Randomised Algorithms
Lecture 6-7: Linear Programming

Thomas Sauerwald (tms41@cam.ac.uk)

Lent 2022

B UNIVERSITY OF
¥ CAMBRIDGE




Outline

Introduction

Linear Programming © Thomas Sauerwald Introduction



Introduction

@

%ﬂ /“//

p

N

m/m/

= linear programming is a powerful tool in optimisation

= inspired more sophisticated techniques such as quadratic optimisation,
convex optimisation, integer programming and semi-definite programming

= we will later use the connection between linear and integer programming
to tackle several problems (Vertex-Cover, Set-Cover, TSP, satisfiability)

Linear Programming © Thomas Sauerwald Introduction



Outline

A Simple Example of a Linear Program

Linear Programming © Thomas Sauerwald A Simple Example of a Linear Program



What are Linear Programs?

Linear Programming (informal definition)

= maximise or minimise an objective, given limited resources
(competing constraint)

= constraints are specified as (in)equalities
= objective function and constraints are linear

Linear Programming © Thomas Sauerwald A Simple Example of a Linear Program



A Simple Example of a Linear Optimisation Problem

= Laptop

Linear Programming © Thomas Sauerwald A Simple Example of a Linear Program



A Simple Example of a Linear Optimisation Problem

= Laptop
= selling price to retailer: 1,000 GBP

Linear Programming © Thomas Sauerwald A Simple Example of a Linear Program



A Simple Example of a Linear Optimisation Problem

= Laptop
= selling price to retailer: 1,000 GBP
= glass: 4 units

Linear Programming © Thomas Sauerwald A Simple Example of a Linear Program



A Simple Example of a Linear Optimisation Problem

= Laptop w w

= selling price to retailer: 1,000 GBP
= glass: 4 units
= copper: 2 units

Linear Programming © Thomas Sauerwald A Simple Example of a Linear Program



A Simple Example of a Linear Optimisation Problem

u Laptop ﬁ ﬁ =

= selling price to retailer: 1,000 GBP
= glass: 4 units

= copper: 2 units

= rare-earth elements: 1 unit

Linear Programming © Thomas Sauerwald A Simple Example of a Linear Program



A Simple Example of a Linear Optimisation Problem

u Laptop ﬁ ﬁ =

= selling price to retailer: 1,000 GBP
= glass: 4 units

= copper: 2 units

= rare-earth elements: 1 unit

= Smartphone

Linear Programming © Thomas Sauerwald A Simple Example of a Linear Program



A Simple Example of a Linear Optimisation Problem

u Laptop ﬁ ﬂ =

= selling price to retailer: 1,000 GBP
= glass: 4 units

= copper: 2 units

= rare-earth elements: 1 unit

= Smartphone
= selling price to retailer: 1,000 GBP

Linear Programming © Thomas Sauerwald A Simple Example of a Linear Program



A Simple Example of a Linear Optimisation Problem

= Laptop @& =
= selling price to retailer: 1,000 GBP
= glass: 4 units
= copper: 2 units
= rare-earth elements: 1 unit

= Smartphone

= selling price to retailer: 1,000 GBP
= glass: 1 unit

Linear Programming © Thomas Sauerwald A Simple Example of a Linear Program



A Simple Example of a Linear Optimisation Problem

u Laptop ﬁ ﬂ =

= selling price to retailer: 1,000 GBP

= glass: 4 units

= copper: 2 units

= rare-earth elements: 1 unit ﬁ

= Smartphone
= selling price to retailer: 1,000 GBP
= glass: 1 unit
= copper: 1 unit

Linear Programming © Thomas Sauerwald A Simple Example of a Linear Program



A Simple Example of a Linear Optimisation Problem

u Laptop ﬁ ﬂ =

= selling price to retailer: 1,000 GBP
= glass: 4 units

= copper: 2 units

= rare-earth elements: 1 unit

# =m

= Smartphone
= selling price to retailer: 1,000 GBP
= glass: 1 unit
= copper: 1 unit
= rare-earth elements: 2 units

Linear Programming © Thomas Sauerwald A Simple Example of a Linear Program



A Simple Example of a Linear Optimisation Problem

u Laptop ﬁ ﬁ =

= selling price to retailer: 1,000 GBP
= glass: 4 units

= copper: 2 units

= rare-earth elements: 1 unit

# =m

= Smartphone
= selling price to retailer: 1,000 GBP
= glass: 1 unit
= copper: 1 unit
= rare-earth elements: 2 units

= You have a daily supply of:

Linear Programming © Thomas Sauerwald A Simple Example of a Linear Program



A Simple Example of a Linear Optimisation Problem

u Laptop ﬁ ﬂ =

= selling price to retailer: 1,000 GBP
= glass: 4 units

= copper: 2 units

= rare-earth elements: 1 unit

# =m

= Smartphone

= selling price to retailer: 1,000 GBP
= glass: 1 unit

= copper: 1 unit

= rare-earth elements: 2 units

= You have a daily supply of:
= glass: 20 units

Linear Programming © Thomas Sauerwald A Simple Example of a Linear Program



A Simple Example of a Linear Optimisation Problem

= Laptop @ @
= selling price to retailer: 1,000 GBP
= glass: 4 units
= copper: 2 units
= rare-earth elements: 1 unit

&
» Smartphone
= selling price to retailer: 1,000 GBP
= glass: 1 unit
= copper: 1 unit
= rare-earth elements: 2 units
= You have a daily supply of: R EEEEEEE R

= glass: 20 units
= copper: 10 units

Linear Programming © Thomas Sauerwald A Simple Example of a Linear Program 6



A Simple Example of a Linear Optimisation Problem

= Laptop &

= selling price to retailer: 1,000 GBP
= glass: 4 units

= copper: 2 units

= rare-earth elements: 1 unit

&
= Smartphone
= selling price to retailer: 1,000 GBP
= glass: 1 unit
= copper: 1 unit
= rare-earth elements: 2 units
= You have a daily supply of: R EEEEEEE R
= glass: 20 units
= copper: 10 units
= rare-earth elements: 14 units

Linear Programming © Thomas Sauerwald A Simple Example of a Linear Program 6



A Simple Example of a Linear Optimisation Problem

= Laptop &

= selling price to retailer: 1,000 GBP
= glass: 4 units

= copper: 2 units

= rare-earth elements: 1 unit

&
= Smartphone
= selling price to retailer: 1,000 GBP
= glass: 1 unit
= copper: 1 unit
= rare-earth elements: 2 units
= You have a daily supply of: R EEEEEEE R
= glass: 20 units
= copper: 10 units
= rare-earth elements: 14 units

= (and enough of everything else...)

Linear Programming © Thomas Sauerwald A Simple Example of a Linear Program 6



A Simple Example of a Linear Optimisation Problem

- Laptop ﬁ ﬁ

= selling price to retailer: 1,000 GBP
= glass: 4 units

= copper: 2 units

= rare-earth elements: 1 unit

&
= Smartphone
= selling price to retailer: 1,000 GBP
= glass: 1 unit
= copper: 1 unit
= rare-earth elements: 2 units
= You have a daily supply of: R EEEEEEE R
= glass: 20 units
= copper: 10 units
= rare-earth elements: 14 units

= (and enough of everything else...)

' How to maximise your daily earnings? '

Linear Programming © Thomas Sauerwald A Simple Example of a Linear Program 6




The Linear Program

maximise X1+ Xo
subject to
4x;  + X2
2x1  + X2
X1+ 2x
X1, X2

Linear Program for the Production Problem

IV AN IAIA

20
10
14

Linear Programming © Thomas Sauerwald

A Simple Example of a Linear Program




The Linear Program

Linear Program for the Production Problem

maximise Xy + Xo
subject to
4x4 + Xo < 20
2X1 + X2 < 10
Xq + 2X < 14
X1, X2 > 0

—(The solution of this linear program yields the optimal production schedule. ]—

Linear Programming © Thomas Sauerwald A Simple Example of a Linear Program



The Linear Program

Linear Program for the Production Problem

maximise X1+ Xo
subject to
4x4 + X < 20
2X1 + X2 < 10
Xq + 2X < 14
X1, X2 > 0

—(The solution of this linear program yields the optimal production schedule. ]—

Formal Definition of Linear Program

Linear Programming © Thomas Sauerwald A Simple Example of a Linear Program



The Linear Program

maximise
subject to

X1+ X2
4x4 + Xo
2x1  + X2

X1+ 2x

X1, X2

Linear Program for the Production Problem

IV ININIA

20
10
14

0

—(The solution of this linear program yields the optimal production schedule. ]—

function f is

= Given ay, a, . .

Formal Definition of Linear Program

., an and a set of variables xq, X2, .. ., X, @ linear
defined by
f(X1,X2,...,Xn) = @1 X1 + @Xo + -+ - + @nXn.

Linear Programming ©

Thomas Sauerwald

A Simple Example of a Linear Program



The Linear Program

Linear Program for the Production Problem

maximise X1+ Xo
subject to
4x4 + X < 20
2X1 + X2 < 10
Xq + 2X < 14
X1, X2 > 0

—(The solution of this linear program yields the optimal production schedule. ]—

Formal Definition of Linear Program

= Given ay, a, ..., ap and a set of variables xy, X2, ..., Xn, a linear
function f is defined by

f(X1,X2,...,Xn) = @1 X1 + @Xo + -+ - + @nXn.
= Linear Equality: f(x1,X2,...,Xn) = b
= Linear Inequality: f(x17x2, cXn)Zb

Linear Programming © Thomas Sauerwald A Simple Example of a Linear Program



The Linear Program

Linear Program for the Production Problem

maximise Xy + Xo
subject to
4x4 + Xo < 20
2X1 + X2 < 10
Xq + 2X < 14
X1, X2 > 0

—(The solution of this linear program yields the optimal production schedule. ]—

Formal Definition of Linear Program

= Given ay, a, ..., ap and a set of variables xy, X2, ..., Xn, a linear
function f is defined by

f(X1,Xe,...,Xn) = @1X1 + @X2 + - -+ + @nXn.

= Linear Equality: f(x1, Xz, ..., Xn) =
g v fxi, % 5 {Llnear Constraints ]

= Linear Inequality: f(x1, Xz, ..., Xn)

Linear Programming © Thomas Sauerwald A Simple Example of a Linear Program



The Linear Program

Linear Program for the Production Problem

maximise Xy + Xo
subject to
4x4 + Xo < 20
2X1 + X2 < 10
Xq + 2X < 14
X1, X2 > 0

—(The solution of this linear program yields the optimal production schedule. ]—

Formal Definition of Linear Program

= Given ay, a, ..., ap and a set of variables xy, X2, ..., Xn, a linear
function f is defined by

f(X1,Xe,...,Xn) = @1X1 + @X2 + - -+ + @nXn.

= Linear Equality: f(x1, Xz, ..., Xn) =
g v fxi, % 5 {Llnear Constraints ]

= Linear Inequality: f(x1, Xz, ..., Xn)

= Linear-Progamming Problem: elther minimise or maximise a linear
function subject to a set of linear constraints

Linear Programming © Thomas Sauerwald A Simple Example of a Linear Program



Finding the Optimal Production Schedule

maximise X1+ Xo
subject to
4xq + Xo < 20
2X1 + Xo < 10
Xy + 2Xx < 14
X1, X2 > 0

Linear Programming © Thomas Sauerwald A Simple Example of a Linear Program



Finding the Optimal Production Schedule

maximise X1+ Xo
subject to
4xq + Xo < 20
2X1 + Xo < 10
Xy + 2X> < 14
X1, X2 > 0
N

Any setting of x; and x, satisfying
all constraints is a feasible solution

Linear Programming © Thomas Sauerwald A Simple Example of a Linear Program



Finding the Optimal Production Schedule

maximise X1+ Xo
subject to
4 4+  x2 <
2y + X2 <
X1 + 2% <
X1, X2 >
4

Any setting of x; and x, satisfying
all constraints is a feasible solution

J

X2

I I I I I I

| | | | | |
[~ 7~ "~ ~Tr 7" T

| | | | | |
F-4--——+f-d4-=-1——+--

I I I I I I
R )

| I | | I |

| | | | | |
L R

| | | | | |
S

20 | | | | | |
10 S R R B R

| | | | | |

14 | | | | | |
F—T-— -~ —r-—a--1~—7--

0 I I I I I I
I

| | | | | |

| I I I | I
[ 7 0 T T T T

| | | | | |
r—-—=I—-——-t -2 - 1= =t ==

| | | | | |

! ! ! ! ! !

Linear Programming © Thomas Sauerwald

A Simple Example of a Linear Program



Finding the Optimal Production Schedule

maximise X1+ Xo
subject to
4xq + Xo < 20
2X1 + Xo < 10
Xy + 2X> < 14
X1, X2 2 0
N

all constraints is a feasible solution

[ Any setting of x; and x, satisfying ]

Linear Programming © Thomas Sauerwald A Simple Example of a Linear Program 8



Finding the Optimal Production Schedule

maximise X1+ Xo
subject to
4xq + Xo < 20
2X1 + Xo < 10
Xy + 2Xx < 14
X1, X2 > 0

4
Any setting of x; and x, satisfying
all constraints is a feasible solution

Linear Programming © Thomas Sauerwald A Simple Example of a Linear Program 8



Finding the Optimal Production Schedule

maximise X1+ Xo
subject to
4xq + Xo < 20
2X1 + Xo < 10
Xy + 2X> < 14
X1, X2 2 0
N

all constraints is a feasible solution

[ Any setting of x; and x, satisfying ]

Linear Programming © Thomas Sauerwald A Simple Example of a Linear Program 8



Finding the Optimal Production Schedule

maximise X1+ Xo X1 >0
subject to
4xq + Xo < 20
2X1 + Xo < 10
Xy + 2X> < 14
X1, X2 > 0
N

all constraints is a feasible solution

[ Any setting of x; and x, satisfying ]

Linear Programming © Thomas Sauerwald A Simple Example of a Linear Program 8



Finding the Optimal Production Schedule

maximise X1+ Xo X1 >0
subject to
4xq + Xo < 20
2X1 + Xo < 10
Xy + 2X> < 14
X1, X2 > 0
N

all constraints is a feasible solution

[ Any setting of x; and x, satisfying ]

Linear Programming © Thomas Sauerwald A Simple Example of a Linear Program 8



Finding the Optimal Production Schedule

maximise X1+ Xo x1 >0
subject to
4xq + Xo < 20
2X1 + Xo < 10
Xy + 2X2 < 14
X1, X2 > 0
N

all constraints is a feasible solution

[ Any setting of x; and x, satisfying ]

Linear Programming © Thomas Sauerwald A Simple Example of a Linear Program 8



Finding the Optimal Production Schedule

maximise X1+ Xo X1 >0
subject to
4xq + Xo < 20
2X1 + Xo < 10
Xy + 2Xx < 14
X1, X2 > 0

X1 + X2 = z as far up as possible.

[Graphical Procedure: Move the Iine]

Linear Programming © Thomas Sauerwald A Simple Example of a Linear Program 8



Finding the Optimal Production Schedule

maximise X1+ Xo X1 >0
subject to
4xq + Xo < 20
2X1 + Xo < 10
Xy + 2Xx < 14
X1, X2 > 0

Graphical Procedure: Move the line
X1 + X2 = z as far up as possible.

Linear Programming © Thomas Sauerwald A Simple Example of a Linear Program 8



Finding the Optimal Production Schedule

maximise X1+ Xo X1 >0
subject to
4xq + Xo < 20
2X1 + Xo < 10
Xy + 2Xx < 14
X1, X2 > 0

Graphical Procedure: Move the line
X1 + X2 = z as far up as possible.

Linear Programming © Thomas Sauerwald A Simple Example of a Linear Program 8



Finding the Optimal Production Schedule

maximise X1+ Xo X1 >0
subject to
4xq + Xo < 20
2X1 + Xo < 10
Xy + 2Xx < 14
X1, X2 > 0

Graphical Procedure: Move the line
X1 + X2 = z as far up as possible.

Linear Programming © Thomas Sauerwald A Simple Example of a Linear Program 8



Finding the Optimal Production Schedule

maximise X1+ Xo X1 >0
subject to
4xq + Xo < 20
2X1 + Xo < 10
Xy + 2Xx < 14
X1, X2 > 0

Graphical Procedure: Move the line
X1 + X2 = z as far up as possible.

Linear Programming © Thomas Sauerwald A Simple Example of a Linear Program 8



Finding the Optimal Production Schedule

maximise X1+ Xo X1 >0
subject to
4xq + Xo < 20
2X1 + Xo < 10
Xy + 2Xx < 14
X1, X2 > 0

Graphical Procedure: Move the line
X1 + X2 = z as far up as possible.

Linear Programming © Thomas Sauerwald A Simple Example of a Linear Program 8



Finding the Optimal Production Schedule

maximise X1+ Xo X1 >0
subject to
4xq + Xo < 20
2X1 + Xo < 10
Xy + 2Xx < 14
X1, X2 > 0

Graphical Procedure: Move the line
X1 + X2 = z as far up as possible.

Linear Programming © Thomas Sauerwald A Simple Example of a Linear Program 8



Finding the Optimal Production Schedule

maximise X1+ Xo X1 >0
subject to
4xq + Xo < 20
2X1 + Xo < 10
Xy + 2Xx < 14
X1, X2 > 0

Graphical Procedure: Move the line
X1 + X2 = z as far up as possible.

Linear Programming © Thomas Sauerwald A Simple Example of a Linear Program 8



Finding the Optimal Production Schedule

maximise X1+ X2 X" >0
subject to
4xq + Xo < 20
2X1 + Xo < 10
Xy + 2Xx < 14
X1, X2 > 0

X1 + X2 = z as far up as possible.

[Graphical Procedure: Move the Iine]

Linear Programming © Thomas Sauerwald A Simple Example of a Linear Program 8



Finding the Optimal Production Schedule

maximise X1+ Xo Xy >0k

subject to
4xq + Xo < 20
2X1 + Xo < 10
Xy + 2Xx < 14
X1, X2 > 0

Graphical Procedure: Move the line
X1 + X2 = z as far up as possible.

