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= linear programming is a powerful tool in optimisation

= inspired more sophisticated techniques such as quadratic optimisation,
convex optimisation, integer programming and semi-definite programming

= we will later use the connection between linear and integer programming
to tackle several problems (Vertex-Cover, Set-Cover, TSP, satisfiability)
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A Simple Example of a Linear Program
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What are Linear Programs?

Linear Programming (informal definition)

= maximise or minimise an objective, given limited resources
(competing constraint)

= constraints are specified as (in)equalities
= objective function and constraints are linear
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A Simple Example of a Linear Optimisation Problem

= Laptop
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A Simple Example of a Linear Optimisation Problem

= Laptop
= selling price to retailer: 1,000 GBP
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A Simple Example of a Linear Optimisation Problem

= Laptop
= selling price to retailer: 1,000 GBP
= glass: 4 units
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A Simple Example of a Linear Optimisation Problem

= Laptop w w

= selling price to retailer: 1,000 GBP
= glass: 4 units
= copper: 2 units
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A Simple Example of a Linear Optimisation Problem

u Laptop ﬁ ﬁ =

= selling price to retailer: 1,000 GBP
= glass: 4 units

= copper: 2 units

= rare-earth elements: 1 unit
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A Simple Example of a Linear Optimisation Problem

u Laptop ﬁ ﬁ =

= selling price to retailer: 1,000 GBP
= glass: 4 units

= copper: 2 units

= rare-earth elements: 1 unit

= Smartphone
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A Simple Example of a Linear Optimisation Problem

= Laptop @& =
= selling price to retailer: 1,000 GBP
= glass: 4 units
= copper: 2 units
= rare-earth elements: 1 unit

= Smartphone

= selling price to retailer: 1,000 GBP
= glass: 1 unit

Linear Programming © Thomas Sauerwald A Simple Example of a Linear Program



A Simple Example of a Linear Optimisation Problem

u Laptop ﬁ ﬂ =

= selling price to retailer: 1,000 GBP

= glass: 4 units

= copper: 2 units

= rare-earth elements: 1 unit ﬁ

= Smartphone
= selling price to retailer: 1,000 GBP
= glass: 1 unit
= copper: 1 unit
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A Simple Example of a Linear Optimisation Problem

u Laptop ﬁ ﬂ =

= selling price to retailer: 1,000 GBP
= glass: 4 units

= copper: 2 units

= rare-earth elements: 1 unit

# =m

= Smartphone
= selling price to retailer: 1,000 GBP
= glass: 1 unit
= copper: 1 unit
= rare-earth elements: 2 units
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A Simple Example of a Linear Optimisation Problem

u Laptop ﬁ ﬁ =

= selling price to retailer: 1,000 GBP
= glass: 4 units

= copper: 2 units

= rare-earth elements: 1 unit

# =m

= Smartphone
= selling price to retailer: 1,000 GBP
= glass: 1 unit
= copper: 1 unit
= rare-earth elements: 2 units

= You have a daily supply of:
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A Simple Example of a Linear Optimisation Problem

u Laptop ﬁ ﬂ =

= selling price to retailer: 1,000 GBP
= glass: 4 units

= copper: 2 units

= rare-earth elements: 1 unit

# =m

= Smartphone

= selling price to retailer: 1,000 GBP
= glass: 1 unit

= copper: 1 unit

= rare-earth elements: 2 units

= You have a daily supply of:
= glass: 20 units
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A Simple Example of a Linear Optimisation Problem

= Laptop @ @
= selling price to retailer: 1,000 GBP
= glass: 4 units
= copper: 2 units
= rare-earth elements: 1 unit

&
» Smartphone
= selling price to retailer: 1,000 GBP
= glass: 1 unit
= copper: 1 unit
= rare-earth elements: 2 units
= You have a daily supply of: R EEEEEEE R

= glass: 20 units
= copper: 10 units
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A Simple Example of a Linear Optimisation Problem

= Laptop &

= selling price to retailer: 1,000 GBP
= glass: 4 units

= copper: 2 units

= rare-earth elements: 1 unit

&
= Smartphone
= selling price to retailer: 1,000 GBP
= glass: 1 unit
= copper: 1 unit
= rare-earth elements: 2 units
= You have a daily supply of: R EEEEEEE R
= glass: 20 units
= copper: 10 units
= rare-earth elements: 14 units

= (and enough of everything else...)

Linear Programming © Thomas Sauerwald A Simple Example of a Linear Program 6



A Simple Example of a Linear Optimisation Problem

- Laptop ﬁ ﬁ

= selling price to retailer: 1,000 GBP
= glass: 4 units

= copper: 2 units

= rare-earth elements: 1 unit

&
= Smartphone
= selling price to retailer: 1,000 GBP
= glass: 1 unit
= copper: 1 unit
= rare-earth elements: 2 units
= You have a daily supply of: R EEEEEEE R
= glass: 20 units
= copper: 10 units
= rare-earth elements: 14 units

= (and enough of everything else...)

' How to maximise your daily earnings? '
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The Linear Program

maximise X1+ Xo
subject to
4x;  + X2
2x1  + X2
X1+ 2x
X1, X2

Linear Program for the Production Problem

IV AN IAIA

20
10
14
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The Linear Program

Linear Program for the Production Problem

maximise Xy + Xo
subject to
4x4 + Xo < 20
2X1 + X2 < 10
Xq + 2X < 14
X1, X2 > 0

—(The solution of this linear program yields the optimal production schedule. ]—
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The Linear Program

Linear Program for the Production Problem

maximise X1+ Xo
subject to
4x4 + X < 20
2X1 + X2 < 10
Xq + 2X < 14
X1, X2 > 0

—(The solution of this linear program yields the optimal production schedule. ]—

Formal Definition of Linear Program

Linear Programming © Thomas Sauerwald A Simple Example of a Linear Program



The Linear Program

maximise
subject to

X1+ X2
4x4 + Xo
2x1  + X2

X1+ 2x

X1, X2

Linear Program for the Production Problem

IV ININIA

20
10
14

0

—(The solution of this linear program yields the optimal production schedule. ]—

function f is

= Given ay, a, . .

Formal Definition of Linear Program

., an and a set of variables xq, X2, .. ., X, @ linear
defined by
f(X1,X2,...,Xn) = @1 X1 + @Xo + -+ - + @nXn.
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The Linear Program

Linear Program for the Production Problem

maximise X1+ Xo
subject to
4x4 + X < 20
2X1 + X2 < 10
Xq + 2X < 14
X1, X2 > 0

—(The solution of this linear program yields the optimal production schedule. ]—

Formal Definition of Linear Program

= Given ay, a, ..., ap and a set of variables xy, X2, ..., Xn, a linear
function f is defined by

f(X1,X2,...,Xn) = @1 X1 + @Xo + -+ - + @nXn.
= Linear Equality: f(x1,X2,...,Xn) = b
= Linear Inequality: f(x17x2, cXn)Zb
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The Linear Program

Linear Program for the Production Problem

maximise Xy + Xo
subject to
4x4 + Xo < 20
2X1 + X2 < 10
Xq + 2X < 14
X1, X2 > 0

—(The solution of this linear program yields the optimal production schedule. ]—

Formal Definition of Linear Program

= Given ay, a, ..., ap and a set of variables xy, X2, ..., Xn, a linear
function f is defined by

f(X1,Xe,...,Xn) = @1X1 + @X2 + - -+ + @nXn.

= Linear Equality: f(x1, Xz, ..., Xn) =
g v fxi, % 5 {Llnear Constraints ]

= Linear Inequality: f(x1, Xz, ..., Xn)
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The Linear Program

Linear Program for the Production Problem

maximise Xy + Xo
subject to
4x4 + Xo < 20
2X1 + X2 < 10
Xq + 2X < 14
X1, X2 > 0

—(The solution of this linear program yields the optimal production schedule. ]—

Formal Definition of Linear Program

= Given ay, a, ..., ap and a set of variables xy, X2, ..., Xn, a linear
function f is defined by

f(X1,Xe,...,Xn) = @1X1 + @X2 + - -+ + @nXn.

= Linear Equality: f(x1, Xz, ..., Xn) =
g v fxi, % 5 {Llnear Constraints ]

= Linear Inequality: f(x1, Xz, ..., Xn)

= Linear-Progamming Problem: elther minimise or maximise a linear
function subject to a set of linear constraints
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Finding the Optimal Production Schedule

maximise X1+ Xo
subject to
4xq + Xo < 20
2X1 + Xo < 10
Xy + 2Xx < 14
X1, X2 > 0
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Finding the Optimal Production Schedule

maximise X1+ Xo
subject to
4xq + Xo < 20
2X1 + Xo < 10
Xy + 2X> < 14
X1, X2 > 0
N

Any setting of x; and x, satisfying
all constraints is a feasible solution
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Finding the Optimal Production Schedule

maximise X1+ Xo
subject to
4 4+  x2 <
2y + X2 <
X1 + 2% <
X1, X2 >
4

Any setting of x; and x, satisfying
all constraints is a feasible solution
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Finding the Optimal Production Schedule

maximise X1+ Xo
subject to
4xq + Xo < 20
2X1 + Xo < 10
Xy + 2X> < 14
X1, X2 2 0
N

all constraints is a feasible solution

[ Any setting of x; and x, satisfying ]
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Finding the Optimal Production Schedule

maximise X1+ Xo
subject to
4xq + Xo < 20
2X1 + Xo < 10
Xy + 2Xx < 14
X1, X2 > 0

4
Any setting of x; and x, satisfying
all constraints is a feasible solution
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Finding the Optimal Production Schedule

maximise X1+ Xo
subject to
4xq + Xo < 20
2X1 + Xo < 10
Xy + 2X> < 14
X1, X2 2 0
N

all constraints is a feasible solution

[ Any setting of x; and x, satisfying ]

Linear Programming © Thomas Sauerwald A Simple Example of a Linear Program 8



Finding the Optimal Production Schedule

maximise X1+ Xo X1 >0
subject to
4xq + Xo < 20
2X1 + Xo < 10
Xy + 2X> < 14
X1, X2 > 0
N

all constraints is a feasible solution

[ Any setting of x; and x, satisfying ]
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Finding the Optimal Production Schedule

maximise X1+ Xo X1 >0
subject to
4xq + Xo < 20
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N

all constraints is a feasible solution

[ Any setting of x; and x, satisfying ]
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Finding the Optimal Production Schedule

maximise X1+ Xo x1 >0
subject to
4xq + Xo < 20
2X1 + Xo < 10
Xy + 2X2 < 14
X1, X2 > 0
N

all constraints is a feasible solution

[ Any setting of x; and x, satisfying ]
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Finding the Optimal Production Schedule

maximise X1+ Xo X1 >0
subject to
4xq + Xo < 20
2X1 + Xo < 10
Xy + 2Xx < 14
X1, X2 > 0

X1 + X2 = z as far up as possible.

[Graphical Procedure: Move the Iine]
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Finding the Optimal Production Schedule

maximise X1+ Xo X1 >0
subject to
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Xy + 2Xx < 14
X1, X2 > 0

Graphical Procedure: Move the line
X1 + X2 = z as far up as possible.
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Finding the Optimal Production Schedule

maximise X1+ X2 X" >0
subject to
4xq + Xo < 20
2X1 + Xo < 10
Xy + 2Xx < 14
X1, X2 > 0

X1 + X2 = z as far up as possible.

[Graphical Procedure: Move the Iine]
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Finding the Optimal Production Schedule

maximise X1+ Xo Xy >0k

subject to
4xq + Xo < 20
2X1 + Xo < 10
Xy + 2Xx < 14
X1, X2 > 0

Graphical Procedure: Move the line
X1 + X2 = z as far up as possible.
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Finding the Optimal Production Schedule

maximise X1+ Xo x>0

subject to
4xq + Xo < 20
2X1 + Xo < 10
Xy + 2Xx < 14
X1, X2 > 0

X1 + X2 = z as far up as possible.

[Graphical Procedure: Move the Iine]
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Finding the Optimal Production Schedule

maximise X1+ Xo x>0

subject to
4xq + Xo < 20
2X1 + Xo < 10
Xy + 2Xx < 14
X1, X2 > 0

X1 + X2 = z as far up as possible.

[Graphical Procedure: Move the Iine]
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Finding the Optimal Production Schedule

maximise X1+ Xo x1 >0
subject to
4xq + Xo < 20
2X1 + Xo < 10
Xy + 2Xx < 14
X1, X2 > 0

Graphical Procedure: Move the line
X1 + X2 = z as far up as possible.

Exercise: Which aspect did we ignore in the formulation of the
linear program?
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Finding the Optimal Production Schedule

maximise X1+ Xo X1 >0
subject to
4xq + Xo < 20
2X1 + Xo < 10
Xy + 2Xx < 14
X1, X2 > 0

X1 + X2 = z as far up as possible.

