Randomised Algorithms

Lecture 5：Random Walks，Hitting Times and Application to 2－SAT

Thomas Sauerwald（tms41＠cam．ac．uk）

Outline

Random Walks on Graphs, Hitting Times and Cover Times

Random Walks on Paths and Grids

SAT and a Randomised Algorithm for 2-SAT

Appendix: Reversibility and Random Walks on Weighted Graphs (non-exam.)

Random Walks on Graphs

A Simple Random Walk (SRW) on a graph G is a Markov chain on $V(G)$ with

$$
P(u, v)=\left\{\begin{array}{ll}
\frac{1}{\operatorname{deg}(u)} & \text { if }\{u, v\} \in E, \\
0 & \text { if }\{u, v\} \notin E .
\end{array} \quad \text { and } \quad \pi(u)=\frac{\operatorname{deg}(u)}{2|E|}\right.
$$

Random Walks on Graphs

A Simple Random Walk (SRW) on a graph G is a Markov chain on $V(G)$ with

$$
P(u, v)=\left\{\begin{array}{ll}
\frac{1}{\operatorname{deg}(u)} & \text { if }\{u, v\} \in E, \\
0 & \text { if }\{u, v\} \notin E .
\end{array} \quad \text { and } \quad \pi(u)=\frac{\operatorname{deg}(u)}{2|E|}\right.
$$

Random Walks on Graphs

A Simple Random Walk (SRW) on a graph G is a Markov chain on $V(G)$ with

$$
P(u, v)=\left\{\begin{array}{ll}
\frac{1}{\operatorname{deg}(u)} & \text { if }\{u, v\} \in E, \\
0 & \text { if }\{u, v\} \notin E .
\end{array} \quad \text { and } \quad \pi(u)=\frac{\operatorname{deg}(u)}{2|E|}\right.
$$

Random Walks on Graphs

A Simple Random Walk (SRW) on a graph G is a Markov chain on $V(G)$ with

$$
P(u, v)=\left\{\begin{array}{ll}
\frac{1}{\operatorname{deg}(u)} & \text { if }\{u, v\} \in E, \\
0 & \text { if }\{u, v\} \notin E .
\end{array} \quad \text { and } \quad \pi(u)=\frac{\operatorname{deg}(u)}{2|E|}\right.
$$

Random Walks on Graphs

A Simple Random Walk (SRW) on a graph G is a Markov chain on $V(G)$ with

$$
P(u, v)=\left\{\begin{array}{ll}
\frac{1}{\operatorname{deg}(u)} & \text { if }\{u, v\} \in E, \\
0 & \text { if }\{u, v\} \notin E .
\end{array} \quad \text { and } \quad \pi(u)=\frac{\operatorname{deg}(u)}{2|E|}\right.
$$

Random Walks on Graphs

A Simple Random Walk (SRW) on a graph G is a Markov chain on $V(G)$ with

$$
P(u, v)=\left\{\begin{array}{ll}
\frac{1}{\operatorname{deg}(u)} & \text { if }\{u, v\} \in E, \\
0 & \text { if }\{u, v\} \notin E .
\end{array} \quad \text { and } \quad \pi(u)=\frac{\operatorname{deg}(u)}{2|E|}\right.
$$

Random Walks on Graphs

A Simple Random Walk (SRW) on a graph G is a Markov chain on $V(G)$ with

$$
P(u, v)=\left\{\begin{array}{ll}
\frac{1}{\operatorname{deg}(u)} & \text { if }\{u, v\} \in E, \\
0 & \text { if }\{u, v\} \notin E .
\end{array} \quad \text { and } \quad \pi(u)=\frac{\operatorname{deg}(u)}{2|E|}\right.
$$

Random Walks on Graphs

A Simple Random Walk (SRW) on a graph G is a Markov chain on $V(G)$ with

$$
P(u, v)=\left\{\begin{array}{ll}
\frac{1}{\operatorname{deg}(u)} & \text { if }\{u, v\} \in E, \\
0 & \text { if }\{u, v\} \notin E .
\end{array} \quad \text { and } \quad \pi(u)=\frac{\operatorname{deg}(u)}{2|E|}\right.
$$

Random Walks on Graphs

A Simple Random Walk (SRW) on a graph G is a Markov chain on $V(G)$ with

$$
P(u, v)=\left\{\begin{array}{ll}
\frac{1}{\operatorname{deg}(u)} & \text { if }\{u, v\} \in E, \\
0 & \text { if }\{u, v\} \notin E .
\end{array} \quad \text { and } \quad \pi(u)=\frac{\operatorname{deg}(u)}{2|E|}\right.
$$

Recall: $h(u, v)=\mathbf{E}_{u}\left[\min \left\{t \geq 1: X_{t}=v\right\}\right]$ is the hitting time of v from u.

