal: Find a flow $f: V \times V \to \mathbb{R}$ from s to t with |f| = d while minimising the total cost $\sum_{(u,v)\in E} a(u,v)f_{uv}$ incurred by the flow.

Extension of the Maximum Flow Problem

Minimum-Cost-Flow Problem

- Given: directed graph G = (V, E) with capacities $c : E \to \mathbb{R}^+$, pair of vertices $s, t \in V$, cost function $a : E \to \mathbb{R}^+$, flow demand of d units
- Goal: Find a flow $f: V \times V \to \mathbb{R}$ from s to t with |f| = d while minimising the total cost $\sum_{(u,v)\in E} a(u,v)f_{uv}$ incurred by the flow.

Figure 29.3 (a) An example of a minimum-cost-flow problem. We denote the capacities by c and the costs by a. Vertex s is the source and vertex t is the sink, and we wish to send 4 units of flow from s to t. (b) A solution to the minimum-cost flow problem in which 4 units of flow are sent from s to t. For each edge, the flow and capacity are written as flow/capacity.

Extension of the Maximum Flow Problem

Minimum-Cost-Flow Problem

- Given: directed graph G = (V, E) with capacities $c : E \to \mathbb{R}^+$, pair of vertices $s, t \in V$, cost function $a : E \to \mathbb{R}^+$, flow demand of d units
- Goal: Find a flow $f: V \times V \to \mathbb{R}$ from s to t with |f| = d while minimising the total cost $\sum_{(u,v)\in E} a(u,v)f_{uv}$ incurred by the flow.

Optimal Solution with total cost:
$$\sum_{(u,v)\in E} a(u,v)f_{uv} = (2\cdot2) + (5\cdot2) + (3\cdot1) + (7\cdot1) + (1\cdot3) = 27$$

(b)

Figure 29.3 (a) An example of a minimum-cost-flow problem. We denote the capacities by c and the costs by a. Vertex s is the source and vertex t is the sink, and we wish to send 4 units of flow from s to t. (b) A solution to the minimum-cost flow problem in which 4 units of flow are sent from s to t. For each edge, the flow and capacity are written as flow/capacity.

(a)

Minimum Cost Flow as a LP

Minimum Cost Flow as LP ----

minimise
$$\sum_{(u,v)\in \mathcal{E}} a(u,v) f_{uv}$$
 subject to
$$f_{uv} \leq c(u,v) \quad \text{for } u,v\in V,$$

$$\sum_{v\in V} f_{vu} - \sum_{v\in V} f_{uv} = 0 \quad \text{for } u\in V\setminus \{s,t\},$$

$$\sum_{v\in V} f_{sv} - \sum_{v\in V} f_{vs} = d,$$

$$f_{uv} \geq 0 \quad \text{for } u,v\in V.$$

Minimum Cost Flow as a LP

Minimum Cost Flow as LP -

minimise
$$\sum_{(u,v)\in E} a(u,v) f_{uv}$$
 subject to
$$f_{uv} \leq c(u,v) \quad \text{for } u,v\in V,$$

$$\sum_{v\in V} f_{vu} - \sum_{v\in V} f_{uv} = 0 \quad \text{for } u\in V\setminus \{s,t\},$$

$$\sum_{v\in V} f_{sv} - \sum_{v\in V} f_{vs} = d,$$

$$f_{uv} \geq 0 \quad \text{for } u,v\in V.$$

Real power of Linear Programming comes from the ability to solve **new problems**!

Outline

Introduction

A Simple Example of a Linear Program

Formulating Problems as Linear Programs

Standard and Slack Forms

Simplex Algorithm

Finding an Initial Solution

Standard Form -

maximise
$$\sum_{j=1}^{n} c_{j} x_{j}$$

subject to

$$\sum_{j=1}^{n} a_{ij} x_{j} \le b_{i} \quad \text{for } i = 1, 2, \dots, m$$
$$x_{j} \ge 0 \quad \text{for } j = 1, 2, \dots, n$$

$$x_j \ge 0$$
 for $j = 1, 2, ..., r$

Standard Form -

maximise
$$\sum_{j=1}^{n} c_j x_j$$
 Objective Function

subject to

$$\sum_{j=1}^{n} a_{ij} x_{j} \le b_{i} \quad \text{for } i = 1, 2, \dots, m$$
$$x_{j} \ge 0 \quad \text{for } j = 1, 2, \dots, n$$

Converting Linear Programs into Standard Form

Reasons for a LP not being in standard form:

- 1. The objective might be a minimisation rather than maximisation.
- 2. There might be variables without nonnegativity constraints.
- 3. There might be equality constraints.
- 4. There might be inequality constraints (with \geq instead of \leq).

Converting Linear Programs into Standard Form

Reasons for a LP not being in standard form:

- 1. The objective might be a minimisation rather than maximisation.
- 2. There might be variables without nonnegativity constraints.
- 3. There might be equality constraints.
- 4. There might be inequality constraints (with \geq instead of \leq).

Goal: Convert linear program into an equivalent program which is in standard form

Converting Linear Programs into Standard Form

Reasons for a LP not being in standard form:

- 1. The objective might be a minimisation rather than maximisation.
- 2. There might be variables without nonnegativity constraints.
- 3. There might be equality constraints.
- 4. There might be inequality constraints (with \geq instead of \leq).

Goal: Convert linear program into an equivalent program which is in standard form

Equivalence: a correspondence (not necessarily a bijection) between solutions.

Reasons for a LP not being in standard form:

Reasons for a LP not being in standard form:

Reasons for a LP not being in standard form:

Reasons for a LP not being in standard form:

Reasons for a LP not being in standard form:

Reasons for a LP not being in standard form:

Reasons for a LP not being in standard form:

Reasons for a LP not being in standard form:

Reasons for a LP not being in standard form:

3. There might be equality constraints.

Reasons for a LP not being in standard form:

3. There might be equality constraints.

maximise subject to

$$2x_1 - 3x_2' + 3x_2''$$

$$\begin{array}{c|ccccc} x_1 & + & x_2' & - & x_2'' & = & 7 \\ x_1 & - & 2x_2' & + & 2x_2'' & \leq & 4 \\ x_1, x_2', x_2'' & & \geq & 0 \end{array}$$

Reasons for a LP not being in standard form:

3. There might be equality constraints.

maximise subject to

$$2x_1 - 3x_2' + 3x_2''$$

$$\begin{array}{ccccccc} x_1 & + & x_2' & - & x_2'' & = & 7 \\ x_1 & - & 2x_2' & + & 2x_2'' & \leq & 4 \\ x_1, x_2', x_2'' & & & \geq & 0 \end{array}$$

Replace each equality by two inequalities.

Reasons for a LP not being in standard form:

3. There might be equality constraints.

maximise subject to

$$2x_1 - 3x_2' + 3x_2''$$

Replace each equality by two inequalities.

maximise subject to

$$2x_1 - 3x_2' + 3x_2''$$

Reasons for a LP not being in standard form:

Reasons for a LP not being in standard form:

Reasons for a LP not being in standard form:

Reasons for a LP not being in standard form:

It is always possible to convert a linear program into standard form.

Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities.

Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more convenient to work with equality constraints.

Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more convenient to work with equality constraints.

Introducing Slack Variables

Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more convenient to work with equality constraints.

Introducing Slack Variables

• Let $\sum_{i=1}^{n} a_{ij} x_j \leq b_i$ be an inequality constraint

Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more convenient to work with equality constraints.

Introducing Slack Variables

- Let $\sum_{i=1}^{n} a_{ij} x_j \le b_i$ be an inequality constraint
- Introduce a slack variable s by

Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more convenient to work with equality constraints.

Introducing Slack Variables

- Let $\sum_{i=1}^{n} a_{ij} x_j \le b_i$ be an inequality constraint
- Introduce a slack variable s by

$$s = b_i - \sum_{j=1}^n a_{ij} x_j$$

Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more convenient to work with equality constraints.

Introducing Slack Variables

- Let $\sum_{i=1}^{n} a_{ij} x_j \le b_i$ be an inequality constraint
- Introduce a slack variable s by

$$s = b_i - \sum_{j=1}^n a_{ij} x_j$$

$$s \ge 0$$
.

Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more convenient to work with equality constraints.

Introducing Slack Variables

- Let $\sum_{i=1}^{n} a_{ij} x_j \le b_i$ be an inequality constraint
- Introduce a slack variable s by

s measures the slack between the two sides of the inequality.

$$s = b_i - \sum_{j=1}^n a_{ij} x_j$$
$$s > 0$$

Goal: Convert standard form into slack form, where all constraints except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more convenient to work with equality constraints.

Introducing Slack Variables

- Let $\sum_{i=1}^{n} a_{ij} x_j \le b_i$ be an inequality constraint
- Introduce a slack variable s by

s measures the slack between the two sides of the inequality.

$$s = b_i - \sum_{j=1}^n a_{ij} x_j$$

$$s > 0$$

• Denote slack variable of the *i*-th inequality by x_{n+i}

subject to

 $X_1, X_2, X_3, X_4, X_5, X_6$

maximise
$$2x_1 - 3x_2 + 3x_3$$
 subject to
$$x_4 = 7 - x_1 - x_2 + x_3 \\ x_5 = -7 + x_1 + x_2 - x_3 \\ x_6 = 4 - x_1 + 2x_2 - 2x_3 \\ x_1, x_2, x_3, x_4, x_5, x_6 \geq 0$$

maximise subject to

$$2x_1$$
 - $3x_2$ + $3x_3$
 x_4 = 7 - x_1 - x_2 + x_3
 x_5 = -7 + x_1 + x_2 - x_3
 x_6 = 4 - x_1 + $2x_2$ - $2x_3$
 $x_1, x_2, x_3, x_4, x_5, x_6$ \geq 0
Use variable z to denote objective fun

Use variable z to denote objective function and omit the nonnegativity constraints.

Z	=			$2x_{1}$	_	$3x_{2}$	+	3 <i>x</i> ₃
<i>X</i> ₄	=	7	_	<i>X</i> ₁	_	<i>X</i> ₂	+	<i>X</i> 3
<i>X</i> ₅	=	-7	+	<i>X</i> ₁	+	<i>X</i> ₂	_	<i>X</i> ₃
<i>X</i> ₆	=	4	_	<i>X</i> ₁	+	$2x_{2}$	_	$2x_3$

This is called slack form.

$$z = 2x_1 - 3x_2 + 3x_3$$

 $x_4 = 7 - x_1 - x_2 + x_3$
 $x_5 = -7 + x_1 + x_2 - x_3$
 $x_6 = 4 - x_1 + 2x_2 - 2x_3$

Basic Variables: $B = \{4, 5, 6\}$

Basic Variables: $B = \{4, 5, 6\}$

Non-Basic Variables: $N = \{1, 2, 3\}$

Basic Variables: $B = \{4, 5, 6\}$

Non-Basic Variables: $N = \{1, 2, 3\}$

Slack Form (Formal Definition) ————

Slack form is given by a tuple (N, B, A, b, c, v) so that

$$z = v + \sum_{j \in N} c_j x_j$$

 $x_i = b_i - \sum_{i \in N} a_{ij} x_j$ for $i \in B$,

and all variables are non-negative.

Basic Variables: $B = \{4, 5, 6\}$

Non-Basic Variables: $N = \{1, 2, 3\}$

- Slack Form (Formal Definition) ———

Slack form is given by a tuple (N, B, A, b, c, v) so that

$$z = v + \sum_{j \in N} c_j x_j$$

 $x_i = b_i - \sum_{i \in N} a_{ij} x_j$ for $i \in B$,

and all variables are non-negative.

Variables/Coefficients on the right hand side are indexed by B and N.