[Graphical Procedure: Move the Iine]

While the same approach also works for higher-dimensions, we

need to take a more systematic and algebraic procedure.
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Formulating Problems as Linear Programs
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Shortest Paths

Single-Pair Shortest Path Problem

= Given: directed graph G = (V, E) with
edge weights w : E — R, pair of
vertices s,t € V

Linear Programming © Thomas Sauerwald Formulating Problems as Linear Programs 10



Shortest Paths

Single-Pair Shortest Path Problem

= Given: directed graph G = (V, E) with
edge weights w : E — R, pair of
vertices s,t € V

= Goal: Find a path of minimum weight

fromsto tin G
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Shortest Paths

Single-Pair Shortest Path Problem

= Given: directed graph G = (V, E) with
edge weights w : E — R, pair of
vertices s,t € V

= Goal: Find a path of minimum weight

fromstotin G
N

I\ 1
[p: (o = s,v1,..., W = t)suchthat] ¢ f

w(p) = 2:;1 w(Vk_1, Vk) is minimised.
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Shortest Paths

Single-Pair Shortest Path Problem

= Given: directed graph G = (V, E) with
edge weights w : E — R, pair of
vertices s,t € V

= Goal: Find a path of minimum weight

fromstotin G
N

I\ 1
[p: (o = s,v1,..., W = t)suchthat] ¢ f

w(p) = 2:;1 w(Vk_1, Vk) is minimised.
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Shortest Paths

Single-Pair Shortest Path Problem

= Given: directed graph G = (V, E) with
edge weights w : E — R, pair of
vertices s,t € V

= Goal: Find a path of minimum weight

fromstotin G
N

I\ 1
[p: (o = s,v1,..., W = t)suchthat] ¢ f

w(p) = 2:;1 w(Vk_1, Vk) is minimised.

Shortest Paths as LP

subject to
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Shortest Paths

Single-Pair Shortest Path Problem

= Given: directed graph G = (V, E) with
edge weights w : E — R, pair of
vertices s,t € V

= Goal: Find a path of minimum weight

fromstotin G
N

1 X

1
[p = (w = sw,...,w = t)such that] ¢ f

w(p) = 2:;1 w(Vk_1, Vk) is minimised.

Shortest Paths as LP

subject to
d. + w(u,v) foreachedge (u,v)e€E,

0.

dv
ds

A
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Shortest Paths

Single-Pair Shortest Path Problem

= Given: directed graph G = (V, E) with
edge weights w : E — R, pair of
vertices s,t € V

= Goal: Find a path of minimum weight

fromstotin G
N

1N\ 1
p= (% =sw,...,v = t)such that ¢ f
w(p) = 2:;1 w(Vk—1, Vk) is minimised.

Shortest Paths as LP
maximise o]
subject to
d < d + w(uyv) foreachedge (u,v) € E,
d = 0.
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Shortest Paths

Single-Pair Shortest Path Problem

= Given: directed graph G = (V, E) with
edge weights w : E — R, pair of
vertices s,t € V

= Goal: Find a path of minimum weight
fromsto tin G

\N

1\ SRR
p= (% =sw,...,v = t)such that
w(p) = 2:;1 w(Vk_1, Vk) is minimised.

Shortest Paths as LP
maximise a;
subject to
d < d + w(uyv) foreachedge (u,v) € E,

0.

this is a maxim- ds

isation problem!
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Shortest Paths

Single-Pair Shortest Path Problem

= Given: directed graph G = (V, E) with
edge weights w : E — R, pair of
vertices s,t € V

= Goal: Find a path of minimum weight

fromstotin G
N

1 X

1
[p = (w = sw,...,w = t)such that] ¢ f

w(p) = Zf.; w(Vk_1, Vk) is minimised.

B )
Shortest Paths as LP _‘ Recall: When BELLMAN-FORD terminates,

maximise lo] all these inequalities are satisfied.
subject to =
d < d + w(uyv) foreachedge (u,v) € E,
= 0.

this is a maxim- ds

isation problem!
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Shortest Paths

Single-Pair Shortest Path Problem

= Given: directed graph G = (V, E) with
edge weights w : E — R, pair of
vertices s,t € V

= Goal: Find a path of minimum weight

fromstotin G
N

1 X

1
[p = (w = sw,...,w = t)such thatJ ¢ f

w(p) = K, w(vk_1, vi) is minimised.

<
Shortest Paths as LP _‘ Recall: When BELLMAN-FORD terminates,

maximise lo] all these inequalities are satisfied.
subject to =
a, d,. + w(u,v) foreachedge (u,v)e€E,

I IA

0.

ds

this is a maxim-
isation problem!

~
Solution d satisfies dy = miny. (u,v)ee{du + w(u, v)}]
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Maximum Flow

Maximum Flow Problem

= Given: directed graph G = (V, E) with edge capacities ¢ : E — R™
(recall c(u,v) = 0iif (u,v) & E), pair of vertices s,t € V
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Maximum Flow

Maximum Flow Problem

= Given: directed graph G = (V, E) with edge capacities ¢ : E — R™
(recall c(u,v) = 0iif (u,v) & E), pair of vertices s,t € V

0/10
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Maximum Flow

Maximum Flow Problem
= Given: directed graph G = (V, E) with edge capacities ¢ : E — R™
(recall c(u,v) = 0iif (u,v) & E), pair of vertices s,t € V

= Goal: Find a maximum flow f : V x V — R from s to t which
satisfies the capacity constraints and flow conservation

0/10
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Maximum Flow

Maximum Flow Problem
= Given: directed graph G = (V, E) with edge capacities ¢ : E — R™
(recall c(u,v) = 0iif (u,v) & E), pair of vertices s,t € V

= Goal: Find a maximum flow f : V x V — R from s to t which
satisfies the capacity constraints and flow conservation

@ If| = 19
O, ® ® ®
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Maximum Flow

Maximum Flow Problem

= Given: directed graph G = (V, E) with edge capacities ¢ : E — R™
(recall c(u,v) = 0iif (u,v) & E), pair of vertices s,t € V

= Goal: Find a maximum flow f : V x V — R from s to t which
satisfies the capacity constraints and flow conservation

@ If| = 19
O, ® ® ®

Maximum Flow as LP

maximise Devfv = eyt
subject to
fuw < c(u,v) foreachu,veV,
Svevfw = X,cyfw foreachue V\{st},
w2 0 foreachu,veV.
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Minimum-Cost Flow

[Extension of the Maximum Flow Problem]
Minimum-Cost-Flow Problem L
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Minimum-Cost Flow

[Extension of the Maximum Flow Problem]

Minimum-Cost-Flow Problem £

= Given: directed graph G = (V, E) with capacities ¢ : E — R, pair of
vertices s, t € V, cost function a: E — R, flow demand of d units
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Minimum-Cost Flow

[Extension of the Maximum Flow Problem]
Minimum-Cost-Flow Problem L

= Given: directed graph G = (V, E) with capacities ¢ : E — R, pair of
vertices s, t € V, cost function a: E — R, flow demand of d units

= Goal: Findaflow f: V x V — R from s to t with |f| = d while

minimising the total cost 3°, )¢ a(u, v)fu incurrred by the flow.
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Minimum-Cost Flow

[Extension of the Maximum Flow Problem]
Minimum-Cost-Flow Problem 74
= Given: directed graph G = (V, E) with capacities ¢ : E — R, pair of
vertices s, t € V, cost function a: E — R, flow demand of d units
= Goal: Findaflow f: V x V — R from s to t with |f| = d while
minimising the total cost 3°, )¢ a(u, v)fu incurrred by the flow.

Figure 29.3 (a) An example of a minimum-cost-flow problem. We denote the capacities by ¢ and
the costs by a. Vertex s is the source and vertex ¢ is the sink, and we wish to send 4 units of flow
from s to ¢. (b) A solution to the minimum-cost flow problem in which 4 units of flow are sent from s
to t. For each edge, the flow and capacity are written as flow/capacity.
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Minimum-Cost Flow

[Extension of the Maximum Flow Problem]
Minimum-Cost-Flow Problem L

= Given: directed graph G = (V, E) with capacities ¢ : E — R, pair of
vertices s, t € V, cost function a: E — R, flow demand of d units

= Goal: Findaflow f: V x V — R from s to t with |f| = d while
minimising the total cost 3°, )¢ a(u, v)fu incurrred by the flow.

[Optimal Solution with total cost:

S wyee U, Vi = (2:2)+(5-2)+(3-1)+(7-1)+(1-3) = 27

Figure 29.3

the costs by a. Vertex s is the source and vertex ¢ is the sink, and we wish to send 4 units of flow
from s to ¢. (b) A solution to the minimum-cost flow problem in which 4 units of flow are sent from s
to t. For each edge, the flow and capacity are written as flow/capacity.

(a) An example of a minimum-cost-flow problem. We denote the capacities by ¢ and
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Minimum Cost Flow as a LP

Minimum Cost Flow as LP

minimise D uwyee U, V)fu
subject to

fuv
ZvevaU - Zvevfu‘/
Evevfsv - ZvevaS

fuv

< c(u,v) foruvelV,

= 0 forue V\{s,t},
a,

> 0 foru,v e V.

Linear Programming © Thomas Sauerwald
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Minimum Cost Flow as a LP

Minimum Cost Flow as LP

minimise P wwyee &, V) fu
subject to
fw < c(u,v) foru,velV,
Sveviu =2 eyfw = 0 forue V\{s,t},
Evevfsv - ZVEVfVS = d,
fw > 0 foru,ve V.

Real power of Linear Programming comes
from the ability to solve new problems!

Linear Programming © Thomas Sauerwald Formulating Problems as Linear Programs 13
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Standard and Slack Forms

Standard Form

n
maximise E CiX;j
j=1

subject to

X >0

n
dapg <t fori=1,2,...
j=1

forj=1,2,...

Linear Programming © Thomas Sauerwald
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Standard and Slack Forms

Standard Form

n
maximise > X {Objective Function ]

=

subject to
n
dapg <t fori=1,2,....m
j=1

Xx; >0 forj=1,2,...,n

Linear Programming © Thomas Sauerwald Standard and Slack Forms



Standard and Slack Forms

Standard Form

j=1
subject to

)

n+ m constraints ]7

n
maximise > X {Objective Function ]

X >0

n
dapg <t fori=1,2,....m
=1

forj=1,2,...,n

Linear Programming © Thomas Sauerwald
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Standard and Slack Forms

Standard Form

n
maximise > X {Objective Function ]

=

subject to

)

n
Za,-,»x,-gb,» fori=1,2,....,m
n+ m constraints ]7 j=1

x>0 forj=1,2,...,n

N

LNon-Negativity Constraints J

Linear Programming © Thomas Sauerwald Standard and Slack Forms



Standard and Slack Forms

Standard Form

n
maximise > X {Objective Function ]

=

subject to

)

n
dapg <t fori=1,2,....m
n+ m constraints ]7 =

x>0 forj=1,2,...,n
N

LNon-Negativity Constraints J

Standard Form (Matrix-Vector-Notation)

maximise c'x {Inner product of two vectors ]
subject to

Ax<b {Matrix-vector product ]
x>0

Linear Programming © Thomas Sauerwald Standard and Slack Forms



Converting Linear Programs into Standard Form

Reasons for a LP not being in standard form:

2. There might be variables without nonnegativity constraints.
3. There might be equality constraints.

4. There might be inequality constraints (with > instead of <).

1. The objective might be a minimisation rather than maximisation.

Linear Programming © Thomas Sauerwald Standard and Slack Forms



Converting Linear Programs into Standard Form

Reasons for a LP not being in standard form:

2. There might be variables without nonnegativity constraints.
3. There might be equality constraints.
4. There might be inequality constraints (with > instead of <).

1. The objective might be a minimisation rather than maximisation.

Goal: Convert linear program into an equivalent program

which is in standard form
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Converting Linear Programs into Standard Form

Reasons for a LP not being in standard form:

1. The objective might be a minimisation rather than maximisation.
2. There might be variables without nonnegativity constraints.