Lazy Random Walks and Periodicity

The Lazy Random Walk (LRW) on G given by $\widetilde{P}=(P+I) / 2$,

$$
\widetilde{P}_{u, v}=\left\{\begin{array}{ll}
\frac{1}{2 \operatorname{deg}(u)} & \text { if }\{u, v\} \in E, \\
\frac{1}{2} & \text { if } u=v, \\
0 & \text { otherwise }
\end{array} .\right.
$$

Lazy Random Walks and Periodicity

The Lazy Random Walk (LRW) on G given by $\widetilde{P}=(P+I) / 2$,

$$
\widetilde{P}_{u, v}=\left\{\begin{array} { l l }
{ \frac { 1 } { 2 \operatorname { d e g } (u) } } & { \text { if } \{ u , v \} \in E , } \\
{ \frac { 1 } { 2 } } & { \text { if } u = v , } \\
{ 0 } & { \text { otherwise } }
\end{array} \cdot \left[\begin{array}{r}
P-\text { SRW matrix } \\
1-\text { Identity matrix. }
\end{array}\right.\right.
$$

Lazy Random Walks and Periodicity

The Lazy Random Walk (LRW) on G given by $\widetilde{P}=(P+I) / 2$,

$$
\widetilde{P}_{u, v}=\left\{\begin{array} { l l }
{ \frac { 1 } { 2 \operatorname { d e g } (u) } } & { \text { if } \{ u , v \} \in E , } \\
{ \frac { 1 } { 2 } } & { \text { if } u = v , } \\
{ 0 } & { \text { otherwise } }
\end{array} \cdot \left[\begin{array}{r}
P-\text { SRW matrix } \\
1-\text { Identity matrix. }
\end{array}\right.\right.
$$

Fact: For any graph G the LRW on G is aperiodic.

Lazy Random Walks and Periodicity

The Lazy Random Walk (LRW) on G given by $\widetilde{P}=(P+I) / 2$,

$$
\widetilde{P}_{u, v}=\left\{\begin{array} { l l }
{ \frac { 1 } { 2 \operatorname { d e g } (u) } } & { \text { if } \{ u , v \} \in E , } \\
{ \frac { 1 } { 2 } } & { \text { if } u = v , } \\
{ 0 } & { \text { otherwise } }
\end{array} \cdot \left[\begin{array}{r}
P-\text { SRW matrix } \\
I-\text { Identity matrix. }
\end{array}\right.\right.
$$

Fact: For any graph G the LRW on G is aperiodic.

SRW on C_{4}, Periodic

Lazy Random Walks and Periodicity

The Lazy Random Walk (LRW) on G given by $\widetilde{P}=(P+I) / 2$,

$$
\widetilde{P}_{u, v}=\left\{\begin{array} { l l }
{ \frac { 1 } { 2 \operatorname { d e g } (u) } } & { \text { if } \{ u , v \} \in E , } \\
{ \frac { 1 } { 2 } } & { \text { if } u = v , } \\
{ 0 } & { \text { otherwise } }
\end{array} \cdot \left[\begin{array}{r}
P-\text { SRW matrix } \\
1-\text { Identity matrix. }
\end{array}\right.\right.
$$

Fact: For any graph G the LRW on G is aperiodic.

SRW on C_{4}, Periodic

LRW on C_{4}, Aperiodic

Application: Cover Time and Undirected Connectivity

Let $t_{c o v}:=\max _{u \in V} \mathbf{E}_{u}\left[\min \left\{t \geq 1: \cup_{s=0}^{t} X_{s}=V\right\}\right]$ be the cover time, that is, the worst-case expected time to visit all vertices.

Application: Cover Time and Undirected Connectivity

Let $t_{c o v}:=\max _{u \in V} \mathbf{E}_{u}\left[\min \left\{t \geq 1: \cup_{s=0}^{t} X_{s}=V\right\}\right]$ be the cover time, that is, the worst-case expected time to visit all vertices.

Aleliunas, Karp, Lipton, Lovász and Rackoff, FOCS'79
For any connected graph G with n vertices, $t_{c o v}(G) \leq 2(n-1)|E|$.

Application: Cover Time and Undirected Connectivity

Let $t_{c o v}:=\max _{u \in V} \mathbf{E}_{u}\left[\min \left\{t \geq 1: \cup_{s=0}^{t} X_{s}=V\right\}\right]$ be the cover time, that is, the worst-case expected time to visit all vertices.

Aleliunas, Karp, Lipton, Lovász and Rackoff, FOCS'79
For any connected graph G with n vertices, $t_{c o v}(G) \leq 2(n-1)|E|$.

Proof:
(1)
(2)
(5)

Application: Cover Time and Undirected Connectivity

Let $t_{c o v}:=\max _{u \in V} \mathbf{E}_{u}\left[\min \left\{t \geq 1: \cup_{s=0}^{t} X_{s}=V\right\}\right]$ be the cover time, that is, the worst-case expected time to visit all vertices.