$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

$$x_4 = 18 - \frac{x_3}{2} + \frac{x_5}{2}$$

$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

$$x_4 = 18 - \frac{x_3}{2} + \frac{x_5}{2}$$

$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

$$x_4 = 18 - \frac{x_3}{2} + \frac{x_5}{2}$$

•
$$B = \{1, 2, 4\}, N = \{3, 5, 6\}$$

$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

$$x_4 = 18 - \frac{x_3}{2} + \frac{x_5}{2}$$

•
$$B = \{1, 2, 4\}, N = \{3, 5, 6\}$$

$$A = \begin{pmatrix} a_{13} & a_{15} & a_{16} \\ a_{23} & a_{25} & a_{26} \\ a_{43} & a_{45} & a_{46} \end{pmatrix} = \begin{pmatrix} -1/6 & -1/6 & 1/3 \\ 8/3 & 2/3 & -1/3 \\ 1/2 & -1/2 & 0 \end{pmatrix}$$

$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

$$x_4 = 18 - \frac{x_3}{2} + \frac{x_5}{2}$$

•
$$B = \{1, 2, 4\}, N = \{3, 5, 6\}$$

$$A = \begin{pmatrix} a_{13} & a_{15} & a_{16} \\ a_{23} & a_{25} & a_{26} \\ a_{43} & a_{45} & a_{46} \end{pmatrix} = \begin{pmatrix} -1/6 & -1/6 & 1/3 \\ 8/3 & 2/3 & -1/3 \\ 1/2 & -1/2 & 0 \end{pmatrix}$$

$$b = \begin{pmatrix} b_1 \\ b_2 \\ b_4 \end{pmatrix} = \begin{pmatrix} 8 \\ 4 \\ 18 \end{pmatrix},$$

$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

$$x_4 = 18 - \frac{x_3}{2} + \frac{x_5}{2}$$

Slack Form Notation

•
$$B = \{1, 2, 4\}, N = \{3, 5, 6\}$$

.

$$A = \begin{pmatrix} a_{13} & a_{15} & a_{16} \\ a_{23} & a_{25} & a_{26} \\ a_{43} & a_{45} & a_{46} \end{pmatrix} = \begin{pmatrix} -1/6 & -1/6 & 1/3 \\ 8/3 & 2/3 & -1/3 \\ 1/2 & -1/2 & 0 \end{pmatrix}$$

$$b = \begin{pmatrix} b_1 \\ b_2 \\ b_4 \end{pmatrix} = \begin{pmatrix} 8 \\ 4 \\ 18 \end{pmatrix}, \quad c = \begin{pmatrix} c_3 \\ c_5 \\ c_6 \end{pmatrix} = \begin{pmatrix} -1/6 \\ -1/6 \\ -2/3 \end{pmatrix}$$

$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

$$x_4 = 18 - \frac{x_3}{2} + \frac{x_5}{2}$$

Slack Form Notation

•
$$B = \{1, 2, 4\}, N = \{3, 5, 6\}$$

•

$$A = \begin{pmatrix} a_{13} & a_{15} & a_{16} \\ a_{23} & a_{25} & a_{26} \\ a_{43} & a_{45} & a_{46} \end{pmatrix} = \begin{pmatrix} -1/6 & -1/6 & 1/3 \\ 8/3 & 2/3 & -1/3 \\ 1/2 & -1/2 & 0 \end{pmatrix}$$

$$b = \begin{pmatrix} b_1 \\ b_2 \\ b_4 \end{pmatrix} = \begin{pmatrix} 8 \\ 4 \\ 18 \end{pmatrix}, \quad c = \begin{pmatrix} c_3 \\ c_5 \\ c_6 \end{pmatrix} = \begin{pmatrix} -1/6 \\ -1/6 \\ -2/3 \end{pmatrix}$$

• v = 28

Outline

Introduction

A Simple Example of a Linear Program

Formulating Problems as Linear Programs

Standard and Slack Forms

Simplex Algorithm

Finding an Initial Solution

Simplex Algorithm: Introduction

Simplex Algorithm ————

- classical method for solving linear programs (Dantzig, 1947)
- usually fast in practice although worst-case runtime not polynomial
- iterative procedure somewhat similar to Gaussian elimination

Simplex Algorithm: Introduction

Simplex Algorithm ————

- classical method for solving linear programs (Dantzig, 1947)
- usually fast in practice although worst-case runtime not polynomial
- iterative procedure somewhat similar to Gaussian elimination

Basic Idea:

- Each iteration corresponds to a "basic solution" of the slack form
- All non-basic variables are 0, and the basic variables are determined from the equality constraints
- Each iteration converts one slack form into an equivalent one while the objective value will not decrease
- Conversion ("pivoting") is achieved by switching the roles of one basic and one non-basic variable

Simplex Algorithm: Introduction

Simplex Algorithm ———

- classical method for solving linear programs (Dantzig, 1947)
- usually fast in practice although worst-case runtime not polynomial
- iterative procedure somewhat similar to Gaussian elimination

Basic Idea:

- Each iteration corresponds to a "basic solution" of the slack form
- All non-basic variables are 0, and the basic variables are determined from the equality constraints
- Each iteration converts one slack form into an equivalent one while the objective value will not decrease In that sense, it is a greedy algorithm.
- Conversion ("pivoting") is achieved by switching the roles of one basic and one non-basic variable

Extended Example: Conversion into Slack Form

Extended Example: Conversion into Slack Form

Extended Example: Conversion into Slack Form

Extended Example: Iteration 1

$$z = 3x_1 + x_2 + 2x_3$$

 $x_4 = 30 - x_1 - x_2 - 3x_3$
 $x_5 = 24 - 2x_1 - 2x_2 - 5x_3$
 $x_6 = 36 - 4x_1 - x_2 - 2x_3$

Extended Example: Iteration 1

$$z = 3x_1 + x_2 + 2x_3$$

 $x_4 = 30 - x_1 - x_2 - 3x_3$
 $x_5 = 24 - 2x_1 - 2x_2 - 5x_3$
 $x_6 = 36 - 4x_1 - x_2 - 2x_3$

Basic solution: $(\overline{x_1}, \overline{x_2}, \dots, \overline{x_6}) = (0, 0, 0, 30, 24, 36)$

Extended Example: Iteration 1

$$z = 3x_1 + x_2 + 2x_3$$

$$x_4 = 30 - x_1 - x_2 - 3x_3$$

$$x_5 = 24 - 2x_1 - 2x_2 - 5x_3$$

$$x_6 = 36 - 4x_1 - x_2 - 2x_3$$

Basic solution: $(\overline{x_1}, \overline{x_2}, ..., \overline{x_6}) = (0, 0, 0, 30, 24, 36)$

This basic solution is **feasible**

$$z = 3x_1 + x_2 + 2x_3$$

$$x_4 = 30 - x_1 - x_2 - 3x_3$$

$$x_5 = 24 - 2x_1 - 2x_2 - 5x_3$$

$$x_6 = 36 - 4x_1 - x_2 - 2x_3$$
Basic solution: $(\overline{x_1}, \overline{x_2}, \dots, \overline{x_6}) = (0, 0, 0, 30, 24, 36)$
This basic solution is **feasible**
Objective value is 0.

Increasing the value of x_1 would increase the objective value.

$$z = 3x_1 + x_2 + 2x_3$$

$$x_4 = 30 - x_1 - x_2 - 3x_3$$

$$x_5 = 24 - 2x_1 - 2x_2 - 5x_3$$

$$x_6 = 36 - 4x_1 - x_2 - 2x_3$$

Basic solution: $(\overline{x_1}, \overline{x_2}, ..., \overline{x_6}) = (0, 0, 0, 30, 24, 36)$

This basic solution is **feasible**

Objective value is 0.

Increasing the value of x_1 would increase the objective value.

$$z = 3x_1 + x_2 + 2x_3$$

$$x_4 = 30 - x_1 - x_2 - 3x_3$$

$$x_5 = 24 - 2x_1 - 2x_2 - 5x_3$$

$$x_6 = 36 - 4x_1 - x_2 - 2x_3$$

The third constraint is the tightest and limits how much we can increase x_1 .

Increasing the value of x_1 would increase the objective value.

$$z = 3x_1 + x_2 + 2x_3$$

$$x_4 = 30 - x_1 - x_2 - 3x_3$$

$$x_5 = 24 - 2x_1 - 2x_2 - 5x_3$$

$$x_6 = 36 - 4x_1 - x_2 - 2x_3$$

The third constraint is the tightest and limits how much we can increase x_1 .

Switch roles of x_1 and x_6 :

Increasing the value of x_1 would increase the objective value.

$$z = 3x_1 + x_2 + 2x_3$$

$$x_4 = 30 - x_1 - x_2 - 3x_3$$

$$x_5 = 24 - 2x_1 - 2x_2 - 5x_3$$

$$x_6 = 36 - 4x_1 - x_2 - 2x_3$$

The third constraint is the tightest and limits how much we can increase x_1 .

Switch roles of x_1 and x_6 :

Solving for x₁ yields:

$$x_1 = 9 - \frac{x_2}{4} - \frac{x_3}{2} - \frac{x_6}{4}$$
.

Increasing the value of x_1 would increase the objective value.

$$z = 3x_1 + x_2 + 2x_3$$

$$x_4 = 30 - x_1 - x_2 - 3x_3$$

$$x_5 = 24 - 2x_1 - 2x_2 - 5x_3$$

$$x_6 = 36 - 4x_1 - x_2 - 2x_3$$

The third constraint is the tightest and limits how much we can increase x_1 .

Switch roles of x_1 and x_6 :

Solving for x₁ yields:

$$x_1 = 9 - \frac{x_2}{4} - \frac{x_3}{2} - \frac{x_6}{4}$$
.

• Substitute this into x_1 in the other three equations

$$z = 27 + \frac{x_2}{4} + \frac{x_3}{2} - \frac{3x_6}{4}$$

$$x_1 = 9 - \frac{x_2}{4} - \frac{x_3}{2} - \frac{x_6}{4}$$

$$x_4 = 21 - \frac{3x_2}{4} - \frac{5x_3}{2} + \frac{x_6}{4}$$

$$x_5 = 6 - \frac{3x_2}{2} - 4x_3 + \frac{x_6}{2}$$

$$z = 27 + \frac{x_2}{4} + \frac{x_3}{2} - \frac{3x_6}{4}$$

$$x_1 = 9 - \frac{x_2}{4} - \frac{x_3}{2} - \frac{x_6}{4}$$

$$x_4 = 21 - \frac{3x_2}{4} - \frac{5x_3}{2} + \frac{x_6}{4}$$

$$x_5 = 6 - \frac{3x_2}{2} - 4x_3 + \frac{x_6}{2}$$

Basic solution: $(\overline{x_1}, \overline{x_2}, \dots, \overline{x_6}) = (9, 0, 0, 21, 6, 0)$ with objective value 27

Increasing the value of x_3 would increase the objective value.

$$z = 27 + \frac{x_2}{4} + \frac{x_3}{2} - \frac{3x_1}{4}$$

$$x_1 = 9 - \frac{x_2}{4} - \frac{x_3}{2} - \frac{x_4}{4}$$

$$x_4 = 21 - \frac{3x_2}{4} - \frac{5x_3}{2} + \frac{x_4}{4}$$

$$x_5 = 6 - \frac{3x_2}{2} - 4x_3 + \frac{x_4}{4}$$

Basic solution: $(\overline{x_1}, \overline{x_2}, \dots, \overline{x_6}) = (9, 0, 0, 21, 6, 0)$ with objective value 27

Increasing the value of x_3 would increase the objective value.

$$z = 27 + \frac{x_2}{4} + \frac{x_3}{2} - \frac{3x_6}{4}$$

$$x_1 = 9 - \frac{x_2}{4} - \frac{x_3}{2} - \frac{x_6}{4}$$

$$x_4 = 21 - \frac{3x_2}{4} - \frac{5x_3}{2} + \frac{x_6}{4}$$

$$x_5 = 6 - \frac{3x_2}{2} - 4x_3 + \frac{x_6}{2}$$

The third constraint is the tightest and limits how much we can increase x_3 .