Linear Programming © Thomas Sauerwald A Simple Example of a Linear Program 8



Finding the Optimal Production Schedule

maximise X1+ Xo x>0

subject to
4xq + Xo < 20
2X1 + Xo < 10
Xy + 2Xx < 14
X1, X2 > 0

X1 + X2 = z as far up as possible.

[Graphical Procedure: Move the Iine]

Linear Programming © Thomas Sauerwald A Simple Example of a Linear Program 8



Finding the Optimal Production Schedule

maximise X1+ Xo x>0

subject to
4xq + Xo < 20
2X1 + Xo < 10
Xy + 2Xx < 14
X1, X2 > 0

X1 + X2 = z as far up as possible.

[Graphical Procedure: Move the Iine]

Linear Programming © Thomas Sauerwald A Simple Example of a Linear Program 8



Finding the Optimal Production Schedule

maximise X1+ Xo x1 >0
subject to
4xq + Xo < 20
2X1 + Xo < 10
Xy + 2Xx < 14
X1, X2 > 0

Graphical Procedure: Move the line
X1 + X2 = z as far up as possible.

Exercise: Which aspect did we ignore in the formulation of the
linear program?

Linear Programming © Thomas Sauerwald A Simple Example of a Linear Program 8



Finding the Optimal Production Schedule

maximise X1+ Xo X1 >0
subject to
4xq + Xo < 20
2X1 + Xo < 10
Xy + 2Xx < 14
X1, X2 > 0

X1 + X2 = z as far up as possible.

[Graphical Procedure: Move the Iine]

While the same approach also works for higher-dimensions, we

need to take a more systematic and algebraic procedure.

Linear Programming © Thomas Sauerwald A Simple Example of a Linear Program 8



Outline

Formulating Problems as Linear Programs

Linear Programming © Thomas Sauerwald Formulating Problems as Linear Programs



Shortest Paths

Single-Pair Shortest Path Problem

= Given: directed graph G = (V, E) with
edge weights w : E — R, pair of
vertices s,t € V

Linear Programming © Thomas Sauerwald Formulating Problems as Linear Programs 10



Shortest Paths

Single-Pair Shortest Path Problem

= Given: directed graph G = (V, E) with
edge weights w : E — R, pair of
vertices s,t € V

= Goal: Find a path of minimum weight

fromsto tin G

Linear Programming © Thomas Sauerwald Formulating Problems as Linear Programs



Shortest Paths

Single-Pair Shortest Path Problem

= Given: directed graph G = (V, E) with
edge weights w : E — R, pair of
vertices s,t € V

= Goal: Find a path of minimum weight

fromstotin G
N

I\ 1
[p: (o = s,v1,..., W = t)suchthat] ¢ f

w(p) = 2:;1 w(Vk_1, Vk) is minimised.

Linear Programming © Thomas Sauerwald Formulating Problems as Linear Programs



Shortest Paths

Single-Pair Shortest Path Problem

= Given: directed graph G = (V, E) with
edge weights w : E — R, pair of
vertices s,t € V

= Goal: Find a path of minimum weight

fromstotin G
N

I\ 1
[p: (o = s,v1,..., W = t)suchthat] ¢ f

w(p) = 2:;1 w(Vk_1, Vk) is minimised.

Linear Programming © Thomas Sauerwald Formulating Problems as Linear Programs



Shortest Paths

Single-Pair Shortest Path Problem

= Given: directed graph G = (V, E) with
edge weights w : E — R, pair of
vertices s,t € V

= Goal: Find a path of minimum weight

fromstotin G
N

I\ 1
[p: (o = s,v1,..., W = t)suchthat] ¢ f

w(p) = 2:;1 w(Vk_1, Vk) is minimised.

Shortest Paths as LP

subject to

Linear Programming © Thomas Sauerwald Formulating Problems as Linear Programs



Shortest Paths

Single-Pair Shortest Path Problem

= Given: directed graph G = (V, E) with
edge weights w : E — R, pair of
vertices s,t € V

= Goal: Find a path of minimum weight

fromstotin G
N

1 X

1
[p = (w = sw,...,w = t)such that] ¢ f

w(p) = 2:;1 w(Vk_1, Vk) is minimised.

Shortest Paths as LP

subject to
d. + w(u,v) foreachedge (u,v)e€E,

0.

dv
ds

A

Linear Programming © Thomas Sauerwald Formulating Problems as Linear Programs 10



Shortest Paths

Single-Pair Shortest Path Problem

= Given: directed graph G = (V, E) with
edge weights w : E — R, pair of
vertices s,t € V

= Goal: Find a path of minimum weight

fromstotin G
N

1N\ 1
p= (% =sw,...,v = t)such that ¢ f
w(p) = 2:;1 w(Vk—1, Vk) is minimised.

Shortest Paths as LP
maximise o]
subject to
d < d + w(uyv) foreachedge (u,v) € E,
d = 0.

Linear Programming © Thomas Sauerwald Formulating Problems as Linear Programs 10



Shortest Paths

Single-Pair Shortest Path Problem

= Given: directed graph G = (V, E) with
edge weights w : E — R, pair of
vertices s,t € V

= Goal: Find a path of minimum weight
fromsto tin G

\N

1\ SRR
p= (% =sw,...,v = t)such that
w(p) = 2:;1 w(Vk_1, Vk) is minimised.

Shortest Paths as LP
maximise a;
subject to
d < d + w(uyv) foreachedge (u,v) € E,

0.

this is a maxim- ds

isation problem!

Linear Programming © Thomas Sauerwald Formulating Problems as Linear Programs 10



Shortest Paths

Single-Pair Shortest Path Problem

= Given: directed graph G = (V, E) with
edge weights w : E — R, pair of
vertices s,t € V

= Goal: Find a path of minimum weight

fromstotin G
N

1 X

1
[p = (w = sw,...,w = t)such that] ¢ f

w(p) = Zf.; w(Vk_1, Vk) is minimised.

B )
Shortest Paths as LP _‘ Recall: When BELLMAN-FORD terminates,

maximise lo] all these inequalities are satisfied.
subject to =
d < d + w(uyv) foreachedge (u,v) € E,
= 0.

this is a maxim- ds

isation problem!

Linear Programming © Thomas Sauerwald Formulating Problems as Linear Programs 10



Shortest Paths

Single-Pair Shortest Path Problem

= Given: directed graph G = (V, E) with
edge weights w : E — R, pair of
vertices s,t € V

= Goal: Find a path of minimum weight

fromstotin G
N

1 X

1
[p = (w = sw,...,w = t)such thatJ ¢ f

w(p) = K, w(vk_1, vi) is minimised.

<
Shortest Paths as LP _‘ Recall: When BELLMAN-FORD terminates,

maximise lo] all these inequalities are satisfied.
subject to =
a, d,. + w(u,v) foreachedge (u,v)e€E,

I IA

0.

ds

this is a maxim-
isation problem!

~
Solution d satisfies dy = miny. (u,v)ee{du + w(u, v)}]

Linear Programming © Thomas Sauerwald Formulating Problems as Linear Programs 10



Maximum Flow

Maximum Flow Problem

= Given: directed graph G = (V, E) with edge capacities ¢ : E — R™
(recall c(u,v) = 0iif (u,v) & E), pair of vertices s,t € V

Linear Programming © Thomas Sauerwald Formulating Problems as Linear Programs



Maximum Flow

Maximum Flow Problem

= Given: directed graph G = (V, E) with edge capacities ¢ : E — R™
(recall c(u,v) = 0iif (u,v) & E), pair of vertices s,t € V

0/10

Linear Programming © Thomas Sauerwald Formulating Problems as Linear Programs 11



Maximum Flow

Maximum Flow Problem
= Given: directed graph G = (V, E) with edge capacities ¢ : E — R™
(recall c(u,v) = 0iif (u,v) & E), pair of vertices s,t € V

= Goal: Find a maximum flow f : V x V — R from s to t which
satisfies the capacity constraints and flow conservation

0/10

Linear Programming © Thomas Sauerwald Formulating Problems as Linear Programs 11



Maximum Flow

Maximum Flow Problem
= Given: directed graph G = (V, E) with edge capacities ¢ : E — R™
(recall c(u,v) = 0iif (u,v) & E), pair of vertices s,t € V

= Goal: Find a maximum flow f : V x V — R from s to t which
satisfies the capacity constraints and flow conservation

@ If| = 19
O, ® ® ®

Linear Programming © Thomas Sauerwald Formulating Problems as Linear Programs



Maximum Flow

Maximum Flow Problem

= Given: directed graph G = (V, E) with edge capacities ¢ : E — R™
(recall c(u,v) = 0iif (u,v) & E), pair of vertices s,t € V

= Goal: Find a maximum flow f : V x V — R from s to t which
satisfies the capacity constraints and flow conservation

@ If| = 19
O, ® ® ®

Maximum Flow as LP

maximise Devfv = eyt
subject to
fuw < c(u,v) foreachu,veV,
Svevfw = X,cyfw foreachue V\{st},
w2 0 foreachu,veV.

Linear Programming © Thomas Sauerwald Formulating Problems as Linear Programs



Minimum-Cost Flow

[Extension of the Maximum Flow Problem]
Minimum-Cost-Flow Problem L

Linear Programming © Thomas Sauerwald Formulating Problems as Linear Programs



Minimum-Cost Flow

[Extension of the Maximum Flow Problem]

Minimum-Cost-Flow Problem £

= Given: directed graph G = (V, E) with capacities ¢ : E — R, pair of
vertices s, t € V, cost function a: E — R, flow demand of d units

Linear Programming © Thomas Sauerwald Formulating Problems as Linear Programs



Minimum-Cost Flow

[Extension of the Maximum Flow Problem]
Minimum-Cost-Flow Problem L

= Given: directed graph G = (V, E) with capacities ¢ : E — R, pair of
vertices s, t € V, cost function a: E — R, flow demand of d units

= Goal: Findaflow f: V x V — R from s to t with |f| = d while

minimising the total cost 3°, )¢ a(u, v)fu incurrred by the flow.

Linear Programming © Thomas Sauerwald Formulating Problems as Linear Programs 12



Minimum-Cost Flow

[Extension of the Maximum Flow Problem]
Minimum-Cost-Flow Problem 74
= Given: directed graph G = (V, E) with capacities ¢ : E — R, pair of
vertices s, t € V, cost function a: E — R, flow demand of d units
= Goal: Findaflow f: V x V — R from s to t with |f| = d while
minimising the total cost 3°, )¢ a(u, v)fu incurrred by the flow.

Figure 29.3 (a) An example of a minimum-cost-flow problem. We denote the capacities by ¢ and
the costs by a. Vertex s is the source and vertex ¢ is the sink, and we wish to send 4 units of flow
from s to ¢. (b) A solution to the minimum-cost flow problem in which 4 units of flow are sent from s
to t. For each edge, the flow and capacity are written as flow/capacity.

Linear Programming © Thomas Sauerwald Formulating Problems as Linear Programs 12



Minimum-Cost Flow

[Extension of the Maximum Flow Problem]
Minimum-Cost-Flow Problem L

= Given: directed graph G = (V, E) with capacities ¢ : E — R, pair of
vertices s, t € V, cost function a: E — R, flow demand of d units

= Goal: Findaflow f: V x V — R from s to t with |f| = d while
minimising the total cost 3°, )¢ a(u, v)fu incurrred by the flow.

[Optimal Solution with total cost:

S wyee U, Vi = (2:2)+(5-2)+(3-1)+(7-1)+(1-3) = 27

Figure 29.3

the costs by a. Vertex s is the source and vertex ¢ is the sink, and we wish to send 4 units of flow
from s to ¢. (b) A solution to the minimum-cost flow problem in which 4 units of flow are sent from s
to t. For each edge, the flow and capacity are written as flow/capacity.

(a) An example of a minimum-cost-flow problem. We denote the capacities by ¢ and

Linear Programming © Thomas Sauerwald Formulating Problems as Linear Programs



Minimum Cost Flow as a LP

Minimum Cost Flow as LP

minimise D uwyee U, V)fu
subject to

fuv
ZvevaU - Zvevfu‘/
Evevfsv - ZvevaS

fuv

< c(u,v) foruvelV,

= 0 forue V\{s,t},
a,

> 0 foru,v e V.

Linear Programming © Thomas Sauerwald

Formulating Problems as Linear Programs



Minimum Cost Flow as a LP

Minimum Cost Flow as LP

minimise P wwyee &, V) fu
subject to
fw < c(u,v) foru,velV,
Sveviu =2 eyfw = 0 forue V\{s,t},
Evevfsv - ZVEVfVS = d,
fw > 0 foru,ve V.

Real power of Linear Programming comes
from the ability to solve new problems!

Linear Programming © Thomas Sauerwald Formulating Problems as Linear Programs 13



Outline

Standard and Slack Forms

Linear Programming © Thomas Sauerwald

Standard and Slack Forms



Standard and Slack Forms

Standard Form

n
maximise E CiX;j
j=1

subject to

X >0

n
dapg <t fori=1,2,...
j=1

forj=1,2,...

Linear Programming © Thomas Sauerwald

Standard and Slack Forms



Standard and Slack Forms

Standard Form

n
maximise > X {Objective Function ]

=

subject to
n
dapg <t fori=1,2,....m
j=1

Xx; >0 forj=1,2,...,n

Linear Programming © Thomas Sauerwald Standard and Slack Forms



Standard and Slack Forms

Standard Form

j=1
subject to

)

n+ m constraints ]7

n
maximise > X {Objective Function ]

X >0

n
dapg <t fori=1,2,....m
=1

forj=1,2,...,n

Linear Programming © Thomas Sauerwald

Standard and Slack Forms



Standard and Slack Forms

Standard Form

n
maximise > X {Objective Function ]

=

subject to

)

n
Za,-,»x,-gb,» fori=1,2,....,m
n+ m constraints ]7 j=1

x>0 forj=1,2,...,n

N

LNon-Negativity Constraints J

Linear Programming © Thomas Sauerwald Standard and Slack Forms



Standard and Slack Forms

Standard Form

n
maximise > X {Objective Function ]

=

subject to

)

n
dapg <t fori=1,2,....m
n+ m constraints ]7 =

x>0 forj=1,2,...,n
N

LNon-Negativity Constraints J

Standard Form (Matrix-Vector-Notation)

maximise c'x {Inner product of two vectors ]
subject to

Ax<b {Matrix-vector product ]
x>0

Linear Programming © Thomas Sauerwald Standard and Slack Forms



Converting Linear Programs into Standard Form

Reasons for a LP not being in standard form:

2. There might be variables without nonnegativity constraints.
3. There might be equality constraints.

4. There might be inequality constraints (with > instead of <).

1. The objective might be a minimisation rather than maximisation.

Linear Programming © Thomas Sauerwald Standard and Slack Forms



Converting Linear Programs into Standard Form

Reasons for a LP not being in standard form:

2. There might be variables without nonnegativity constraints.
3. There might be equality constraints.
4. There might be inequality constraints (with > instead of <).

1. The objective might be a minimisation rather than maximisation.

Goal: Convert linear program into an equivalent program

which is in standard form

Linear Programming © Thomas Sauerwald Standard and Slack Forms



Converting Linear Programs into Standard Form

Reasons for a LP not being in standard form:

1. The objective might be a minimisation rather than maximisation.
2. There might be variables without nonnegativity constraints.

3. There might be equality constraints.

4. There might be inequality constraints (with > instead of <).

Goal: Convert linear program into an equivalent program

which is in standard form

/1

[Equivalence: a correspondence (not necessarily a bijection) between solutions. ]

Linear Programming © Thomas Sauerwald Standard and Slack Forms



Converting into Standard Form (1/5)

Reasons for a LP not being in standard form:
1. The objective might be a minimisation rather than maximisation.

Linear Programming © Thomas Sauerwald Standard and Slack Forms



Converting into Standard Form (1/5)

Reasons for a LP not being in standard form:
1. The objective might be a minimisation rather than maximisation.

minimise —-2x1 + 3x

subject to
X1 =+ X2 = 7
X1 — 2X2 < 4
X1 > 0

Linear Programming © Thomas Sauerwald Standard and Slack Forms 17



Converting into Standard Form (1/5)

Reasons for a LP not being in standard form:
1. The objective might be a minimisation rather than maximisation.

minimise —-2x1 + 3x

subject to
X1 =+ X2 = 7
X1 — 2X2 < 4
X1 > 0

|
|
i Negate objective function
\/

Linear Programming © Thomas Sauerwald Standard and Slack Forms 17



Converting into Standard Form (1/5)

Reasons for a LP not being in standard form:
1. The objective might be a minimisation rather than maximisation.

minimise —-2x1 + 3x

subject to
X1 =+ X2 = 7
X1 — 2X2 < 4
X1 > 0

|
|
i Negate objective function
\

maximise 2xy — 33X

subject to
Xq -+ Xo = 7
X1 — 2Xo < 4
X1 > 0

Linear Programming © Thomas Sauerwald Standard and Slack Forms 17



Converting into Standard Form (2/5)

Reasons for a LP not being in standard form:
2. There might be variables without nonnegativity constraints.

Linear Programming © Thomas Sauerwald Standard and Slack Forms



Converting into Standard Form (2/5)

Reasons for a LP not being in standard form:
2. There might be variables without nonnegativity constraints.

maximise 2xy — 33X
subject to
X1+ X = 7
X1 — 2X2 < 4
X > 0]

Linear Programming © Thomas Sauerwald Standard and Slack Forms 18



Converting into Standard Form (2/5)

Reasons for a LP not being in standard form:
2. There might be variables without nonnegativity constraints.

maximise 2xy — 33X
subject to
X1+ X = 7
X1 — 2X2 < 4
X > 0]

!
! Replace x; by two non-negative
\}( variables x; and x5’

Linear Programming © Thomas Sauerwald Standard and Slack Forms 18



Converting into Standard Form (2/5)

Reasons for a LP not being in standard form:
2. There might be variables without nonnegativity constraints.

maximise 2xy — 33X
subject to
X1+ X = 7
X1 — 2X2 < 4
X > 0]

!
! Replace x; by two non-negative
\}( variables x; and x5’

maximise 2y — |3xs + 3xy

subject to

X1 + | X - X5
Xy — 2%+ 2x
X1, Xéa X2l

IVIIA I
[=JF NN

Linear Programming © Thomas Sauerwald Standard and Slack Forms



Converting into Standard Form (3/5)

Reasons for a LP not being in standard form:
3. There might be equality constraints.