Aleliunas, Karp, Lipton, Lovász and Rackoff, FOCS'79
For any connected graph G with n vertices, $t_{c o v}(G) \leq 2(n-1)|E|$.

Proof:

- Take a spanning tree T in G

Application: Cover Time and Undirected Connectivity

Let $t_{c o v}:=\max _{u \in V} \mathbf{E}_{u}\left[\min \left\{t \geq 1: \cup_{s=0}^{t} X_{s}=V\right\}\right]$ be the cover time, that is, the worst-case expected time to visit all vertices.

Aleliunas, Karp, Lipton, Lovász and Rackoff, FOCS'79
For any connected graph G with n vertices, $t_{c o v}(G) \leq 2(n-1)|E|$.

Proof:

- Take a spanning tree T in G
- Consider a traversal that goes through every edge in T twice

Application: Cover Time and Undirected Connectivity

Let $t_{c o v}:=\max _{u \in V} \mathbf{E}_{u}\left[\min \left\{t \geq 1: \cup_{s=0}^{t} X_{s}=V\right\}\right]$ be the cover time, that is, the worst-case expected time to visit all vertices.

Aleliunas, Karp, Lipton, Lovász and Rackoff, FOCS'79
For any connected graph G with n vertices, $t_{c o v}(G) \leq 2(n-1)|E|$.

Proof:

- Take a spanning tree T in G
- Consider a traversal that goes through every edge in T twice

Application: Cover Time and Undirected Connectivity

Let $t_{c o v}:=\max _{u \in V} \mathbf{E}_{u}\left[\min \left\{t \geq 1: \cup_{s=0}^{t} X_{s}=V\right\}\right]$ be the cover time, that is, the worst-case expected time to visit all vertices.

Aleliunas, Karp, Lipton, Lovász and Rackoff, FOCS'79
For any connected graph G with n vertices, $t_{c o v}(G) \leq 2(n-1)|E|$.

Proof:

- Take a spanning tree T in G
- Consider a traversal that goes through every edge in T twice
- For any adjacent vertices u, v, $t_{\text {hit }}(u, v)+t_{\text {hit }}(v, u) \leq 2|E|$ (Exercise!)

Application: Cover Time and Undirected Connectivity

Let $t_{c o v}:=\max _{u \in V} \mathbf{E}_{u}\left[\min \left\{t \geq 1: \cup_{s=0}^{t} X_{s}=V\right\}\right]$ be the cover time, that is, the worst-case expected time to visit all vertices.

Aleliunas, Karp, Lipton, Lovász and Rackoff, FOCS'79
For any connected graph G with n vertices, $t_{c o v}(G) \leq 2(n-1)|E|$.

Proof:

- Take a spanning tree T in G
- Consider a traversal that goes through every edge in T twice
- For any adjacent vertices u, v, $t_{\text {hit }}(u, v)+t_{\text {hit }}(v, u) \leq 2|E|$ (Exercise!)
- Thus,

$$
t_{c o v}(G) \leq \sum_{(u, v) \in E(T)} h(u, v)+h(v, u)
$$

Application: Cover Time and Undirected Connectivity

Let $t_{c o v}:=\max _{u \in V} \mathbf{E}_{u}\left[\min \left\{t \geq 1: \cup_{s=0}^{t} X_{s}=V\right\}\right]$ be the cover time, that is, the worst-case expected time to visit all vertices.

Aleliunas, Karp, Lipton, Lovász and Rackoff, FOCS'79
For any connected graph G with n vertices, $t_{\operatorname{cov}}(G) \leq 2(n-1)|E|$.

Proof:

- Take a spanning tree T in G
- Consider a traversal that goes through every edge in T twice
- For any adjacent vertices u, v, $t_{\text {hit }}(u, v)+t_{\text {hit }}(v, u) \leq 2|E|$ (Exercise!)
- Thus,

$$
\begin{aligned}
t_{c o v}(G) & \leq \sum_{(u, v) \in E(T)} h(u, v)+h(v, u) \\
& \leq 2(n-1) \cdot|E|
\end{aligned}
$$

Application: Cover Time and Undirected Connectivity

Let $t_{c o v}:=\max _{u \in V} \mathbf{E}_{u}\left[\min \left\{t \geq 1: \cup_{s=0}^{t} X_{s}=V\right\}\right]$ be the cover time, that is, the worst-case expected time to visit all vertices.