Increasing the value of x_3 would increase the objective value.

$$z = 27 + \frac{x_2}{4} + \frac{x_3}{2} - \frac{3x_6}{4}$$

$$x_1 = 9 - \frac{x_2}{4} - \frac{x_3}{2} - \frac{x_6}{4}$$

$$x_4 = 21 - \frac{3x_2}{4} - \frac{5x_3}{2} + \frac{x_6}{4}$$

$$x_5 = 6 - \frac{3x_2}{2} - 4x_3 + \frac{x_6}{2}$$

The third constraint is the tightest and limits how much we can increase x_3 .

Switch roles of x_3 and x_5 :

Increasing the value of x_3 would increase the objective value.

$$z = 27 + \frac{x_2}{4} + \frac{x_3}{2} - \frac{3x_6}{4}$$

$$x_1 = 9 - \frac{x_2}{4} - \frac{x_3}{2} - \frac{x_6}{4}$$

$$x_4 = 21 - \frac{3x_2}{4} - \frac{5x_3}{2} + \frac{x_6}{4}$$

$$x_5 = 6 - \frac{3x_2}{2} - 4x_3 + \frac{x_6}{2}$$

The third constraint is the tightest and limits how much we can increase x_3 .

Switch roles of x_3 and x_5 :

Solving for x₃ yields:

$$x_3 = \frac{3}{2} - \frac{3x_2}{8} - \frac{x_5}{4} - \frac{x_6}{8}$$

Increasing the value of x_3 would increase the objective value.

$$z = 27 + \frac{x_2}{4} + \frac{x_3}{2} - \frac{3x_6}{4}$$

$$x_1 = 9 - \frac{x_2}{4} - \frac{x_3}{2} - \frac{x_6}{4}$$

$$x_4 = 21 - \frac{3x_2}{4} - \frac{5x_3}{2} + \frac{x_6}{4}$$

$$x_5 = 6 - \frac{3x_2}{2} - 4x_3 + \frac{x_6}{2}$$

The third constraint is the tightest and limits how much we can increase x_3 .

Switch roles of x_3 and x_5 :

Solving for x₃ yields:

$$x_3 = \frac{3}{2} - \frac{3x_2}{8} - \frac{x_5}{4} - \frac{x_6}{8}.$$

• Substitute this into x_3 in the other three equations

$$z = \frac{111}{4} + \frac{x_2}{16} - \frac{x_5}{8} - \frac{11x_6}{16}$$

$$x_1 = \frac{33}{4} - \frac{x_2}{16} + \frac{x_5}{8} - \frac{5x_6}{16}$$

$$x_3 = \frac{3}{2} - \frac{3x_2}{8} - \frac{x_5}{4} + \frac{x_6}{8}$$

$$x_4 = \frac{69}{4} + \frac{3x_2}{16} + \frac{5x_5}{8} - \frac{x_6}{16}$$

$$z = \frac{111}{4} + \frac{x_2}{16} - \frac{x_5}{8} - \frac{11x_6}{16}$$

$$x_1 = \frac{33}{4} - \frac{x_2}{16} + \frac{x_5}{8} - \frac{5x_6}{16}$$

$$x_3 = \frac{3}{2} - \frac{3x_2}{8} - \frac{x_5}{4} + \frac{x_6}{8}$$

$$x_4 = \frac{69}{4} + \frac{3x_2}{16} + \frac{5x_5}{8} - \frac{x_6}{16}$$

Basic solution: $(\overline{x_1},\overline{x_2},\ldots,\overline{x_6})=(\frac{33}{4},0,\frac{3}{2},\frac{69}{4},0,0)$ with objective value $\frac{111}{4}=27.75$

Increasing the value of x_2 would increase the objective value.

$$z = \frac{111}{4} + \frac{x_2}{16} - \frac{x_5}{8} - \frac{11x_6}{16}$$

$$x_1 = \frac{33}{4} - \frac{x_2}{16} + \frac{x_5}{8} - \frac{5x_6}{16}$$

$$x_3 = \frac{3}{2} - \frac{3x_2}{8} - \frac{x_5}{4} + \frac{x_6}{8}$$

$$x_4 = \frac{69}{4} + \frac{3x_2}{16} + \frac{5x_5}{8} - \frac{x_6}{16}$$

Basic solution: $(\overline{X_1}, \overline{X_2}, \dots, \overline{X_6}) = (\frac{33}{4}, 0, \frac{3}{2}, \frac{69}{4}, 0, 0)$ with objective value $\frac{111}{4} = 27.75$

Increasing the value of x_2 would increase the objective value.

$$z = \frac{111}{4} + \frac{x_2}{16} - \frac{x_5}{8} - \frac{11x_6}{16}$$

$$x_1 = \frac{33}{4} - \frac{x_2}{16} + \frac{x_5}{8} - \frac{5x_6}{16}$$

$$x_3 = \frac{3}{2} - \frac{3x_2}{8} - \frac{x_5}{4} + \frac{x_6}{8}$$

$$x_4 = \frac{69}{4} + \frac{3x_2}{16} + \frac{5x_5}{8} - \frac{x_6}{16}$$

The second constraint is the tightest and limits how much we can increase x_2 .

Increasing the value of x_2 would increase the objective value.

$$z = \frac{111}{4} + \frac{x_2}{16} - \frac{x_5}{8} - \frac{11x_6}{16}$$

$$x_1 = \frac{33}{4} - \frac{x_2}{16} + \frac{x_5}{8} - \frac{5x_6}{16}$$

$$x_3 = \frac{3}{2} - \frac{3x_2}{8} - \frac{x_5}{4} + \frac{x_6}{8}$$

$$x_4 = \frac{69}{4} + \frac{3x_2}{16} + \frac{5x_5}{8} - \frac{x_6}{16}$$

The second constraint is the tightest and limits how much we can increase x_2 .

Switch roles of x_2 and x_3 :

Increasing the value of x_2 would increase the objective value.

$$z = \frac{111}{4} + \frac{x_2}{16} - \frac{x_5}{8} - \frac{11x_6}{16}$$

$$x_1 = \frac{33}{4} - \frac{x_2}{16} + \frac{x_5}{8} - \frac{5x_6}{16}$$

$$x_3 = \frac{3}{2} - \frac{3x_2}{8} - \frac{x_5}{4} + \frac{x_6}{8}$$

$$x_4 = \frac{69}{4} + \frac{3x_2}{16} + \frac{5x_5}{8} - \frac{x_6}{16}$$

The second constraint is the tightest and limits how much we can increase x_2 .

Switch roles of x_2 and x_3 :

Solving for x₂ yields:

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$
.

Increasing the value of x_2 would increase the objective value.

$$z = \frac{111}{4} + \frac{x_2}{16} - \frac{x_5}{8} - \frac{11x_6}{16}$$

$$x_1 = \frac{33}{4} - \frac{x_2}{16} + \frac{x_5}{8} - \frac{5x_6}{16}$$

$$x_3 = \frac{3}{2} - \frac{3x_2}{8} - \frac{x_5}{4} + \frac{x_6}{8}$$

$$x_4 = \frac{69}{4} + \frac{3x_2}{16} + \frac{5x_5}{8} - \frac{x_6}{16}$$

The second constraint is the tightest and limits how much we can increase x_2 .

Switch roles of x_2 and x_3 :

Solving for x₂ yields:

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$
.

• Substitute this into x_2 in the other three equations

$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

$$x_4 = 18 - \frac{x_3}{3} + \frac{x_5}{3}$$

$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

$$x_4 = 18 - \frac{x_3}{2} + \frac{x_5}{2}$$

Basic solution: $(\overline{x_1}, \overline{x_2}, \dots, \overline{x_6}) = (8, 4, 0, 18, 0, 0)$ with objective value 28

All coefficients are negative, and hence this basic solution is optimal!

$$z = 28 - \frac{x_3}{6} - \frac{x_5}{6} - \frac{2x_6}{3}$$

$$x_1 = 8 + \frac{x_3}{6} + \frac{x_5}{6} - \frac{x_6}{3}$$

$$x_2 = 4 - \frac{8x_3}{3} - \frac{2x_5}{3} + \frac{x_6}{3}$$

$$x_4 = 18 - \frac{x_3}{2} + \frac{x_6}{2}$$

Basic solution: $(\overline{x_1}, \overline{x_2}, \dots, \overline{x_6}) = (8, 4, 0, 18, 0, 0)$ with objective value 28

Exercise: How many basic solutions (including non-feasible ones) are there?

$$z = 3x_1 + x_2 + 2x_3$$

 $x_4 = 30 - x_1 - x_2 - 3x_3$
 $x_5 = 24 - 2x_1 - 2x_2 - 5x_3$
 $x_6 = 36 - 4x_1 - x_2 - 2x_3$

$$z = 3x_1 + x_2 + 2x_3$$

 $x_4 = 30 - x_1 - x_2 - 3x_3$
 $x_5 = 24 - 2x_1 - 2x_2 - 5x_3$
 $x_6 = 36 - 4x_1 - x_2 - 2x_3$

Switch roles of x_1 and x_6 _____

Switch roles of x_1 and x_6 _____

$$z = \frac{111}{4} + \frac{x_2}{16} - \frac{x_5}{8} - \frac{11x_6}{16}$$

$$x_1 = \frac{33}{4} - \frac{x_2}{16} + \frac{x_5}{8} - \frac{5x_6}{16}$$

$$x_3 = \frac{3}{2} - \frac{3x_2}{8} - \frac{x_5}{4} + \frac{x_6}{8}$$

$$x_4 = \frac{69}{4} + \frac{3x_2}{16} + \frac{5x_5}{8} - \frac{x_6}{16}$$

$$z = 3x_1 + x_2 + 2x_3$$

$$x_4 = 30 - x_1 - x_2 - 3x_3$$

$$x_5 = 24 - 2x_1 - 2x_2 - 5x_3$$

$$x_6 = 36 - 4x_1 - x_2 - 2x_3$$

$$x_6 = 36 - 4x_1 - x_2 - 2x_3$$

$$x_6 = 36 - 4x_1 - x_2 - 2x_3$$
Switch roles of x_3 and x_5

$$z = \frac{48}{5} + \frac{11x_1}{5} + \frac{x_2}{5} - \frac{2x_5}{5}$$

$$x_4 = \frac{78}{5} + \frac{x_1}{5} + \frac{x_2}{5} + \frac{3x_5}{5}$$

$$x_3 = \frac{24}{5} - \frac{2x_1}{5} - \frac{2x_2}{5} - \frac{x_5}{5}$$

$$x_6 = \frac{132}{5} - \frac{16x_1}{5} - \frac{x_2}{5} + \frac{2x_3}{5}$$
Switch roles of x_1 and x_6

$$x_6 = \frac{132}{5} - \frac{16x_1}{5} - \frac{x_2}{5} + \frac{2x_3}{5}$$
Switch roles of x_2 and x_3

$$x_6 = \frac{132}{5} - \frac{11x_6}{16}$$

$$x_6 = \frac{132}{5} - \frac{16x_1}{5} - \frac{x_2}{5} + \frac{2x_3}{5}$$

$$x_6 = \frac{132}{5} - \frac{16x_1}{5} - \frac{x_2}{5} + \frac{2x_3}{5}$$
Switch roles of x_2 and x_3