3. There might be equality constraints.

4. There might be inequality constraints (with > instead of <).

Goal: Convert linear program into an equivalent program

which is in standard form

/1

[Equivalence: a correspondence (not necessarily a bijection) between solutions. ]
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Converting into Standard Form (1/5)

Reasons for a LP not being in standard form:
1. The objective might be a minimisation rather than maximisation.
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Converting into Standard Form (1/5)

Reasons for a LP not being in standard form:
1. The objective might be a minimisation rather than maximisation.

minimise —-2x1 + 3x

subject to
X1 =+ X2 = 7
X1 — 2X2 < 4
X1 > 0

Linear Programming © Thomas Sauerwald Standard and Slack Forms 17



Converting into Standard Form (1/5)

Reasons for a LP not being in standard form:
1. The objective might be a minimisation rather than maximisation.

minimise —-2x1 + 3x

subject to
X1 =+ X2 = 7
X1 — 2X2 < 4
X1 > 0

|
|
i Negate objective function
\/
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Converting into Standard Form (1/5)

Reasons for a LP not being in standard form:
1. The objective might be a minimisation rather than maximisation.

minimise —-2x1 + 3x

subject to
X1 =+ X2 = 7
X1 — 2X2 < 4
X1 > 0

|
|
i Negate objective function
\

maximise 2xy — 33X

subject to
Xq -+ Xo = 7
X1 — 2Xo < 4
X1 > 0

Linear Programming © Thomas Sauerwald Standard and Slack Forms 17



Converting into Standard Form (2/5)

Reasons for a LP not being in standard form:
2. There might be variables without nonnegativity constraints.
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Converting into Standard Form (2/5)

Reasons for a LP not being in standard form:
2. There might be variables without nonnegativity constraints.

maximise 2xy — 33X
subject to
X1+ X = 7
X1 — 2X2 < 4
X > 0]

Linear Programming © Thomas Sauerwald Standard and Slack Forms 18



Converting into Standard Form (2/5)

Reasons for a LP not being in standard form:
2. There might be variables without nonnegativity constraints.

maximise 2xy — 33X
subject to
X1+ X = 7
X1 — 2X2 < 4
X > 0]

!
! Replace x; by two non-negative
\}( variables x; and x5’

Linear Programming © Thomas Sauerwald Standard and Slack Forms 18



Converting into Standard Form (2/5)

Reasons for a LP not being in standard form:
2. There might be variables without nonnegativity constraints.

maximise 2xy — 33X
subject to
X1+ X = 7
X1 — 2X2 < 4
X > 0]

!
! Replace x; by two non-negative
\}( variables x; and x5’

maximise 2y — |3xs + 3xy

subject to

X1 + | X - X5
Xy — 2%+ 2x
X1, Xéa X2l

IVIIA I
[=JF NN
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Converting into Standard Form (3/5)

Reasons for a LP not being in standard form:
3. There might be equality constraints.
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Converting into Standard Form (3/5)

Reasons for a LP not being in standard form:
3. There might be equality constraints.

maximise 2y — 3x3 + 3x
subject to
X\ + X = X = 7
X1 — 2x3 + 2x5 < 4
X1, X5, X5 > 0

Linear Programming © Thomas Sauerwald Standard and Slack Forms



Converting into Standard Form (3/5)

Reasons for a LP not being in standard form:
3. There might be equality constraints.

maximise 2xy — 3x3 + 3x4
subject to
xi + g - g = 7]
X1 — 2x3 + 2x5 < 4
X1, Xé7 Xé/ > 0

i Replace each equality
\}’ by two inequalities.

Linear Programming © Thomas Sauerwald Standard and Slack Forms 19



Converting into Standard Form (3/5)

Reasons for a LP not being in standard form:
3. There might be equality constraints.

maximise
subject to

maximise
subject to

2y — 3x3 + 3x
X\ + X = X = 7
X — 2% + 2x < 4
X1, X5, X5 > 0
|
I Replace each equality
\}’ by two inequalities.
2y — 3x3 + 3x3
x + X - x5 < 7
X+ X - x4 > 7
X1 — 2 + 2x3 < 4
X1, Xé7 Xél 2 0
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Converting into Standard Form (4/5)

Reasons for a LP not being in standard form:
4. There might be inequality constraints (with > instead of <).

Linear Programming © Thomas Sauerwald Standard and Slack Forms
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Converting into Standard Form (4/5)

Reasons for a LP not being in standard form:

4. There might be inequality constraints (with > instead of <).

maximise 2x; — 3x3 + 3x)
subject to
Xt + X - x < 7
L+ % - 6 > 7]
X1 — 2x 4+ 2x5 < 4
> 0

Linear Programming © Thomas Sauerwald Standard and Slack Forms
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Converting into Standard Form (4/5)

Reasons for a LP not being in standard form:
4. There might be inequality constraints (with > instead of <).

maximise 2x; — 3x3 + 3x)
subject to
Xt + X - x < 7
L+ % - 6 > 7]
X1 — 2x 4+ 2x5 < 4
X1, X3, X3/ > 0

|
i Negate respective inequalities.
v
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Converting into Standard Form (4/5)

Reasons for a LP not being in standard form:
4. There might be inequality constraints (with > instead of <).

maximise 2x; — 3x3 + 3x)
subject to
Xt + X - x < 7
L+ % - 6 > 7]
X1 — 2x 4+ 2x5 < 4
X1, X3, X3/ > 0

|
i Negate respective inequalities.

\Z
maximise 2xy - 3x3 + 3x§
subject to
X+ x5 - Xy < 7
= - x% + x < -7
X1 — 2% + 2x5 < 4
X1, X5, X5 > 0

Linear Programming © Thomas Sauerwald Standard and Slack Forms 20



Converting into Standard Form (5/5)

maximise 2xy — 3x2 + 3x3
subject to
X1+ Xo — X3 <
—-X1 - Xo + X3 <
Xy — 2 + 2x3 <
X1, X2, X3 >

Linear Programming © Thomas Sauerwald Standard and Slack Forms
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Converting into Standard Form (5/5)

[Rename variable names (for consistency). ]

N
maximise 2x7 — 33X + 3x3
subject to
X1+ X2 — X3 < 7
-X1 - X + x3 < =7
X1 - 2X +  2x3 < 4
X1, X2, X3 Z 0
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Converting into Standard Form (5/5)

[Rename variable names (for consistency). ]

N
maximise 2xy — 3x2 + 3x3
subject to
XX + X2 — x3 < 7
—X1 - X + x3 < =7
X1 - 2X +  2x3 < 4
X1, X2, X3 > 0

It is always possible to convert a linear program into standard form.

Linear Programming © Thomas Sauerwald Standard and Slack Forms 21



Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints

except for the non-negativity constraints are equalities.
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Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints

except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more con-
venient to work with equality constraints.
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Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints

except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more con-
venient to work with equality constraints.

Introducing Slack Variables
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Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints

except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more con-
venient to work with equality constraints.

Introducing Slack Variables

= Let Z}; a;ix; < b; be an inequality constraint
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Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints

except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more con-
venient to work with equality constraints.

Introducing Slack Variables
= Let Z}; a;ix; < b; be an inequality constraint
= Introduce a slack variable s by
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Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints

except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more con-
venient to work with equality constraints.

Introducing Slack Variables
= Let Z}; a;ix; < b; be an inequality constraint
= Introduce a slack variable s by

n
s=b— Za,-,x,-
J=1

Linear Programming © Thomas Sauerwald Standard and Slack Forms
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Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints

except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more con-
venient to work with equality constraints.

Introducing Slack Variables
= Let Z}; a;ix; < b; be an inequality constraint
= Introduce a slack variable s by

n
s=b— Za,-,x,-
J=1

s> 0.
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Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints

except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more con-
venient to work with equality constraints.

Introducing Slack Variables
= Let Zj’.’:1 a;ix; < b; be an inequality constraint
= Introduce a slack variable s by

n
s=bi— ) ax
[ s measures the slack between } ' ; v

the two sides of the inequality.
>0.
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Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints

except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more con-
venient to work with equality constraints.

Introducing Slack Variables
= Let Zj’.’:1 a;ix; < b; be an inequality constraint
= Introduce a slack variable s by

n
s=bi— ) ax
[ s measures the slack between } ' ; v

the two sides of the inequality.
>0.

= Denote slack variable of the i-th inequality by X,

Linear Programming © Thomas Sauerwald Standard and Slack Forms



Converting Standard Form into Slack Form (2/3)

maximise 2xy — 33X + 3x3
subject to
X1+ Xo — X3 <
-Xi - X2 + X3 <
X4 — 2% + 2Xx3 <
X1, X2, X3 >

Linear Programming © Thomas Sauerwald Standard and Slack Forms
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Converting Standard Form into Slack Form (2/3)

maximise 2xy — 3x + 3x3
subject to
Xy + X - x3 < 7
-x1 - X + x3 < =7
X4 — 2% + 2Xx3 < 4
X1, X2, X3 > 0

|
|
i Introduce slack variables
|
v
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Converting Standard Form into Slack Form (2/3)

maximise 2xy — 3x + 3x3
subject to
Xy + X - x3 < 7
-x1 - X + x3 < =7
X4 — 2% + 2Xx3 < 4
X1, X2, X3 > 0

|
|
| Introduce slack variables
|
v

subject to
X4 = 7 — X1 - X2 +

Linear Programming © Thomas Sauerwald Standard and Slack Forms



Converting Standard Form into Slack Form (2/3)

maximise 2xy — 3x + 3x3
subject to
Xy + X - x3 < 7
Xy - Xo + x3 < =7
X4 — 2% + 2Xx3 < 4
X1, X2, X3 > 0
|
|
| Introduce slack variables
v
subject to
X4 7 - X1 - Xo +
X5 -7 + X1+ X -

Linear Programming © Thomas Sauerwald
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Converting Standard Form into Slack Form (2/3)

maximise 2x1  — 3x
subject to
X1+ X2
X1 - X2
X1 — 2X2
X1, X2, X3

|

¢
subject to

X4 = 7

X5 = -7

X6 = 4

+ 3x3

— X3 < 7

+ x3 < =7

+ 2x3 < 4
> 0

Introduce slack variables

— X1+ 2x

X3
X3
2X3
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Converting Standard Form into Slack Form (2/3)

maximise 2xy — 3x + 3x3
subject to
Xy + X - x3 < 7
-x1 - X + x3 < =7
X4 — 2% + 2Xx3 < 4
X1, X2, X3 > 0

|
|
i Introduce slack variables
|
v

subject to
X4 = 7 - X4 — Xo + X3
X5 = —7 4+ x1 + X — X
X6 = 4 - X4 + 2x - 2X3
X1, X2, X3, X4, X5, X > 0
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Converting Standard Form into Slack Form (2/3)

maximise 2x1 — 33X
subject to
X1+ X2
X1 - X2
X1 — 2Xo
X1, X2, X3

maximise 2X1
subject to
X4
X5
X6

X1, X2, X3, Xa, X5, Xe

|

v
3X2
7

-7
4

+

+

+ +

3X3

X3
X3
2X3

3X3

Xq
Xi
X1

vV + +

(AVAVARVANIVAN

Introduce slack variables

X2
X2
2X2

X3
X3
2X3

Linear Programming © Thomas Sauerwald
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Converting Standard Form into Slack Form (3/3)

maximise 2xy — 3x2 + 3x3
subject to
X4 = 7 - X1 — Xo + X3
X5 = -7 + X1+ X2 X3
X6 = 4 — X1 + 2Xo — 2X3
X1, X2, X3, X4, X5, X6 > 0

Linear Programming © Thomas Sauerwald Standard and Slack Forms 24



Converting Standard Form into Slack Form (3/3)

maximise 2x1 — 3x + 3x3
subject to
X4 = 7 - X1 = X2+ X3
X5 = -7 + X1+ X2 - X3
X6 = 4 — X1 + 2Xo — 2X3
> 0

X1, X2, X?? X4, X5, Xe

! Use variable z to denote objective function
\}’ and omit the nonnegativity constraints.
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Converting Standard Form into Slack Form (3/3)

maximise 2xy — 3x2 + 3x3
subject to
X4 = 7 — Xq
X5 = -7 + Xq
X6 = 4 — X1

X1, X2, X?? X4, X5, Xe

+
+
2

X2
X2
2X2

0

+

X3
X3
2X3

! Use variable z to denote objective function
\}’ and omit the nonnegativity constraints.

z 2X4 — 3% + 3x3 ‘
X4 = 7 - Xy - X2 + X3
Xs = -7 -+ Xy + Xo — X3
Xe = 4 — X1 =+ 2X2 — 2X3

Linear Programming © Thomas Sauerwald
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Converting Standard Form into Slack Form (3/3)

maximise 2xy — 3x2 + 3x3
subject to
X4 = 7 - X1 — Xo + X3
X5 = -7 + X1+ X2 — X3
X6 = 4 — X1 + 2Xo — 2X3
> 0

X1, X2, X?? X4, X5, Xe

! Use variable z to denote objective function
\}’ and omit the nonnegativity constraints.

z = 2Xq — 3Xxo + 3X3 ‘

Xs = 7 - X1 - X2  + X3

X5 = -7 + X1 + X - X3

Xe = 4 — X1 + 2Xo — 2X3
/1

[This is called slack form.]
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Basic and Non-Basic Variables

V4 =

X4 = 7 —
X5 = -7 +
X6 = 4 —

2X4 — 3x
Xq — Xo
X1+ X2
X1+ 2x

3X3
X3
X3
2X3

Linear Programming © Thomas Sauerwald
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Basic and Non-Basic Variables

z =
X4 = 7 —
X = -7 +
X6 = 4 —

7

[Basic Variables: B = {4,5,6} ]

2X4 — 3x
Xq — Xo
X1+ X2
X1+ 2x

3X3
X3
X3
2X3

Linear Programming © Thomas Sauerwald
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Basic and Non-Basic Variables

z = 2x1 — 33X + 3x3
X4 = 7 - X1 — X2 + X3
Xs = -7 + X1+ X2 - X3
X6 = 4 — Xq + 2X2 — 2X3

[Basic Variables: B = {4,5,6} ] [Non-Basic Variables: N = {1,2,3} J
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Basic and Non-Basic Variables

z = 2xy — 3x2 + 3x3
X4 = 7 - X1 = X2 + X3
Xxs = -7 + X1+ X2 - X3
X6 = 4 — X1 + 2Xo — 2X3