Aleliunas, Karp, Lipton, Lovász and Rackoff, FOCS'79

For any connected graph G with n vertices, $t_{c o v}(G) \leq 2(n-1)|E|$.
By Markov's inequality, all vertices are visited after $4(n-1)|E|$ steps with probability at least $1 / 2$

Proof:

- Take a spanning tree T in G
- Consider a traversal that goes through every edge in T twice
- For any adjacent vertices u, v, $t_{\text {hit }}(u, v)+t_{\text {hit }}(v, u) \leq 2|E|$ (Exercise!)
- Thus,

$$
\begin{aligned}
t_{c o v}(G) & \leq \sum_{(u, v) \in E(T)} h(u, v)+h(v, u) \\
& \leq 2(n-1) \cdot|E|
\end{aligned}
$$

Application: Cover Time and Undirected Connectivity

Let $t_{c o v}:=\max _{u \in V} \mathbf{E}_{u}\left[\min \left\{t \geq 1: \cup_{s=0}^{t} X_{s}=V\right\}\right]$ be the cover time, that is, the worst-case expected time to visit all vertices.

Aleliunas, Karp, Lipton, Lovász and Rackoff, FOCS'79
For any connected graph G with n vertices, $t_{\operatorname{cov}}(G) \leq 2(n-1)|E|$.
By Markov's inequality, all vertices are visited after $4(n-1)|E|$ steps with probability at least $1 / 2$

Proof:

- Take a spanning tree T in G
- Consider a traversal that goes through every edge in T twice
- For any adjacent vertices u, v, $t_{\text {hit }}(u, v)+t_{\text {hit }}(v, u) \leq 2|E|$ (Exercise!)
- Thus,

$$
\begin{aligned}
t_{c o v}(G) & \leq \sum_{(u, v) \in E(T)} h(u, v)+h(v, u) \\
& \leq 2(n-1) \cdot|E|
\end{aligned}
$$

\Rightarrow solves the USTCON problem with $O(\log n)$ space (see Complexity Theory course)

Outline

Random Walks on Graphs, Hitting Times and Cover Times

Random Walks on Paths and Grids

SAT and a Randomised Algorithm for 2-SAT

Appendix: Reversibility and Random Walks on Weighted Graphs (non-exam.)

1921: The Birth of Random Walks on (Infinite) Graphs (Polyá)

Will a random walk always return to the origin?

1921: The Birth of Random Walks on (Infinite) Graphs (Polyá)

Will a random walk always return to the origin?

Infinite 2D Grid

1921: The Birth of Random Walks on (Infinite) Graphs (Polyá)

Will a random walk always return to the origin?

Infinite 2D Grid

1921: The Birth of Random Walks on (Infinite) Graphs (Polyá)

Will a random walk always return to the origin?

Infinite 2D Grid

Infinite 3D Grid

1921: The Birth of Random Walks on (Infinite) Graphs (Polyá)

Will a random walk always return to the origin?

Infinite 2D Grid

Infinite 3D Grid

1921: The Birth of Random Walks on (Infinite) Graphs (Polyá)

Will a random walk always return to the origin?

Infinite 2D Grid

Infinite 3D Grid

y
"A drunk man will find his way home, but a drunk bird may get lost forever."

1921: The Birth of Random Walks on (Infinite) Graphs (Polyá)

Will a random walk always return to the origin?

Infinite 2D Grid

Infinite 3D Grid

3
"A drunk man will find his way home, but a drunk bird may get lost forever."
But for any regular (finite) graph, the expected return time to u is $1 / \pi(u)=n$

SRW Random Walk on Two-Dimensional Grids: Animation

Random Walk on a Path (1/2)

The n-path P_{n} is the graph with $V\left(P_{n}\right)=[n]$ and $E\left(P_{n}\right)=\{\{i, j\}: j=i+1\}$.

Random Walk on a Path (1/2)

The n-path P_{n} is the graph with $V\left(P_{n}\right)=[n]$ and $E\left(P_{n}\right)=\{\{i, j\}: j=i+1\}$.

Proposition
For the SRW on P_{n} we have $h(k, n)=n^{2}-k^{2}$, for any $0 \leq k<n$.

Random Walk on a Path (1/2)

The n-path P_{n} is the graph with $V\left(P_{n}\right)=[n]$ and $E\left(P_{n}\right)=\{\{i, j\}: j=i+1\}$.

Proposition
For the SRW on P_{n} we have $h(k, n)=n^{2}-k^{2}$, for any $0 \leq k<n$.

Random Walk on a Path (1/2)

The n-path P_{n} is the graph with $V\left(P_{n}\right)=[n]$ and $E\left(P_{n}\right)=\{\{i, j\}: j=i+1\}$.

Proposition
For the SRW on P_{n} we have $h(k, n)=n^{2}-k^{2}$, for any $0 \leq k<n$.

Random Walk on a Path (1/2)

The n-path P_{n} is the graph with $V\left(P_{n}\right)=[n]$ and $E\left(P_{n}\right)=\{\{i, j\}: j=i+1\}$.

Proposition
For the SRW on P_{n} we have $h(k, n)=n^{2}-k^{2}$, for any $0 \leq k<n$.

Random Walk on a Path (1/2)

The n-path P_{n} is the graph with $V\left(P_{n}\right)=[n]$ and $E\left(P_{n}\right)=\{\{i, j\}: j=i+1\}$.