$$x_6 = \frac{13x_2}{5} - \frac{x_5}{16} + \frac{x_5}{8} - \frac{11x_6}{16}$$

$$x_6 = \frac{3x_2}{8} - \frac{x_5}{8} - \frac{5x_5}{16}$$

$$x_6 = \frac{13x_5}{16} - \frac{x_5}{8} - \frac{11x_6}{16}$$

$$x_6 = \frac{3x_2}{8} - \frac{x_5}{8} - \frac{5x_5}{16}$$

$$x_6 = \frac{13x_5}{16} - \frac{x_5}{8} - \frac{11x_6}{16}$$

 $\frac{x_2}{16}$

 X_1 *X*3

<u>69</u>

$$z = 3x_1 + x_2 + 2x_3$$

$$x_4 = 30 - x_1 - x_2 - 3x_3$$

$$x_5 = 24 - 2x_1 - 2x_2 - 5x_3$$

$$x_6 = 36 - 4x_1 - x_2 - 2x_3$$

$$y = 3x_1 + x_2 + 2x_3$$

$$x_6 = 3x_1 + x_2 + 2x_3$$

$$x_6 = 3x_1 + x_2 + 2x_3$$

$$x_6 = 3x_1 - x_2 - 3x_3$$

$$x_6 = 3x_1 - x_2 - 3x_2$$

$$x_6 = 3x_1 - x_2 - 3x_3$$

$$x_6 = 3x_1 - x_2 - 3x_2$$

$$x_6 = 3x_1 - x_2 - 3x_2$$

$$x_1 - x_2 - 2x_2 - 3x_3$$

$$x_2 - x_3 - x_4 - x_4 - x_2 - 2x_3$$

$$x_3 - x_4 - x_4 - x_5 - x_5 - x_5$$

$$x_4 = x_1 - x_2 - x_3 - x_5$$

$$x_4 = x_1 - x_2 - x_3 - x_5$$

$$x_4 = x_1 - x_2 - x_3 - x_5$$

$$x_4 = x_1 - x_2 - x_3$$

$$x_4 = x_1 - x_2 - x_3$$

$$x_4 = x_1 - x_2 - x_3$$

$$x_5 - x_5 - x_5 - x_5$$

$$x_6 = x_1 - x_2 - x_3$$

$$x_1 - x_2 - x_3$$

$$x_2 - x_3 - x_4 - x_5 - x_5$$

$$x_1 = x_1 - x_2 - x_3$$

$$x_2 - x_3 - x_4 - x_5 - x_5$$

$$x_3 - x_4 - x_5 - x_5$$

$$x_4 - x_5 - x_5$$

$$x_4 - x_5 - x_5$$

$$x_4 - x_5 - x_5$$

$$x_5 - x_$$

X1

Xз

<u>69</u>

```
PIVOT(N, B, A, b, c, v, l, e)
      // Compute the coefficients of the equation for new basic variable x_e.
 2 let \widehat{A} be a new m \times n matrix
 \hat{b}_e = b_l/a_{le}
 4 for each i \in N - \{e\}
       \hat{a}_{ei} = a_{li}/a_{le}
 6 \hat{a}_{el} = 1/a_{le}
 7 // Compute the coefficients of the remaining constraints.
 8 for each i \in B - \{l\}
     \hat{b}_i = b_i - a_{ie}\hat{b}_e
10 for each j \in N - \{e\}
              \hat{a}_{ii} = a_{ii} - a_{ie}\hat{a}_{ei}
     \hat{a}_{il} = -a_{ie}\hat{a}_{el}
13 // Compute the objective function.
14 \hat{v} = v + c_{\theta} \hat{b}_{\theta}
15 for each j \in N - \{e\}
16
     \hat{c}_i = c_i - c_e \hat{a}_{ei}
      \hat{c}_l = -c_e \hat{a}_{el}
18 // Compute new sets of basic and nonbasic variables.
19 \hat{N} = N - \{e\} \cup \{l\}
20 \hat{B} = B - \{l\} \cup \{e\}
21 return (\hat{N}, \hat{B}, \hat{A}, \hat{b}, \hat{c}, \hat{v})
```

```
PIVOT(N, B, A, b, c, v, l, e)
      // Compute the coefficients of the equation for new basic variable x_e.
     let \widehat{A} be a new m \times n matrix
 \hat{b}_e = b_l/a_{le}
                                                                                     Rewrite "tight" equation
 4 for each i \in N - \{e\}
                                                                                     for enterring variable x_e.
        \hat{a}_{ei} = a_{li}/a_{le}
 6 \hat{a}_{el} = 1/a_{le}
     // Compute the coefficients of the remaining constraints.
 8 for each i \in B - \{l\}
      \hat{b}_i = b_i - a_{ie}\hat{b}_e
     for each j \in N - \{e\}
                \hat{a}_{ii} = a_{ii} - a_{ie}\hat{a}_{ei}
     \hat{a}_{il} = -a_{ia}\hat{a}_{al}
     // Compute the objective function.
14 \hat{v} = v + c_{\theta} \hat{b}_{\theta}
15 for each j \in N - \{e\}
      \hat{c}_i = c_i - c_e \hat{a}_{ei}
16
     \hat{c}_1 = -c_{\alpha}\hat{a}_{\alpha 1}
18 // Compute new sets of basic and nonbasic variables.
19 \hat{N} = N - \{e\} \cup \{l\}
20 \hat{B} = B - \{l\} \cup \{e\}
21 return (\hat{N}, \hat{B}, \hat{A}, \hat{b}, \hat{c}, \hat{v})
```

```
PIVOT(N, B, A, b, c, v, l, e)
      // Compute the coefficients of the equation for new basic variable x_e.
     let \widehat{A} be a new m \times n matrix
 \hat{b}_e = b_l/a_{le}
                                                                                    Rewrite "tight" equation
 4 for each i \in N - \{e\}
                                                                                   for enterring variable x_e.
        \hat{a}_{ei} = a_{li}/a_{le}
 6 \hat{a}_{el} = 1/a_{le}
     // Compute the coefficients of the remaining constraints.
 8 for each i \in B - \{l\}
      \hat{b}_i = b_i - a_{ie}\hat{b}_e
                                                                                    Substituting x_e into
     for each j \in N - \{e\}
                                                                                      other equations.
                \hat{a}_{ii} = a_{ii} - a_{ie}\hat{a}_{ei}
     \hat{a}_{il} = -a_{ia}\hat{a}_{al}
     // Compute the objective function.
14 \hat{v} = v + c_{\theta} \hat{b}_{\theta}
15 for each i \in N - \{e\}
      \hat{c}_i = c_i - c_e \hat{a}_{ei}
16
     \hat{c}_1 = -c_{\alpha}\hat{a}_{\alpha 1}
    // Compute new sets of basic and nonbasic variables.
19 \hat{N} = N - \{e\} \cup \{l\}
20 \hat{B} = B - \{l\} \cup \{e\}
21 return (\hat{N}, \hat{B}, \hat{A}, \hat{b}, \hat{c}, \hat{v})
```

```
PIVOT(N, B, A, b, c, v, l, e)
      // Compute the coefficients of the equation for new basic variable x_e.
     let \widehat{A} be a new m \times n matrix
 \hat{b}_e = b_I/a_{Ie}
                                                                                  Rewrite "tight" equation
   for each j \in N - \{e\}
                                                                                  for enterring variable x_e.
        \hat{a}_{ei} = a_{li}/a_{le}
 6 \hat{a}_{el} = 1/a_{le}
     // Compute the coefficients of the remaining constraints.
 8 for each i \in B - \{l\}
      \hat{b}_i = b_i - a_{ie}\hat{b}_e
                                                                                   Substituting x_e into
     for each j \in N - \{e\}
                                                                                     other equations.
                \hat{a}_{ii} = a_{ii} - a_{ie}\hat{a}_{ei}
     \hat{a}_{il} = -a_{ia}\hat{a}_{al}
     // Compute the objective function.
14 \hat{v} = v + c_{\theta} \hat{b}_{\theta}
                                                                                   Substituting x_e into
     for each i \in N - \{e\}
                                                                                   objective function.
      \hat{c}_i = c_i - c_e \hat{a}_{ei}
16
     \hat{c}_1 = -c_{\alpha}\hat{a}_{\alpha 1}
     // Compute new sets of basic and nonbasic variables.
19 \hat{N} = N - \{e\} \cup \{l\}
20 \hat{B} = B - \{l\} \cup \{e\}
21 return (\hat{N}, \hat{B}, \hat{A}, \hat{b}, \hat{c}, \hat{v})
```

```
PIVOT(N, B, A, b, c, v, l, e)
      // Compute the coefficients of the equation for new basic variable x_e.
     let \widehat{A} be a new m \times n matrix
 \hat{b}_e = b_l/a_{le}
                                                                                Rewrite "tight" equation
   for each i \in N - \{e\}
                                                                                for enterring variable x_e.
        \hat{a}_{ei} = a_{li}/a_{le}
 6 \hat{a}_{el} = 1/a_{le}
     // Compute the coefficients of the remaining constraints.
 8 for each i \in B - \{l\}
      \hat{b}_i = b_i - a_{ia}\hat{b}_a
                                                                                 Substituting x_e into
     for each j \in N - \{e\}
                                                                                   other equations.
                \hat{a}_{ii} = a_{ii} - a_{ie}\hat{a}_{ei}
     \hat{a}_{il} = -a_{ia}\hat{a}_{al}
     // Compute the objective function.
14 \hat{v} = v + c_{\theta} \hat{b}_{\theta}
                                                                                 Substituting x_e into
     for each i \in N - \{e\}
                                                                                 objective function.
     \hat{c}_i = c_i - c_e \hat{a}_{ei}
16
     \hat{c}_1 = -c_{\alpha}\hat{a}_{\alpha 1}
     // Compute new sets of basic and nonbasic variables.
19 \hat{N} = N - \{e\} \cup \{l\}
                                                                                  Update non-basic
20 \hat{B} = B - \{l\} \cup \{e\}
                                                                                and basic variables
21 return (\hat{N}, \hat{B}, \hat{A}, \hat{b}, \hat{c}, \hat{v})
```

```
PIVOT(N, B, A, b, c, v, l, e)
      // Compute the coefficients of the equation for new basic variable x_e.
     let \widehat{A} be a new m \times n matrix
 \hat{b}_e = b_I/a_{Ie}
                                                                                Rewrite "tight" equation
    for each j \in N - \{e\} Need that a_{le} \neq 0!
          \hat{a}_{ei} = a_{li}/a_{le}
                                                                               for enterring variable x_e.
 6 \hat{a}_{el} = 1/a_{le}
     // Compute the coefficients of the remaining constraints.
 8 for each i \in B - \{l\}
      \hat{b}_i = b_i - a_{ia}\hat{b}_a
                                                                                Substituting x_e into
     for each j \in N - \{e\}
                                                                                  other equations.
               \hat{a}_{ii} = a_{ii} - a_{ie}\hat{a}_{ei}
    \hat{a}_{il} = -a_{ia}\hat{a}_{al}
     // Compute the objective function.
14 \hat{v} = v + c_{\theta} \hat{b}_{\theta}
                                                                                Substituting x_e into
   for each i \in N - \{e\}
                                                                                 objective function.
     \hat{c}_i = c_i - c_e \hat{a}_{ei}
16
     \hat{c}_1 = -c_{\alpha}\hat{a}_{\alpha 1}
     // Compute new sets of basic and nonbasic variables.
19 \hat{N} = N - \{e\} \cup \{l\}
                                                                                 Update non-basic
20 \hat{B} = B - \{l\} \cup \{e\}
                                                                                and basic variables
21 return (\hat{N}, \hat{B}, \hat{A}, \hat{b}, \hat{c}, \hat{v})
```

Lemma 29.1

Consider a call to PIVOT(N, B, A, b, c, v, l, e) in which $a_{le} \neq 0$. Let the values returned from the call be $(\widehat{N}, \widehat{B}, \widehat{A}, \widehat{b}, \widehat{c}, \widehat{v})$, and let \overline{x} denote the basic solution after the call. Then

Lemma 29.1

Consider a call to PIVOT(N, B, A, b, c, v, l, e) in which $a_{le} \neq 0$. Let the values returned from the call be $(\widehat{N}, \widehat{B}, \widehat{A}, \widehat{b}, \widehat{c}, \widehat{v})$, and let \overline{x} denote the basic solution after the call. Then

- 1. $\overline{x}_j = 0$ for each $j \in \widehat{N}$.
- 2. $\overline{x}_e = b_l/a_{le}$.
- 3. $\overline{x}_i = b_i a_{ie}\widehat{b}_e$ for each $i \in \widehat{B} \setminus \{e\}$.