[Basic Variables: B = {4,5,6} ] [Non-Basic Variables: N = {1,2,3} ]

Slack Form (Formal Definition)

Slack form is given by a tuple (N, B, A, b, ¢, v) so that
z=v+> gx
jeN
Xj=b - ayx forieB,
jeN

and all variables are non-negative.
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Basic and Non-Basic Variables

z = 2xy — 3x2 + 3x3
X4 = 7 - X1 — Xo + X3
Xxs = -7 + X1+ X2 - X3
X6 = 4 — X1 + 2Xo — 2X3

[Basic Variables: B = {4,5,6} ] [Non-Basic Variables: N = {1,2,3} ]

Slack Form (Formal Definition)

Slack form is given by a tuple (N, B, A, b, ¢, v) so that
z=v+) cx
jeN
Xj=b - ayx forieB,

jeN

and all variables are non-negative. N
4[Variables/Coefficients on the right hand side are indexed by B and N. ]
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Slack Form (Example)

z = 28
X1 = 8
X2 = 4
x4 = 18

Linear Programming © Thomas Sauerwald
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Slack Form (Example)

z = 28 - % - )g’ —
x = 8 + B 4+ B -
X2 = 4 - % - 2:)3(5 +
x = 18 - 3 + B

Slack Form Notation

Linear Programming © Thomas Sauerwald Standard and Slack Forms
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Slack Form (Example)

z = 28
Xy = 8
Xo = 4
xs = 18

Slack Form Notation

*B={1,2,4}, N={3,5,6}

Linear Programming © Thomas Sauerwald
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Slack Form (Example)

x = 18 - 3 + B

Slack Form Notation

*B={1,2,4}, N={3,5,6}

a3 a5 aie -1/6 -1/6 1/3
A= a3 dos Ao | = 8/3 2/3 —1/3
asz a5 Aae 1/2 —1/2 0

Linear Programming © Thomas Sauerwald Standard and Slack Forms



Slack Form (Example)

z = 28
Xy = 8
X2 = 4
x4 = 18

Slack Form Notation

_8X3_2X5 X6
3 3 T 3
_ X3 X5
> T 2

*B={1,2,4}, N={3,5,6}

asz  ass

by
b= (b | =
b

a3 aiss
A=|axs ax

aie

aup

(

/6 —1/6 1/3
326) = (8/3 2/3 1/3)

12 —1/2 0

8
41,
18
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Slack Form (Example)

x4:18—);_3+)é5

Slack Form Notation

*B={1,2,4}, N={3,5,6}

a3 a5 e -1/6 -1/6 1/3
A= aoz dos Ao | = 8/3 2/3 *1/3
a3z Ad45 Qs 1/2 -1 /2 0

by 8 Cs —-1/6
b=|(b|=|4],c=|c]|=|-1/6
8)-() - (2)-(
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Slack Form (Example)

x4:18—);_3+)é5

Slack Form Notation

*B={1,2,4}, N={3,5,6}

a3 a5 e -1/6 -1/6 1/3
A= aoz dos Ao | = 8/3 2/3 *1/3
a3z Ad45 Qs 1/2 -1 /2 0

by 8 Cs —-1/6
b=|(b|=|4],c=|c]|=|-1/6
8)-() - (2)-(

= v =28
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Outline

Simplex Algorithm

Linear Programming © Thomas Sauerwald
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Simplex Algorithm: Introduction

Simplex Algorithm

= classical method for solving linear programs (Dantzig, 1947)
= usually fast in practice although worst-case runtime not polynomial
= jterative procedure somewhat similar to Gaussian elimination
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Simplex Algorithm: Introduction

Simplex Algorithm

= classical method for solving linear programs (Dantzig, 1947)
= usually fast in practice although worst-case runtime not polynomial
= jterative procedure somewhat similar to Gaussian elimination

Basic Idea:
* Each iteration corresponds to a “basic solution” of the slack form

= All non-basic variables are 0, and the basic variables are
determined from the equality constraints

= Each iteration converts one slack form into an equivalent one while
the objective value will not decrease

= Conversion (“pivoting”) is achieved by switching the roles of one
basic and one non-basic variable
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Simplex Algorithm: Introduction

Simplex Algorithm

= classical method for solving linear programs (Dantzig, 1947)
= usually fast in practice although worst-case runtime not polynomial
= jterative procedure somewhat similar to Gaussian elimination

Basic Idea:
* Each iteration corresponds to a “basic solution” of the slack form

= All non-basic variables are 0, and the basic variables are
determined from the equality constraints

= Each iteration converts one slack form into an equivalent one while
the objective value will not decrease < In that sense, it is a greedy algorithm.]

= Conversion (“pivoting”) is achieved by switching the roles of one J

basic and one non-basic variable
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Extended Example: Conversion into Slack Form

maximise 3xy + Xo +
subject to
X + X2+
21 + 2% +
4, + X2 +
X1, X2, X3

2X3

3X3
5X3
2X3

30
24
36

IV ININIA
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Extended Example: Conversion into Slack Form

maximise 3xy + Xo + 2Xx3
subject to
X1 + X + 3x < 30
2X4 + 22X + 5x3 < 24
4x + X2 + 2x3 < 36
X1, X2, X3 > 0

|
! . .
1 Conversion into slack form
|
Y

Linear Programming © Thomas Sauerwald Simplex Algorithm



Extended Example: Conversion into Slack Form

2X3

3X3
5X3
2X3

30
24
36

0

IV ININIA

! . .
1 Conversion into slack form

maximise 3xy + Xo +
subject to
X + X2+
2xy  + 2x2  +
4, + X2 +
X1, X2, X3
|
v
Z =
X4 = 30 —
X5 = 24 —
Xp = 36 —

3Xq

X1
2X1
44

+ Xo
— 2Xo
— Xo

—+

2X3
3X3
5X3
2X3
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Extended Example: Iteration 1

z =
X2 = 30 -—
x5 = 24 —
X = 36 —

3X1
X1
2X1

4X1

— 2X2

2X3
3X3
5X3

2X3
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Extended Example: Iteration 1

z =
xs = 30
Xs = 24
Xs = 36

3X1
X1
2X1

4X1

— 2X2

— Xo

[Basic solution: (X, %, ..., X5) = (0,0,0,30, 24, 36) j

2X3
3X3
5X3

2X3
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Extended Example: Iteration

1

z =
xs = 30
Xs = 24
X6 = 36

3X1
X1
2X1

4X1

— 2X2

— Xo

[Basic solution: (X, %, ..., X5) = (0,0,0,30, 24, 36) ]

/|
(This basic solution is feasible]

2X3
3X3
5X3

2X3

Linear Programming © Thomas Sauerwald

Simplex Algorithm

30



Extended Example: Iteration 1

z =
xs = 30
Xs = 24
Xs = 36

3X1
X1
2X1

4X1

— 2X2

— Xo

[Basic solution: (X, %, ..., X5) = (0,0,0,30, 24, 36) ]

/Il

[This basic solution is feasible] [Objective value is o.j

2X3
3X3
5X3

2X3
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Extended Example: Iteration 1

[Increasing the value of x; would increase the objective value.]

v
z = 3x1  + X2 + 2X3
X4 = 30 — X1 — X2 — 3X3
Xs = 24 — 2x; — 2X2 — b5x3
X6 = 36 — 4 x4 — X2 — 2X3
i
[Basic solution: (X, %, ..., %) = (0,0,0,30, 24, 36) ]

/1 \
[This basic solution is feasible] [Objective value is o.j
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Extended Example: Iteration 1

[Increasing the value of x; would increase the objective value.]

v
z = 3x;  + X2 + 2x3
xxs = 30 -— Xy - Xo — 3Xx3
Xs = 24 — 2x; — 2X2 — b5x3
X = 36 — 4x; - Xo — 2X3

N
[The third constraint is the tightest and limits how much we can increase x; j
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Extended Example: Iteration 1

[Increasing the value of x; would increase the objective value.]

v
z = 3x;  + Xo + 2X3
X4 = 30 — X1 — Xo — 3X3
Xs = 24 — 2x; — 2X2 — b5x3
X6 = 36 — 4 x4 — X2 — 2X3
N
[The third constraint is the tightest and limits how much we can increase x; j
N

Switch roles of x; and xg:
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Extended Example: Iteration 1

[Increasing the value of x; would increase the objective value.]

v
z = 3x;  + Xo + 2X3
X4 = 30 — X1 — Xo — 3X3
Xs = 24 — 2x; — 2X2 — b5x3
X6 = 36 — 4 x4 — X2 — 2X3
N
[The third constraint is the tightest and limits how much we can increase x; j

N

Switch roles of x; and xg:
= Solving for x; yields:

_g_Xe X3 _ Xe
"=9-F -5 "7
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Extended Example: Iteration 1

[Increasing the value of x; would increase the objective value.]

v
z = 3x;  + Xo + 2X3
X4 = 30 — X1 — Xo — 3X3
Xs = 24 — 2x; — 2X2 — b5x3
X6 = 36 — 4 x4 — X2 — 2X3
N
[The third constraint is the tightest and limits how much we can increase x; j

N

Switch roles of x; and xg:
= Solving for x; yields:

_g_Xe X3 _ Xe
"=9-F -5 "7

= Substitute this into x; in the other three equations
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Extended Example: Iteration 2

z = 27 +
Xy = 9 -
X2 = 21 -
Xs = 6 -

4x3
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Extended Example: Iteration 2

z:27+%+% X

x = 21 - 3% _ 5% %

X5:67%74X3+%
N

[Basic solution: (X1, Xz,...,Xs) = (9,0,0,21,6,0) with objective value 27j
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Extended Example: Iteration 2

[Increasing the value of x3 would increase the objective value.]

N
z = 27 + 2 + §,%
x4=21—%_%+%
X5:67%74X3+%
N

[Basic solution: (X1, Xz,...,Xs) = (9,0,0,21,6,0) with objective value 27]
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Extended Example: Iteration 2

[Increasing the value of x3 would increase the objective value.]

N
z:27+%+§,%
x4=21_%_%+%
X5:67%74X3+%

N
[The third constraint is the tightest and limits how much we can increase xs.j
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Extended Example: Iteration 2

[Increasing the value of x3 would increase the objective value.]

N
- Xg X3 _  3X
z = 27 + 4 t >
_ _ X2 _ X3 _ X
o= 9 4 2 4
= _ 3 _ 5 X
X = 21 4 >t 7
s = 6 - % - 4+ %R
™N
[The third constraint is the tightest and limits how much we can increase xs.j
\
( N )
Switch roles of x; and xs:
| J
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Extended Example: Iteration 2

[Increasing the value of x3 would increase the objective value.]

N
- Xg X3 _  3X
z = 27 + 4 t >
_ _ X2 _ X3 _ X
o= 9 4 2 4
- _ 3 _ 5 X
X = 21 4 >t 7
_ _ 3 _ Xe
Xs = 6 2 4x3 + >
™N
[The third constraint is the tightest and limits how much we can increase xs.j
\
( N )
Switch roles of x; and xs:
= Solving for x3 yields:
o3 3 X% X
278 4 8
| J
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Extended Example: Iteration 2

[Increasing the value of x3 would increase the objective value.]

N
z =27 + 2 + 5 - 3%
x = 21 - 3% _ 5% %
X5 = 67%74X3+ 5
N
[The third constraint is the tightest and limits how much we can increase xs.j

\

(Switch roles of x; and xs:
= Solving for x3 yields:

~

3 B X X
=278 a4 &

= Substitute this into x3 in the other three equations
\§
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Extended Example: Iteration 3

V4 = =4 +
X1 = 3473 —
X3 = % —
X4 = EiTQ +

o1 =
3 ool c»\g;

-
o2
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Extended Example: Iteration 3

111 Xo Xxs _ 11X

z z T 16 8 16
_ 3838 _ x Xs _ 5%

o=y 16 T 8 16
_ 3 3% X X6

X = 2 8 g T 8
_ 69 3x Sxs  _ Xe

X« = 7 t+ Fg t 73 16

N
[Basic solution: (X1, %z,...,%s) = (2,0, 3, %,0,0) with objective value 1} = 27.75]
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Extended Example: Iteration 3

[Increasing the value of x, would increase the objective value.]

N

[Basic solution: (X1, %z,...,%s) = (2,0, 3, %,0,0) with objective value 1} = 27.75]
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Extended Example: Iteration 3

[Increasing the value of x, would increase the objective value.]

N

N
[The second constraint is the tightest and limits how much we can increase xz.j
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Extended Example: Iteration 3

[Increasing the value of x, would increase the objective value.]

N
x1=%—%+%_%

N

[The second constraint is the tightest and limits how much we can increase xz.j
[\

P
Switch roles of x> and x3:

-

~
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Extended Example: Iteration 3

[Increasing the value of x, would increase the objective value.]

N

N

[The second constraint is the tightest and limits how much we can increase xz.j
[\

P
Switch roles of x» and xs:
= Solving for x; yields:

-

2Xs5 X6

3 T3

~
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Extended Example: Iteration 3

[Increasing the value of x, would increase the objective value.]