Proposition
For the SRW on P_{n} we have $h(k, n)=n^{2}-k^{2}$, for any $0 \leq k<n$.

Random Walk on a Path (1/2)

The n-path P_{n} is the graph with $V\left(P_{n}\right)=[n]$ and $E\left(P_{n}\right)=\{\{i, j\}: j=i+1\}$.

Proposition
For the SRW on P_{n} we have $h(k, n)=n^{2}-k^{2}$, for any $0 \leq k<n$.

Random Walk on a Path (1/2)

The n-path P_{n} is the graph with $V\left(P_{n}\right)=[n]$ and $E\left(P_{n}\right)=\{\{i, j\}: j=i+1\}$.

Proposition
For the SRW on P_{n} we have $h(k, n)=n^{2}-k^{2}$, for any $0 \leq k<n$.

Random Walk on a Path (2/2)

Proposition

For the SRW on P_{n} we have $h(k, n)=n^{2}-k^{2}$, for any $0 \leq k \leq n$.

Random Walk on a Path (2/2)

Proposition

For the SRW on P_{n} we have $h(k, n)=n^{2}-k^{2}$, for any $0 \leq k \leq n$.

Recall: Hitting times are the solution to the set of linear equations:

$$
h(x, y) \stackrel{\text { Markov Prop. }}{=} 1+\sum_{z \in \Omega \backslash\{y\}} h(z, y) \cdot P(x, z) \quad \forall x \neq y \in V
$$

Random Walk on a Path (2/2)

Proposition

For the SRW on P_{n} we have $h(k, n)=n^{2}-k^{2}$, for any $0 \leq k \leq n$.

Recall: Hitting times are the solution to the set of linear equations:

$$
h(x, y) \stackrel{\text { Markov Prop. }}{=} 1+\sum_{z \in \Omega \backslash\{y\}} h(z, y) \cdot P(x, z) \quad \forall x \neq y \in V
$$

Proof: Let $f(k)=h(k, n)$ and set $f(n):=0$.

Random Walk on a Path (2/2)

Proposition

For the SRW on P_{n} we have $h(k, n)=n^{2}-k^{2}$, for any $0 \leq k \leq n$.

Recall: Hitting times are the solution to the set of linear equations:

$$
h(x, y) \stackrel{\text { Markov Prop. }}{=} 1+\sum_{z \in \Omega \backslash\{y\}} h(z, y) \cdot P(x, z) \quad \forall x \neq y \in V
$$

Proof: Let $f(k)=h(k, n)$ and set $f(n):=0$. By the Markov property

$$
f(0)=1+f(1)
$$

Random Walk on a Path (2/2)

Proposition

For the SRW on P_{n} we have $h(k, n)=n^{2}-k^{2}$, for any $0 \leq k \leq n$.

Recall: Hitting times are the solution to the set of linear equations:

$$
h(x, y) \stackrel{\text { Markov Prop. }}{=} 1+\sum_{z \in \Omega \backslash\{y\}} h(z, y) \cdot P(x, z) \quad \forall x \neq y \in V
$$

Proof: Let $f(k)=h(k, n)$ and set $f(n):=0$. By the Markov property

$$
f(0)=1+f(1) \quad \text { and } \quad f(k)=1+\frac{f(k-1)}{2}+\frac{f(k+1)}{2} \quad \text { for } 1 \leq k \leq n-1
$$

Random Walk on a Path (2/2)

Proposition

For the SRW on P_{n} we have $h(k, n)=n^{2}-k^{2}$, for any $0 \leq k \leq n$.

Recall: Hitting times are the solution to the set of linear equations:

$$
h(x, y) \stackrel{\text { Markov Prop. }}{=} 1+\sum_{z \in \Omega \backslash\{y\}} h(z, y) \cdot P(x, z) \quad \forall x \neq y \in V
$$

Proof: Let $f(k)=h(k, n)$ and set $f(n):=0$. By the Markov property

$$
f(0)=1+f(1) \quad \text { and } \quad f(k)=1+\frac{f(k-1)}{2}+\frac{f(k+1)}{2} \quad \text { for } 1 \leq k \leq n-1
$$

System of n independent equations in n unknowns, so has a unique solution.

Random Walk on a Path (2/2)

Proposition

For the SRW on P_{n} we have $h(k, n)=n^{2}-k^{2}$, for any $0 \leq k \leq n$.

Recall: Hitting times are the solution to the set of linear equations:

$$
h(x, y) \stackrel{\text { Markov Prop. }}{=} 1+\sum_{z \in \Omega \backslash\{y\}} h(z, y) \cdot P(x, z) \quad \forall x \neq y \in V
$$

Proof: Let $f(k)=h(k, n)$ and set $f(n):=0$. By the Markov property

$$
f(0)=1+f(1) \text { and } f(k)=1+\frac{f(k-1)}{2}+\frac{f(k+1)}{2} \quad \text { for } 1 \leq k \leq n-1
$$

System of n independent equations in n unknowns, so has a unique solution.
Thus it suffices to check that $f(k)=n^{2}-k^{2}$ satisfies the above.