Lemma 29.1

Consider a call to PIVOT(N, B, A, b, c, v, l, e) in which $a_{le} \neq 0$. Let the values returned from the call be $(\widehat{N}, \widehat{B}, \widehat{A}, \widehat{b}, \widehat{c}, \widehat{v})$, and let \overline{x} denote the basic solution after the call. Then

- 1. $\overline{x}_j = 0$ for each $j \in \widehat{N}$.
- 2. $\overline{x}_e = b_l/a_{le}$.
- 3. $\overline{x}_i = b_i a_{ie}\widehat{b}_e$ for each $i \in \widehat{B} \setminus \{e\}$.

Proof:

Lemma 29.1

Consider a call to PIVOT(N, B, A, b, c, v, l, e) in which $a_{le} \neq 0$. Let the values returned from the call be $(\widehat{N}, \widehat{B}, \widehat{A}, \widehat{b}, \widehat{c}, \widehat{v})$, and let \overline{x} denote the basic solution after the call. Then

- 1. $\overline{x}_j = 0$ for each $j \in \widehat{N}$.
- 2. $\overline{x}_e = b_l/a_{le}$.
- 3. $\overline{x}_i = b_i a_{ie}\widehat{b}_e$ for each $i \in \widehat{B} \setminus \{e\}$.

Proof:

- 1. holds since the basic solution always sets all non-basic variables to zero.
- 2. When we set each non-basic variable to 0 in a constraint

$$x_i = \widehat{b}_i - \sum_{j \in \widehat{N}} \widehat{a}_{ij} x_j,$$

we have $\overline{x}_i = \hat{b}_i$ for each $i \in \hat{B}$. Hence $\overline{x}_e = \hat{b}_e = b_l/a_{le}$.

3. After substituting into the other constraints, we have

$$\overline{x}_i = \widehat{b}_i = b_i - a_{ie}\widehat{b}_e.$$

Lemma 29.1

Consider a call to PIVOT(N,B,A,b,c,v,l,e) in which $a_{le}\neq 0$. Let the values returned from the call be $(\widehat{N},\widehat{B},\widehat{A},\widehat{b},\widehat{c},\widehat{v})$, and let \overline{x} denote the basic solution after the call. Then

- 1. $\overline{x}_j = 0$ for each $j \in \widehat{N}$.
- 2. $\overline{x}_e = b_l/a_{le}$.
- 3. $\overline{x}_i = b_i a_{ie}\widehat{b}_e$ for each $i \in \widehat{B} \setminus \{e\}$.

Proof:

- 1. holds since the basic solution always sets all non-basic variables to zero.
- 2. When we set each non-basic variable to 0 in a constraint

$$x_i = \widehat{b}_i - \sum_{j \in \widehat{N}} \widehat{a}_{ij} x_j,$$

we have $\overline{x}_i = \hat{b}_i$ for each $i \in \hat{B}$. Hence $\overline{x}_e = \hat{b}_e = b_l/a_{le}$.

3. After substituting into the other constraints, we have

$$\overline{X}_i = \widehat{b}_i = b_i - a_{ie}\widehat{b}_e.$$

Formalizing the Simplex Algorithm: Questions

Questions:

- How do we determine whether a linear program is feasible?
- What do we do if the linear program is feasible, but the initial basic solution is not feasible?
- How do we determine whether a linear program is unbounded?
- How do we choose the entering and leaving variables?

Formalizing the Simplex Algorithm: Questions

Questions:

- How do we determine whether a linear program is feasible?
- What do we do if the linear program is feasible, but the initial basic solution is not feasible?
- How do we determine whether a linear program is unbounded?
- How do we choose the entering and leaving variables?

Example before was a particularly nice one!

```
SIMPLEX(A, b, c)
     (N, B, A, b, c, v) = \text{INITIALIZE-SIMPLEX}(A, b, c)
     let \Delta be a new vector of length m
     while some index j \in N has c_i > 0
           choose an index e \in N for which c_e > 0
          for each index i \in B
                if a_{ie} > 0
                     \Delta_i = b_i/a_{ie}
                else \Delta_i = \infty
 9
          choose an index l \in B that minimizes \Delta_i
10
          if \Delta_I == \infty
11
                return "unbounded"
12
          else (N, B, A, b, c, v) = PIVOT(N, B, A, b, c, v, l, e)
     for i = 1 to n
14
          if i \in B
               \bar{x}_i = b_i
15
          else \bar{x}_i = 0
16
     return (\bar{x}_1, \bar{x}_2, \dots, \bar{x}_n)
```

```
SIMPLEX(A, b, c)
                                                                            Returns a slack form with a
     (N, B, A, b, c, v) = \text{INITIALIZE-SIMPLEX}(A, b, c)
                                                                        feasible basic solution (if it exists)
     let \Delta be a new vector of length m
     while some index j \in N has c_i > 0
           choose an index e \in N for which c_e > 0
          for each index i \in B
                if a_{ie} > 0
                     \Delta_i = b_i/a_{ie}
                else \Delta_i = \infty
          choose an index l \in B that minimizes \Delta_i
          if \Delta_I == \infty
10
11
                return "unbounded"
12
          else (N, B, A, b, c, v) = PIVOT(N, B, A, b, c, v, l, e)
     for i = 1 to n
14
          if i \in B
               \bar{x}_i = b_i
15
          else \bar{x}_i = 0
16
     return (\bar{x}_1, \bar{x}_2, \dots, \bar{x}_n)
```

```
SIMPLEX(A, b, c)
                                                                             Returns a slack form with a
     (N, B, A, b, c, v) = \text{INITIALIZE-SIMPLEX}(A, b, c)
                                                                         feasible basic solution (if it exists)
    let \Delta be a new vector of length \underline{m}
    while some index j \in N has c_i > 0
           choose an index e \in N for which c_e > 0
          for each index i \in B
                if a_{ie} > 0
                     \Delta_i = b_i/a_{ie}
                else \Delta_i = \infty
          choose an index l \in B that minimizes \Delta_i
          if \Delta_I == \infty
10
11
                return "unbounded"
          else (N, B, A, b, c, v) = PIVOT(N, B, A, b, c, v, l, e)
     for i = 1 to n
          if i \in B
14
               \bar{x}_i = b_i
15
          else \bar{x}_i = 0
16
     return (\bar{x}_1, \bar{x}_2, \dots, \bar{x}_n)
```

```
SIMPLEX(A, b, c)
                                                                          Returns a slack form with a
     (N, B, A, b, c, v) = \text{INITIALIZE-SIMPLEX}(A, b, c)
                                                                     feasible basic solution (if it exists)
    let \Delta be a new vector of length \underline{m}
    while some index j \in N has c_i > 0
                                                                              Main Loop:
          choose an index e \in N for which c_e > 0
          for each index i \in B
               if a_{ie} > 0
                    \Delta_i = b_i/a_{ie}
               else \Delta_i = \infty
          choose an index l \in B that minimizes \Delta_i
          if \Delta_I == \infty
10
11
               return "unbounded"
          else (N, B, A, b, c, v) = PIVOT(N, B, A, b, c, v, l, e)
     for i = 1 to n
          if i \in B
14
               \bar{x}_i = b_i
15
          else \bar{x}_i = 0
16
```

return $(\bar{x}_1, \bar{x}_2, \dots, \bar{x}_n)$

```
SIMPLEX(A, b, c)
                                                                        Returns a slack form with a
     (N, B, A, b, c, v) = \text{INITIALIZE-SIMPLEX}(A, b, c)
                                                                    feasible basic solution (if it exists)
    let \Delta be a new vector of length \underline{m}
    while some index j \in N has c_i > 0
                                                                            Main Loop:
          choose an index e \in N for which c_e > 0
          for each index i \in B

    terminates if all coefficients in

                                                                                 objective function are negative
               if a_{ia} > 0
                    \Delta_i = b_i/a_{ie}
                                                                              Line 4 picks enterring variable
               else \Delta_i = \infty
                                                                                 x<sub>e</sub> with negative coefficient
          choose an index l \in B that minimizes \Delta_i
                                                                               ■ Lines 6 — 9 pick the tightest
          if \Delta_I == \infty
10
                                                                                 constraint, associated with x1
11
               return "unbounded"
                                                                               Line 11 returns "unbounded" if
12
          else (N, B, A, b, c, v) = PIVOT(N, B, A, b, c, v, l, e)
                                                                                 there are no constraints
     for i = 1 to n
                                                                              Line 12 calls PIVOT, switching
14
          if i \in R
                                                                                 roles of x_i and x_e
              \bar{x}_i = b_i
15
          else \bar{x}_i = 0
16
```

return $(\bar{x}_1, \bar{x}_2, \dots, \bar{x}_n)$

```
SIMPLEX(A, b, c)
                                                                          Returns a slack form with a
     (N, B, A, b, c, v) = \text{INITIALIZE-SIMPLEX}(A, b, c)
                                                                       feasible basic solution (if it exists)
    let \Delta be a new vector of length \underline{m}
    while some index j \in N has c_i > 0
                                                                               Main Loop:
          choose an index e \in N for which c_e > 0
          for each index i \in B

    terminates if all coefficients in

                                                                                    objective function are negative
               if a_{ia} > 0
                    \Delta_i = b_i/a_{ie}

    Line 4 picks enterring variable

               else \Delta_i = \infty
                                                                                    x<sub>e</sub> with negative coefficient
          choose an index l \in B that minimizes \Delta_i
                                                                                 ■ Lines 6 — 9 pick the tightest
          if \Delta_I == \infty
10
                                                                                    constraint, associated with x1
11
               return "unbounded"
                                                                                 Line 11 returns "unbounded" if
          else (N, B, A, b, c, v) = PIVOT(N, B, A, b, c, v, l, e)
                                                                                    there are no constraints
     for i = 1 to n
                                                                                 Line 12 calls PIVOT, switching
14
          if i \in R
                                                                                    roles of x_i and x_e
               \bar{x}_i = b_i
15
          else \bar{x}_i = 0
16
     return (\bar{x}_1, \bar{x}_2, \dots, \bar{x}_n)
```

Return corresponding solution.

```
SIMPLEX(A, b, c)
                                                                            Returns a slack form with a
     (N, B, A, b, c, v) = \text{INITIALIZE-SIMPLEX}(A, b, c)
                                                                        feasible basic solution (if it exists)
    let \Delta be a new vector of length \underline{m}
    while some index j \in N has c_i > 0
           choose an index e \in N for which c_e > 0
          for each index i \in B
                if a_{ia} > 0
                     \Delta_i = b_i/a_{ie}
                else \Delta_i = \infty
          choose an index l \in B that minimizes \Delta_i
         if \Delta_I == \infty
10
11
                return "unbounded"
          else (N, B, A, b, c, v) = PIVOT(N, B, A, b, c, v, l, e)
     for i = 1 to n
14
          if i \in R
15
               \bar{x}_i = b_i
          else \bar{x}_i = 0
16
     return (\bar{x}_1, \bar{x}_2, \dots, \bar{x}_n)
```