Linear Programming © Thomas Sauerwald Standard and Slack Forms



Converting into Standard Form (3/5)

Reasons for a LP not being in standard form:
3. There might be equality constraints.

maximise 2y — 3x3 + 3x
subject to
X\ + X = X = 7
X1 — 2x3 + 2x5 < 4
X1, X5, X5 > 0

Linear Programming © Thomas Sauerwald Standard and Slack Forms



Converting into Standard Form (3/5)

Reasons for a LP not being in standard form:
3. There might be equality constraints.

maximise 2xy — 3x3 + 3x4
subject to
xi + g - g = 7]
X1 — 2x3 + 2x5 < 4
X1, Xé7 Xé/ > 0

i Replace each equality
\}’ by two inequalities.

Linear Programming © Thomas Sauerwald Standard and Slack Forms 19



Converting into Standard Form (3/5)

Reasons for a LP not being in standard form:
3. There might be equality constraints.

maximise
subject to

maximise
subject to

2y — 3x3 + 3x
X\ + X = X = 7
X — 2% + 2x < 4
X1, X5, X5 > 0
|
I Replace each equality
\}’ by two inequalities.
2y — 3x3 + 3x3
x + X - x5 < 7
X+ X - x4 > 7
X1 — 2 + 2x3 < 4
X1, Xé7 Xél 2 0

Linear Programming © Thomas Sauerwald

Standard and Slack Forms



Converting into Standard Form (4/5)

Reasons for a LP not being in standard form:
4. There might be inequality constraints (with > instead of <).

Linear Programming © Thomas Sauerwald Standard and Slack Forms

20



Converting into Standard Form (4/5)

Reasons for a LP not being in standard form:

4. There might be inequality constraints (with > instead of <).

maximise 2x; — 3x3 + 3x)
subject to
Xt + X - x < 7
L+ % - 6 > 7]
X1 — 2x 4+ 2x5 < 4
> 0

Linear Programming © Thomas Sauerwald Standard and Slack Forms

20



Converting into Standard Form (4/5)

Reasons for a LP not being in standard form:
4. There might be inequality constraints (with > instead of <).

maximise 2x; — 3x3 + 3x)
subject to
Xt + X - x < 7
L+ % - 6 > 7]
X1 — 2x 4+ 2x5 < 4
X1, X3, X3/ > 0

|
i Negate respective inequalities.
v

Linear Programming © Thomas Sauerwald Standard and Slack Forms 20



Converting into Standard Form (4/5)

Reasons for a LP not being in standard form:
4. There might be inequality constraints (with > instead of <).

maximise 2x; — 3x3 + 3x)
subject to
Xt + X - x < 7
L+ % - 6 > 7]
X1 — 2x 4+ 2x5 < 4
X1, X3, X3/ > 0

|
i Negate respective inequalities.

\Z
maximise 2xy - 3x3 + 3x§
subject to
X+ x5 - Xy < 7
= - x% + x < -7
X1 — 2% + 2x5 < 4
X1, X5, X5 > 0

Linear Programming © Thomas Sauerwald Standard and Slack Forms 20



Converting into Standard Form (5/5)

maximise 2xy — 3x2 + 3x3
subject to
X1+ Xo — X3 <
—-X1 - Xo + X3 <
Xy — 2 + 2x3 <
X1, X2, X3 >

Linear Programming © Thomas Sauerwald Standard and Slack Forms

21



Converting into Standard Form (5/5)

[Rename variable names (for consistency). ]

N
maximise 2x7 — 33X + 3x3
subject to
X1+ X2 — X3 < 7
-X1 - X + x3 < =7
X1 - 2X +  2x3 < 4
X1, X2, X3 Z 0

Linear Programming © Thomas Sauerwald Standard and Slack Forms 21



Converting into Standard Form (5/5)

[Rename variable names (for consistency). ]

N
maximise 2xy — 3x2 + 3x3
subject to
XX + X2 — x3 < 7
—X1 - X + x3 < =7
X1 - 2X +  2x3 < 4
X1, X2, X3 > 0

It is always possible to convert a linear program into standard form.

Linear Programming © Thomas Sauerwald Standard and Slack Forms 21



Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints

except for the non-negativity constraints are equalities.

Linear Programming © Thomas Sauerwald Standard and Slack Forms

22



Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints

except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more con-
venient to work with equality constraints.

Linear Programming © Thomas Sauerwald Standard and Slack Forms

22



Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints

except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more con-
venient to work with equality constraints.

Introducing Slack Variables

Linear Programming © Thomas Sauerwald Standard and Slack Forms

22



Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints

except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more con-
venient to work with equality constraints.

Introducing Slack Variables

= Let Z}; a;ix; < b; be an inequality constraint

Linear Programming © Thomas Sauerwald Standard and Slack Forms



Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints

except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more con-
venient to work with equality constraints.

Introducing Slack Variables
= Let Z}; a;ix; < b; be an inequality constraint
= Introduce a slack variable s by

Linear Programming © Thomas Sauerwald Standard and Slack Forms



Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints

except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more con-
venient to work with equality constraints.

Introducing Slack Variables
= Let Z}; a;ix; < b; be an inequality constraint
= Introduce a slack variable s by

n
s=b— Za,-,x,-
J=1

Linear Programming © Thomas Sauerwald Standard and Slack Forms

22



Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints

except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more con-
venient to work with equality constraints.

Introducing Slack Variables
= Let Z}; a;ix; < b; be an inequality constraint
= Introduce a slack variable s by

n
s=b— Za,-,x,-
J=1

s> 0.

Linear Programming © Thomas Sauerwald Standard and Slack Forms

22



Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints

except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more con-
venient to work with equality constraints.

Introducing Slack Variables
= Let Zj’.’:1 a;ix; < b; be an inequality constraint
= Introduce a slack variable s by

n
s=bi— ) ax
[ s measures the slack between } ' ; v

the two sides of the inequality.
>0.

Linear Programming © Thomas Sauerwald Standard and Slack Forms



Converting Standard Form into Slack Form (1/3)

Goal: Convert standard form into slack form, where all constraints

except for the non-negativity constraints are equalities.

For the simplex algorithm, it is more con-
venient to work with equality constraints.

Introducing Slack Variables
= Let Zj’.’:1 a;ix; < b; be an inequality constraint
= Introduce a slack variable s by

n
s=bi— ) ax
[ s measures the slack between } ' ; v

the two sides of the inequality.
>0.

= Denote slack variable of the i-th inequality by X,

Linear Programming © Thomas Sauerwald Standard and Slack Forms



Converting Standard Form into Slack Form (2/3)

maximise 2xy — 33X + 3x3
subject to
X1+ Xo — X3 <
-Xi - X2 + X3 <
X4 — 2% + 2Xx3 <
X1, X2, X3 >

Linear Programming © Thomas Sauerwald Standard and Slack Forms

23



Converting Standard Form into Slack Form (2/3)

maximise 2xy — 3x + 3x3
subject to
Xy + X - x3 < 7
-x1 - X + x3 < =7
X4 — 2% + 2Xx3 < 4
X1, X2, X3 > 0

|
|
i Introduce slack variables
|
v

Linear Programming © Thomas Sauerwald Standard and Slack Forms



Converting Standard Form into Slack Form (2/3)

maximise 2xy — 3x + 3x3
subject to
Xy + X - x3 < 7
-x1 - X + x3 < =7
X4 — 2% + 2Xx3 < 4
X1, X2, X3 > 0

|
|
| Introduce slack variables
|
v

subject to
X4 = 7 — X1 - X2 +

Linear Programming © Thomas Sauerwald Standard and Slack Forms



Converting Standard Form into Slack Form (2/3)

maximise 2xy — 3x + 3x3
subject to
Xy + X - x3 < 7
Xy - Xo + x3 < =7
X4 — 2% + 2Xx3 < 4
X1, X2, X3 > 0
|
|
| Introduce slack variables
v
subject to
X4 7 - X1 - Xo +
X5 -7 + X1+ X -

Linear Programming © Thomas Sauerwald

Standard and Slack Forms

23



Converting Standard Form into Slack Form (2/3)

maximise 2x1  — 3x
subject to
X1+ X2
X1 - X2
X1 — 2X2
X1, X2, X3

|

¢
subject to

X4 = 7

X5 = -7

X6 = 4

+ 3x3

— X3 < 7

+ x3 < =7

+ 2x3 < 4
> 0

Introduce slack variables

— X1+ 2x

X3
X3
2X3

Linear Programming © Thomas Sauerwald

Standard and Slack Forms

23



Converting Standard Form into Slack Form (2/3)

maximise 2xy — 3x + 3x3
subject to
Xy + X - x3 < 7
-x1 - X + x3 < =7
X4 — 2% + 2Xx3 < 4
X1, X2, X3 > 0

|
|
i Introduce slack variables
|
v

subject to
X4 = 7 - X4 — Xo + X3
X5 = —7 4+ x1 + X — X
X6 = 4 - X4 + 2x - 2X3
X1, X2, X3, X4, X5, X > 0

Linear Programming © Thomas Sauerwald Standard and Slack Forms 23



Converting Standard Form into Slack Form (2/3)

maximise 2x1 — 33X
subject to
X1+ X2
X1 - X2
X1 — 2Xo
X1, X2, X3

maximise 2X1
subject to
X4
X5
X6

X1, X2, X3, Xa, X5, Xe

|

v
3X2
7

-7
4

+

+

+ +

3X3

X3
X3
2X3

3X3

Xq
Xi
X1

vV + +

(AVAVARVANIVAN

Introduce slack variables

X2
X2
2X2

X3
X3
2X3

Linear Programming © Thomas Sauerwald

Standard and Slack Forms



Converting Standard Form into Slack Form (3/3)

maximise 2xy — 3x2 + 3x3
subject to
X4 = 7 - X1 — Xo + X3
X5 = -7 + X1+ X2 X3
X6 = 4 — X1 + 2Xo — 2X3
X1, X2, X3, X4, X5, X6 > 0

Linear Programming © Thomas Sauerwald Standard and Slack Forms 24



Converting Standard Form into Slack Form (3/3)

maximise 2x1 — 3x + 3x3
subject to
X4 = 7 - X1 = X2+ X3
X5 = -7 + X1+ X2 - X3
X6 = 4 — X1 + 2Xo — 2X3
> 0

X1, X2, X?? X4, X5, Xe

! Use variable z to denote objective function
\}’ and omit the nonnegativity constraints.

Linear Programming © Thomas Sauerwald Standard and Slack Forms 24



Converting Standard Form into Slack Form (3/3)

maximise 2xy — 3x2 + 3x3
subject to
X4 = 7 — Xq
X5 = -7 + Xq
X6 = 4 — X1

X1, X2, X?? X4, X5, Xe

+
+
2

X2
X2
2X2

0

+

X3
X3
2X3

! Use variable z to denote objective function
\}’ and omit the nonnegativity constraints.

z 2X4 — 3% + 3x3 ‘
X4 = 7 - Xy - X2 + X3
Xs = -7 -+ Xy + Xo — X3
Xe = 4 — X1 =+ 2X2 — 2X3

Linear Programming © Thomas Sauerwald

Standard and Slack Forms

24



Converting Standard Form into Slack Form (3/3)

maximise 2xy — 3x2 + 3x3
subject to
X4 = 7 - X1 — Xo + X3
X5 = -7 + X1+ X2 — X3
X6 = 4 — X1 + 2Xo — 2X3
> 0

X1, X2, X?? X4, X5, Xe

! Use variable z to denote objective function
\}’ and omit the nonnegativity constraints.

z = 2Xq — 3Xxo + 3X3 ‘

Xs = 7 - X1 - X2  + X3

X5 = -7 + X1 + X - X3

Xe = 4 — X1 + 2Xo — 2X3
/1

[This is called slack form.]

Linear Programming © Thomas Sauerwald Standard and Slack Forms 24



Basic and Non-Basic Variables

V4 =

X4 = 7 —
X5 = -7 +
X6 = 4 —

2X4 — 3x
Xq — Xo
X1+ X2
X1+ 2x

3X3
X3
X3
2X3

Linear Programming © Thomas Sauerwald

Standard and Slack Forms

25



Basic and Non-Basic Variables

z =
X4 = 7 —
X = -7 +
X6 = 4 —

7

[Basic Variables: B = {4,5,6} ]

2X4 — 3x
Xq — Xo
X1+ X2
X1+ 2x

3X3
X3
X3
2X3

Linear Programming © Thomas Sauerwald

Standard and Slack Forms

25



Basic and Non-Basic Variables

z = 2x1 — 33X + 3x3
X4 = 7 - X1 — X2 + X3
Xs = -7 + X1+ X2 - X3
X6 = 4 — Xq + 2X2 — 2X3

[Basic Variables: B = {4,5,6} ] [Non-Basic Variables: N = {1,2,3} J

Linear Programming © Thomas Sauerwald Standard and Slack Forms



Basic and Non-Basic Variables

z = 2xy — 3x2 + 3x3
X4 = 7 - X1 = X2 + X3
Xxs = -7 + X1+ X2 - X3
X6 = 4 — X1 + 2Xo — 2X3

[Basic Variables: B = {4,5,6} ] [Non-Basic Variables: N = {1,2,3} ]

Slack Form (Formal Definition)

Slack form is given by a tuple (N, B, A, b, ¢, v) so that
z=v+> gx
jeN
Xj=b - ayx forieB,
jeN

and all variables are non-negative.

Linear Programming © Thomas Sauerwald Standard and Slack Forms

25



Basic and Non-Basic Variables

z = 2xy — 3x2 + 3x3
X4 = 7 - X1 — Xo + X3
Xxs = -7 + X1+ X2 - X3
X6 = 4 — X1 + 2Xo — 2X3

[Basic Variables: B = {4,5,6} ] [Non-Basic Variables: N = {1,2,3} ]

Slack Form (Formal Definition)

Slack form is given by a tuple (N, B, A, b, ¢, v) so that
z=v+) cx
jeN
Xj=b - ayx forieB,

jeN

and all variables are non-negative. N
4[Variables/Coefficients on the right hand side are indexed by B and N. ]

Linear Programming © Thomas Sauerwald Standard and Slack Forms 25



Slack Form (Example)

z = 28
X1 = 8
X2 = 4
x4 = 18

Linear Programming © Thomas Sauerwald

Standard and Slack Forms

26



Slack Form (Example)

z = 28 - % - )g’ —
x = 8 + B 4+ B -
X2 = 4 - % - 2:)3(5 +
x = 18 - 3 + B

Slack Form Notation

Linear Programming © Thomas Sauerwald Standard and Slack Forms

26



Slack Form (Example)

z = 28
Xy = 8
Xo = 4
xs = 18

Slack Form Notation

*B={1,2,4}, N={3,5,6}

Linear Programming © Thomas Sauerwald

Standard and Slack Forms

26



Slack Form (Example)

x = 18 - 3 + B

Slack Form Notation

*B={1,2,4}, N={3,5,6}

a3 a5 aie -1/6 -1/6 1/3
A= a3 dos Ao | = 8/3 2/3 —1/3
asz a5 Aae 1/2 —1/2 0

Linear Programming © Thomas Sauerwald Standard and Slack Forms



Slack Form (Example)

z = 28
Xy = 8
X2 = 4
x4 = 18

Slack Form Notation

_8X3_2X5 X6
3 3 T 3
_ X3 X5
> T 2

*B={1,2,4}, N={3,5,6}

asz  ass

by
b= (b | =
b

a3 aiss
A=|axs ax

aie

aup

(

/6 —1/6 1/3
326) = (8/3 2/3 1/3)

12 —1/2 0

8
41,
18

Linear Programming © Thomas Sauerwald

Standard and Slack Forms

26



Slack Form (Example)

x4:18—);_3+)é5

Slack Form Notation

*B={1,2,4}, N={3,5,6}

a3 a5 e -1/6 -1/6 1/3
A= aoz dos Ao | = 8/3 2/3 *1/3
a3z Ad45 Qs 1/2 -1 /2 0

by 8 Cs —-1/6
b=|(b|=|4],c=|c]|=|-1/6
8)-() - (2)-(

Linear Programming © Thomas Sauerwald Standard and Slack Forms



Slack Form (Example)

x4:18—);_3+)é5

Slack Form Notation

*B={1,2,4}, N={3,5,6}

a3 a5 e -1/6 -1/6 1/3
A= aoz dos Ao | = 8/3 2/3 *1/3
a3z Ad45 Qs 1/2 -1 /2 0

by 8 Cs —-1/6
b=|(b|=|4],c=|c]|=|-1/6
8)-() - (2)-(

= v =28

Linear Programming © Thomas Sauerwald Standard and Slack Forms



Outline

Simplex Algorithm

Linear Programming © Thomas Sauerwald

Simplex Algorithm

27



Simplex Algorithm: Introduction

Simplex Algorithm

= classical method for solving linear programs (Dantzig, 1947)
= usually fast in practice although worst-case runtime not polynomial
= jterative procedure somewhat similar to Gaussian elimination

Linear Programming © Thomas Sauerwald Simplex Algorithm

28



Simplex Algorithm: Introduction

Simplex Algorithm

= classical method for solving linear programs (Dantzig, 1947)
= usually fast in practice although worst-case runtime not polynomial
= jterative procedure somewhat similar to Gaussian elimination

Basic Idea:
* Each iteration corresponds to a “basic solution” of the slack form

= All non-basic variables are 0, and the basic variables are
determined from the equality constraints

= Each iteration converts one slack form into an equivalent one while
the objective value will not decrease

= Conversion (“pivoting”) is achieved by switching the roles of one
basic and one non-basic variable

Linear Programming © Thomas Sauerwald Simplex Algorithm

28



Simplex Algorithm: Introduction

Simplex Algorithm

= classical method for solving linear programs (Dantzig, 1947)
= usually fast in practice although worst-case runtime not polynomial
= jterative procedure somewhat similar to Gaussian elimination

Basic Idea:
* Each iteration corresponds to a “basic solution” of the slack form

= All non-basic variables are 0, and the basic variables are
determined from the equality constraints

= Each iteration converts one slack form into an equivalent one while
the objective value will not decrease < In that sense, it is a greedy algorithm.]