Random Walk on a Path (2/2)

Proposition

For the SRW on P_{n} we have $h(k, n)=n^{2}-k^{2}$, for any $0 \leq k \leq n$.

Recall: Hitting times are the solution to the set of linear equations:

$$
h(x, y) \stackrel{\text { Markov Prop. }}{=} 1+\sum_{z \in \Omega \backslash\{y\}} h(z, y) \cdot P(x, z) \quad \forall x \neq y \in V
$$

Proof: Let $f(k)=h(k, n)$ and set $f(n):=0$. By the Markov property

$$
f(0)=1+f(1) \text { and } f(k)=1+\frac{f(k-1)}{2}+\frac{f(k+1)}{2} \quad \text { for } 1 \leq k \leq n-1
$$

System of n independent equations in n unknowns, so has a unique solution.
Thus it suffices to check that $f(k)=n^{2}-k^{2}$ satisfies the above. Indeed

$$
f(0)=1+f(1)=1+n^{2}-1^{2}=n^{2}
$$

Random Walk on a Path (2/2)

Proposition

For the SRW on P_{n} we have $h(k, n)=n^{2}-k^{2}$, for any $0 \leq k \leq n$.

Recall: Hitting times are the solution to the set of linear equations:

$$
h(x, y) \stackrel{\text { Markov Prop. }}{=} 1+\sum_{z \in \Omega \backslash\{y\}} h(z, y) \cdot P(x, z) \quad \forall x \neq y \in V
$$

Proof: Let $f(k)=h(k, n)$ and set $f(n):=0$. By the Markov property

$$
f(0)=1+f(1) \text { and } f(k)=1+\frac{f(k-1)}{2}+\frac{f(k+1)}{2} \quad \text { for } 1 \leq k \leq n-1
$$

System of n independent equations in n unknowns, so has a unique solution.
Thus it suffices to check that $f(k)=n^{2}-k^{2}$ satisfies the above. Indeed

$$
f(0)=1+f(1)=1+n^{2}-1^{2}=n^{2}
$$

and for any $1 \leq k \leq n-1$ we have,

$$
f(k)=1+\frac{n^{2}-(k-1)^{2}}{2}+\frac{n^{2}-(k+1)^{2}}{2}=n^{2}-k^{2}
$$

Outline

Random Walks on Graphs, Hitting Times and Cover Times

Random Walks on Paths and Grids

SAT and a Randomised Algorithm for 2-SAT

Appendix: Reversibility and Random Walks on Weighted Graphs (non-exam.)

SAT Problems

A Satisfiability (SAT) formula is a logical expression that's the conjunction (AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

SAT Problems

A Satisfiability (SAT) formula is a logical expression that's the conjunction (AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values True and False so that all the clauses are satisfied.

SAT Problems

A Satisfiability (SAT) formula is a logical expression that's the conjunction (AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values True and False so that all the clauses are satisfied.

Example:

SAT: $\left(x_{1} \vee \overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{3}}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{4}\right) \wedge\left(x_{4} \vee \overline{x_{3}}\right) \wedge\left(x_{4} \vee \overline{x_{1}}\right)$

SAT Problems

A Satisfiability (SAT) formula is a logical expression that's the conjunction (AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values True and False so that all the clauses are satisfied.

Example:

$$
\begin{aligned}
\text { SAT: } & \left(x_{1} \vee \overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{3}}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{4}\right) \wedge\left(x_{4} \vee \overline{x_{3}}\right) \wedge\left(x_{4} \vee \overline{x_{1}}\right) \\
\text { Solution: } & x_{1}=\text { True }, \quad x_{2}=\text { False }, \quad x_{3}=\text { False } \quad \text { and } \quad x_{4}=\text { True } .
\end{aligned}
$$

SAT Problems

A Satisfiability (SAT) formula is a logical expression that's the conjunction (AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values True and False so that all the clauses are satisfied.

Example:

$$
\text { SAT: }\left(x_{1} \vee \overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{3}}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{4}\right) \wedge\left(x_{4} \vee \overline{x_{3}}\right) \wedge\left(x_{4} \vee \overline{x_{1}}\right)
$$

$$
\text { Solution: } x_{1}=\text { True }, \quad x_{2}=\text { False }, \quad x_{3}=\text { False } \quad \text { and } \quad x_{4}=\text { True }
$$

- If each clause has k literals we call the problem k-SAT.
- In general, determining if a SAT formula has a solution is NP-hard
- In practice solvers are fast and used to great effect
- A huge amount of problems can be posed as a SAT:

SAT Problems

A Satisfiability (SAT) formula is a logical expression that's the conjunction (AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values True and False so that all the clauses are satisfied.