- Lemma 29 2

Suppose the call to INITIALIZE-SIMPLEX in line 1 returns a slack form for which the basic solution is feasible. Then if SIMPLEX returns a solution, it is a feasible solution. If SIMPLEX returns "unbounded", the linear program is unbounded.

```
SIMPLEX (A,b,c) Returns a slack form with a feasible basic solution (if it exists)

1 (N,B,A,b,c,\nu) = \text{INITIALIZE-SIMPLEX}(A,b,c) feasible basic solution (if it exists)

2 \underline{\text{let } \Delta} be a new vector of length \underline{m}

3 while some index j \in N has c_j > 0

4 choose an index e \in N for which c_e > 0

5 for each index i \in B

6 if a_{ie} > 0

7 \Delta_i = b_i/a_{ie}

8 \underline{\text{else } \Delta_i = \infty}

9 choose an index l \in B that minimizes \Delta_i

10 if \Delta_l == \infty

11 return "unbounded"
```

Proof is based on the following three-part loop invariant:

Lemma 29 2 =

Suppose the call to INITIALIZE-SIMPLEX in line 1 returns a slack form for which the basic solution is feasible. Then if SIMPLEX returns a solution, it is a feasible solution. If SIMPLEX returns "unbounded", the linear program is unbounded.

```
SIMPLEX (A,b,c)

1 (N,B,A,b,c,\nu) = INITIALIZE-SIMPLEX (A,b,c)

2 \det \Delta be a new vector of length m

3 while some index j \in N has c_j > 0

4 choose an index e \in N for which c_e > 0

5 for each index i \in B

6 if a_{ie} > 0

7 \Delta_i = b_i/a_{ie}

8 else \Delta_i = \infty

9 choose an index l \in B that minimizes \Delta_i

10 if \Delta_l = \infty

11 return "unbounded"
```

Proof is based on the following three-part loop invariant:

- 1. the slack form is always equivalent to the one returned by INITIALIZE-SIMPLEX,
- 2. for each $i \in B$, we have $b_i \ge 0$,
- 3. the basic solution associated with the (current) slack form is feasible.

Lemma 29.2 -

Suppose the call to INITIALIZE-SIMPLEX in line 1 returns a slack form for which the basic solution is feasible. Then if SIMPLEX returns a solution, it is a feasible solution. If SIMPLEX returns "unbounded", the linear program is unbounded.

$$z = x_1 + x_2 + x_3$$

 $x_4 = 8 - x_1 - x_2$
 $x_5 = x_2 - x_3$

$$z = x_1 + x_2 + x_3$$

$$x_4 = 8 - x_1 - x_2$$

$$x_5 = x_2 - x_3$$

$$\begin{vmatrix} \text{Pivot with } x_1 \text{ entering and } x_4 \text{ leaving} \end{vmatrix}$$

$$z = x_1 + x_2 + x_3$$

$$x_4 = 8 - x_1 - x_2$$

$$x_5 = x_2 - x_3$$

$$\begin{vmatrix} \text{Pivot with } x_1 \text{ entering and } x_4 \text{ leaving} \end{vmatrix}$$

$$z = 8 + x_3 - x_4$$

$$x_1 = 8 - x_2 - x_3$$

$$\begin{vmatrix} \text{Pivot with } x_3 \text{ entering and } x_5 \text{ leaving} \end{vmatrix}$$

$$y$$

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

Linear Programming @ Thomas Sauerwald

z

*X*₁

*X*₃

8

8

 X_2

 X_2

 X_2

 X_4

 X_4

 X_5

*X*₅

Exercise: Execute one more step of the Simplex Algorithm on the tableau from the previous slide.

Termination and Running Time

Cycling: SIMPLEX may fail to terminate.

Termination and Running Time

It is theoretically possible, but very rare in practice.

Cycling: SIMPLEX may fail to terminate.

Cycling: SIMPLEX may fail to terminate.

Anti-Cycling Strategies

It is theoretically possible, but very rare in practice.

Cycling: SIMPLEX may fail to terminate.

Anti-Cycling Strategies

1. Bland's rule: Choose entering variable with smallest index

It is theoretically possible, but very rare in practice.

Cycling: SIMPLEX may fail to terminate.

Anti-Cycling Strategies -

- 1. Bland's rule: Choose entering variable with smallest index
- 2. Random rule: Choose entering variable uniformly at random

It is theoretically possible, but very rare in practice.

Cycling: SIMPLEX may fail to terminate.

- Anti-Cycling Strategies
- 1. Bland's rule: Choose entering variable with smallest index
- 2. Random rule: Choose entering variable uniformly at random
- 3. Perturbation: Perturb the input slightly so that it is impossible to have two solutions with the same objective value

It is theoretically possible, but very rare in practice.

Cycling: SIMPLEX may fail to terminate.

Anti-Cycling Strategies

- 1. Bland's rule: Choose entering variable with smallest index
- 2. Random rule: Choose entering variable uniformly at random
- 3. Perturbation: Perturb the input slightly so that it is impossible to have two solutions with the same objective value

Replace each b_i by $\hat{b}_i = b_i + \epsilon_i$, where $\epsilon_i \gg \epsilon_{i+1}$ are all small.

It is theoretically possible, but very rare in practice.

Cycling: SIMPLEX may fail to terminate.

Anti-Cycling Strategies -

- 1. Bland's rule: Choose entering variable with smallest index
- 2. Random rule: Choose entering variable uniformly at random
- 3. Perturbation: Perturb the input slightly so that it is impossible to have two solutions with the same objective value

Replace each
$$b_i$$
 by $\widehat{b}_i = b_i + \epsilon_i$, where $\epsilon_i \gg \epsilon_{i+1}$ are all small.

- Lemma 29.7

Assuming Initialize-Simplex returns a slack form for which the basic solution is feasible, Simplex either reports that the program is unbounded or returns a feasible solution in at most $\binom{n+m}{m}$ iterations.

It is theoretically possible, but very rare in practice.

Cycling: SIMPLEX may fail to terminate.

Anti-Cycling Strategies

- 1. Bland's rule: Choose entering variable with smallest index
- 2. Random rule: Choose entering variable uniformly at random
- 3. Perturbation: Perturb the input slightly so that it is impossible to have two solutions with the same objective value

Replace each
$$b_i$$
 by $\hat{b}_i = b_i + \epsilon_i$, where $\epsilon_i \gg \epsilon_{i+1}$ are all small.

Lemma 29.7

Assuming Initialize-Simplex returns a slack form for which the basic solution is feasible, Simplex either reports that the program is unbounded or returns a feasible solution in at most $\binom{n+m}{m}$ iterations.

Every set *B* of basic variables uniquely determines a slack form, and there are at most $\binom{n+m}{m}$ unique slack forms.

Outline

Introduction

A Simple Example of a Linear Program

Formulating Problems as Linear Programs

Standard and Slack Forms

Simplex Algorithm

maximise
$$2x_1 - x_2$$
 subject to
$$2x_1 - x_2 \le 2$$
 $x_1 - 5x_2 \le -4$ $x_1, x_2 \ge 0$ Conversion into slack form
$$z = 2x_1 - x_2$$
 $x_3 = 2 - 2x_1 - x_2$ $x_4 = -4 - x_1 + 5x_2$
Basic solution $(x_1, x_2, x_3, x_4) = (0, 0, 2, -4)$ is not feasible!

maximise subject to

$$2x_1 - x_2$$

maximise subject to

$$2x_1 - x_2$$

maximise subject to

$$2x_1 - x_2$$

Questions:

- How to determine whether there is any feasible solution?
- If there is one, how to determine an initial basic solution?

maximise subject to

$$\sum_{j=1}^{n} c_j x_j$$

$$\begin{array}{ccc} \sum_{j=1}^n a_{ij} x_j & \leq & b_i & \text{ for } i=1,2,\ldots,m, \\ x_j & \geq & 0 & \text{ for } j=1,2,\ldots,n \end{array}$$

$$\sum_{j=1}^{n} c_j x_j$$

$$\begin{array}{cccc} \sum_{j=1}^n a_{ij} x_j & \leq & b_i & \text{for } i=1,2,\ldots,m, \\ x_j & \geq & 0 & \text{for } j=1,2,\ldots,n \end{array}$$

$$\ \ \, \downarrow \text{Formulating an Auxiliary Linear Program}$$

maximise
$$\sum_{j=1}^{n} c_j x_j$$
 subject to $\sum_{j=1}^{n} a_{ij} x_j \leq b_i$ for $i=1,2,\ldots,m$, $x_j \geq 0$ for $j=1,2,\ldots,n$ Formulating an Auxiliary Linear Program maximise $-x_0$ subject to $\sum_{j=1}^{n} a_{ij} x_j - x_0 \leq b_i$ for $i=1,2,\ldots,m$, $x_i \geq 0$ for $j=0,1,\ldots,n$

maximise subject to $\sum_{j=1}^{n} c_{j}x_{j}$ subject to $\sum_{j=1}^{n} a_{ij}x_{j} \leq b_{i} \quad \text{for } i=1,2,\ldots,m,$ $x_{j} \geq 0 \quad \text{for } j=1,2,\ldots,n$ Formulating an Auxiliary Linear Program maximise subject to $\sum_{j=1}^{n} a_{ij}x_{j} - x_{0} \leq b_{i} \quad \text{for } i=1,2,\ldots,m,$ $x_{i} > 0 \quad \text{for } j=0,1,\ldots,n$

Lemma 29.11

Let L_{aux} be the auxiliary LP of a linear program L in standard form. Then L is feasible if and only if the optimal objective value of L_{aux} is 0.

maximise subject to
$$\sum_{j=1}^{n} c_{j}x_{j}$$
 subject to
$$\sum_{j=1}^{n} a_{ij}x_{j} \leq b_{i} \quad \text{for } i=1,2,\ldots,m,$$

$$x_{j} \geq 0 \quad \text{for } j=1,2,\ldots,n$$
 Formulating an Auxiliary Linear Program maximise subject to
$$\sum_{j=1}^{n} a_{ij}x_{j} - x_{0} \leq b_{i} \quad \text{for } i=1,2,\ldots,m,$$

$$x_{i} > 0 \quad \text{for } j=0,1,\ldots,n$$

Lemma 29.11

Let L_{aux} be the auxiliary LP of a linear program L in standard form. Then L is feasible if and only if the optimal objective value of L_{aux} is 0.

maximise subject to $\sum_{j=1}^{n} c_{j}x_{j}$ subject to $\sum_{j=1}^{n} a_{ij}x_{j} \leq b_{i} \quad \text{for } i=1,2,\ldots,m,$ $x_{j} \geq 0 \quad \text{for } j=1,2,\ldots,n$ Formulating an Auxiliary Linear Program maximise subject to $\sum_{j=1}^{n} a_{ij}x_{j} - x_{0} \leq b_{i} \quad \text{for } i=1,2,\ldots,m,$ $x_{i} > 0 \quad \text{for } j=0,1,\ldots,n$

- Lemma 29.11

Let L_{aux} be the auxiliary LP of a linear program L in standard form. Then L is feasible if and only if the optimal objective value of L_{aux} is 0.

Proof.

• " \Rightarrow ": Suppose *L* has a feasible solution $\overline{x} = (\overline{x}_1, \overline{x}_2, \dots, \overline{x}_n)$

maximise
$$\sum_{j=1}^{n} c_j x_j$$
 subject to $\sum_{i=1}^{n}$

$$\begin{array}{cccc} \sum_{j=1}^n a_{ij} x_j & \leq & b_i & \text{for } i=1,2,\ldots,m, \\ x_j & \geq & 0 & \text{for } j=1,2,\ldots,n \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array}$$

maximise $-x_0$ subject to

$$\begin{array}{cccc} \sum_{j=1}^{n} a_{ij} x_{j} - x_{0} & \leq & b_{i} & \text{for } i = 1, 2, \dots, m, \\ x_{j} & \geq & 0 & \text{for } j = 0, 1, \dots, n \end{array}$$

- Lemma 29.11

Let L_{aux} be the auxiliary LP of a linear program L in standard form. Then L is feasible if and only if the optimal objective value of L_{aux} is 0.