N

N
[The second constraint is the tightest and limits how much we can increase xz.j
[\

e 1
Switch roles of x> and x3:

= Solving for x; yields:

8X3 2Xs X6
f— 4 _—— — — —_—
xe 3 3 3

= Substitute this into x» in the other three equations
-
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Extended Example: Iteration 4

z = 28 -
Xy = 8 +
X2 = 4 -
xXs = 18 -—

X3 X
6 6
X3 X5
6 +
8 _  2X%
3 3
X3 X5
> t %
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Extended Example: Iteration 4

2:287%7%7%(5
x = 8 + B + B - %
x = 18 - 3 + 3

N

[Basic solution: (x1,X2,...,Xs) = (8,4,0, 18,0, 0) with objective value 28 J
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Extended Example: Iteration 4

[AII coefficients are negative, and hence this basic solution is optimal!]

N
i = 8 + B + % %
x2:4—%—%+%
x = 18 - 3 + 3

[Basic solution: (x1,X2,...,Xs) = (8,4,0, 18,0, 0) with objective value 28 ]

Linear Programming © Thomas Sauerwald Simplex Algorithm

30



Extended Example: Visualization of SIMPLEX

X3
X2

(0,12,0)

(0,0,4.8) @
e (8,4,0)
(8.25,0,1.5) @
X4
(9,0,0)
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Extended Example: Visualization of SIMPLEX

X3
X2
(0,12,0)
12
(0,0,4.8) @
9.6
(8.25,0,1.5) @
27.75

(9,0,0)
27

®(8,4,0)
8
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Extended Example: Visualization of SIMPLEX

X3
X2
(0,12,0)
12
(0,0,4.8) @
9.6
(8.25,0,1.5) @
27.75

(9,0,0)
27

e (8,4,0)
8
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Extended Example: Visualization of SIMPLEX

X3
X2
(0,12,0)
12
(0,0,4.8) @
9.6
(0,0; ®(8,4,0)
0 (8.25,0,1.5) @ 28
27.75
X4
(0.0.0)
27
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Extended Example: Visualization of SIMPLEX

X3
X2
(0,12,0)
12
(0,0,4.8) @
9.6
(0,0; ®(8,4,0)
0 (8.25,0,1.5) @ 28
27.75
X1
0.0.0)
27

Exercise: How many basic solutions (including non-feasible
ones) are there?
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Extended Example: Alternative Runs (1/2)

z =
X4 = 30
X5 = 24
Xs = 36

3x1

X1
2X4
4x4

X2 +
X2 —
2Xo —

Xo —

2X3
3x3
5Xx3

2X3

Linear Programming © Thomas Sauerwald

Simplex Algorithm

32



Extended Example: Alternative Runs (1/2)

z =
X4 = 30
X5 = 24
Xs = 36

3xq
X1
2X4

4X1
!

+

X2 +
X2 —
2Xo —

Xo —

2X3
3x3
5Xx3

2X3

} Switch roles of x, and xs

A\

Linear Programming © Thomas Sauerwald

Simplex Algorithm

32



Extended Example:

Alternative Runs (1/2)

X4
X5

Xe

X2

X4

Xe

= 30
= 24
= 36

= 12
= 18
= 24

31+ X2 4+ 2x3
X4 — X2 — 3x3
2X4 — 2Xo — 5Xx3
4x4 — X2 — 2x3
i Switch roles of x, and xs
\4

3 o+ B3 o+ %
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Extended Example:

Alternative Runs (1/2)

X4
X5

Xe

X2

X4

Xe

= 30
= 24
= 36

= 12
= 18
= 24

31+ X2
X — X2
2X4 — 2Xo
4x4 — Xo
i Switch roles of
\4
2X1 — %
e - %
3x1  + %

+  2x3
— 3x3
— 5Xx3
— 2X3
X2 and Xs
_ X5
2
_ X5
2
X5
T2
X5
T2

|
} Switch roles of x; and xg

A\
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Extended Example: Alternative Runs (1/2)

Xa
X5

Xe

X2

Xa

Xe

X1

X2

X4

30
24
36

12
18
24

28

31+ X2 4+ 2x3
X4 — Xo — 3x3
2X4 — 2Xo — 5X3
4x4 — Xo — 2X3
|
} Switch roles of x, and xs
\4
_ X3 _ X5
2x 2 3
5x3 X5
- 2 T 7
_ X3 X5
x 2 T2
X3 X5
?X1 + 5 + b
} Switch roles of x; and xg
\4
X3 _ X _ 2%
6 6 3
X3 X5 _ X6
T % 3
8 2% X6
3 3 T3
X3 X5
2 t 2
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Extended Example: Alternative Runs (2/2)

z =
Xq = 30
Xs = 24
Xs = 36

3x1

X1
2X1
4x4

X2 +
Xo —
2Xo —

Xo —

2X3
3x3
5x3

2X3
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Extended Example: Alternative Runs (2/2)

z =
Xq = 30
Xs = 24
Xs = 36

3xy  +
Xy —
2X1 —

4x4 —

X2 +
Xo —
2Xo —

Xo —

2X3
3x3
5x3

2X3

|
! Switch roles of x3 and xs

Linear Programming © Thomas Sauerwald

Simplex Algorithm

33



Extended Example:

Alternative Runs (2/2)

X4
X5

Xe

X4

X3

Xe

= 30
= 24

|
.
R of ol ol

3x1

X1
2X1
4x4

+

X2
X2
2Xo

X2

+

2X3
3x3
5x3

2X3

|
! Switch roles of x3 and xs

11x4

ol m‘
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Extended Example: Alternative Runs (2/2)

z =

X4 = 30
X5 = 24
X6 = 36
PR
W = 1
x5 - 2

Switch roles of x; and Xg__ -
-

3x1

X1
2X1
4x4

+

X2
X2
2Xo

X2

+

2X3
3x3
5x3

2X3

|
! Switch roles of x3 and xs

11x4

ol m‘
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X1

X3

X4

Extended Example: Alternative Runs (2/2)

z =
X4 = 30
X5 = 24
X6 = 36
: = 4
N = B8
6w = &
Switch roles of x; and x5 _ - -—~
-
_ 1 X, Xs
= =2z *t % - 7 -
_ 33 X; Xe
= % - % t ¥ -
_ 3 3x: Xs
= 3 - % - 7 f
_ 69 3x 5x
= 4t W% *t % -

3x1

X1
2X1
4x4

+

X2
X2
2Xo

X2

2X3
3x3
5x3

2X3

|
! Switch roles of x3 and xs

11x4

ol m‘
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X1

X3

X4

Extended Example: Alternative Runs (2/2)

z =
X4 = 30
X5 = 24
X6 = 36
: = 4
N = B8
6w = &
Switch roles of x; and x5 _ - -—~
-
_ 1 X, Xs
= =2z *t % - 7 -
_ 33 X; Xe
= % - % t ¥ -
_ 3 3x: Xs
= 3 - % - 7 f
_ 69 3x 5x
= 4t W% *t % -