= Conversion (“pivoting”) is achieved by switching the roles of one J

basic and one non-basic variable

Linear Programming © Thomas Sauerwald Simplex Algorithm 28



Extended Example: Conversion into Slack Form

maximise 3xy + Xo +
subject to
X + X2+
21 + 2% +
4, + X2 +
X1, X2, X3

2X3

3X3
5X3
2X3

30
24
36

IV ININIA

Linear Programming © Thomas Sauerwald

Simplex Algorithm

29



Extended Example: Conversion into Slack Form

maximise 3xy + Xo + 2Xx3
subject to
X1 + X + 3x < 30
2X4 + 22X + 5x3 < 24
4x + X2 + 2x3 < 36
X1, X2, X3 > 0

|
! . .
1 Conversion into slack form
|
Y

Linear Programming © Thomas Sauerwald Simplex Algorithm



Extended Example: Conversion into Slack Form

2X3

3X3
5X3
2X3

30
24
36

0

IV ININIA

! . .
1 Conversion into slack form

maximise 3xy + Xo +
subject to
X + X2+
2xy  + 2x2  +
4, + X2 +
X1, X2, X3
|
v
Z =
X4 = 30 —
X5 = 24 —
Xp = 36 —

3Xq

X1
2X1
44

+ Xo
— 2Xo
— Xo

—+

2X3
3X3
5X3
2X3

Linear Programming © Thomas Sauerwald

Simplex Algorithm

29



Extended Example: Iteration 1

z =
X2 = 30 -—
x5 = 24 —
X = 36 —

3X1
X1
2X1

4X1

— 2X2

2X3
3X3
5X3

2X3

Linear Programming © Thomas Sauerwald

Simplex Algorithm

30



Extended Example: Iteration 1

z =
xs = 30
Xs = 24
Xs = 36

3X1
X1
2X1

4X1

— 2X2

— Xo

[Basic solution: (X, %, ..., X5) = (0,0,0,30, 24, 36) j

2X3
3X3
5X3

2X3

Linear Programming © Thomas Sauerwald

Simplex Algorithm

30



Extended Example: Iteration

1

z =
xs = 30
Xs = 24
X6 = 36

3X1
X1
2X1

4X1

— 2X2

— Xo

[Basic solution: (X, %, ..., X5) = (0,0,0,30, 24, 36) ]

/|
(This basic solution is feasible]

2X3
3X3
5X3

2X3

Linear Programming © Thomas Sauerwald

Simplex Algorithm

30



Extended Example: Iteration 1

z =
xs = 30
Xs = 24
Xs = 36

3X1
X1
2X1

4X1

— 2X2

— Xo

[Basic solution: (X, %, ..., X5) = (0,0,0,30, 24, 36) ]

/Il

[This basic solution is feasible] [Objective value is o.j

2X3
3X3
5X3

2X3

Linear Programming © Thomas Sauerwald

Simplex Algorithm

30



Extended Example: Iteration 1

[Increasing the value of x; would increase the objective value.]

v
z = 3x1  + X2 + 2X3
X4 = 30 — X1 — X2 — 3X3
Xs = 24 — 2x; — 2X2 — b5x3
X6 = 36 — 4 x4 — X2 — 2X3
i
[Basic solution: (X, %, ..., %) = (0,0,0,30, 24, 36) ]

/1 \
[This basic solution is feasible] [Objective value is o.j

Linear Programming © Thomas Sauerwald Simplex Algorithm



Extended Example: Iteration 1

[Increasing the value of x; would increase the objective value.]

v
z = 3x;  + X2 + 2x3
xxs = 30 -— Xy - Xo — 3Xx3
Xs = 24 — 2x; — 2X2 — b5x3
X = 36 — 4x; - Xo — 2X3

N
[The third constraint is the tightest and limits how much we can increase x; j

Linear Programming © Thomas Sauerwald Simplex Algorithm



Extended Example: Iteration 1

[Increasing the value of x; would increase the objective value.]

v
z = 3x;  + Xo + 2X3
X4 = 30 — X1 — Xo — 3X3
Xs = 24 — 2x; — 2X2 — b5x3
X6 = 36 — 4 x4 — X2 — 2X3
N
[The third constraint is the tightest and limits how much we can increase x; j
N

Switch roles of x; and xg:

Linear Programming © Thomas Sauerwald Simplex Algorithm



Extended Example: Iteration 1

[Increasing the value of x; would increase the objective value.]

v
z = 3x;  + Xo + 2X3
X4 = 30 — X1 — Xo — 3X3
Xs = 24 — 2x; — 2X2 — b5x3
X6 = 36 — 4 x4 — X2 — 2X3
N
[The third constraint is the tightest and limits how much we can increase x; j

N

Switch roles of x; and xg:
= Solving for x; yields:

_g_Xe X3 _ Xe
"=9-F -5 "7

Linear Programming © Thomas Sauerwald Simplex Algorithm 30



Extended Example: Iteration 1

[Increasing the value of x; would increase the objective value.]

v
z = 3x;  + Xo + 2X3
X4 = 30 — X1 — Xo — 3X3
Xs = 24 — 2x; — 2X2 — b5x3
X6 = 36 — 4 x4 — X2 — 2X3
N
[The third constraint is the tightest and limits how much we can increase x; j

N

Switch roles of x; and xg:
= Solving for x; yields:

_g_Xe X3 _ Xe
"=9-F -5 "7

= Substitute this into x; in the other three equations

Linear Programming © Thomas Sauerwald Simplex Algorithm 30



Extended Example: Iteration 2

z = 27 +
Xy = 9 -
X2 = 21 -
Xs = 6 -

4x3

Linear Programming © Thomas Sauerwald

Simplex Algorithm

30



Extended Example: Iteration 2

z:27+%+% X

x = 21 - 3% _ 5% %

X5:67%74X3+%
N

[Basic solution: (X1, Xz,...,Xs) = (9,0,0,21,6,0) with objective value 27j

Linear Programming © Thomas Sauerwald Simplex Algorithm



Extended Example: Iteration 2

[Increasing the value of x3 would increase the objective value.]

N
z = 27 + 2 + §,%
x4=21—%_%+%
X5:67%74X3+%
N

[Basic solution: (X1, Xz,...,Xs) = (9,0,0,21,6,0) with objective value 27]

Linear Programming © Thomas Sauerwald Simplex Algorithm 30



Extended Example: Iteration 2

[Increasing the value of x3 would increase the objective value.]

N
z:27+%+§,%
x4=21_%_%+%
X5:67%74X3+%

N
[The third constraint is the tightest and limits how much we can increase xs.j

Linear Programming © Thomas Sauerwald Simplex Algorithm 30



Extended Example: Iteration 2

[Increasing the value of x3 would increase the objective value.]

N
- Xg X3 _  3X
z = 27 + 4 t >
_ _ X2 _ X3 _ X
o= 9 4 2 4
= _ 3 _ 5 X
X = 21 4 >t 7
s = 6 - % - 4+ %R
™N
[The third constraint is the tightest and limits how much we can increase xs.j
\
( N )
Switch roles of x; and xs:
| J

Linear Programming © Thomas Sauerwald Simplex Algorithm 30



Extended Example: Iteration 2

[Increasing the value of x3 would increase the objective value.]

N
- Xg X3 _  3X
z = 27 + 4 t >
_ _ X2 _ X3 _ X
o= 9 4 2 4
- _ 3 _ 5 X
X = 21 4 >t 7
_ _ 3 _ Xe
Xs = 6 2 4x3 + >
™N
[The third constraint is the tightest and limits how much we can increase xs.j
\
( N )
Switch roles of x; and xs:
= Solving for x3 yields:
o3 3 X% X
278 4 8
| J

Linear Programming © Thomas Sauerwald Simplex Algorithm 30



Extended Example: Iteration 2

[Increasing the value of x3 would increase the objective value.]

N
z =27 + 2 + 5 - 3%
x = 21 - 3% _ 5% %
X5 = 67%74X3+ 5
N
[The third constraint is the tightest and limits how much we can increase xs.j

\

(Switch roles of x; and xs:
= Solving for x3 yields:

~

3 B X X
=278 a4 &

= Substitute this into x3 in the other three equations
\§

Linear Programming © Thomas Sauerwald Simplex Algorithm 30



Extended Example: Iteration 3

V4 = =4 +
X1 = 3473 —
X3 = % —
X4 = EiTQ +

o1 =
3 ool c»\g;

-
o2

Linear Programming © Thomas Sauerwald

Simplex Algorithm

30



Extended Example: Iteration 3

111 Xo Xxs _ 11X

z z T 16 8 16
_ 3838 _ x Xs _ 5%

o=y 16 T 8 16
_ 3 3% X X6

X = 2 8 g T 8
_ 69 3x Sxs  _ Xe

X« = 7 t+ Fg t 73 16

N
[Basic solution: (X1, %z,...,%s) = (2,0, 3, %,0,0) with objective value 1} = 27.75]

Linear Programming © Thomas Sauerwald Simplex Algorithm 30



Extended Example: Iteration 3

[Increasing the value of x, would increase the objective value.]

N

[Basic solution: (X1, %z,...,%s) = (2,0, 3, %,0,0) with objective value 1} = 27.75]

Linear Programming © Thomas Sauerwald Simplex Algorithm 30



Extended Example: Iteration 3

[Increasing the value of x, would increase the objective value.]

N

N
[The second constraint is the tightest and limits how much we can increase xz.j

Linear Programming © Thomas Sauerwald Simplex Algorithm 30



Extended Example: Iteration 3

[Increasing the value of x, would increase the objective value.]

N
x1=%—%+%_%

N

[The second constraint is the tightest and limits how much we can increase xz.j
[\

P
Switch roles of x> and x3:

-

~

Linear Programming © Thomas Sauerwald Simplex Algorithm

30



Extended Example: Iteration 3

[Increasing the value of x, would increase the objective value.]

N

N

[The second constraint is the tightest and limits how much we can increase xz.j
[\

P
Switch roles of x» and xs:
= Solving for x; yields:

-

2Xs5 X6

3 T3

~

Linear Programming © Thomas Sauerwald

Simplex Algorithm

30



Extended Example: Iteration 3

[Increasing the value of x, would increase the objective value.]

N

N
[The second constraint is the tightest and limits how much we can increase xz.j
[\

e 1
Switch roles of x> and x3:

= Solving for x; yields:

8X3 2Xs X6
f— 4 _—— — — —_—
xe 3 3 3

= Substitute this into x» in the other three equations
-

Linear Programming © Thomas Sauerwald Simplex Algorithm 30



Extended Example: Iteration 4

z = 28 -
Xy = 8 +
X2 = 4 -
xXs = 18 -—

X3 X
6 6
X3 X5
6 +
8 _  2X%
3 3
X3 X5
> t %

Linear Programming © Thomas Sauerwald

Simplex Algorithm

30



Extended Example: Iteration 4

2:287%7%7%(5
x = 8 + B + B - %
x = 18 - 3 + 3

N

[Basic solution: (x1,X2,...,Xs) = (8,4,0, 18,0, 0) with objective value 28 J

Linear Programming © Thomas Sauerwald Simplex Algorithm

30



Extended Example: Iteration 4

[AII coefficients are negative, and hence this basic solution is optimal!]

N
i = 8 + B + % %
x2:4—%—%+%
x = 18 - 3 + 3

[Basic solution: (x1,X2,...,Xs) = (8,4,0, 18,0, 0) with objective value 28 ]

Linear Programming © Thomas Sauerwald Simplex Algorithm

30



Extended Example: Visualization of SIMPLEX

X3
X2

(0,12,0)

(0,0,4.8) @
e (8,4,0)
(8.25,0,1.5) @
X4
(9,0,0)

Linear Programming © Thomas Sauerwald Simplex Algorithm 31



Extended Example: Visualization of SIMPLEX

X3
X2
(0,12,0)
12
(0,0,4.8) @
9.6
(8.25,0,1.5) @
27.75

(9,0,0)
27

®(8,4,0)
8

Linear Programming © Thomas Sauerwald Simplex Algorithm



Extended Example: Visualization of SIMPLEX

X3
X2
(0,12,0)
12
(0,0,4.8) @
9.6
(8.25,0,1.5) @
27.75

(9,0,0)
27

e (8,4,0)
8

Linear Programming © Thomas Sauerwald Simplex Algorithm



Extended Example: Visualization of SIMPLEX

X3
X2
(0,12,0)
12
(0,0,4.8) @
9.6
(0,0; ®(8,4,0)
0 (8.25,0,1.5) @ 28
27.75
X4
(0.0.0)
27

Linear Programming © Thomas Sauerwald Simplex Algorithm 31



Extended Example: Visualization of SIMPLEX

X3
X2
(0,12,0)
12
(0,0,4.8) @
9.6
(0,0; ®(8,4,0)
0 (8.25,0,1.5) @ 28
27.75
X1
0.0.0)
27

Exercise: How many basic solutions (including non-feasible
ones) are there?

Linear Programming © Thomas Sauerwald Simplex Algorithm

31



Extended Example: Alternative Runs (1/2)

z =
X4 = 30
X5 = 24
Xs = 36

3x1

X1
2X4
4x4

X2 +
X2 —
2Xo —

Xo —

2X3
3x3
5Xx3

2X3

Linear Programming © Thomas Sauerwald

Simplex Algorithm

32



Extended Example: Alternative Runs (1/2)

z =
X4 = 30
X5 = 24
Xs = 36

3xq
X1
2X4

4X1
!

+

X2 +
X2 —
2Xo —

Xo —

2X3
3x3
5Xx3

2X3

} Switch roles of x, and xs

A\

Linear Programming © Thomas Sauerwald

Simplex Algorithm

32



Extended Example:

Alternative Runs (1/2)

X4
X5

Xe

X2

X4

Xe

= 30
= 24
= 36

= 12
= 18
= 24

31+ X2 4+ 2x3
X4 — X2 — 3x3
2X4 — 2Xo — 5Xx3
4x4 — X2 — 2x3
i Switch roles of x, and xs
\4

3 o+ B3 o+ %

Linear Programming © Thomas Sauerwald

Simplex Algorithm

32



Extended Example:

Alternative Runs (1/2)

X4
X5

Xe

X2

X4

Xe

= 30
= 24
= 36

= 12
= 18
= 24

31+ X2
X — X2
2X4 — 2Xo
4x4 — Xo
i Switch roles of
\4
2X1 — %
e - %
3x1  + %

+  2x3
— 3x3
— 5Xx3
— 2X3
X2 and Xs
_ X5
2
_ X5
2
X5
T2
X5
T2

|
} Switch roles of x; and xg

A\

Linear Programming © Thomas Sauerwald

Simplex Algorithm

32



Extended Example: Alternative Runs (1/2)

Xa
X5

Xe

X2

Xa

Xe

X1

X2

X4

30
24
36

12
18
24

28

31+ X2 4+ 2x3
X4 — Xo — 3x3
2X4 — 2Xo — 5X3
4x4 — Xo — 2X3
|
} Switch roles of x, and xs
\4
_ X3 _ X5
2x 2 3
5x3 X5
- 2 T 7
_ X3 X5
x 2 T2
X3 X5
?X1 + 5 + b
} Switch roles of x; and xg
\4
X3 _ X _ 2%
6 6 3
X3 X5 _ X6
T % 3
8 2% X6
3 3 T3
X3 X5
2 t 2

Linear Programming © Thomas Sauerwald

Simplex Algorithm

32



Extended Example: Alternative Runs (2/2)

z =
Xq = 30
Xs = 24
Xs = 36

3x1

X1
2X1
4x4

X2 +
Xo —
2Xo —

Xo —

2X3
3x3
5x3

2X3

Linear Programming © Thomas Sauerwald

Simplex Algorithm

33



Extended Example: Alternative Runs (2/2)

z =
Xq = 30
Xs = 24
Xs = 36

3xy  +
Xy —
2X1 —

4x4 —

X2 +
Xo —
2Xo —

Xo —

2X3
3x3
5x3

2X3

|
! Switch roles of x3 and xs

Linear Programming © Thomas Sauerwald

Simplex Algorithm

33



Extended Example:

Alternative Runs (2/2)

X4
X5

Xe

X4

X3

Xe

= 30
= 24

|
.
R of ol ol

3x1

X1
2X1
4x4

+

X2
X2
2Xo

X2

+

2X3
3x3
5x3

2X3

|
! Switch roles of x3 and xs

11x4

ol m‘

Linear Programming © Thomas Sauerwald

Simplex Algorithm



Extended Example: Alternative Runs (2/2)

z =

X4 = 30
X5 = 24
X6 = 36
PR
W = 1
x5 - 2

Switch roles of x; and Xg__ -
-

3x1

X1
2X1
4x4

+

X2
X2
2Xo

X2

+

2X3
3x3
5x3

2X3

|
! Switch roles of x3 and xs

11x4

ol m‘

Linear Programming © Thomas Sauerwald

Simplex Algorithm

33



X1

X3

X4

Extended Example: Alternative Runs (2/2)

z =
X4 = 30
X5 = 24
X6 = 36
: = 4
N = B8
6w = &
Switch roles of x; and x5 _ - -—~
-
_ 1 X, Xs
= =2z *t % - 7 -
_ 33 X; Xe
= % - % t ¥ -
_ 3 3x: Xs
= 3 - % - 7 f
_ 69 3x 5x
= 4t W% *t % -

3x1

X1
2X1
4x4

+

X2
X2
2Xo

X2

2X3
3x3
5x3

2X3

|
! Switch roles of x3 and xs

11x4

ol m‘

Linear Programming © Thomas Sauerwald

Simplex Algorithm

33



X1

X3

X4

Extended Example: Alternative Runs (2/2)

z =
X4 = 30
X5 = 24
X6 = 36
: = 4
N = B8
6w = &
Switch roles of x; and x5 _ - -—~
-
_ 1 X, Xs
= =2z *t % - 7 -
_ 33 X; Xe
= % - % t ¥ -
_ 3 3x: Xs
= 3 - % - 7 f
_ 69 3x 5x
= 4t W% *t % -