- " \Rightarrow ": Suppose *L* has a feasible solution $\overline{x} = (\overline{x}_1, \overline{x}_2, \dots, \overline{x}_n)$
 - $\overline{x}_0 = 0$ combined with \overline{x} is a feasible solution to L_{aux} with objective value 0.

maximise
$$\sum_{j=1}^{n} c_j x_j$$
 subject to

$$\sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i} \quad \text{for } i = 1, 2, \dots, m,$$

$$x_{j} \geq 0 \quad \text{for } j = 1, 2, \dots, n$$

$$\downarrow \text{Formulating an Auxiliary Linear Program}$$

maximise $-x_0$ subject to

$$\begin{array}{cccc} \sum_{j=1}^{n} a_{ij} x_{j} - x_{0} & \leq & b_{i} & \text{for } i = 1, 2, \dots, m, \\ x_{j} & \geq & 0 & \text{for } j = 0, 1, \dots, n \end{array}$$

Lemma 29.11

Let L_{aux} be the auxiliary LP of a linear program L in standard form. Then L is feasible if and only if the optimal objective value of L_{aux} is 0.

- " \Rightarrow ": Suppose *L* has a feasible solution $\overline{x} = (\overline{x}_1, \overline{x}_2, \dots, \overline{x}_n)$
 - $\overline{x}_0 = 0$ combined with \overline{x} is a feasible solution to L_{aux} with objective value 0.
 Since $\overline{x}_0 \geq 0$ and the objective is to maximise $-x_0$, this is optimal for L_{aux}

maximise
$$\sum_{j=1}^{n} c_j x_j$$
 subject to

$$\begin{array}{cccc} \sum_{j=1}^n a_{ij} x_j & \leq & b_i & \text{for } i=1,2,\ldots,m, \\ x_j & \geq & 0 & \text{for } j=1,2,\ldots,n \end{array}$$
 Formulating an Auxiliary Linear Program

maximise $-x_0$ subject to

$$\begin{array}{cccc} \sum_{j=1}^{n} a_{ij} x_{j} - x_{0} & \leq & b_{i} & \text{for } i = 1, 2, \dots, m, \\ x_{j} & \geq & 0 & \text{for } j = 0, 1, \dots, n \end{array}$$

Lemma 29.11

Let L_{aux} be the auxiliary LP of a linear program L in standard form. Then L is feasible if and only if the optimal objective value of L_{aux} is 0.

- " \Rightarrow ": Suppose *L* has a feasible solution $\overline{x} = (\overline{x}_1, \overline{x}_2, \dots, \overline{x}_n)$
 - x̄₀ = 0 combined with x̄ is a feasible solution to L_{aux} with objective value 0.
 Since x̄₀ ≥ 0 and the objective is to maximise -x₀, this is optimal for L_{aux}
- " \Leftarrow ": Suppose that the optimal objective value of L_{aux} is 0

maximise
$$\sum_{j=1}^{n} c_{j}$$
 subject to

$$\sum_{j=1}^{n} c_j x_j$$

$$\sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i} \quad \text{for } i = 1, 2, \dots, m,$$

$$x_{j} \geq 0 \quad \text{for } j = 1, 2, \dots, n$$

$$\downarrow \text{Formulating an Auxiliary Linear Program}$$

maximise $-x_0$ subject to

$$\begin{array}{cccc} \sum_{j=1}^{n} a_{ij} x_{j} - x_{0} & \leq & b_{i} & \text{for } i = 1, 2, \dots, m, \\ x_{j} & \geq & 0 & \text{for } j = 0, 1, \dots, n \end{array}$$

Lemma 29.11

Let L_{aux} be the auxiliary LP of a linear program L in standard form. Then L is feasible if and only if the optimal objective value of L_{aux} is 0.

- " \Rightarrow ": Suppose *L* has a feasible solution $\overline{x} = (\overline{x}_1, \overline{x}_2, \dots, \overline{x}_n)$
 - x̄₀ = 0 combined with x̄ is a feasible solution to L_{aux} with objective value 0.
 Since x̄₀ ≥ 0 and the objective is to maximise -x₀, this is optimal for L_{aux}
- " \Leftarrow ": Suppose that the optimal objective value of L_{aux} is 0
 - Then $\overline{x}_0 = 0$, and the remaining solution values $(\overline{x}_1, \overline{x}_2, \dots, \overline{x}_n)$ satisfy L.

maximise subject to

$$\sum_{j=1}^{n} c_j x_j$$

$$\begin{array}{cccc} \sum_{j=1}^n a_{ij} x_j & \leq & b_i & \text{for } i=1,2,\ldots,m, \\ x_j & \geq & 0 & \text{for } j=1,2,\ldots,n \end{array}$$
 Formulating an Auxiliary Linear Program

maximise $-x_0$ subject to

$$\begin{array}{cccc} \sum_{j=1}^{n} a_{ij} x_{j} - x_{0} & \leq & b_{i} & \text{for } i = 1, 2, \dots, m, \\ x_{j} & \geq & 0 & \text{for } j = 0, 1, \dots, n \end{array}$$

Lemma 29.11

Let L_{aux} be the auxiliary LP of a linear program L in standard form. Then L is feasible if and only if the optimal objective value of L_{aux} is 0.

- " \Rightarrow ": Suppose *L* has a feasible solution $\overline{x} = (\overline{x}_1, \overline{x}_2, \dots, \overline{x}_n)$
 - x̄₀ = 0 combined with x̄ is a feasible solution to L_{aux} with objective value 0.
 Since x̄₀ ≥ 0 and the objective is to maximise -x₀, this is optimal for L_{aux}
- " \Leftarrow ": Suppose that the optimal objective value of L_{aux} is 0
 - Then $\overline{x}_0 = 0$, and the remaining solution values $(\overline{x}_1, \overline{x}_2, \dots, \overline{x}_n)$ satisfy L.

- Let us illustrate the role of x₀ as "distance from feasibility"
- We will also see that increasing x_0 enlarges the feasible region.

$$-x_0$$

Now the Feasible Region of the Auxiliary LP in 3D

- Let us now modify the original linear program so that it is not feasible
- \Rightarrow Hence the auxiliary linear program has only a solution for a sufficiently large $x_0 > 0$!

$$-x_0$$

$$x_0 \leq x_0 \leq x_0$$

$$x_0 \leq$$

$$-x_0$$

$$-x_0$$

$$-x_0$$

$$x_0 \leq$$

$$-x_0$$

$$-x_0$$

$$x_0 = 0.5$$

$$x_0 = 0.5$$

$$-x_0$$

$$-x_0$$

$$-x_0$$

$$-x_0$$

$$x_0 \leq x_0 \leq x_0$$

$$\leq 4$$

 ≥ 0

$$-x_0$$

maximise subject to

$$-x_0$$

$$\leq$$
 -2

$$X_0, X_1, X_2$$

$$x_0$$

 $x_0 = 3$

$$-x_0$$

Now the Feasible Region of the Auxiliary LP in 3D


```
INITIALIZE-SIMPLEX (A, b, c)
     let k be the index of the minimum b_i
                                   // is the initial basic solution feasible?
 2 if b_{\nu} > 0
          return (\{1, 2, ..., n\}, \{n + 1, n + 2, ..., n + m\}, A, b, c, 0)
     form L_{\text{any}} by adding -x_0 to the left-hand side of each constraint
          and setting the objective function to -x_0
 5 let (N, B, A, b, c, \nu) be the resulting slack form for L_{aux}
    l = n + k
    //L_{\text{aux}} has n+1 nonbasic variables and m basic variables.
 8 (N, B, A, b, c, v) = PIVOT(N, B, A, b, c, v, l, 0)
 9 // The basic solution is now feasible for L_{\text{aux}}.
10 iterate the while loop of lines 3-12 of SIMPLEX until an optimal solution
          to L_{\text{any}} is found
     if the optimal solution to L_{\text{aux}} sets \bar{x}_0 to 0
12
          if \bar{x}_0 is basic
               perform one (degenerate) pivot to make it nonbasic
13
14
          from the final slack form of L_{\text{aux}}, remove x_0 from the constraints and
               restore the original objective function of L, but replace each basic
               variable in this objective function by the right-hand side of its
               associated constraint
15
          return the modified final slack form
     else return "infeasible"
```

```
Test solution with N = \{1, 2, ..., n\}, B = \{n + 1, n + 1\}
INITIALIZE-SIMPLEX (A, b, c)
                                                    \{2,\ldots,n+m\},\ \overline{x}_i=b_i\ \text{for}\ i\in B,\ \overline{x}_i=0\ \text{otherwise}.
     let k be the index of the minimum b_k
                                   // is the initial basic solution feasible?
 2 if b_{\nu} > 0
          return (\{1, 2, ..., n\}, \{n + 1, n + 2, ..., n + m\}, A, b, c, 0)
     form L_{\text{any}} by adding -x_0 to the left-hand side of each constraint
          and setting the objective function to -x_0
     let (N, B, A, b, c, v) be the resulting slack form for L_{aux}
    l = n + k
     //L_{\text{aux}} has n+1 nonbasic variables and m basic variables.
 8 (N, B, A, b, c, v) = PIVOT(N, B, A, b, c, v, l, 0)
    // The basic solution is now feasible for L_{\text{aux}}.
10 iterate the while loop of lines 3-12 of SIMPLEX until an optimal solution
          to L_{\text{any}} is found
     if the optimal solution to L_{\text{aux}} sets \bar{x}_0 to 0
12
          if \bar{x}_0 is basic
               perform one (degenerate) pivot to make it nonbasic
13
14
          from the final slack form of L_{\text{aux}}, remove x_0 from the constraints and
               restore the original objective function of L, but replace each basic
               variable in this objective function by the right-hand side of its
               associated constraint
15
          return the modified final slack form
```

else return "infeasible"