3x1

X1
2X1
4x4

+

X2
X2
2Xo

X2

2X3
3x3
5x3

2X3

|
! Switch roles of x3 and xs

11x4
5
X1

5

~~~__ Switch roles of x; and x3

X
5
X
5
2%,

X2
5

T

+

2x5

3xs
5
X5

2X3
5
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X1

X3

X4

Extended Example: Alternative Runs (2/2)

z =
X4 = 30
X5 = 24
X6 = 36
: = 4
N = B8
6w = &
Switch roles of x; and x5 _ - -—~
-
_ 1 X, Xs
= =2z *t % - 7 -
_ 33 X; Xe
= % - % t ¥ -
_ 3 3x: Xs
= 3 - % - 7 f
_ 69 3x 5x
= 4t W% *t % -

3x1

X1
2X1
4x4

+

Xo + 2X3

X2 - 3X3
2Xo — 5x3
Xo — 2X3

|
! Switch roles of x3 and xs

11

X1
5
X1

5

X1

X2

X4

X _ 2%

5

Xp 3x5

5 + 75

2% _ X5

Xo 2X3

T T 5
~ - _ Switch roles of X, and x3

N
_ _ X3 _ X5
= 28 % %
_ X3 X5
= 8 + ¥ + %
— _ 8 2%
= ¢ 3 3
_ _ X3 X5
= 18 > + >
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The Pivot Step Formally

PIVOT(N, B, A,b,c,v,l,e)

1 // Compute the coefficients of the equation for new basic variable x,.
let A be a new m x n matrix
be = bl/ale
for each j € N — {e}

Zie/' = al/'/ale

ael = 1/ale
// Compute the coefficients of the remaining constraints.
for eachi € B — {l}
9 bi = b; — azeb,

W N

[~ IR R RO NN

10 for each j € N — {e}
11 &,-,- = a[/- —a;e&ej
12 Qi1 = —Qjeder

13 // Compute the objective function.

14 9 =v+ch,

15 foreachj eN 7{e,

16 ¢ —c,—ceae,

17 51 = —C ael

18  // Compute new sets of basic and nonbasic variables.
19 N=N—{euil}

20 B=B-{l}U{e}

21 return (1\75@323)
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The Pivot Step Formally

PIVOT(N, B, A,b,c,v,l,e)

1

[V R SRS E ]

[~ BEN o)

11
12
13
14
15
16
17
18
19
20
21

// Compute the coefficients of the equation for new basic variable x,.
let A be a new m X n matrix

be = by/ase — -
for each j € N — {e} Rewrite “tight” equation

Qo = aij/a. for enterring variable Xe.
Ziel = 1/ale

// Compute the coefficients of the remaining constraints.
for eachi € B — {l}
bi = b; — azeb,
for each j € N — {e}
dij = Aij — AjeQy;

ail = _uieael
// Compute the objective function.
D =v+ceh,

foreachj eN 7{6;
¢ = ¢ -c ol
Cc] = —C, ael
// Compute new sets of basic and nonbasic variables.
N=N-—{euil}
B=B—{l}U{e}
return (1\7, B.Abe, D)
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The Pivot Step Formally

PIVOT(N, B, A,b,c,v,l,e)

1

[V R SRS E ]

[~ BEN o)

11
12
13
14
15
16
17
18
19
20
21

// Compute the coefficients of the equation for new basic variable x,.
let A be a new m X n matrix

be = by/ase — -
for each j € N — {e} Rewrite “tight” equation

dej = aj;/ase for enterring variable Xe.
Ziel = 1/ale

// Compute the coefficients of the remaining constraints.
for eachi € B — {l}

b = b —aicb. Substituting xe into

for cach j € N — e} other equations.
al/ - a1/ aieaej

ll = _ateael

// Compute the objective function.
D= v+ ceb,
foreachj enN 7{6;

¢ = ¢ -c ol
E] = —C ael
// Compute new sets of basic and nonbasic variables.
N=N-—{euil}
B=B—{l}U{e}
return (N, B, A, b.¢, D)

Linear Programming © Thomas Sauerwald Simplex Algorithm

34



The Pivot Step Formally

PIVOT(N, B, A,b,c,v,l,e)

1

[V R SRS E ]

[~ BEN o)

11
12
13
14
15
16
17
18
19
20
21

// Compute the coefficients of the equation for new basic variable x,.

let A be anew m x n matrix
= bi/aj.

for eachj e N —{e}
ae/' = al//ale

el = ]/ale

Rewrite “tight” equation

for enterring variable xe.

// Compute the coefficients of the remaining constraints.

for eachi € B — {l}
bi = b; — azeb,
for each j € N — {e}
a; = aij = Aielyj
ll = _ateael

// Compute the objective function.

D = v+ c.h,
foreachj eNf{e,
~ ¢ =6 =ce dej
Ccp = —C ael

Substituting xe into
other equations.

Substituting xe into
objective function.

// Compute new sets of basic and nonbasic variables.

N=N-—{euil}
B=B—{l}U{e}
return (I\A/,E.Af.h,?r,ﬁ)
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The Pivot Step Formally

PIvOT(N, B, A,b,c,v,l,e)

1

W N

[V N

[~ BEN o)

11
12
13
14
15
16
17
18
19
20
21

// Compute the coefficients of the equation for new basic variable x,.
let A be a new m X n matrix

A = bi/as. X - )
for each j € N — {e} Rewrite “tight” equation

Q. = ajj/a. for enterring variable xe.
Ziel = ]/ale

// Compute the coefficients of the remaining constraints.
for eachi € B — {l}
bi = b —ai.b, Substituting xe into

for cach j € N — e} other equations.
a1/ - a1/ a[eaej

ll = _ateael
// Compute the objective function.
D = v+ c.h, . 7
for cach j € N — {e} Substituting xe into
&) = ¢j = celle; objective function.
El = —C ael
// Compute new sets of basic and nonbasic variables.
N =N-{euil} Update non-basic
B =B—{lj}U{e} and basic variables

return ([\A/,E.Af.}?,?’,ﬁ)
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The Pivot Step Formally

PIvOT(N, B, A,b,c,v,l,e)

1

W N

[V N

[~ BEN o)

11
12
13
14
15
16
17
18
19
20
21

// Compute the coefficients of the equation for new basic variable x,.
let A be anew m x n matrix
= bi/ai. o N .
for eachj € N —{e} ( Need that g # 0! Rewrite “tight” equation
Q. = ajj/a. = for enterring variable xe.
Ziel = ]/ale
// Compute the coefficients of the remaining constraints.
for eachi € B —{/}

b = b —aicb. Substituting xe into

for cach j € N — e} other equations.
a1/ - a1/ a[eaej

ll = _aleael
// Compute the objective function.
D =v+ch,
for cach j € N — {e} Substituting xe into
~ ¢ = ¢ -c elej objective function.
cp = —¢C ael
// Compute new sets of basic and nonbasic variables.
12/ = N—{e}U{l} Update non-basic
B =B—{lj}U{e} and basic variables

return ([\A/,E.Af.}?,?’,ﬁ)
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Effect of the Pivot Step (extra material, non-examinable)

Lemma 29.1

Consider a call to PIVOT(N, B, A, b, c, v, I, e) in which ae # 0. Let the
values returned from the call be (N, B, A, b, ¢, V), and let X denote the
basic solution after the call. Then
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Effect of the Pivot Step (extra material, non-examinable)

Lemma 29.1

Consider a call to PIVOT(N, B, A, b, c, v, I, e) in which ae # 0. Let the
values returned from the call be (N, B, A, b, ¢, V), and let X denote the
basic solution after the call. Then

1. X, =0foreachj € N.
2. Xe = b//a/e.
3. X; = by — ajeb, for each i € B\ {e}.
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Effect of the Pivot Step (extra material, non-examinable)

Lemma 29.1

Consider a call to PIVOT(N, B, A, b, c, v, I, e) in which ae # 0. Let the
values returned from the call be (N, B, A, b, ¢, V), and let X denote the
basic solution after the call. Then

1. X, =0foreachj € N.
2. Xe = b//a/e.
3. X; = by — ajeb, for each i € B\ {e}.

Proof:
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Effect of the Pivot Step (extra material, non-examinable)

Lemma 29.1

Consider a call to PIVOT(N, B, A, b, c, v, I, e) in which ae # 0. Let the

values returned from the call be (N, B,A b,¢, V), and let X denote the
basic solution after the call. Then

1. X;=0foreachj e N.
2. Xe = b//a/e.

3. X; = by — ajeb, for each i € B\ {e}.

Proof:

1. holds since the basic solution always sets all non-basic variables to zero.
2. When we set each non-basic variable to 0 in a constraint

Xi = bi — E ajjX;,
jenN

we have x; = b; for each i € B. Hence Xe = be = b/ aje.

3. After substituting into the other constraints, we have

Xi = bj = bj — ajebe.
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Effect of the Pivot Step (extra material, non-examinable)

Lemma 29.1

Consider a call to PIVOT(N, B, A, b, c, v, I, e) in which ae # 0. Let the

values returned from the call be (N, B,A b,¢, V), and let X denote the
basic solution after the call. Then

1. X;=0foreachj e N.
2. Xe = b//a/e.

3. X; = by — ajeb, for each i € B\ {e}.

Proof:

1. holds since the basic solution always sets all non-basic variables to zero.
2. When we set each non-basic variable to 0 in a constraint

Xi = bi — E ajjX;,
jenN

we have x; = b; for each i € B. Hence Xe = be = b/ aje.

3. After substituting into the other constraints, we have

Xi = B,‘ = b,’ — a,—eBe. O
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Formalizing the Simplex Algorithm: Questions

Questions:
= How do we determine whether a linear program is feasible?

= What do we do if the linear program is feasible, but the initial basic
solution is not feasible?

* How do we determine whether a linear program is unbounded?
= How do we choose the entering and leaving variables?
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Formalizing the Simplex Algorithm: Questions

Questions:
= How do we determine whether a linear program is feasible?

= What do we do if the linear program is feasible, but the initial basic
solution is not feasible?

* How do we determine whether a linear program is unbounded?
= How do we choose the entering and leaving variables?

[Example before was a particularly nice one! ]
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The formal procedure SIMPLEX

SIMPLEX (A, b, ¢)

(N,B,A,b,c,v) = INITIALIZE-SIMPLEX (4, b, ¢)
let A be a new vector of length m
while some index j € N hasc; >0
choose an index e € N for which ¢, > 0
for each index i € B
ifa;, >0
A; = bi/ai.
else A; = o0
choose an index / € B that minimizes A;
if A; ==o00
return “unbounded”
else (N, B, A,b,c,v) = PIVOT(N, B, A,b,c,v,l,e)
fori = 1ton

ifi € B
X,‘ = b,‘
else x;, =0
return (X, X5,...,X,)
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The formal procedure SIMPLEX

SIMPLEX (A, b, ¢)

let A be a new vector of length m

Returns a slack form with a
(N, B, A,b,c,v) = INITIALIZE-SIMPLEX (4., ¢) & feasible basic solution (if it exists)

]

while some index j € N hasc; >0
choose an index e € N for which ¢, > 0
for each index i € B
ifa;, >0
A; = bi/ai.
else A; = o0
choose an index / € B that minimizes A;
if A; ==o00
return “unbounded”
else (N, B, A,b,c,v) = PIVOT(N, B, A,b,c,v,l,e)
fori = 1ton

ifi € B
X,‘ = b,‘
else x;, =0
return (X, X5,...,X,)
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The formal procedure SIMPLEX

SIMPLEX (A, b, ¢)

Returns a slack form with a
(N, B, A,b,c,v) = INITIALIZE-SIMPLEX (4., ¢) & feasible basic solution (if it exists)

, while some index j € N has ;>0

choose an index e € N for which ¢, > 0
for each index i € B

ifa;, >0

A; = bi/ai.

else A; = o0
choose an index / € B that minimizes A;
if A; ==o00

return “unbounded”

else (N, B, A,b,c,v) = PIVOT(N, B, A,b,c,v,l,e)

ifi € B
X,‘ = b,‘
else x;, =0
return (X, X5,...,X,)

]
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The formal procedure SIMPLEX

SIMPLEX (4, b, ¢) Returns a slack form with a
(N, B, A,b,c,v) = INITIALIZE-SIMPLEX (4, b, ¢) feasible basic solution (if it exists)

, while some index j € N has ;>0

choose an index e € N for which ¢, > 0
for each index i € B

ifa;, >0

A; = bi/ai.

else A; = o0
choose an index / € B that minimizes A;
if A; ==o00

return “unbounded”

else (N, B, A,b,c,v) = PIVOT(N, B, A,b,c,v,l,e)

ifi € B
X,‘ = b,‘
else x;, =0
return (X, X5,...,X,)

]

(Main Loop:
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The formal procedure SIMPLEX

SIMPLEX (4, b, ¢) Returns a slack form with a
(N.B,A.b,c,v) = INITIALIZE-SIMPLEX (4, b, ¢) feasible basic solution (if it exists)

J

2 let Abeanew vectoroflengthm_ _ _ _ __ ___ __>——

3, while some index j € N has¢; > 0 Vo

4 : choose an index e € N for which ¢, > 0 , | Main Loop:

5, for each index i € B : = terminates if all coefficients in

6 1 ifa;, >0 h objective function are negative

1
7 A; = bi/aje :< = Line 4 picks enterring variable
81 else A; = oo ! Xe With negative coefficient
. L ' .

9 ! .choose an index / € B that minimizes A; X = Lines 6 — 9 pick the tightest
10 | if A ==o00 ! constraint, associated with x;
11 return “unbounded” X o . -
12 ' else (N, B, A,b,c,v) = PIVOT(N, B, A, b,c,v,l,e) 1 Line 11 returns “unbounded"” if

i, o gt iy Ak ha S AR gl A Red el NS R A AL B there are no constraints
13 fori = 1ton
14 ifi € B = Line 12 calls P1vOT, switching
15 % = b L roles of x; and xe

T 1

16 else x;, =0
17 return (X, X5, ...,X,)
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The formal procedure SIMPLEX

SIMPLEX(A, b, ¢) Returns a slack form with a
(N, B, A,b,c,v) = INITIALIZE-SIMPLEX (4, b, ¢) feasible basic solution (if it exists)

while some index j € N hasc; >0

choose an index e € N for which ¢, > 0
for each index i € B

ifa;, >0

A; = bi/ai.

else A; = o0
choose an index / € B that minimizes A;
if A; ==o00

return “unbounded”

else (N, B, A,b,c,v) = PIVOT(N, B, A,b,c,v,l,e)

ifi e B
)E; = b,‘
else x;, =0

-

rl\/lain Loop:

= terminates if all coefficients in
objective function are negative

Line 4 picks enterring variable
Xe With negative coefficient

= Lines 6 — 9 pick the tightest
constraint, associated with x;

Line 11 returns “unbounded” if
there are no constraints

Line 12 calls PIvoT, switching
roles of x; and xe

J

return (¥, %o, ..., %) ﬁ Return corresponding solution. ]
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The formal procedure SIMPLEX

1 (N.B,A.b,c.v) = INITIALIZE-SIMPLEX (4. b, ) feasible basic solution (if it exists)

SIMPLEX (A, b, ¢) { Returns a slack form with a ]

3, while some index j € N has ¢; > 0

1

41 choose an index e € N for which ¢, > 0 :
5 : for each index i € B :
6 : ifa;, >0 1
7 A; = bi/ai. :
8 : else A; = o0 1
9, choose an index / € B that minimizes A; :
10 : if A; ==o00 1
11, return “unbounded” X
12! else (N, B, A,b,c,v) = PIVOT(N, B, A,b,c,v,l,e) 1
13 fori =1ton ~~~~ "~~~ """ """ TTTTT
14 ifi € B
15 X,‘ = b,‘
16 else x;, =0
17 return (X, X5, ...,X,)

Lemma 29.2

Suppose the call to INITIALIZE-SIMPLEX in line 1 returns a slack form for which
the basic solution is feasible. Then if SIMPLEX returns a solution, it is a feasible
solution. If SIMPLEX returns “unbounded”, the linear program is unbounded.
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The formal procedure SIMPLEX

1 (N.B,A.b,c.v) = INITIALIZE-SIMPLEX (4. b, ) feasible basic solution (if it exists)

SIMPLEX(A. b, ¢) { Returns a slack form with a ]

3, while some index j € N has ¢; > 0

1
41 choose an index e € N for which ¢, > 0 :
5 : for each index i € B :
6 : ifa;, >0 1
7 A; = bi/ai. :
8 : else A; = o0 1
9, choose an index / € B that minimizes A; :
10 : if A; ==o00 1
11, return “unbounded” !

Proof is based on the following three-part loop invariant:

Lemma 29.2 .I,/

Suppose the call to INITIALIZE-SIMPLEX in line 1 returns a slack form for which
the basic solution is feasible. Then if SIMPLEX returns a solution, it is a feasible
solution. If SIMPLEX returns “unbounded”, the linear program is unbounded.
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The formal procedure SIMPLEX

SIMPLEX (4, b, ¢) Returns a slack form with a
1 (N.B,A.b,c,v) = INITIALIZE-SIMPLEX (4, b, ¢) & feasible basic solution (if it exists)

2
3 while some index j € N has c; >0 '
41 choose an index e € N for which ¢, > 0 |
5 : for each index i € B :
6 : ifa;, >0 1
7 Ai = bi/age X
8 : else A; = o0 1
9, choose an index / € B that minimizes A; :
: if A; ==o00 1
1
1

11 return “unbounded”

J

Proof is based on the following three-part loop invariant:

1. the slack form is always equivalent to the one returned by INITIALIZE-SIMPLEX,

2. foreach i € B, we have b; > 0,
3. the basic solution associated with the (current) slack form is feasible.

Lemma 29.2 .I,/

Suppose the call to INITIALIZE-SIMPLEX in line 1 returns a slack form for which
the basic solution is feasible. Then if SIMPLEX returns a solution, it is a feasible
solution. If SIMPLEX returns “unbounded”, the linear program is unbounded.
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Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.
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Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

z = Xr + X + X3
Xs2 = 8 — X - X
X5 = X2 — X3
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Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

z = Xr + X + X3
Xs2 = 8 — X - X
X5 = X2 — X3

i Pivot with x; entering and xs leaving
\4
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Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

z = X1 4+ X 4+ X

Xs2 = 8 - X - X2

X5 = Xo — X3
i Pivot with x; entering and xs leaving
A\

z = 8 + X3 — X4

X1 = 8 — Xo — X4

X5 = Xo — X3
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Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

z = X1 4+ X 4+ X

Xs2 = 8 - X - X2

X5 = Xo — X3
i Pivot with x; entering and xs leaving
A\

z = 8 + X3 — X4

X1 = 8 — Xo — X4

X5 = Xo — X3

|
! Pivot with x3 entering and xs leaving
v
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Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

z = X1 4+ X 4+ X

Xs2 = 8 - X - X2

X5 = X2 — X3
i Pivot with x; entering and xs leaving
v

z = 8 + X3 — X4

X1 = 8 — Xo — X4

X5 = Xo — X3
i Pivot with x3 entering and xs leaving
v

z = 8 4+ X - X4 — Xs

X1 = 8 — X2 — X4

X3 = Xo — X5
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Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

z = Xr + X + X3

X4 = 8 — X1 — X2

X5 = Xo — X3
i Pivot with x; entering and x4 leaving
A\

z = 8 + X3 — X4

X1 = 8 — X2 — X4

X5 = Xo — X3

|
Cycling: If additionally slack form at two ! Pivot with x3 entering and xs leaving
iterations are identical, SIMPLEX fails to terminate! |v

z = 8 4+ X - X2 — Xs
X1 = 8 — X2 — X4
X3 = Xo — X5
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Exercise: Execute one more step of the Simplex Algorithm on
the tableau from the previous slide.
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Termination and Running Time

' Cycling: SIMPLEX may fail to terminate. I
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Termination and Running Time

It is theoretically possible, but very rare in practice.]

~NJ
Cycling: SIMPLEX may fail to terminate. J
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Termination and Running Time

It is theoretically possible, but very rare in practice.]

~NJ
Cycling: SIMPLEX may fail to terminate. J

Anti-Cycling Strategies
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Termination and Running Time

It is theoretically possible, but very rare in practice.]

~NJ
Cycling: SIMPLEX may fail to terminate. J

Anti-Cycling Strategies

1. Bland’s rule: Choose entering variable with smallest index
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Termination and Running Time

It is theoretically possible, but very rare in practice.]

~NJ
Cycling: SIMPLEX may fail to terminate. J

Anti-Cycling Strategies
1. Bland’s rule: Choose entering variable with smallest index
2. Random rule: Choose entering variable uniformly at random
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Termination and Running Time

It is theoretically possible, but very rare in practice.]

~NJ
Cycling: SIMPLEX may fail to terminate. J

Anti-Cycling Strategies
1. Bland’s rule: Choose entering variable with smallest index
2. Random rule: Choose entering variable uniformly at random

3. Perturbation: Perturb the input slightly so that it is impossible to have
two solutions with the same objective value
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Termination and Running Time

It is theoretically possible, but very rare in practice.]

~NJ
Cycling: SIMPLEX may fail to terminate. J

Anti-Cycling Strategies
1. Bland’s rule: Choose entering variable with smallest index
2. Random rule: Choose entering variable uniformly at random

3. Perturbation: Perturb the input slightly so that it is impossible to have

two solutions with the same objective value
S

LRepIace each b; by bi = bi + €i, where ¢; > €;;1 are all smaII.J
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Termination and Running Time

It is theoretically possible, but very rare in practice.]

~NJ
Cycling: SIMPLEX may fail to terminate. J

Anti-Cycling Strategies
1. Bland’s rule: Choose entering variable with smallest index
2. Random rule: Choose entering variable uniformly at random

3. Perturbation: Perturb the input slightly so that it is impossible to have

two solutions with the same objective value
S

LRepIace each b; by bi = bi + €i, where ¢; > €1 are all smaII.J

Lemma 29.7

Assuming INITIALIZE-SIMPLEX returns a slack form for which the basic
solution is feasible, SIMPLEX either reports that the program is unboun-

ded or returns a feasible solution in at most (") iterations.
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Termination and Running Time

It is theoretically possible, but very rare in practice.]

~NJ
Cycling: SIMPLEX may fail to terminate. J

Anti-Cycling Strategies

1. Bland’s rule: Choose entering variable with smallest index
2. Random rule: Choose entering variable uniformly at random

3. Perturbation: Perturb the input slightly so that it is impossible to have

two solutions with the same objective value
S

LRepIace each b; by bi = bi + €i, where ¢; > €1 are all smaII.J

Lemma 29.7

Assuming INITIALIZE-SIMPLEX returns a slack form for which the basic
solution is feasible, SIMPLEX either reports that the program is unboun-

ded or returns a feasible solution in at most (") iterations.
7

Every set B of basic variables uniquely determines a slack
form, and there are at most (") unique slack forms.
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Outline

Finding an Initial Solution
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Finding an Initial Solution

maximise 2x;y  — Xo
subject to
2X1 — Xo < 2
X1 — 5X2 < -4
X1, X2 > 0
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Finding an Initial Solution

maximise 2x;y  — Xo
subject to
2X1 — Xo < 2
Xq — bx < —4
X1, X2 > 0
|
i Conversion into slack form
v
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Finding an Initial Solution

maximise 2x;y  — Xo
subject to
2X1 — Xo S 2
X1 — 5X2 S —4
X17X2 2 O
|
i Conversion into slack form
v
z = 2xy - Xo
X3 = - 24 + X
X4 = —4 - X1 —+ 5X2
N

[Basic solution (x1, X2, X3, x4) = (0, 0,2, —4) is not feasible!]
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Geometric lllustration

2X1 Xo

maximise
subject to

43

Finding an Initial Solution
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Geometric lllustration

2X1 Xo

maximise
subject to

43

Finding an Initial Solution
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Geometric lllustration

maximise 2xy - Xo
subject to
2x1 — Xo
X1 — 5X2
X1, X2
X2

IV IAIA

2

—4 | Questions:
0

= How to determine whether
there is any feasible solution?

= |f there is one, how to determine

an initial basic solution?

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

43



Formulating an Auxiliary Linear Program

- n
maximise > i1 GXj
subject to

Yiap < b fori=1,2,...
> 0 forj=1,2,...

X
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Formulating an Auxiliary Linear Program

maximise o G
subject to
Siiap < b fori=1,2,...,m,
x > 0 forj=1,2,...,n

¢ Formulating an Auxiliary Linear Program

Linear Programming © Thomas Sauerwald Finding an Initial Solution



Formulating an Auxiliary Linear Program

maximise o G
subject to
Siiap < b fori=1,2,...,m,
x > 0 forj=1,2,...,n
i{ Formulating an Auxiliary Linear Program
maximise —Xo
subject to

b fori=1,2,...,m,
0 forj=0,1,...,n

n
2ojm1 @iXj — Xo
Xj

IV IA
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Formulating an Auxiliary Linear Program

maximise o G
subject to
Siiap < b fori=1,2,...,m,
x > 0 forj=1,2,...,n
i{ Formulating an Auxiliary Linear Program
maximise —Xo
subject to

Yiiaixi—x < b fori=1,2,....m,
x; > 0 forj=0,1,...,n
Lemma 29.11

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Ly is 0.
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Formulating an Auxiliary Linear Program

maximise o G
subject to
Siiap < b fori=1,2,...,m,
x > 0 forj=1,2,...,n
i{ Formulating an Auxiliary Linear Program
maximise —Xo
subject to

Yiiaixi—x < b fori=1,2,....m,
x; > 0 forj=0,1,...,n
Lemma 29.11

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Ly is 0.

Proof.
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Formulating an Auxiliary Linear Program

maximise o G
subject to
Siiap < b fori=1,2,...,m,
x > 0 forj=1,2,...,n
i{ Formulating an Auxiliary Linear Program
maximise —Xo
subject to

Yiiaixi—x < b fori=1,2,....m,
x; > 0 forj=0,1,...,n
Lemma 29.11

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Ly is 0.

Proof.
= “=": Suppose L has a feasible solution X = (X1, X2,...,Xn)
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Formulating an Auxiliary Linear Program

maximise o G
subject to
Siiap < b fori=1,2,...,m,
x > 0 forj=1,2,...,n
i{ Formulating an Auxiliary Linear Program
maximise —Xo
subject to

Yiiaixi—x < b fori=1,2,....m,
x; > 0 forj=0,1,...,n
Lemma 29.11

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Ly is 0.

Proof.
= “=": Suppose L has a feasible solution X = (X1, X2,...,Xn)
= Xo = 0 combined with X is a feasible solution to Laux with objective value 0.
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Formulating an Auxiliary Linear Program

maximise o G
subject to
Siiap < b fori=1,2,...,m,
x > 0 forj=1,2,...,n
i{ Formulating an Auxiliary Linear Program
maximise —Xo
subject to

Yiiaixi—x < b fori=1,2,....m,
x; > 0 forj=0,1,...,n
Lemma 29.11

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Ly is 0.

Proof.
= “=": Suppose L has a feasible solution X = (X1, X2,...,Xn)

= Xo = 0 combined with X is a feasible solution to Laux with objective value 0.
= Since Xg > 0 and the objective is to maximise —Xxg, this is optimal for Laux

Linear Programming © Thomas Sauerwald Finding an Initial Solution 44



Formulating an Auxiliary Linear Program

maximise o G
subject to
Siiap < b fori=1,2,...,m,
x > 0 forj=1,2,...,n
i{ Formulating an Auxiliary Linear Program
maximise —Xo
subject to
Yiiaixi—x < b fori=1,2,....m,
x; > 0 forj=0,1,...,n
Lemma 29.11

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Ly is 0.

Proof.
= “=": Suppose L has a feasible solution X = (X1, X2,...,Xn)

= Xo = 0 combined with X is a feasible solution to Laux with objective value 0.
= Since Xg > 0 and the objective is to maximise —Xxg, this is optimal for Laux

= “<": Suppose that the optimal objective value of Layx is 0
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= Let us illustrate the role of xy as “distance from feasibility”
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= Let us illustrate the role of xy as “distance from feasibility”

= We will also see that increasing xy enlarges the feasible
region.
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Now the Feasible Region of the Auxiliary LP in 3D
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= Let us now modify the original linear program so that it is not
feasible

Linear Programming © Thomas Sauerwald Finding an Initial Solution

49



= Let us now modify the original linear program so that it is not
feasible

= Hence the auxiliary linear program has only a solution for a
sufficiently large xg > 0!
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Now the Feasible Region of the Auxiliary LP in 3D
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INITIALIZE-SIMPLEX

INITIALIZE-SIMPLEX (A4, b, ¢)

1

let k be the index of the minimum b;
ifby >0 // is the initial basic solution feasible?
return ({1,2,....n},{n+1,n+2,..., n+m},A b, c,0)
form L, by adding —x to the left-hand side of each constraint
and setting the objective function to —x,
let (N, B, A, b, c,v) be the resulting slack form for L,
l=n+k
// L, has n + 1 nonbasic variables and m basic variables.
(N,B,A,b,c,v) = PIVOT(N, B, A,b,c,v,1,0)
// The basic solution is now feasible for L.
iterate the while loop of lines 3—12 of SIMPLEX until an optimal solution
to L is found
if the optimal solution to L,,, sets X, to 0
if X is basic
perform one (degenerate) pivot to make it nonbasic
from the final slack form of L., remove x, from the constraints and
restore the original objective function of L, but replace each basic
variable in this objective function by the right-hand side of its
associated constraint
return the modified final slack form
else return “infeasible”
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INITIALIZE-SIMPLEX

Test solution with N = {1,2,...,n}, B={n+1,n+

INITIALIZE-SIMPLEX (4, b, ¢) 2,...,n+m}, X = b for i € B, X; = 0 otherwise.
1 let k be the index of the minimum b; =
2 ifb >0 // is the initial basic solution feasible?
3 return ({1,2,....n},{n+1,n+2,..., n+m},A b, c,0)
4 form L, by adding —x, to the left-hand side of each constraint

and setting the objective function to —x,