Example:

SAT: $\left(x_{1} \vee \overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{3}}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{4}\right) \wedge\left(x_{4} \vee \overline{x_{3}}\right) \wedge\left(x_{4} \vee \overline{x_{1}}\right)$
Solution: $x_{1}=$ True, $\quad x_{2}=$ False, $\quad x_{3}=$ False \quad and $\quad x_{4}=$ True.

- If each clause has k literals we call the problem k-SAT.
- In general, determining if a SAT formula has a solution is NP-hard
- In practice solvers are fast and used to great effect
- A huge amount of problems can be posed as a SAT:
\rightarrow Model checking and hardware/software verification
\rightarrow Design of experiments
\rightarrow Classical planning
$\rightarrow \ldots$

2-SAT

Randomised2-SAT (Input: a 2-SAT-Formula)

2-SAT

RANDOMISED2-SAT (Input: a 2-SAT-Formula)

1: Start with an arbitrary truth assignment

2-SAT

RANDOMISED2-SAT (Input: a 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to $2 n^{2}$ times

2-SAT

RANDOMISED2-SAT (Input: a 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to $2 n^{2}$ times
3: Pick an arbitrary unsatisfied clause

2-SAT

RANDOMISED2-SAT (Input: a 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to $2 n^{2}$ times
3: \quad Pick an arbitrary unsatisfied clause
4: Choose a random literal and switch its value

2-SAT

RANDOMISED2-SAT (Input: a 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to $2 n^{2}$ times
3: \quad Pick an arbitrary unsatisfied clause
4: \quad Choose a random literal and switch its value
5: If formula is satisfied then return "Satisfiable"
6: return "Unsatisfiable"

2-SAT

RANDOMISED2-SAT (Input: a 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to $2 n^{2}$ times
3: \quad Pick an arbitrary unsatisfied clause
4: \quad Choose a random literal and switch its value
5: If formula is satisfied then return "Satisfiable"
6: return "Unsatisfiable"

- Call each loop of (2) a step. Let A_{i} be the variable assignment at step i.

2-SAT

RANDOMISED2-SAT (Input: a 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to $2 n^{2}$ times
3: \quad Pick an arbitrary unsatisfied clause
4: \quad Choose a random literal and switch its value
5: If formula is satisfied then return "Satisfiable"
6: return "Unsatisfiable"

- Call each loop of (2) a step. Let A_{i} be the variable assignment at step i.
- Let α be any solution and $X_{i}=\mid$ variable values shared by A_{i} and $\alpha \mid$.

2-SAT

RANDOMISED2-SAT (Input: a 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to $2 n^{2}$ times
3: \quad Pick an arbitrary unsatisfied clause
4: \quad Choose a random literal and switch its value
5: If formula is satisfied then return "Satisfiable"
6: return "Unsatisfiable"

- Call each loop of (2) a step. Let A_{i} be the variable assignment at step i.
- Let α be any solution and $X_{i}=\mid$ variable values shared by A_{i} and $\alpha \mid$.

Example 1:

$\left(x_{1} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{3}}\right) \wedge\left(x_{1} \vee x_{2}\right) \wedge\left(x_{4} \vee \overline{x_{3}}\right) \wedge\left(x_{4} \vee \overline{x_{1}}\right) \quad \alpha=(\mathrm{T}, \mathrm{T}, \mathrm{F}, \mathrm{T})$.

2-SAT

RANDOMISED2-SAT (Input: a 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to $2 n^{2}$ times
3: \quad Pick an arbitrary unsatisfied clause
4: \quad Choose a random literal and switch its value
5: If formula is satisfied then return "Satisfiable"
6: return "Unsatisfiable"

- Call each loop of (2) a step. Let A_{i} be the variable assignment at step i.
- Let α be any solution and $X_{i}=\mid$ variable values shared by A_{i} and $\alpha \mid$.

Example 1:

$\left(x_{1} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{3}}\right) \wedge\left(x_{1} \vee x_{2}\right) \wedge\left(x_{4} \vee \overline{x_{3}}\right) \wedge\left(x_{4} \vee \overline{x_{1}}\right) \quad \alpha=(\mathrm{T}, \mathrm{T}, \mathrm{F}, \mathrm{T})$.

2-SAT

RANDOMISED2-SAT (Input: a 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to $2 n^{2}$ times
3: \quad Pick an arbitrary unsatisfied clause
4: \quad Choose a random literal and switch its value
5: If formula is satisfied then return "Satisfiable"
6: return "Unsatisfiable"

- Call each loop of (2) a step. Let A_{i} be the variable assignment at step i.
- Let α be any solution and $X_{i}=\mid$ variable values shared by A_{i} and $\alpha \mid$.