3x1

X1
2X1
4x4

+

X2
X2
2Xo

X2

2X3
3x3
5x3

2X3

|
! Switch roles of x3 and xs

11x4
5
X1

5

~~~__ Switch roles of x; and x3

X
5
X
5
2%,

X2
5

T

+

2x5

3xs
5
X5

2X3
5

Linear Programming © Thomas Sauerwald

Simplex Algorithm

33



X1

X3

X4

Extended Example: Alternative Runs (2/2)

z =
X4 = 30
X5 = 24
X6 = 36
: = 4
N = B8
6w = &
Switch roles of x; and x5 _ - -—~
-
_ 1 X, Xs
= =2z *t % - 7 -
_ 33 X; Xe
= % - % t ¥ -
_ 3 3x: Xs
= 3 - % - 7 f
_ 69 3x 5x
= 4t W% *t % -

3x1

X1
2X1
4x4

+

Xo + 2X3

X2 - 3X3
2Xo — 5x3
Xo — 2X3

|
! Switch roles of x3 and xs

11

X1
5
X1

5

X1

X2

X4

X _ 2%

5

Xp 3x5

5 + 75

2% _ X5

Xo 2X3

T T 5
~ - _ Switch roles of X, and x3

N
_ _ X3 _ X5
= 28 % %
_ X3 X5
= 8 + ¥ + %
— _ 8 2%
= ¢ 3 3
_ _ X3 X5
= 18 > + >

Linear Programming © Thomas Sauerwald

Simplex Algorithm

33



The Pivot Step Formally

PIVOT(N, B, A,b,c,v,l,e)

1 // Compute the coefficients of the equation for new basic variable x,.
let A be a new m x n matrix
be = bl/ale
for each j € N — {e}

Zie/' = al/'/ale

ael = 1/ale
// Compute the coefficients of the remaining constraints.
for eachi € B — {l}
9 bi = b; — azeb,

W N

[~ IR R RO NN

10 for each j € N — {e}
11 &,-,- = a[/- —a;e&ej
12 Qi1 = —Qjeder

13 // Compute the objective function.

14 9 =v+ch,

15 foreachj eN 7{e,

16 ¢ —c,—ceae,

17 51 = —C ael

18  // Compute new sets of basic and nonbasic variables.
19 N=N—{euil}

20 B=B-{l}U{e}

21 return (1\75@323)

Linear Programming © Thomas Sauerwald Simplex Algorithm



The Pivot Step Formally

PIVOT(N, B, A,b,c,v,l,e)

1

[V R SRS E ]

[~ BEN o)

11
12
13
14
15
16
17
18
19
20
21

// Compute the coefficients of the equation for new basic variable x,.
let A be a new m X n matrix

be = by/ase — -
for each j € N — {e} Rewrite “tight” equation

Qo = aij/a. for enterring variable Xe.
Ziel = 1/ale

// Compute the coefficients of the remaining constraints.
for eachi € B — {l}
bi = b; — azeb,
for each j € N — {e}
dij = Aij — AjeQy;

ail = _uieael
// Compute the objective function.
D =v+ceh,

foreachj eN 7{6;
¢ = ¢ -c ol
Cc] = —C, ael
// Compute new sets of basic and nonbasic variables.
N=N-—{euil}
B=B—{l}U{e}
return (1\7, B.Abe, D)

Linear Programming © Thomas Sauerwald Simplex Algorithm 34



The Pivot Step Formally

PIVOT(N, B, A,b,c,v,l,e)

1

[V R SRS E ]

[~ BEN o)

11
12
13
14
15
16
17
18
19
20
21

// Compute the coefficients of the equation for new basic variable x,.
let A be a new m X n matrix

be = by/ase — -
for each j € N — {e} Rewrite “tight” equation

dej = aj;/ase for enterring variable Xe.
Ziel = 1/ale

// Compute the coefficients of the remaining constraints.
for eachi € B — {l}

b = b —aicb. Substituting xe into

for cach j € N — e} other equations.
al/ - a1/ aieaej

ll = _ateael

// Compute the objective function.
D= v+ ceb,
foreachj enN 7{6;

¢ = ¢ -c ol
E] = —C ael
// Compute new sets of basic and nonbasic variables.
N=N-—{euil}
B=B—{l}U{e}
return (N, B, A, b.¢, D)

Linear Programming © Thomas Sauerwald Simplex Algorithm

34



The Pivot Step Formally

PIVOT(N, B, A,b,c,v,l,e)

1

[V R SRS E ]

[~ BEN o)

11
12
13
14
15
16
17
18
19
20
21

// Compute the coefficients of the equation for new basic variable x,.

let A be anew m x n matrix
= bi/aj.

for eachj e N —{e}
ae/' = al//ale

el = ]/ale

Rewrite “tight” equation

for enterring variable xe.

// Compute the coefficients of the remaining constraints.

for eachi € B — {l}
bi = b; — azeb,
for each j € N — {e}
a; = aij = Aielyj
ll = _ateael

// Compute the objective function.

D = v+ c.h,
foreachj eNf{e,
~ ¢ =6 =ce dej
Ccp = —C ael

Substituting xe into
other equations.

Substituting xe into
objective function.

// Compute new sets of basic and nonbasic variables.

N=N-—{euil}
B=B—{l}U{e}
return (I\A/,E.Af.h,?r,ﬁ)

Linear Programming © Thomas Sauerwald

Simplex Algorithm

34



The Pivot Step Formally

PIvOT(N, B, A,b,c,v,l,e)

1

W N

[V N

[~ BEN o)

11
12
13
14
15
16
17
18
19
20
21

// Compute the coefficients of the equation for new basic variable x,.
let A be a new m X n matrix

A = bi/as. X - )
for each j € N — {e} Rewrite “tight” equation

Q. = ajj/a. for enterring variable xe.
Ziel = ]/ale

// Compute the coefficients of the remaining constraints.
for eachi € B — {l}
bi = b —ai.b, Substituting xe into

for cach j € N — e} other equations.
a1/ - a1/ a[eaej

ll = _ateael
// Compute the objective function.
D = v+ c.h, . 7
for cach j € N — {e} Substituting xe into
&) = ¢j = celle; objective function.
El = —C ael
// Compute new sets of basic and nonbasic variables.
N =N-{euil} Update non-basic
B =B—{lj}U{e} and basic variables

return ([\A/,E.Af.}?,?’,ﬁ)

Linear Programming © Thomas Sauerwald Simplex Algorithm 34



The Pivot Step Formally

PIvOT(N, B, A,b,c,v,l,e)

1

W N

[V N

[~ BEN o)

11
12
13
14
15
16
17
18
19
20
21

// Compute the coefficients of the equation for new basic variable x,.
let A be anew m x n matrix
= bi/ai. o N .
for eachj € N —{e} ( Need that g # 0! Rewrite “tight” equation
Q. = ajj/a. = for enterring variable xe.
Ziel = ]/ale
// Compute the coefficients of the remaining constraints.
for eachi € B —{/}

b = b —aicb. Substituting xe into

for cach j € N — e} other equations.
a1/ - a1/ a[eaej

ll = _aleael
// Compute the objective function.
D =v+ch,
for cach j € N — {e} Substituting xe into
~ ¢ = ¢ -c elej objective function.
cp = —¢C ael
// Compute new sets of basic and nonbasic variables.
12/ = N—{e}U{l} Update non-basic
B =B—{lj}U{e} and basic variables

return ([\A/,E.Af.}?,?’,ﬁ)

Linear Programming © Thomas Sauerwald Simplex Algorithm 34



Effect of the Pivot Step (extra material, non-examinable)

Lemma 29.1

Consider a call to PIVOT(N, B, A, b, c, v, I, e) in which ae # 0. Let the
values returned from the call be (N, B, A, b, ¢, V), and let X denote the
basic solution after the call. Then

Linear Programming © Thomas Sauerwald Simplex Algorithm

35



Effect of the Pivot Step (extra material, non-examinable)

Lemma 29.1

Consider a call to PIVOT(N, B, A, b, c, v, I, e) in which ae # 0. Let the
values returned from the call be (N, B, A, b, ¢, V), and let X denote the
basic solution after the call. Then

1. X, =0foreachj € N.
2. Xe = b//a/e.
3. X; = by — ajeb, for each i € B\ {e}.

Linear Programming © Thomas Sauerwald Simplex Algorithm

35



Effect of the Pivot Step (extra material, non-examinable)

Lemma 29.1

Consider a call to PIVOT(N, B, A, b, c, v, I, e) in which ae # 0. Let the
values returned from the call be (N, B, A, b, ¢, V), and let X denote the
basic solution after the call. Then

1. X, =0foreachj € N.
2. Xe = b//a/e.
3. X; = by — ajeb, for each i € B\ {e}.

Proof:

Linear Programming © Thomas Sauerwald Simplex Algorithm

35



Effect of the Pivot Step (extra material, non-examinable)

Lemma 29.1

Consider a call to PIVOT(N, B, A, b, c, v, I, e) in which ae # 0. Let the

values returned from the call be (N, B,A b,¢, V), and let X denote the
basic solution after the call. Then

1. X;=0foreachj e N.
2. Xe = b//a/e.

3. X; = by — ajeb, for each i € B\ {e}.

Proof:

1. holds since the basic solution always sets all non-basic variables to zero.
2. When we set each non-basic variable to 0 in a constraint

Xi = bi — E ajjX;,
jenN

we have x; = b; for each i € B. Hence Xe = be = b/ aje.

3. After substituting into the other constraints, we have

Xi = bj = bj — ajebe.

Linear Programming © Thomas Sauerwald Simplex Algorithm 35



Effect of the Pivot Step (extra material, non-examinable)

Lemma 29.1

Consider a call to PIVOT(N, B, A, b, c, v, I, e) in which ae # 0. Let the

values returned from the call be (N, B,A b,¢, V), and let X denote the
basic solution after the call. Then

1. X;=0foreachj e N.
2. Xe = b//a/e.

3. X; = by — ajeb, for each i € B\ {e}.

Proof:

1. holds since the basic solution always sets all non-basic variables to zero.
2. When we set each non-basic variable to 0 in a constraint

Xi = bi — E ajjX;,
jenN

we have x; = b; for each i € B. Hence Xe = be = b/ aje.

3. After substituting into the other constraints, we have

Xi = B,‘ = b,’ — a,—eBe. O

Linear Programming © Thomas Sauerwald Simplex Algorithm 35



Formalizing the Simplex Algorithm: Questions

Questions:
= How do we determine whether a linear program is feasible?

= What do we do if the linear program is feasible, but the initial basic
solution is not feasible?

* How do we determine whether a linear program is unbounded?
= How do we choose the entering and leaving variables?

Linear Programming © Thomas Sauerwald Simplex Algorithm

36



Formalizing the Simplex Algorithm: Questions

Questions:
= How do we determine whether a linear program is feasible?

= What do we do if the linear program is feasible, but the initial basic
solution is not feasible?

* How do we determine whether a linear program is unbounded?
= How do we choose the entering and leaving variables?

[Example before was a particularly nice one! ]

Linear Programming © Thomas Sauerwald Simplex Algorithm



The formal procedure SIMPLEX

SIMPLEX (A, b, ¢)

(N,B,A,b,c,v) = INITIALIZE-SIMPLEX (4, b, ¢)
let A be a new vector of length m
while some index j € N hasc; >0
choose an index e € N for which ¢, > 0
for each index i € B
ifa;, >0
A; = bi/ai.
else A; = o0
choose an index / € B that minimizes A;
if A; ==o00
return “unbounded”
else (N, B, A,b,c,v) = PIVOT(N, B, A,b,c,v,l,e)
fori = 1ton

ifi € B
X,‘ = b,‘
else x;, =0
return (X, X5,...,X,)

Linear Programming © Thomas Sauerwald Simplex Algorithm

37



The formal procedure SIMPLEX

SIMPLEX (A, b, ¢)

let A be a new vector of length m

Returns a slack form with a
(N, B, A,b,c,v) = INITIALIZE-SIMPLEX (4., ¢) & feasible basic solution (if it exists)

]

while some index j € N hasc; >0
choose an index e € N for which ¢, > 0
for each index i € B
ifa;, >0
A; = bi/ai.
else A; = o0
choose an index / € B that minimizes A;
if A; ==o00
return “unbounded”
else (N, B, A,b,c,v) = PIVOT(N, B, A,b,c,v,l,e)
fori = 1ton

ifi € B
X,‘ = b,‘
else x;, =0
return (X, X5,...,X,)

Linear Programming © Thomas Sauerwald Simplex Algorithm

37



The formal procedure SIMPLEX

SIMPLEX (A, b, ¢)

Returns a slack form with a
(N, B, A,b,c,v) = INITIALIZE-SIMPLEX (4., ¢) & feasible basic solution (if it exists)

, while some index j € N has ;>0

choose an index e € N for which ¢, > 0
for each index i € B

ifa;, >0

A; = bi/ai.

else A; = o0
choose an index / € B that minimizes A;
if A; ==o00

return “unbounded”

else (N, B, A,b,c,v) = PIVOT(N, B, A,b,c,v,l,e)

ifi € B
X,‘ = b,‘
else x;, =0
return (X, X5,...,X,)

]

Linear Programming © Thomas Sauerwald

Simplex Algorithm

37



The formal procedure SIMPLEX

SIMPLEX (4, b, ¢) Returns a slack form with a
(N, B, A,b,c,v) = INITIALIZE-SIMPLEX (4, b, ¢) feasible basic solution (if it exists)

, while some index j € N has ;>0

choose an index e € N for which ¢, > 0
for each index i € B

ifa;, >0

A; = bi/ai.

else A; = o0
choose an index / € B that minimizes A;
if A; ==o00

return “unbounded”

else (N, B, A,b,c,v) = PIVOT(N, B, A,b,c,v,l,e)

ifi € B
X,‘ = b,‘
else x;, =0
return (X, X5,...,X,)

]

(Main Loop:

Linear Programming © Thomas Sauerwald

Simplex Algorithm

37




The formal procedure SIMPLEX

SIMPLEX (4, b, ¢) Returns a slack form with a
(N.B,A.b,c,v) = INITIALIZE-SIMPLEX (4, b, ¢) feasible basic solution (if it exists)

J

2 let Abeanew vectoroflengthm_ _ _ _ __ ___ __>——

3, while some index j € N has¢; > 0 Vo

4 : choose an index e € N for which ¢, > 0 , | Main Loop:

5, for each index i € B : = terminates if all coefficients in

6 1 ifa;, >0 h objective function are negative

1
7 A; = bi/aje :< = Line 4 picks enterring variable
81 else A; = oo ! Xe With negative coefficient
. L ' .

9 ! .choose an index / € B that minimizes A; X = Lines 6 — 9 pick the tightest
10 | if A ==o00 ! constraint, associated with x;
11 return “unbounded” X o . -
12 ' else (N, B, A,b,c,v) = PIVOT(N, B, A, b,c,v,l,e) 1 Line 11 returns “unbounded"” if

i, o gt iy Ak ha S AR gl A Red el NS R A AL B there are no constraints
13 fori = 1ton
14 ifi € B = Line 12 calls P1vOT, switching
15 % = b L roles of x; and xe

T 1

16 else x;, =0
17 return (X, X5, ...,X,)

Linear Programming © Thomas Sauerwald Simplex Algorithm 37



The formal procedure SIMPLEX

SIMPLEX(A, b, ¢) Returns a slack form with a
(N, B, A,b,c,v) = INITIALIZE-SIMPLEX (4, b, ¢) feasible basic solution (if it exists)

while some index j € N hasc; >0

choose an index e € N for which ¢, > 0
for each index i € B

ifa;, >0

A; = bi/ai.

else A; = o0
choose an index / € B that minimizes A;
if A; ==o00

return “unbounded”

else (N, B, A,b,c,v) = PIVOT(N, B, A,b,c,v,l,e)

ifi e B
)E; = b,‘
else x;, =0

-

rl\/lain Loop:

= terminates if all coefficients in
objective function are negative

Line 4 picks enterring variable
Xe With negative coefficient

= Lines 6 — 9 pick the tightest
constraint, associated with x;

Line 11 returns “unbounded” if
there are no constraints

Line 12 calls PIvoT, switching
roles of x; and xe

J

return (¥, %o, ..., %) ﬁ Return corresponding solution. ]

Linear Programming © Thomas Sauerwald

Simplex Algorithm

37



The formal procedure SIMPLEX

1 (N.B,A.b,c.v) = INITIALIZE-SIMPLEX (4. b, ) feasible basic solution (if it exists)

SIMPLEX (A, b, ¢) { Returns a slack form with a ]

3, while some index j € N has ¢; > 0

1

41 choose an index e € N for which ¢, > 0 :
5 : for each index i € B :
6 : ifa;, >0 1
7 A; = bi/ai. :
8 : else A; = o0 1
9, choose an index / € B that minimizes A; :
10 : if A; ==o00 1
11, return “unbounded” X
12! else (N, B, A,b,c,v) = PIVOT(N, B, A,b,c,v,l,e) 1
13 fori =1ton ~~~~ "~~~ """ """ TTTTT
14 ifi € B
15 X,‘ = b,‘
16 else x;, =0
17 return (X, X5, ...,X,)

Lemma 29.2

Suppose the call to INITIALIZE-SIMPLEX in line 1 returns a slack form for which
the basic solution is feasible. Then if SIMPLEX returns a solution, it is a feasible
solution. If SIMPLEX returns “unbounded”, the linear program is unbounded.

Linear Programming © Thomas Sauerwald Simplex Algorithm 37



The formal procedure SIMPLEX

1 (N.B,A.b,c.v) = INITIALIZE-SIMPLEX (4. b, ) feasible basic solution (if it exists)

SIMPLEX(A. b, ¢) { Returns a slack form with a ]

3, while some index j € N has ¢; > 0

1
41 choose an index e € N for which ¢, > 0 :
5 : for each index i € B :
6 : ifa;, >0 1
7 A; = bi/ai. :
8 : else A; = o0 1
9, choose an index / € B that minimizes A; :
10 : if A; ==o00 1
11, return “unbounded” !

Proof is based on the following three-part loop invariant:

Lemma 29.2 .I,/

Suppose the call to INITIALIZE-SIMPLEX in line 1 returns a slack form for which
the basic solution is feasible. Then if SIMPLEX returns a solution, it is a feasible
solution. If SIMPLEX returns “unbounded”, the linear program is unbounded.

Linear Programming © Thomas Sauerwald Simplex Algorithm 37



The formal procedure SIMPLEX

SIMPLEX (4, b, ¢) Returns a slack form with a
1 (N.B,A.b,c,v) = INITIALIZE-SIMPLEX (4, b, ¢) & feasible basic solution (if it exists)

2
3 while some index j € N has c; >0 '
41 choose an index e € N for which ¢, > 0 |
5 : for each index i € B :
6 : ifa;, >0 1
7 Ai = bi/age X
8 : else A; = o0 1
9, choose an index / € B that minimizes A; :
: if A; ==o00 1
1
1

11 return “unbounded”

J

Proof is based on the following three-part loop invariant:

1. the slack form is always equivalent to the one returned by INITIALIZE-SIMPLEX,

2. foreach i € B, we have b; > 0,
3. the basic solution associated with the (current) slack form is feasible.

Lemma 29.2 .I,/

Suppose the call to INITIALIZE-SIMPLEX in line 1 returns a slack form for which
the basic solution is feasible. Then if SIMPLEX returns a solution, it is a feasible
solution. If SIMPLEX returns “unbounded”, the linear program is unbounded.

Linear Programming © Thomas Sauerwald Simplex Algorithm

37



Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

Linear Programming © Thomas Sauerwald Simplex Algorithm 38



Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

z = Xr + X + X3
Xs2 = 8 — X - X
X5 = X2 — X3

Linear Programming © Thomas Sauerwald Simplex Algorithm 38



Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

z = Xr + X + X3
Xs2 = 8 — X - X
X5 = X2 — X3

i Pivot with x; entering and xs leaving
\4

Linear Programming © Thomas Sauerwald Simplex Algorithm 38



Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

z = X1 4+ X 4+ X

Xs2 = 8 - X - X2

X5 = Xo — X3
i Pivot with x; entering and xs leaving
A\

z = 8 + X3 — X4

X1 = 8 — Xo — X4

X5 = Xo — X3

Linear Programming © Thomas Sauerwald Simplex Algorithm 38



Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

z = X1 4+ X 4+ X

Xs2 = 8 - X - X2

X5 = Xo — X3
i Pivot with x; entering and xs leaving
A\