INITIALIZE-SIMPLEX (A, b, c)

if $b_{\nu} > 0$

Test solution with $N = \{1, 2, \dots, n\}$, $B = \{n + 1, n + 1\}$ $2, \ldots, n+m$, $\overline{x}_i = b_i$ for $i \in B$, $\overline{x}_i = 0$ otherwise. let k be the index of the minimum b_k // is the initial basic solution feasible? **return** $(\{1, 2, ..., n\}, \{n + 1, n + 2, ..., n + m\}, A, b, c, 0)$ form L_{any} by adding $-x_0$ to the left-hand side of each constraint and setting the objective function to $-x_0$ ℓ will be the leaving variable so let (N, B, A, b, c, v) be the resulting slack form for L_{aux} that x_{ℓ} has the most negative value.

```
l = n + k
     //L_{\text{aux}} has n+1 nonbasic variables and m basic variables.
   (N, B, A, b, c, v) = PIVOT(N, B, A, b, c, v, l, 0)
    // The basic solution is now feasible for L_{\text{aux}}.
   iterate the while loop of lines 3-12 of SIMPLEX until an optimal solution
          to L_{\text{any}} is found
     if the optimal solution to L_{\text{aux}} sets \bar{x}_0 to 0
12
          if \bar{x}_0 is basic
               perform one (degenerate) pivot to make it nonbasic
13
14
          from the final slack form of L_{\text{aux}}, remove x_0 from the constraints and
               restore the original objective function of L, but replace each basic
               variable in this objective function by the right-hand side of its
               associated constraint
15
          return the modified final slack form
     else return "infeasible"
```

```
Test solution with N = \{1, 2, \dots, n\}, B = \{n + 1, n + 1\}
INITIALIZE-SIMPLEX (A, b, c)
                                                   2, \ldots, n+m, \overline{x}_i = b_i for i \in B, \overline{x}_i = 0 otherwise.
     let k be the index of the minimum b_k
                                  // is the initial basic solution feasible?
    if b_{\nu} > 0
          return (\{1, 2, ..., n\}, \{n + 1, n + 2, ..., n + m\}, A, b, c, 0)
     form L_{\text{any}} by adding -x_0 to the left-hand side of each constraint
          and setting the objective function to -x_0
                                                                                \ell will be the leaving variable so
     let (N, B, A, b, c, v) be the resulting slack form for L_{aux}
    l = n + k
                                                                            that x_{\ell} has the most negative value.
     //L_{\text{aux}} has n+1 nonbasic variables and m basic variables.
    (N, B, A, b, c, v) = PIVOT(N, B, A, b, c, v, l, 0)
                                                                 Pivot step with x_{\ell} leaving and x_0 entering.
    // The basic solution is now feasible for L_{\text{aux}}.
    iterate the while loop of lines 3–12 of SIMPLEX until an optimal solution
          to L_{\text{any}} is found
     if the optimal solution to L_{\text{aux}} sets \bar{x}_0 to 0
12
          if \bar{x}_0 is basic
               perform one (degenerate) pivot to make it nonbasic
13
14
          from the final slack form of L_{\text{aux}}, remove x_0 from the constraints and
               restore the original objective function of L, but replace each basic
               variable in this objective function by the right-hand side of its
               associated constraint
15
          return the modified final slack form
     else return "infeasible"
```

```
Test solution with N = \{1, 2, \dots, n\}, B = \{n + 1, n + 1\}
INITIALIZE-SIMPLEX (A, b, c)
                                                   \{2,\ldots,n+m\},\ \overline{x}_i=b_i\ \text{for}\ i\in B,\ \overline{x}_i=0\ \text{otherwise}.
     let k be the index of the minimum b_k
                                  // is the initial basic solution feasible?
    if b_{\nu} > 0
          return (\{1, 2, ..., n\}, \{n + 1, n + 2, ..., n + m\}, A, b, c, 0)
     form L_{\text{any}} by adding -x_0 to the left-hand side of each constraint
          and setting the objective function to -x_0
                                                                                \ell will be the leaving variable so
     let (N, B, A, b, c, v) be the resulting slack form for L_{aux}
    l = n + k
                                                                            that x_{\ell} has the most negative value.
     //L_{\text{aux}} has n+1 nonbasic variables and m basic variables.
    (N, B, A, b, c, v) = PIVOT(N, B, A, b, c, v, l, 0)
                                                                 Pivot step with x_{\ell} leaving and x_0 entering.
    // The basic solution is now feasible for L_{\text{aux}}.
    iterate the while loop of lines 3–12 of SIMPLEX until an optimal solution
          to L_{\text{any}} is found
                                                                             This pivot step does not change
     if the optimal solution to L_{\text{aux}} sets \bar{x}_0 to 0
12
          if \bar{x}_0 is basic
                                                                                 the value of any variable.
               perform one (degenerate) pivot to make it nonbasic
13
14
          from the final slack form of L_{\text{aux}}, remove x_0 from the constraints and
               restore the original objective function of L, but replace each basic
               variable in this objective function by the right-hand side of its
               associated constraint
15
          return the modified final slack form
     else return "infeasible"
```

maximise
$$2x_1 - x_2$$
 subject to $2x_1 - x_2 \le 2$ $x_1 - 5x_2 \le -4$ $x_1, x_2 \ge 0$

maximise subject to
$$2x_1 - x_2 \leq 2$$

$$2x_1 - 5x_2 \leq -4$$

$$x_1, x_2 \geq 0$$
Formulating the auxiliary linear program
$$- x_0$$
subject to
$$2x_1 - x_2 - x_0 \leq 2$$

$$x_1 - 5x_2 - x_0 \leq -4$$

$$x_1, x_2, x_0 \geq 0$$
Converting into slack form

$$z = x_3 = 2 - 2x_1 + x_2 + x_0$$

 $x_4 = -4 - x_1 + 5x_2 + x_0$
Pivot with x_0 entering and x_4 leaving

Example of Initialize-SIMPLEX (2/3)

Basic solution (4,0,0,6,0) is feasible!

$$\begin{array}{rclcrcl}
z & = & - & x_0 \\
x_2 & = & \frac{4}{5} & - & \frac{x_0}{5} & + & \frac{x_1}{5} & + & \frac{x_5}{5} \\
x_3 & = & \frac{14}{5} & + & \frac{4x_0}{5} & - & \frac{9x_1}{5} & + & \frac{x_5}{5}
\end{array}$$

$$z = -x_0$$

$$x_2 = \frac{4}{5} - \frac{x_0}{5} + \frac{x_1}{5} + \frac{x_4}{5}$$

$$x_3 = \frac{14}{5} + \frac{4x_0}{5} - \frac{9x_1}{5} + \frac{x_4}{5}$$

$$\int \text{Set } x_0 = 0 \text{ and express objective function}$$
by non-basic variables

$$\begin{array}{rcl}
z & = & - & x_0 \\
x_2 & = & \frac{4}{5} & - & \frac{x_0}{5} & + & \frac{x_1}{5} & + & \frac{x_2}{5} \\
x_3 & = & \frac{14}{5} & + & \frac{4x_0}{5} & - & \frac{9x_1}{5} & + & \frac{x_2}{5}
\end{array}$$

$$2x_1 - x_2 = 2x_1 - \left(\frac{4}{5} - \frac{x_0}{5} + \frac{x_1}{5} + \frac{x_4}{5}\right)$$

Set $x_0 = 0$ and express objective function by non-basic variables

$$z = -\frac{4}{5} + \frac{9x_1}{5} - \frac{x_4}{5}$$

$$x_2 = \frac{4}{5} + \frac{x_1}{5} + \frac{x_4}{5}$$

$$x_3 = \frac{14}{5} - \frac{9x_1}{5} + \frac{x_4}{5}$$

$$\begin{array}{rclcrcr}
z & = & - & x_0 \\
x_2 & = & \frac{4}{5} & - & \frac{x_0}{5} & + & \frac{x_1}{5} & + & \frac{x_2}{5} \\
x_3 & = & \frac{14}{5} & + & \frac{4x_0}{5} & - & \frac{9x_1}{5} & + & \frac{x_2}{5}
\end{array}$$

$$2x_1 - x_2 = 2x_1 - \left(\frac{4}{5} - \frac{x_0}{5} + \frac{x_1}{5} + \frac{x_4}{5}\right)$$

Set $x_0 = 0$ and express objective function by non-basic variables

$$z = -\frac{4}{5} + \frac{9x_1}{5} - \frac{x_2}{5}$$

$$x_2 = \frac{4}{5} + \frac{x_1}{5} + \frac{x_2}{5}$$

$$x_3 = \frac{14}{5} - \frac{9x_1}{5} + \frac{x_2}{5}$$

Basic solution $(0, \frac{4}{5}, \frac{14}{5}, 0)$, which is feasible!

$$\begin{array}{rclcrcr}
z & = & - & x_0 \\
x_2 & = & \frac{4}{5} & - & \frac{x_0}{5} & + & \frac{x_1}{5} & + & \frac{x_2}{5} \\
x_3 & = & \frac{14}{5} & + & \frac{4x_0}{5} & - & \frac{9x_1}{5} & + & \frac{x_2}{5}
\end{array}$$

Set
$$x_0 = 0$$
 and express objective function by non-basic variables
$$z = -\frac{4}{5} + \frac{9x_1}{x_1} - \frac{x_4}{x_4}$$

Basic solution $(0, \frac{4}{5}, \frac{14}{5}, 0)$, which is feasible!

Lemma 29.12

If a linear program L has no feasible solution, then INITIALIZE-SIMPLEX returns "infeasible". Otherwise, it returns a valid slack form for which the basic solution is feasible.

Fundamental Theorem of Linear Programming

Theorem 29.13 (Fundamental Theorem of Linear Programming)

Any linear program *L*, given in standard form, either

- 1. has an optimal solution with a finite objective value,
- 2. is infeasible, or
- 3. is unbounded.

If L is infeasible, SIMPLEX returns "infeasible". If L is unbounded, SIMPLEX returns "unbounded". Otherwise, SIMPLEX returns an optimal solution with a finite objective value.

Fundamental Theorem of Linear Programming

Theorem 29.13 (Fundamental Theorem of Linear Programming)

Any linear program *L*, given in standard form, either

- 1. has an optimal solution with a finite objective value,
- 2. is infeasible, or
- 3. is unbounded.

If L is infeasible, SIMPLEX returns "infeasible". If L is unbounded, SIMPLEX returns "unbounded". Otherwise, SIMPLEX returns an optimal solution with a finite objective value.

Proof requires the concept of duality, which is not covered in this course (for details see CLRS3, Chapter 29.4)

Workflow for Solving Linear Programs

Linear Programming and Simplex: Summary and Outlook Linear Programming —

extremely versatile tool for modelling problems of all kinds

Linear Programming —

- extremely versatile tool for modelling problems of all kinds
- basis of Integer Programming, to be discussed in later lectures

Linear Programming —

- extremely versatile tool for modelling problems of all kinds
- basis of Integer Programming, to be discussed in later lectures

- Simplex Algorithm -

• In practice: usually terminates in polynomial time, i.e., O(m+n)

Linear Programming -

- extremely versatile tool for modelling problems of all kinds
- basis of Integer Programming, to be discussed in later lectures

- Simplex Algorithm -

- In practice: usually terminates in polynomial time, i.e., O(m+n)
- In theory: even with anti-cycling may need exponential time

Linear Programming -

- extremely versatile tool for modelling problems of all kinds
- basis of Integer Programming, to be discussed in later lectures

Simplex Algorithm

- In practice: usually terminates in polynomial time, i.e., O(m+n)
- In theory: even with anti-cycling may need exponential time

Research Problem: Is there a pivoting rule which makes SIMPLEX a polynomial-time algorithm?

Linear Programming -

- extremely versatile tool for modelling problems of all kinds
- basis of Integer Programming, to be discussed in later lectures

- Simplex Algorithm -

- In practice: usually terminates in polynomial time, i.e., O(m+n)
- In theory: even with anti-cycling may need exponential time

Research Problem: Is there a pivoting rule which makes SIMPLEX a polynomial-time algorithm?

Polynomial-Time Algorithms

Linear Programming -

- extremely versatile tool for modelling problems of all kinds
- basis of Integer Programming, to be discussed in later lectures

- Simplex Algorithm -

- In practice: usually terminates in polynomial time, i.e., O(m+n)
- In theory: even with anti-cycling may need exponential time

x₂

Xз

Research Problem: Is there a pivoting rule which makes SIMPLEX a polynomial-time algorithm?

Polynomial-Time Algorithms -

 Interior-Point Methods: traverses the interior of the feasible set of solutions (not just vertices!)

Linear Programming -

- extremely versatile tool for modelling problems of all kinds
- basis of Integer Programming, to be discussed in later lectures

- Simplex Algorithm -

- In practice: usually terminates in polynomial time, i.e., O(m+n)
- In theory: even with anti-cycling may need exponential time

Research Problem: Is there a pivoting rule which makes SIMPLEX a polynomial-time algorithm?

Polynomial-Time Algorithms -

 Interior-Point Methods: traverses the interior of the feasible set of solutions (not just vertices!)

Test your Understanding

Which of the following statements are true?

- In each iteration of the Simplex algorithm, the objective function increases.
- 2. There exist linear programs that have exactly two optimal solutions.
- 3. There exist linear programs that have infinitely many optimal solutions.
- 4. The Simplex algorithm always runs in worst-case polynomial time.