5 let (N, B, A,b,c,v) be the resulting slack form for L,

6 I =n+k

7 /] L has n + 1 nonbasic variables and m basic variables.

8 (N,B,A,b,c,v) = PIVOT(N, B, A,b,c,v,1,0)

9 // The basic solution is now feasible for L .

0 iterate the while loop of lines 3—12 of SIMPLEX until an optimal solution
to L is found

11 if the optimal solution to L, sets X, to 0

12 if X is basic
13 perform one (degenerate) pivot to make it nonbasic
14 from the final slack form of L., remove x, from the constraints and

restore the original objective function of L, but replace each basic
variable in this objective function by the right-hand side of its
associated constraint

15 return the modified final slack form

16 else return “infeasible”
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and setting the objective function to —x, m i v abl
let (N, B, A, b, c,v) be the resulting slack form for L, £ will be the leaving variable so
l=n+k that x, has the most negative value.

5

6

7 /] L has n + 1 nonbasic variables and m basic variables.

8 (N,B.A.b,c,v) = PIVOT(N, B, A,b,c,v,1,0)

9 // The basic solution is now feasible for L .

0 iterate the while loop of lines 3—12 of SIMPLEX until an optimal solution
to L is found

11 if the optimal solution to L, sets X, to 0

12 if X is basic
13 perform one (degenerate) pivot to make it nonbasic
14 from the final slack form of L., remove x, from the constraints and

restore the original objective function of L, but replace each basic
variable in this objective function by the right-hand side of its
associated constraint

15 return the modified final slack form
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Test solution with N = {1,2,...,n}, B={n+1,n+

INITIALIZE-SIMPLEX (4, b, ¢) 2,...,n+m}, X = b for i € B, X; = 0 otherwise.
1 let k be the index of the minimum b; =
2 ifb, >0 // is the initial basic solution feasible?
3 return ({1,2,....n},{n+1,n+2,..., n+m},A b, c,0)
4 form L, by adding —x, to the left-hand side of each constraint

and setting the objective function to —x,
let (N, B, A, b, c,v) be the resulting slack form for L,
l=n+k that x, has the most negative value.

¢ will be the leaving variable so

// L. has n + 1 nonbasic variables and m basic variables.

5
6
7
g (N.B.A.b,c,v) = PVOT(N, B, A, b.c.v,1,0) ‘( Pivot step with x, leaving and xp entering. ]
0

// The basic solution is now feasible for L .

iterate the while loop of lines 3—12 of SIMPLEX until an optimal solution
to L is found

11 if the optimal solution to L, sets X, to 0

12 if X is basic
13 perform one (degenerate) pivot to make it nonbasic
14 from the final slack form of L., remove x, from the constraints and

restore the original objective function of L, but replace each basic
variable in this objective function by the right-hand side of its
associated constraint

15 return the modified final slack form

16 else return “infeasible”
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INITIALIZE-SIMPLEX

INITIALIZE-SIMPLEX (A4, b, ¢)

1

Test solution with N = {1,2,...,n}, B={n+1,n+

2,...,n+m}, x; = b; for i € B, X; = 0 otherwise.
let k be the index of the minimum b; =
if by >0 // is the initial basic solution feasible?

return ({1,2,....n},{n+1,n+2,..., n+m},A b, c,0)
form L, by adding —x to the left-hand side of each constraint

and setting the objective function to —x,

let (N, B, A, b, c,v) be the resulting slack form for L,

Il =n+k

// L. has n + 1 nonbasic variables and m basic variables.

(N,B,A,b,c,v) = PIVOT(N, B, A,b,c,v.,1,0)
// The basic solution is now feasible for L .

¢ will be the leaving variable so

that x, has the most negative value.

‘( Pivot step with x, leaving and X, entering. ]

iterate the while loop of lines 3—12 of SIMPLEX until an optimal solution

to L is found
if the optimal solution to L,,, sets X, to 0
if X is basic

perform one (degenerate) pivot to make it nonbasic

This pivot step does not change
the value of any variable.

from the final slack form of L., remove x, from the constraints and
restore the original objective function of L, but replace each basic
variable in this objective function by the right-hand side of its

associated constraint
return the modified final slack form
else return “infeasible”
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Example of INITIALIZE-SIMPLEX (1/3)

maximise 2x;  — Xo
subject to
2X1 — Xo
X1 — 5X2
X1, X2

IV AN IA
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subject to
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Example of INITIALIZE-SIMPLEX (1/3)

maximise 2x;  — Xo
subject to
2X1 — Xo < 2
X1 — 5X2 < -4
X1, X2 > 0

maximise - X
subject to
2X4 — X2 — X0 < 2
X1 — 5X2 — Xo < -4
X1, X2, Xo > 0
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Example of INITIALIZE-SIMPLEX (1/3)

maximise 2x;  — Xo
subject to
2X1 — Xo < 2
X1 — 5X2 < -4
X1, X2 > 0

maximise - X
subject to
2X4 — X2 — X0 < 2
X1 — 5X2 — Xo < -4
X1, X2, Xo > 0

|
| Converting into slack form
v
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Example of INITIALIZE-SIMPLEX (1/3)

maximise
subject to

maximise
subject to

Z =
X3
X4 =

2X1 — X2
2X1 — Xo < 2
X1 — 5X2 < -4
X1, X2 2 0

_ Xo
2X1 — Xo — X0 < 2
XX — 5% - x < -4
X1, X2, Xo Z 0
|
| Converting into slack form
v
_ Xo
2 - 2x + X2 + X
-4 - x1 + 5% + X
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Example of INITIALIZE-SIMPLEX (1/3)

maximise 2x;  — Xo
subject to
2X1 — Xo < 2
X1 — 5X2 < -4
X1, X2 > 0

maximise - X
subject to
2xy - X2 — X <
X1 — 5X2 — Xo S —4
X1, X2, Xo >
Basic solution ‘
(0,0,0,2, —4) not feasible! | Converting into slack form
N v
V4 = — Xo
X3 = 2 - 2x5 + X2 + Xo
X4 = -4 - X1 + 5x + X
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Example of INITIALIZE-SIMPLEX (2/3)

Z =
X3 = 2 — 2X: 1 + Xo
X4 = -4 — X1 +  5x

+
=+

Xo
Xo
Xo
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Example of INITIALIZE-SIMPLEX (2/3)

X3

—4

_ Xo
- 2x + X2 4+ X
— Xq + Bx + X

!

!

l
'/

Pivot with xo entering and x4 leaving

Linear Programming © Thomas Sauerwald
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Example of INITIALIZE-SIMPLEX (2/3)

V4 = — Xo
X3 = 2 - 2x + X2+ X
X4 = -4 — Xq + Bx + X

|
i Pivot with xo entering and x4 leaving
\/

z = 4 — X3 4+ b - x4
Xo = 4 + X — bx +  Xa
X3 = 6 - Xq — 4x + Xa
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Example of INITIALIZE-SIMPLEX (2/3)

z = - X0
X3 = 2 — 2X: 1 + X2 + Xo
X4 = -4 — Xq + Bx + X

|
i Pivot with xo entering and x4 leaving
\/

z = -4 — X1 + 5 - X
Xo = 4 + X — bx +  Xa
] X = 6 — X1 — 4 + x4

[Basic solution (4,0,0,6,0) is feasible!]

Linear Programming © Thomas Sauerwald Finding an Initial Solution



Example of INITIALIZE-SIMPLEX (2/3)

V4 = — X0
X3 = 2 — 2X: 1 + X2 + Xo
Xy = -4 — X1 4+ 5x + X

|
i Pivot with xo entering and x4 leaving
\/

z = -4 — X1 + 5 - X
Xo = 4 + X — bx +  Xa
] X = 6 — X3 — 4x + X

[Basic solution (4,0,0,6,0) is feasible!] N , _
! Pivot with x» entering and xp leaving

v

Linear Programming © Thomas Sauerwald Finding an Initial Solution 55



Example of INITIALIZE-SIMPLEX (2/3)

V4 = — X0

X3 = 2 — 2X1 + X2 + Xo

X4 = -4 — X1 + 5x + X
|
| Pivot with Xo entering and x4 leaving
v

z = -4 — X1 + 5 - X

Xo = 4 + X — bx +  Xa

] X = 6 — X3 — 4x + X
[Basic solution (4,0,0,6,0) is feasible!] N , _

i Pivot with x2 entering and x leaving
v

V4 = — Xo
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Example of INITIALIZE-SIMPLEX (2/3)

V4 = Xo
X3 = 2 — 2X: 1 + X2 + Xo
X2 = -4 - Xq + Bx + X

|
i Pivot with xo entering and x4 leaving
\/

z = -4 — X1 + 5 - X
Xo = 4 + X — bx +  Xa
] X = 6 — X1 — 4 + x4

[Basic solution (4,0, 0, 6,0) is feasible

1|
] i Pivot with x, entering and X, leaving

v
z = — X0
_ 14 4 _ X Xa
X3—5\\+5 5 t 3

[Optimal solution has xo = 0, hence the initial problem was feasible!j
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Example of INITIALIZE-SIMPLEX (3/3)

z = — X0
X _ 14 + 4Xo _ 9X1
s T 5 5 5

Jr
+
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Example of INITIALIZE-SIMPLEX (3/3)

z = — X0
14 4Xo_9X1 Xa
x = 5 T 5 5 T B

Set xo = 0 and express objective function

|
|
i by non-basic variables
Y
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Example of INITIALIZE-SIMPLEX (3/3)

V4 — X0
_ 4 o Xo X1 X4
X2 = 5 5 + 5 + 5
X 14 4Xo _ 9x4 Xa
s = 5t 5 5 T3
i Set xo = 0 and express objective function
[2x1 —xe=2x—(§-2+%+ X—s“)] by non-basic variables
\4
~N
z —% + ;X
_ 4 X1 X4
X = 5 F o2 t 35
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Example of INITIALIZE-SIMPLEX (3/3)

Z = — Xo
_ 4 Xo X1 Xa
X2 = 5 = 5 + 5 + 5
X _ 14 + 4Xo _ 9x4 + Xa
3 5 5 5 5
i Set xo = 0 and express objective function
[2x1 —xe=2x—(§-2+%+ X—s“)] by non-basic variables
< . o
i X
RIS B
1 4
_ 1 4
¥ = 5 5 T 5
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Example of INITIALIZE-SIMPLEX (3/3)

V4 X0
_ 4 o Xo X1 X4
T3 o e 2
— 0 _ 1 4
¥ = 5 t 5 5 T3
i Set xo = 0 and express objective function
[2x1 —xe=2x—(§-2+%+ X—s“)] by non-basic variables
< . o
_ 4 I X
V4 = —2 + 5 5
X2 = 5 + X + %
e

o

), which is feasible!]

[Basic solution (0, £, &,

Lemma 29.12
If a linear program L has no feasible solution, then INITIALIZE-SIMPLEX
returns “infeasible”. Otherwise, it returns a valid slack form for which the

basic solution is feasible.
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Fundamental Theorem of Linear Programming

Theorem 29.13 (Fundamental Theorem of Linear Programming)
Any linear program L, given in standard form, either
1. has an optimal solution with a finite objective value,
2. is infeasible, or
3. is unbounded.

N
\
If L is infeasible, SIMPLEX returns ‘“infeasible”. If L is unbounded, SIMPLEX returns
“unbounded”. Otherwise, SIMPLEX returns an optimal solution with a finite objective value.
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Fundamental Theorem of Linear Programming

Theorem 29.13 (Fundamental Theorem of Linear Programming)
Any linear program L, given in standard form, either
1. has an optimal solution with a finite objective value,
2. is infeasible, or
3. is unbounded.

N
\
If L is infeasible, SIMPLEX returns ‘“infeasible”. If L is unbounded, SIMPLEX returns
“unbounded”. Otherwise, SIMPLEX returns an optimal solution with a finite objective value.

Proof requires the concept of duality, which is not covered
in this course (for details see CLRS3, Chapter 29.4)
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Workflow for Solving Linear Programs

[Linear Program (in any form)]

|

[ Standard Form J
( Slack Form ]
No Feasible Solution Feasible Basic Solution
INITIALIZE-SIMPLEX terminates INITIALIZE-SIMPLEX followed by SIMPLEX

i

LP unbounded LP bounded
SIMPLEX terminates SIMPLEX returns optimum
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Linear Programming and Simplex: Summary and Outlook

Linear Programming
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Linear Programming and Simplex: Summary and Outlook

Linear Programming

= extremely versatile tool for modelling problems of all kinds
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Linear Programming

= extremely versatile tool for modelling problems of all kinds
= basis of Integer Programming, to be discussed in later lectures
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Linear Programming and Simplex: Summary and Outlook

Linear Programming

= extremely versatile tool for modelling problems of all kinds
= basis of Integer Programming, to be discussed in later lectures

~——— Simplex Algorithm

X3
= |n practice: usually terminates in X2
polynomial time, i.e., O(m + n)

X1
G -—
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Linear Programming and Simplex: Summary and Outlook

Linear Programming

= extremely versatile tool for modelling problems of all kinds
= basis of Integer Programming, to be discussed in later lectures

~——— Simplex Algorithm

X3
= |n practice: usually terminates in X2
polynomial time, i.e., O(m + n)

= In theory: even with anti-cycling may

need exponential time 8 x.
\ .\)1
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Linear Programming and Simplex: Summary and Outlook

Linear Programming

= extremely versatile tool for modelling problems of all kinds
= basis of Integer Programming, to be discussed in later lectures

~——— Simplex Algorithm X3
= |n practice: usually terminates in X2
polynomial time, i.e., O(m + n)

= In theory: even with anti-cycling may
need exponential time o
(N

X1

[

~—
Research Problem: Is there a pivoting rule which
makes SIMPLEX a polynomial-time algorithm?
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Linear Programming and Simplex: Summary and Outlook

Linear Programming

= extremely versatile tool for modelling problems of all kinds
= basis of Integer Programming, to be discussed in later lectures

~——— Simplex Algorithm X3
= |n practice: usually terminates in X2
polynomial time, i.e., O(m + n)

= In theory: even with anti-cycling may
need exponential time o
(N

X1

[

~—
Research Problem: Is there a pivoting rule which
makes SIMPLEX a polynomial-time algorithm?

Polynomial-Time Algorithms
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Linear Programming and Simplex: Summary and Outlook

Linear Programming

= extremely versatile tool for modelling problems of all kinds
= basis of Integer Programming, to be discussed in later lectures

~——— Simplex Algorithm X3
= |n practice: usually terminates in X2
polynomial time, i.e., O(m + n)

= In theory: even with anti-cycling may
need exponential time o
(N

X1

[

~—
Research Problem: Is there a pivoting rule which
makes SIMPLEX a polynomial-time algorithm?

Polynomial-Time Algorithms X3
= |nterior-Point Methods: traverses the X2
interior of the feasible set of solutions
(not just vertices!)
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Test your Understanding

Which of the following statements are true?

1. In each iteration of the Simplex algorithm, the objective function
increases.

2. There exist linear programs that have exactly two optimal solutions.

3. There exist linear programs that have infinitely many optimal solutions.

4. The Simplex algorithm always runs in worst-case polynomial time.
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