z = 8 + X3 — X4

X1 = 8 — Xo — X4

X5 = Xo — X3

|
! Pivot with x3 entering and xs leaving
v

Linear Programming © Thomas Sauerwald Simplex Algorithm 38



Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

z = X1 4+ X 4+ X

Xs2 = 8 - X - X2

X5 = X2 — X3
i Pivot with x; entering and xs leaving
v

z = 8 + X3 — X4

X1 = 8 — Xo — X4

X5 = Xo — X3
i Pivot with x3 entering and xs leaving
v

z = 8 4+ X - X4 — Xs

X1 = 8 — X2 — X4

X3 = Xo — X5

Linear Programming © Thomas Sauerwald Simplex Algorithm 38



Termination

Degeneracy: One iteration of SIMPLEX leaves the objective value unchanged.

z = Xr + X + X3

X4 = 8 — X1 — X2

X5 = Xo — X3
i Pivot with x; entering and x4 leaving
A\

z = 8 + X3 — X4

X1 = 8 — X2 — X4

X5 = Xo — X3

|
Cycling: If additionally slack form at two ! Pivot with x3 entering and xs leaving
iterations are identical, SIMPLEX fails to terminate! |v

z = 8 4+ X - X2 — Xs
X1 = 8 — X2 — X4
X3 = Xo — X5

Linear Programming © Thomas Sauerwald Simplex Algorithm 38



Exercise: Execute one more step of the Simplex Algorithm on
the tableau from the previous slide.

Linear Programming © Thomas Sauerwald Simplex Algorithm

39



Termination and Running Time

' Cycling: SIMPLEX may fail to terminate. I

Linear Programming © Thomas Sauerwald Simplex Algorithm

40



Termination and Running Time

It is theoretically possible, but very rare in practice.]

~NJ
Cycling: SIMPLEX may fail to terminate. J

Linear Programming © Thomas Sauerwald Simplex Algorithm

40



Termination and Running Time

It is theoretically possible, but very rare in practice.]

~NJ
Cycling: SIMPLEX may fail to terminate. J

Anti-Cycling Strategies

Linear Programming © Thomas Sauerwald Simplex Algorithm 40



Termination and Running Time

It is theoretically possible, but very rare in practice.]

~NJ
Cycling: SIMPLEX may fail to terminate. J

Anti-Cycling Strategies

1. Bland’s rule: Choose entering variable with smallest index

Linear Programming © Thomas Sauerwald Simplex Algorithm 40



Termination and Running Time

It is theoretically possible, but very rare in practice.]

~NJ
Cycling: SIMPLEX may fail to terminate. J

Anti-Cycling Strategies
1. Bland’s rule: Choose entering variable with smallest index
2. Random rule: Choose entering variable uniformly at random

Linear Programming © Thomas Sauerwald Simplex Algorithm 40



Termination and Running Time

It is theoretically possible, but very rare in practice.]

~NJ
Cycling: SIMPLEX may fail to terminate. J

Anti-Cycling Strategies
1. Bland’s rule: Choose entering variable with smallest index
2. Random rule: Choose entering variable uniformly at random

3. Perturbation: Perturb the input slightly so that it is impossible to have
two solutions with the same objective value

Linear Programming © Thomas Sauerwald Simplex Algorithm 40



Termination and Running Time

It is theoretically possible, but very rare in practice.]

~NJ
Cycling: SIMPLEX may fail to terminate. J

Anti-Cycling Strategies
1. Bland’s rule: Choose entering variable with smallest index
2. Random rule: Choose entering variable uniformly at random

3. Perturbation: Perturb the input slightly so that it is impossible to have

two solutions with the same objective value
S

LRepIace each b; by bi = bi + €i, where ¢; > €;;1 are all smaII.J

Linear Programming © Thomas Sauerwald Simplex Algorithm



Termination and Running Time

It is theoretically possible, but very rare in practice.]

~NJ
Cycling: SIMPLEX may fail to terminate. J

Anti-Cycling Strategies
1. Bland’s rule: Choose entering variable with smallest index
2. Random rule: Choose entering variable uniformly at random

3. Perturbation: Perturb the input slightly so that it is impossible to have

two solutions with the same objective value
S

LRepIace each b; by bi = bi + €i, where ¢; > €1 are all smaII.J

Lemma 29.7

Assuming INITIALIZE-SIMPLEX returns a slack form for which the basic
solution is feasible, SIMPLEX either reports that the program is unboun-

ded or returns a feasible solution in at most (") iterations.

Linear Programming © Thomas Sauerwald Simplex Algorithm

40



Termination and Running Time

It is theoretically possible, but very rare in practice.]

~NJ
Cycling: SIMPLEX may fail to terminate. J

Anti-Cycling Strategies

1. Bland’s rule: Choose entering variable with smallest index
2. Random rule: Choose entering variable uniformly at random

3. Perturbation: Perturb the input slightly so that it is impossible to have

two solutions with the same objective value
S

LRepIace each b; by bi = bi + €i, where ¢; > €1 are all smaII.J

Lemma 29.7

Assuming INITIALIZE-SIMPLEX returns a slack form for which the basic
solution is feasible, SIMPLEX either reports that the program is unboun-

ded or returns a feasible solution in at most (") iterations.
7

Every set B of basic variables uniquely determines a slack
form, and there are at most (") unique slack forms.

Linear Programming © Thomas Sauerwald Simplex Algorithm 40




Outline

Finding an Initial Solution

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

41



Finding an Initial Solution

maximise 2x;y  — Xo
subject to
2X1 — Xo < 2
X1 — 5X2 < -4
X1, X2 > 0

Linear Programming © Thomas Sauerwald Finding an Initial Solution

42



Finding an Initial Solution

maximise 2x;y  — Xo
subject to
2X1 — Xo < 2
Xq — bx < —4
X1, X2 > 0
|
i Conversion into slack form
v

Linear Programming © Thomas Sauerwald Finding an Initial Solution 42



Finding an Initial Solution

maximise 2x;y  — Xo
subject to
2X1 — Xo S 2
X1 — 5X2 S —4
X17X2 2 O
|
i Conversion into slack form
v
z = 2xy - Xo
X3 = - 24 + X
X4 = —4 - X1 —+ 5X2
N

[Basic solution (x1, X2, X3, x4) = (0, 0,2, —4) is not feasible!]

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

42



Geometric lllustration

2X1 Xo

maximise
subject to

43

Finding an Initial Solution

Linear Programming © Thomas Sauerwald



Geometric lllustration

2X1 Xo

maximise
subject to

43

Finding an Initial Solution

Linear Programming © Thomas Sauerwald



Geometric lllustration

maximise 2xy - Xo
subject to
2x1 — Xo
X1 — 5X2
X1, X2
X2

IV IAIA

2

—4 | Questions:
0

= How to determine whether
there is any feasible solution?

= |f there is one, how to determine

an initial basic solution?

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

43



Formulating an Auxiliary Linear Program

- n
maximise > i1 GXj
subject to

Yiap < b fori=1,2,...
> 0 forj=1,2,...

X

Linear Programming © Thomas Sauerwald Finding an Initial Solution

44



Formulating an Auxiliary Linear Program

maximise o G
subject to
Siiap < b fori=1,2,...,m,
x > 0 forj=1,2,...,n

¢ Formulating an Auxiliary Linear Program

Linear Programming © Thomas Sauerwald Finding an Initial Solution



Formulating an Auxiliary Linear Program

maximise o G
subject to
Siiap < b fori=1,2,...,m,
x > 0 forj=1,2,...,n
i{ Formulating an Auxiliary Linear Program
maximise —Xo
subject to

b fori=1,2,...,m,
0 forj=0,1,...,n

n
2ojm1 @iXj — Xo
Xj

IV IA

Linear Programming © Thomas Sauerwald Finding an Initial Solution



Formulating an Auxiliary Linear Program

maximise o G
subject to
Siiap < b fori=1,2,...,m,
x > 0 forj=1,2,...,n
i{ Formulating an Auxiliary Linear Program
maximise —Xo
subject to

Yiiaixi—x < b fori=1,2,....m,
x; > 0 forj=0,1,...,n
Lemma 29.11

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Ly is 0.

Linear Programming © Thomas Sauerwald Finding an Initial Solution 44



Formulating an Auxiliary Linear Program

maximise o G
subject to
Siiap < b fori=1,2,...,m,
x > 0 forj=1,2,...,n
i{ Formulating an Auxiliary Linear Program
maximise —Xo
subject to

Yiiaixi—x < b fori=1,2,....m,
x; > 0 forj=0,1,...,n
Lemma 29.11

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Ly is 0.

Proof.

Linear Programming © Thomas Sauerwald Finding an Initial Solution 44



Formulating an Auxiliary Linear Program

maximise o G
subject to
Siiap < b fori=1,2,...,m,
x > 0 forj=1,2,...,n
i{ Formulating an Auxiliary Linear Program
maximise —Xo
subject to

Yiiaixi—x < b fori=1,2,....m,
x; > 0 forj=0,1,...,n
Lemma 29.11

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Ly is 0.

Proof.
= “=": Suppose L has a feasible solution X = (X1, X2,...,Xn)

Linear Programming © Thomas Sauerwald Finding an Initial Solution 44



Formulating an Auxiliary Linear Program

maximise o G
subject to
Siiap < b fori=1,2,...,m,
x > 0 forj=1,2,...,n
i{ Formulating an Auxiliary Linear Program
maximise —Xo
subject to

Yiiaixi—x < b fori=1,2,....m,
x; > 0 forj=0,1,...,n
Lemma 29.11

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Ly is 0.

Proof.
= “=": Suppose L has a feasible solution X = (X1, X2,...,Xn)
= Xo = 0 combined with X is a feasible solution to Laux with objective value 0.

Linear Programming © Thomas Sauerwald Finding an Initial Solution 44



Formulating an Auxiliary Linear Program

maximise o G
subject to
Siiap < b fori=1,2,...,m,
x > 0 forj=1,2,...,n
i{ Formulating an Auxiliary Linear Program
maximise —Xo
subject to

Yiiaixi—x < b fori=1,2,....m,
x; > 0 forj=0,1,...,n
Lemma 29.11

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Ly is 0.

Proof.
= “=": Suppose L has a feasible solution X = (X1, X2,...,Xn)

= Xo = 0 combined with X is a feasible solution to Laux with objective value 0.
= Since Xg > 0 and the objective is to maximise —Xxg, this is optimal for Laux

Linear Programming © Thomas Sauerwald Finding an Initial Solution 44



Formulating an Auxiliary Linear Program

maximise o G
subject to
Siiap < b fori=1,2,...,m,
x > 0 forj=1,2,...,n
i{ Formulating an Auxiliary Linear Program
maximise —Xo
subject to
Yiiaixi—x < b fori=1,2,....m,
x; > 0 forj=0,1,...,n
Lemma 29.11

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Ly is 0.

Proof.
= “=": Suppose L has a feasible solution X = (X1, X2,...,Xn)

= Xo = 0 combined with X is a feasible solution to Laux with objective value 0.
= Since Xg > 0 and the objective is to maximise —Xxg, this is optimal for Laux

= “<": Suppose that the optimal objective value of Layx is 0

Linear Programming © Thomas Sauerwald Finding an Initial Solution 44



Formulating an Auxiliary Linear Program

maximise o G
subject to
Siiap < b fori=1,2,...,m,
x > 0 forj=1,2,...,n
i{ Formulating an Auxiliary Linear Program
maximise —Xo
subject to
Yiiaixi—x < b fori=1,2,....m,
x; > 0 forj=0,1,...,n
Lemma 29.11

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Ly is 0.

Proof.
= “=": Suppose L has a feasible solution X = (X1, X2,...,Xn)

= Xo = 0 combined with X is a feasible solution to Laux with objective value 0.
= Since Xg > 0 and the objective is to maximise —Xxg, this is optimal for Laux

= “<": Suppose that the optimal objective value of Layx is 0
= Then Xy = 0, and the remaining solution values (X1, X2, ..., Xn) satisfy L.

Linear Programming © Thomas Sauerwald Finding an Initial Solution



Formulating an Auxiliary Linear Program

maximise o G
subject to
Siiap < b fori=1,2,...,m,
x > 0 forj=1,2,...,n
i{ Formulating an Auxiliary Linear Program
maximise —Xo
subject to
Yiiaixi—x < b fori=1,2,....m,
x; > 0 forj=0,1,...,n
Lemma 29.11

Let Laux be the auxiliary LP of a linear program L in standard form. Then
L is feasible if and only if the optimal objective value of Ly is 0.

Proof.
= “=": Suppose L has a feasible solution X = (X1, X2,...,Xn)

= Xo = 0 combined with X is a feasible solution to Laux with objective value 0.
= Since Xg > 0 and the objective is to maximise —Xxg, this is optimal for Laux

= “<": Suppose that the optimal objective value of Layx is 0
= Then Xy = 0, and the remaining solution values (X1, X2, ..., Xn) satisfy L. [

Linear Programming © Thomas Sauerwald Finding an Initial Solution 44




= Let us illustrate the role of xy as “distance from feasibility”

Linear Programming © Thomas Sauerwald Finding an Initial Solution

45



= Let us illustrate the role of xy as “distance from feasibility”

= We will also see that increasing xy enlarges the feasible
region.

Linear Programming © Thomas Sauerwald Finding an Initial Solution

45



Geometric lllustration

maximise —Xo
subject to
2X1 — Xo
X1 — 5X2
Xo, X1, X2

Xo
Xo

IV INAIA
|
N

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

46



Geometric lllustration

maximise —Xo
subject to
2X1 — Xo
X1 — 5X2
Xo, X1, X2

Xo
Xo

IV INAIA
|
N

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

46



Geometric lllustration

maximise —Xo
subject to
2X1 — Xo
X1 — 5X2
Xo, X1, X2

Xo
Xo

IV INAIA
|
N

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

46



Geometric lllustration

maximise
subject to

—Xo

46

Finding an Initial Solution

Linear Programming © Thomas Sauerwald



Geometric lllustration

maximise —Xo
subject to
2X1 — Xo
X1 — 5X2
Xo, X1, X2

Xo
Xo

IV INAIA
|
N

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

46



Geometric lllustration

maximise —Xo
subject to
2X1 — Xo
X1 — 5X2
Xo, X1, X2

Xo
Xo

IV INAIA
|
N

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

46



Geometric lllustration

maximise —Xo
subject to
2X1 — Xo
X1 — 5X2
Xo, X1, X2

Xo
Xo

IV INAIA
|
N

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

46



Geometric lllustration

maximise —Xo
subject to
2X1 — Xo
X1 — 5X2
Xo, X1, X2

Xo
Xo

IV INAIA
|
N

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

46



Geometric lllustration

maximise —Xo
subject to
2X1 — Xo
X1 — 5X2
Xo, X1, X2

Xo
Xo

IV INAIA
|
N

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

46



Geometric lllustration

maximise —Xo
subject to
2X1 — Xo
X1 — 5X2
Xo, X1, X2

Xo
Xo

IV INAIA
|
N

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

46



Geometric lllustration

maximise —Xo
subject to
2X1 — Xo
X1 — 5X2
Xo, X1, X2

Xo

IV INAIA
|
N

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

46



Geometric lllustration

maximise —Xo
subject to
2X1 — Xo
X1 — 5X2
Xo, X1, X2

IV INAIA
|
N

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

46



Geometric lllustration

maximise —Xo
subject to
2X1 — Xo
X1 — 5X2
Xo, X1, X2

IV INAIA
|
N

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

46



Geometric lllustration

maximise —Xo
subject to
2X1 — Xo
X1 — 5X2
Xo, X1, X2

IV INAIA
|
N

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

46



Geometric lllustration

maximise —Xo
subject to
2X1 — Xo
X1 — 5X2
Xo, X1, X2

IV INAIA
|
N

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

46



Geometric lllustration

maximise —Xo
subject to
2X1 — Xo
X1 — 5X2
Xo, X1, X2

IV INAIA
|
N

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

46



Geometric lllustration

maximise —Xo
subject to
2X1 — Xo
X1 — 5X2
Xo, X1, X2

Xo
Xo

IV INAIA
|
N

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

46



Geometric lllustration

maximise —Xo
subject to
2X1 — Xo
X1 — 5X2
Xo, X1, X2

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

46



Geometric lllustration

maximise —Xo
subject to
2X1 — Xo
X1 — 5X2
Xo, X1, X2

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

46



Geometric lllustration

maximise —Xo
subject to
2X1 — Xo
X1 — 5X2
Xo, X1, X2

Xo

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

46



Geometric lllustration

maximise —Xo
subject to
2X1 — Xo
X1 — 5X2
Xo, X1, X2

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

46



Geometric lllustration

maximise —Xo
subject to
2X1 — Xo
X1 — 5X2
Xo, X1, X2

Xo

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

46



Geometric lllustration

maximise —Xo
subject to
2X1 — Xo
X1 — 5X2
Xo, X1, X2

Xo
Xo

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

46



Geometric lllustration

maximise —Xo
subject to
2X1 — Xo
X1 — 5X2
Xo, X1, X2

Xo
Xo

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

46



Geometric lllustration

maximise —Xo
subject to
2X1 — Xo
X1 — 5X2
Xo, X1, X2

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

46



Geometric lllustration

maximise —Xo
subject to
2X1 — Xo
X1 — 5X2
Xo, X1, X2

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

46



Geometric lllustration

maximise —Xo
subject to
2X1 — Xo
X1 — 5X2
Xo, X1, X2

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

46



Geometric lllustration

maximise —Xo
subject to
2X1 — Xo
X1 — 5X2
Xo, X1, X2

IV INAIA
|
N

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

46



Geometric lllustration

maximise —Xo
subject to
2X1 — Xo
X1 — 5X2
Xo, X1, X2

Xo
Xo

IV INAIA
|
N

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

46



Geometric lllustration

maximise —Xo
subject to
2X1 — Xo
X1 — 5X2
Xo, X1, X2

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

46



Geometric lllustration

maximise —Xo
subject to
2X1 — Xo
X1 — 5X2
Xo, X1, X2

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

46



Geometric lllustration

maximise —Xo
subject to
2X1 — Xo
X1 — 5X2
Xo, X1, X2

IV INAIA
|
N

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

46



Geometric lllustration

maximise —Xo
subject to
2X1 — Xo
X1 — 5X2
Xo, X1, X2

IV INAIA
|
N

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

46



Geometric lllustration

maximise —Xo
subject to
2X1 — Xo
X1 — 5X2
Xo, X1, X2

IV INAIA
|
N

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

46



Geometric lllustration

maximise —Xo
subject to
2X1 — Xo
X1 — 5X2
Xo, X1, X2

IV INAIA
|
N

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

46



Geometric lllustration

maximise —Xo
subject to
2X1 — Xo
X1 — 5X2
Xo, X1, X2

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

46



Geometric lllustration

maximise —Xo
subject to
2X1 — Xo
X1 — 5X2
Xo, X1, X2

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

46



Geometric lllustration

maximise —Xo
subject to
2X1 — Xo
X1 — 5X2
Xo, X1, X2

Xo
Xo

IV INAIA
|
N

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

46



Geometric lllustration

maximise —Xo
subject to
2X1 —
X1 —
Xo, X1, X2
X2

X2
5X2

X0 < 2
Xo < -4
> 0
Y
Ly |
& |
AR X = 3.8
o
[ e
L _4
<
F- R - -y = X0 =
x =%

X1

Linear Programming © Thomas Sauerwald

Finding an Initial Solution



Geometric lllustration

maximise —Xo
subject to
2X1 — Xo
X1 — 5X2
Xo, X1, X2
X2

— X0 < 2
— Xo < —4
> 0
v
7
s |
—/_X‘T—ff‘L** X0 =3.9
S
L
o
L A
<
—————— == pys = X0 =
‘X\/‘5X2

X1

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

46



Now the Feasible Region of the Auxiliary LP in 3D

Linear Programming © Thomas Sauerwald Finding an Initial Solution

47



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



X2

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



X2

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



X2

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



X2

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



X2

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



X2

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



X2

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



X2

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



X2

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Feeeeecccea=

Xo

Linear Programming © Thomas Sauerwald Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



5 64

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



A .

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



e .

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



X2

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



X2

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



X2

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



X2

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

48



= Let us now modify the original linear program so that it is not
feasible

Linear Programming © Thomas Sauerwald Finding an Initial Solution

49



= Let us now modify the original linear program so that it is not
feasible

= Hence the auxiliary linear program has only a solution for a
sufficiently large xg > 0!

Linear Programming © Thomas Sauerwald Finding an Initial Solution

49



Geometric lllustration

maximise
subject to

—Xo

VIVIAI
KR
Lo
< <
52

X
I+ <
%
X X
)

50

Finding an Initial Solution

Linear Programming © Thomas Sauerwald



Geometric lllustration

maximise
subject to

—Xo

VIVIAI
KR
Lo
< <
52

X
I+ <
%
X X
)

50

Finding an Initial Solution

Linear Programming © Thomas Sauerwald



Geometric lllustration

maximise
subject to

—Xo

VIVIAI
KR
Lo
< <
52

X
I+ <
%
X X
)

N
o

50

Finding an Initial Solution

Linear Programming © Thomas Sauerwald



Geometric lllustration

maximise
subject to

—Xo

VIVIAI
KR
Lo
< <
52

X
I+ <
%
X X
)

«@
o

50

Finding an Initial Solution

Linear Programming © Thomas Sauerwald



Geometric lllustration

maximise
subject to

—Xo

VIVIAI
KR
Lo
< <
52

X
I+ <
%
X X
)

50

Finding an Initial Solution

Linear Programming © Thomas Sauerwald



Geometric lllustration

maximise —Xo
subject to

IV INAIA

Linear Programming © Thomas Sauerwald

Finding an Initial Solution 50



Geometric lllustration

maximise
subject to

—Xo

VIVIAI
KR
Lo
< <
52

X
I+ <
%
X X
)

@
o

50

Finding an Initial Solution

Linear Programming © Thomas Sauerwald



Geometric lllustration

maximise
subject to

—Xo

9__40
VI VIAI
< R
[
<X
0

<
I+ <
__%
X X
N

™~
o

50

Finding an Initial Solution

Linear Programming © Thomas Sauerwald



Geometric lllustration

maximise
subject to

—Xo

9__40
VI VIAI
< R
[
<X
0

<
I+ <
__%
X X
N

@
o

50

Finding an Initial Solution

Linear Programming © Thomas Sauerwald



Geometric lllustration

maximise
subject to

—Xo

VIVIAI
KR
Lo
< <
52

X
I+ <
%
X X
)

50

Finding an Initial Solution

Linear Programming © Thomas Sauerwald



Geometric lllustration

maximise
subject to

—Xo

9__40
VI VIAI
< R
[
<X
0

<
I+ <
__%
X X
N

50

Finding an Initial Solution

Linear Programming © Thomas Sauerwald



Geometric lllustration

maximise
subject to

—Xo

9__40
VI VIAI
< R
[
<X
0

<
I+ <
__%
X X
N

50

Finding an Initial Solution

Linear Programming © Thomas Sauerwald



Geometric lllustration

maximise —Xo
subject to
2X4 — X2 — Xo < -2
—X1 + Bx - x < 4
Xo, X1, X2 > 0

Linear Programming © Thomas Sauerwald Finding an Initial Solution 50



Geometric lllustration

maximise
subject to

—Xo

9__40
VI VIAI
< R
[
<X
0

<
I+ <
__%
X X
N

50

Finding an Initial Solution

Linear Programming © Thomas Sauerwald



Geometric lllustration

maximise
subject to

—Xo

9__40
VI VIAI
< R
[
<X
0

<
I+ <
__%
X X
N

50

Finding an Initial Solution

Linear Programming © Thomas Sauerwald



Geometric lllustration

maximise
subject to

—Xo

9__40
VI VIAI
< R
[
<X
0

<
I+ <
__%
X X
N

50

Finding an Initial Solution

Linear Programming © Thomas Sauerwald



Geometric lllustration

maximise
subject to

—Xo

9__40
VI VIAI
< R
[
<X
0

<
I+ <
__%
X X
N

50

Finding an Initial Solution

Linear Programming © Thomas Sauerwald



Geometric lllustration

maximise
subject to

—Xo

9__40
VI VIAI
< R
[
<X
0

<
I+ <
__%
X X
N

50

Finding an Initial Solution

Linear Programming © Thomas Sauerwald



Geometric lllustration

maximise
subject to

—Xo

9__40
VI VIAI
< R
[
<X
0

<
I+ <
__%
X X
N

50

Finding an Initial Solution

Linear Programming © Thomas Sauerwald



Geometric lllustration

maximise
subject to

—Xo

9__40
VI VIAI
< R
[
<X
0

<
I+ <
__%
X X
N

50

Finding an Initial Solution

Linear Programming © Thomas Sauerwald



—Xo

maximise
subject to

Geometric lllustration

(aV}
I
N <
VA
=)
we :
VI VIAI | | ,vw | |
T S 5 W
o A
L | | | | |
| | | | |
R T A N
S R
T} | | | |
<! B e el B W -- -
- | | | | |
_+vm| OV//, | | | |
- Nl
o m,’\/ I I I |
SRS S | | |
nv/A_X | ~ | |
_ - gD \L\n\y\\\+\\\,\\\
” ”
| |

50

Finding an Initial Solution

Linear Programming © Thomas Sauerwald

X2




—Xo

maximise
subject to

Geometric lllustration

ol
I -
=)
x V)
=]
ywe :
VIVIAI | | Ww | |
R R ) U R
| | Ve | |
2 R
St Et el el el Hi i el
o S
B N
S SR T VR
T} | | | | |
N3 e Bl bt Bl Wit - -
- | | | I |
_nTvM OV//, | | | |
~ \V\ et
vw Q\T/W, |
o | |
g% T

50

Finding an Initial Solution

Linear Programming © Thomas Sauerwald

X2




Geometric lllustration

maximise
subject to

—Xo

9__40
VI VIAI
< R
[
<X
0

<
I+ <
__%
X X
N

50

Finding an Initial Solution

Linear Programming © Thomas Sauerwald



Geometric lllustration

maximise
subject to

—Xo

9__40
VI VIAI
< R
[
<X
0

<
I+ <
__%
X X
N

50

Finding an Initial Solution

Linear Programming © Thomas Sauerwald



Geometric lllustration

maximise
subject to

—Xo

9__40
VI VIAI
< R
[
<X
0

<
I+ <
__%
X X
N

50

Finding an Initial Solution

Linear Programming © Thomas Sauerwald



Geometric lllustration

maximise
subject to

—Xo

9__40
VI VIAI
< R
[
<X
0

<
I+ <
__%
X X
N

50

Finding an Initial Solution

Linear Programming © Thomas Sauerwald



Geometric lllustration

maximise
subject to

—Xo

9__40
VI VIAI
< R
[
<X
0

<
I+ <
__%
X X
N

50

Finding an Initial Solution

Linear Programming © Thomas Sauerwald



Geometric lllustration

maximise
subject to

—Xo

9__40
VI VIAI
< R
[
<X
0

<
I+ <
__%
X X
N

50

Finding an Initial Solution

Linear Programming © Thomas Sauerwald



Geometric lllustration

maximise
subject to

—Xo

9__40
VI VIAI
< R
[
<X
0

<
I+ <
__%
X X
N

50

Finding an Initial Solution

Linear Programming © Thomas Sauerwald



Geometric lllustration

maximise
subject to

—Xo

9__40
VI VIAI
< R
[
<X
0

<
I+ <
__%
X X
N

50

Finding an Initial Solution

Linear Programming © Thomas Sauerwald



Geometric lllustration

maximise
subject to

—Xo

9__40
VI VIAI
< R
[
<X
0

<
I+ <
__%
X X
N

50

Finding an Initial Solution

Linear Programming © Thomas Sauerwald



Geometric lllustration

maximise
subject to

—Xo

9__40
VI VIAI
< R
[
<X
0

<
I+ <
__%
X X
N

50

Finding an Initial Solution

Linear Programming © Thomas Sauerwald



Geometric lllustration

maximise
subject to

—Xo

9__40
VI VIAI
< R
[
<X
0

<
I+ <
__%
X X
N

50

Finding an Initial Solution

Linear Programming © Thomas Sauerwald



Geometric lllustration

maximise
subject to

—Xo

9__40
VI VIAI
< R
[
<X
0

<
I+ <
__%
X X
N

50

Finding an Initial Solution

Linear Programming © Thomas Sauerwald



Geometric lllustration

maximise
subject to

—Xo

9__40
VI VIAI
< R
[
<X
0

<
I+ <
__%
X X
N

50

Finding an Initial Solution

Linear Programming © Thomas Sauerwald



Geometric lllustration

maximise
subject to

—Xo

9__40
VI VIAI
< R
[
<X
0

<
I+ <
__%
X X
N

50

Finding an Initial Solution

Linear Programming © Thomas Sauerwald



Geometric lllustration

maximise
subject to

—Xo

9__40
VI VIAI
< R
[
<X
0

<
I+ <
__%
X X
N

©
™

50

Finding an Initial Solution

Linear Programming © Thomas Sauerwald



Geometric lllustration

maximise
subject to

—Xo

9__40
VI VIAI
< R
[
<X
0

<
I+ <
__%
X X
N

50

Finding an Initial Solution

Linear Programming © Thomas Sauerwald



Geometric lllustration

maximise
subject to

—Xo

9__40
VI VIAI
< R
[
<X
0

<
I+ <
__%
X X
N

50

Finding an Initial Solution

Linear Programming © Thomas Sauerwald



Geometric lllustration

maximise
subject to

—Xo

9__40
VI VIAI
< R
[
<X
0

<
I+ <
__%
X X
N

50

Finding an Initial Solution

Linear Programming © Thomas Sauerwald



Geometric lllustration

maximise
subject to

—Xo

9__40
VI VIAI
< R
[
<X
0

<
I+ <
__%
X X
N

50

Finding an Initial Solution

Linear Programming © Thomas Sauerwald



Now the Feasible Region of the Auxiliary LP in 3D

Linear Programming © Thomas Sauerwald Finding an Initial Solution

51



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

52



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

52



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

52



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

52



Xo

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

52



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

52



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

52



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

52



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

52



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

52



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

52



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

52



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

52



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

52



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

52



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

52



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

52



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

52



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

52



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

52



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

52



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

52



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

52



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

52



Linear Programming © Thomas Sauerwald Finding an Initial Solution



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

52



Linear Programming © Thomas Sauerwald Finding an Initial Solution 52



Linear Programming © Thomas Sauerwald Finding an Initial Solution



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

52



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

52



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

52



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

52



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

52



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

52



‘.;i;,

X0 4

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

52



Xo

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

52



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

52



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

52



Linear Programming © Thomas Sauerwald Finding an Initial Solution



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

52



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

52



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

52



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

52



X2

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

52



X2

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

52



X2

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

52



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

52



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

52



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

52



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

52



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

52



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

52



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

52



X2

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

52



Linear Programming © Thomas Sauerwald

Finding an Initial Solution

52



X2

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

52



X2

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

52



X2

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

52



X2

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

52



X2

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

52



X2

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

52



X2

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

52



X2

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

52



X2

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

52



X2

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

52



X2

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

52



X2

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

52



X2

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

52



X2

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

52



X2

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

52



X2

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

52



X2

Linear Programming © Thomas Sauerwald Finding an Initial Solution 52



X2

Linear Programming © Thomas Sauerwald Finding an Initial Solution 52



X2

Linear Programming © Thomas Sauerwald Finding an Initial Solution 52



X2

Linear Programming © Thomas Sauerwald Finding an Initial Solution 52



X2

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

52



—
4
< I
2 N
=
|
.
\ \ \ |
40 1 2 3 4 5 6
X1
Linear Programming © Thomas Sauerwald Finding an Initial Solution 52



Linear Programming © Thomas Sauerwald

Finding an Initial Solution 52



X2

2

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

52



INITIALIZE-SIMPLEX

INITIALIZE-SIMPLEX (A4, b, ¢)

1

let k be the index of the minimum b;
ifby >0 // is the initial basic solution feasible?
return ({1,2,....n},{n+1,n+2,..., n+m},A b, c,0)
form L, by adding —x to the left-hand side of each constraint
and setting the objective function to —x,
let (N, B, A, b, c,v) be the resulting slack form for L,
l=n+k
// L, has n + 1 nonbasic variables and m basic variables.
(N,B,A,b,c,v) = PIVOT(N, B, A,b,c,v,1,0)
// The basic solution is now feasible for L.
iterate the while loop of lines 3—12 of SIMPLEX until an optimal solution
to L is found
if the optimal solution to L,,, sets X, to 0
if X is basic
perform one (degenerate) pivot to make it nonbasic
from the final slack form of L., remove x, from the constraints and
restore the original objective function of L, but replace each basic
variable in this objective function by the right-hand side of its
associated constraint
return the modified final slack form
else return “infeasible”

Linear Programming © Thomas Sauerwald Finding an Initial Solution

53



INITIALIZE-SIMPLEX

Test solution with N = {1,2,...,n}, B={n+1,n+

INITIALIZE-SIMPLEX (4, b, ¢) 2,...,n+m}, X = b for i € B, X; = 0 otherwise.
1 let k be the index of the minimum b; =
2 ifb >0 // is the initial basic solution feasible?
3 return ({1,2,....n},{n+1,n+2,..., n+m},A b, c,0)
4 form L, by adding —x, to the left-hand side of each constraint

and setting the objective function to —x,

5 let (N, B, A,b,c,v) be the resulting slack form for L,

6 I =n+k

7 /] L has n + 1 nonbasic variables and m basic variables.

8 (N,B,A,b,c,v) = PIVOT(N, B, A,b,c,v,1,0)

9 // The basic solution is now feasible for L .

0 iterate the while loop of lines 3—12 of SIMPLEX until an optimal solution
to L is found

11 if the optimal solution to L, sets X, to 0

12 if X is basic
13 perform one (degenerate) pivot to make it nonbasic
14 from the final slack form of L., remove x, from the constraints and

restore the original objective function of L, but replace each basic
variable in this objective function by the right-hand side of its
associated constraint

15 return the modified final slack form

16 else return “infeasible”

Linear Programming © Thomas Sauerwald Finding an Initial Solution



INITIALIZE-SIMPLEX

Test solution with N = {1,2,...,n}, B={n+1,n+

INITIALIZE-SIMPLEX (4, b, ¢) 2,...,n+m}, X = b for i € B, X; = 0 otherwise.
1 let k be the index of the minimum b; =
2 ifb, >0 // is the initial basic solution feasible?
3 return ({1,2,....n},{n+1,n+2,..., n+m},A b, c,0)
4 form L, by adding —x, to the left-hand side of each constraint

and setting the objective function to —x, m i v abl
let (N, B, A, b, c,v) be the resulting slack form for L, £ will be the leaving variable so
l=n+k that x, has the most negative value.

5

6

7 /] L has n + 1 nonbasic variables and m basic variables.

8 (N,B.A.b,c,v) = PIVOT(N, B, A,b,c,v,1,0)

9 // The basic solution is now feasible for L .

0 iterate the while loop of lines 3—12 of SIMPLEX until an optimal solution
to L is found

11 if the optimal solution to L, sets X, to 0

12 if X is basic
13 perform one (degenerate) pivot to make it nonbasic
14 from the final slack form of L., remove x, from the constraints and

restore the original objective function of L, but replace each basic
variable in this objective function by the right-hand side of its
associated constraint

15 return the modified final slack form

16 else return “infeasible”

Linear Programming © Thomas Sauerwald Finding an Initial Solution



INITIALIZE-SIMPLEX

Test solution with N = {1,2,...,n}, B={n+1,n+

INITIALIZE-SIMPLEX (4, b, ¢) 2,...,n+m}, X = b for i € B, X; = 0 otherwise.
1 let k be the index of the minimum b; =
2 ifb, >0 // is the initial basic solution feasible?
3 return ({1,2,....n},{n+1,n+2,..., n+m},A b, c,0)
4 form L, by adding —x, to the left-hand side of each constraint

and setting the objective function to —x,
let (N, B, A, b, c,v) be the resulting slack form for L,
l=n+k that x, has the most negative value.

¢ will be the leaving variable so

// L. has n + 1 nonbasic variables and m basic variables.

5
6
7
g (N.B.A.b,c,v) = PVOT(N, B, A, b.c.v,1,0) ‘( Pivot step with x, leaving and xp entering. ]
0

// The basic solution is now feasible for L .

iterate the while loop of lines 3—12 of SIMPLEX until an optimal solution
to L is found

11 if the optimal solution to L, sets X, to 0

12 if X is basic
13 perform one (degenerate) pivot to make it nonbasic
14 from the final slack form of L., remove x, from the constraints and

restore the original objective function of L, but replace each basic
variable in this objective function by the right-hand side of its
associated constraint

15 return the modified final slack form

16 else return “infeasible”

Linear Programming © Thomas Sauerwald Finding an Initial Solution



INITIALIZE-SIMPLEX

INITIALIZE-SIMPLEX (A4, b, ¢)

1

Test solution with N = {1,2,...,n}, B={n+1,n+

2,...,n+m}, x; = b; for i € B, X; = 0 otherwise.
let k be the index of the minimum b; =
if by >0 // is the initial basic solution feasible?

return ({1,2,....n},{n+1,n+2,..., n+m},A b, c,0)
form L, by adding —x to the left-hand side of each constraint

and setting the objective function to —x,

let (N, B, A, b, c,v) be the resulting slack form for L,

Il =n+k

// L. has n + 1 nonbasic variables and m basic variables.

(N,B,A,b,c,v) = PIVOT(N, B, A,b,c,v.,1,0)
// The basic solution is now feasible for L .

¢ will be the leaving variable so

that x, has the most negative value.

‘( Pivot step with x, leaving and X, entering. ]

iterate the while loop of lines 3—12 of SIMPLEX until an optimal solution

to L is found
if the optimal solution to L,,, sets X, to 0
if X is basic

perform one (degenerate) pivot to make it nonbasic

This pivot step does not change
the value of any variable.

from the final slack form of L., remove x, from the constraints and
restore the original objective function of L, but replace each basic
variable in this objective function by the right-hand side of its

associated constraint
return the modified final slack form
else return “infeasible”

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

53



Example of INITIALIZE-SIMPLEX (1/3)

maximise 2x;  — Xo
subject to
2X1 — Xo
X1 — 5X2
X1, X2

IV AN IA

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

54



Example of INITIALIZE-SIMPLEX (1/3)

maximise 2x;  — Xo
subject to
2X1 — Xo
X1 — 5X2
X1, X2

IV INIA

Linear Programming © Thomas Sauerwald Finding an Initial Solution



Example of INITIALIZE-SIMPLEX (1/3)

maximise 2x;  — Xo
subject to
2X1 — Xo < 2
X1 — 5X2 < -4
X1, X2 > 0

maximise - X
subject to
2X4 — X2 — X0 < 2
X1 — 5X2 — Xo < -4
X1, X2, Xo > 0

Linear Programming © Thomas Sauerwald Finding an Initial Solution



Example of INITIALIZE-SIMPLEX (1/3)

maximise 2x;  — Xo
subject to
2X1 — Xo < 2
X1 — 5X2 < -4
X1, X2 > 0

maximise - X
subject to
2X4 — X2 — X0 < 2
X1 — 5X2 — Xo < -4
X1, X2, Xo > 0

|
| Converting into slack form
v

Linear Programming © Thomas Sauerwald Finding an Initial Solution

54



Example of INITIALIZE-SIMPLEX (1/3)

maximise
subject to

maximise
subject to

Z =
X3
X4 =

2X1 — X2
2X1 — Xo < 2
X1 — 5X2 < -4
X1, X2 2 0

_ Xo
2X1 — Xo — X0 < 2
XX — 5% - x < -4
X1, X2, Xo Z 0
|
| Converting into slack form
v
_ Xo
2 - 2x + X2 + X
-4 - x1 + 5% + X

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

54



Example of INITIALIZE-SIMPLEX (1/3)

maximise 2x;  — Xo
subject to
2X1 — Xo < 2
X1 — 5X2 < -4
X1, X2 > 0

maximise - X
subject to
2xy - X2 — X <
X1 — 5X2 — Xo S —4
X1, X2, Xo >
Basic solution ‘
(0,0,0,2, —4) not feasible! | Converting into slack form
N v
V4 = — Xo
X3 = 2 - 2x5 + X2 + Xo
X4 = -4 - X1 + 5x + X

Linear Programming © Thomas Sauerwald Finding an Initial Solution



Example of INITIALIZE-SIMPLEX (2/3)

Z =
X3 = 2 — 2X: 1 + Xo
X4 = -4 — X1 +  5x

+
=+

Xo
Xo
Xo

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

55



Example of INITIALIZE-SIMPLEX (2/3)

X3

—4

_ Xo
- 2x + X2 4+ X
— Xq + Bx + X

!

!

l
'/

Pivot with xo entering and x4 leaving

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

55



Example of INITIALIZE-SIMPLEX (2/3)

V4 = — Xo
X3 = 2 - 2x + X2+ X
X4 = -4 — Xq + Bx + X

|
i Pivot with xo entering and x4 leaving
\/

z = 4 — X3 4+ b - x4
Xo = 4 + X — bx +  Xa
X3 = 6 - Xq — 4x + Xa

Linear Programming © Thomas Sauerwald Finding an Initial Solution 55



Example of INITIALIZE-SIMPLEX (2/3)

z = - X0
X3 = 2 — 2X: 1 + X2 + Xo
X4 = -4 — Xq + Bx + X

|
i Pivot with xo entering and x4 leaving
\/

z = -4 — X1 + 5 - X
Xo = 4 + X — bx +  Xa
] X = 6 — X1 — 4 + x4

[Basic solution (4,0,0,6,0) is feasible!]

Linear Programming © Thomas Sauerwald Finding an Initial Solution



Example of INITIALIZE-SIMPLEX (2/3)

V4 = — X0
X3 = 2 — 2X: 1 + X2 + Xo
Xy = -4 — X1 4+ 5x + X

|
i Pivot with xo entering and x4 leaving
\/

z = -4 — X1 + 5 - X
Xo = 4 + X — bx +  Xa
] X = 6 — X3 — 4x + X

[Basic solution (4,0,0,6,0) is feasible!] N , _
! Pivot with x» entering and xp leaving

v

Linear Programming © Thomas Sauerwald Finding an Initial Solution 55



Example of INITIALIZE-SIMPLEX (2/3)

V4 = — X0

X3 = 2 — 2X1 + X2 + Xo

X4 = -4 — X1 + 5x + X
|
| Pivot with Xo entering and x4 leaving
v

z = -4 — X1 + 5 - X

Xo = 4 + X — bx +  Xa

] X = 6 — X3 — 4x + X
[Basic solution (4,0,0,6,0) is feasible!] N , _

i Pivot with x2 entering and x leaving
v

V4 = — Xo

Linear Programming © Thomas Sauerwald

Finding an Initial Solution 55



Example of INITIALIZE-SIMPLEX (2/3)

V4 = Xo
X3 = 2 — 2X: 1 + X2 + Xo
X2 = -4 - Xq + Bx + X

|
i Pivot with xo entering and x4 leaving
\/

z = -4 — X1 + 5 - X
Xo = 4 + X — bx +  Xa
] X = 6 — X1 — 4 + x4

[Basic solution (4,0, 0, 6,0) is feasible

1|
] i Pivot with x, entering and X, leaving

v
z = — X0
_ 14 4 _ X Xa
X3—5\\+5 5 t 3

[Optimal solution has xo = 0, hence the initial problem was feasible!j

Linear Programming © Thomas Sauerwald Finding an Initial Solution



Example of INITIALIZE-SIMPLEX (3/3)

z = — X0
X _ 14 + 4Xo _ 9X1
s T 5 5 5

Jr
+

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

56



Example of INITIALIZE-SIMPLEX (3/3)

z = — X0
14 4Xo_9X1 Xa
x = 5 T 5 5 T B

Set xo = 0 and express objective function

|
|
i by non-basic variables
Y

Linear Programming © Thomas Sauerwald Finding an Initial Solution 56



Example of INITIALIZE-SIMPLEX (3/3)

V4 — X0
_ 4 o Xo X1 X4
X2 = 5 5 + 5 + 5
X 14 4Xo _ 9x4 Xa
s = 5t 5 5 T3
i Set xo = 0 and express objective function
[2x1 —xe=2x—(§-2+%+ X—s“)] by non-basic variables
\4
~N
z —% + ;X
_ 4 X1 X4
X = 5 F o2 t 35
Linear Programming © Thomas Sauerwald Finding an Initial Solution 56



Example of INITIALIZE-SIMPLEX (3/3)

Z = — Xo
_ 4 Xo X1 Xa
X2 = 5 = 5 + 5 + 5
X _ 14 + 4Xo _ 9x4 + Xa
3 5 5 5 5
i Set xo = 0 and express objective function
[2x1 —xe=2x—(§-2+%+ X—s“)] by non-basic variables
< . o
i X
RIS B
1 4
_ 1 4
¥ = 5 5 T 5

Linear Programming © Thomas Sauerwald

Finding an Initial Solution

56



Example of INITIALIZE-SIMPLEX (3/3)

V4 X0
_ 4 o Xo X1 X4
T3 o e 2
— 0 _ 1 4
¥ = 5 t 5 5 T3
i Set xo = 0 and express objective function
[2x1 —xe=2x—(§-2+%+ X—s“)] by non-basic variables
< . o
_ 4 I X
V4 = —2 + 5 5
X2 = 5 + X + %
e

o

), which is feasible!]

[Basic solution (0, £, &,

Lemma 29.12
If a linear program L has no feasible solution, then INITIALIZE-SIMPLEX
returns “infeasible”. Otherwise, it returns a valid slack form for which the

basic solution is feasible.

Linear Programming © Thomas Sauerwald Finding an Initial Solution 56



Fundamental Theorem of Linear Programming

Theorem 29.13 (Fundamental Theorem of Linear Programming)
Any linear program L, given in standard form, either
1. has an optimal solution with a finite objective value,
2. is infeasible, or
3. is unbounded.

N
\
If L is infeasible, SIMPLEX returns ‘“infeasible”. If L is unbounded, SIMPLEX returns
“unbounded”. Otherwise, SIMPLEX returns an optimal solution with a finite objective value.

Linear Programming © Thomas Sauerwald Finding an Initial Solution 57



Fundamental Theorem of Linear Programming

Theorem 29.13 (Fundamental Theorem of Linear Programming)
Any linear program L, given in standard form, either
1. has an optimal solution with a finite objective value,
2. is infeasible, or
3. is unbounded.

N
\
If L is infeasible, SIMPLEX returns ‘“infeasible”. If L is unbounded, SIMPLEX returns
“unbounded”. Otherwise, SIMPLEX returns an optimal solution with a finite objective value.

Proof requires the concept of duality, which is not covered
in this course (for details see CLRS3, Chapter 29.4)

Linear Programming © Thomas Sauerwald Finding an Initial Solution 57



Workflow for Solving Linear Programs

[Linear Program (in any form)]

|

[ Standard Form J
( Slack Form ]
No Feasible Solution Feasible Basic Solution
INITIALIZE-SIMPLEX terminates INITIALIZE-SIMPLEX followed by SIMPLEX

i

LP unbounded LP bounded
SIMPLEX terminates SIMPLEX returns optimum

Linear Programming © Thomas Sauerwald Finding an Initial Solution 58



Linear Programming and Simplex: Summary and Outlook

Linear Programming

Linear Programming © Thomas Sauerwald Finding an Initial Solution

59



Linear Programming and Simplex: Summary and Outlook

Linear Programming

= extremely versatile tool for modelling problems of all kinds

Linear Programming © Thomas Sauerwald Finding an Initial Solution

59



Linear Programming and Simplex: Summary and Outlook

Linear Programming

= extremely versatile tool for modelling problems of all kinds
= basis of Integer Programming, to be discussed in later lectures

Linear Programming © Thomas Sauerwald Finding an Initial Solution

59



Linear Programming and Simplex: Summary and Outlook

Linear Programming

= extremely versatile tool for modelling problems of all kinds
= basis of Integer Programming, to be discussed in later lectures

~——— Simplex Algorithm

X3
= |n practice: usually terminates in X2
polynomial time, i.e., O(m + n)

X1
G -—

Linear Programming © Thomas Sauerwald Finding an Initial Solution

59



Linear Programming and Simplex: Summary and Outlook

Linear Programming

= extremely versatile tool for modelling problems of all kinds
= basis of Integer Programming, to be discussed in later lectures

~——— Simplex Algorithm

X3
= |n practice: usually terminates in X2
polynomial time, i.e., O(m + n)

= In theory: even with anti-cycling may

need exponential time 8 x.
\ .\)1

Linear Programming © Thomas Sauerwald Finding an Initial Solution 59



Linear Programming and Simplex: Summary and Outlook

Linear Programming

= extremely versatile tool for modelling problems of all kinds
= basis of Integer Programming, to be discussed in later lectures

~——— Simplex Algorithm X3
= |n practice: usually terminates in X2
polynomial time, i.e., O(m + n)

= In theory: even with anti-cycling may
need exponential time o
(N

X1

[

~—
Research Problem: Is there a pivoting rule which
makes SIMPLEX a polynomial-time algorithm?

Linear Programming © Thomas Sauerwald Finding an Initial Solution 59



Linear Programming and Simplex: Summary and Outlook

Linear Programming

= extremely versatile tool for modelling problems of all kinds
= basis of Integer Programming, to be discussed in later lectures

~——— Simplex Algorithm X3
= |n practice: usually terminates in X2
polynomial time, i.e., O(m + n)

= In theory: even with anti-cycling may
need exponential time o
(N

X1

[

~—
Research Problem: Is there a pivoting rule which
makes SIMPLEX a polynomial-time algorithm?

Polynomial-Time Algorithms

Linear Programming © Thomas Sauerwald Finding an Initial Solution 59



Linear Programming and Simplex: Summary and Outlook

Linear Programming

= extremely versatile tool for modelling problems of all kinds
= basis of Integer Programming, to be discussed in later lectures

~——— Simplex Algorithm X3
= |n practice: usually terminates in X2
polynomial time, i.e., O(m + n)

= In theory: even with anti-cycling may
need exponential time o
(N

X1

[

~—
Research Problem: Is there a pivoting rule which
makes SIMPLEX a polynomial-time algorithm?

Polynomial-Time Algorithms X3
= |nterior-Point Methods: traverses the X2
interior of the feasible set of solutions
(not just vertices!)

X

Linear Programming © Thomas Sauerwald Finding an Initial Solution 59



Linear Programming and Simplex: Summary and Outlook

Linear Programming

= extremely versatile tool for modelling problems of all kinds
= basis of Integer Programming, to be discussed in later lectures

~——— Simplex Algorithm X3
= |n practice: usually terminates in X2
polynomial time, i.e., O(m + n)

= In theory: even with anti-cycling may
need exponential time o
(N

X1

[

~—
Research Problem: Is there a pivoting rule which
makes SIMPLEX a polynomial-time algorithm?

Polynomial-Time Algorithms X3
= |nterior-Point Methods: traverses the X2
interior of the feasible set of solutions
(not just vertices!)

Linear Programming © Thomas Sauerwald Finding an Initial Solution 59



Test your Understanding

Which of the following statements are true?

1. In each iteration of the Simplex algorithm, the objective function
increases.

2. There exist linear programs that have exactly two optimal solutions.

3. There exist linear programs that have infinitely many optimal solutions.

4. The Simplex algorithm always runs in worst-case polynomial time.

Linear Programming © Thomas Sauerwald Finding an Initial Solution

60



	Introduction
	A Simple Example of a Linear Program
	Formulating Problems as Linear Programs
	Standard and Slack Forms
	Simplex Algorithm
	Finding an Initial Solution