Example 1:

$\left(x_{1} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{3}}\right) \wedge\left(x_{1} \vee x_{2}\right) \wedge\left(x_{4} \vee \overline{x_{3}}\right) \wedge\left(x_{4} \vee \overline{x_{1}}\right) \quad \alpha=(\mathrm{T}, \mathrm{T}, \mathrm{F}, \mathrm{T})$.

2-SAT

RANDOMISED2-SAT (Input: a 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to $2 n^{2}$ times
3: \quad Pick an arbitrary unsatisfied clause
4: \quad Choose a random literal and switch its value
5: If formula is satisfied then return "Satisfiable"
6: return "Unsatisfiable"

- Call each loop of (2) a step. Let A_{i} be the variable assignment at step i.
- Let α be any solution and $X_{i}=\mid$ variable values shared by A_{i} and $\alpha \mid$.

Example 1:

$\left(x_{1} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{3}}\right) \wedge\left(x_{1} \vee x_{2}\right) \wedge\left(x_{4} \vee \overline{x_{3}}\right) \wedge\left(x_{4} \vee \overline{x_{1}}\right) \quad \alpha=(\mathrm{T}, \mathrm{T}, \mathrm{F}, \mathrm{T})$.

2-SAT

RANDOMISED2-SAT (Input: a 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to $2 n^{2}$ times
3: \quad Pick an arbitrary unsatisfied clause
4: \quad Choose a random literal and switch its value
5: If formula is satisfied then return "Satisfiable"
6: return "Unsatisfiable"

- Call each loop of (2) a step. Let A_{i} be the variable assignment at step i.
- Let α be any solution and $X_{i}=\mid$ variable values shared by A_{i} and $\alpha \mid$.

Example 1:

$\left(x_{1} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{3}}\right) \wedge\left(x_{1} \vee x_{2}\right) \wedge\left(x_{4} \vee \overline{x_{3}}\right) \wedge\left(x_{4} \vee \overline{x_{1}}\right) \quad \alpha=(\mathrm{T}, \mathrm{T}, \mathrm{F}, \mathrm{T})$.

2-SAT

RANDOMISED2-SAT (Input: a 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to $2 n^{2}$ times
3: \quad Pick an arbitrary unsatisfied clause
4: \quad Choose a random literal and switch its value
5: If formula is satisfied then return "Satisfiable"
6: return "Unsatisfiable"

- Call each loop of (2) a step. Let A_{i} be the variable assignment at step i.
- Let α be any solution and $X_{i}=\mid$ variable values shared by A_{i} and $\alpha \mid$.

Example 1:

$$
\left(x_{1} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{3}}\right) \wedge\left(x_{1} \vee x_{2}\right) \wedge\left(x_{4} \vee \overline{x_{3}}\right) \wedge\left(x_{4} \vee \overline{x_{1}}\right) \quad \alpha=(\mathrm{T}, \mathrm{~T}, \mathrm{~F}, \mathrm{~T})
$$

$\begin{array}{llllllllll}\mathrm{F} & \mathrm{F} & \mathrm{T} & \mathrm{T} & \mathrm{F} & \mathrm{T} & \mathrm{F} & \mathrm{T} & \mathrm{F} & \mathrm{T}\end{array}$

3
4

t	x_{1}	x_{2}	x_{3}	x_{4}
0	F	F	F	F
1	F	T	F	F

2-SAT

RANDOMISED2-SAT (Input: a 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to $2 n^{2}$ times
3: \quad Pick an arbitrary unsatisfied clause
4: \quad Choose a random literal and switch its value
5: If formula is satisfied then return "Satisfiable"
6: return "Unsatisfiable"

- Call each loop of (2) a step. Let A_{i} be the variable assignment at step i.
- Let α be any solution and $X_{i}=\mid$ variable values shared by \boldsymbol{A}_{i} and $\alpha \mid$.

Example 1:

$\left(x_{1} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{3}}\right) \wedge\left(x_{1} \vee x_{2}\right) \wedge\left(x_{4} \vee \overline{x_{3}}\right) \wedge\left(x_{4} \vee \overline{x_{1}}\right) \quad \alpha=(\mathrm{T}, \mathrm{T}, \mathrm{F}, \mathrm{T})$.

2-SAT

RANDOMISED2-SAT (Input: a 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to $2 n^{2}$ times
3: \quad Pick an arbitrary unsatisfied clause
4: \quad Choose a random literal and switch its value
5: If formula is satisfied then return "Satisfiable"
6: return "Unsatisfiable"

- Call each loop of (2) a step. Let A_{i} be the variable assignment at step i.
- Let α be any solution and $X_{i}=\mid$ variable values shared by A_{i} and $\alpha \mid$.

Example 1:

$\left(x_{1} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{3}}\right) \wedge\left(x_{1} \vee x_{2}\right) \wedge\left(x_{4} \vee \overline{x_{3}}\right) \wedge\left(x_{4} \vee \overline{x_{1}}\right) \quad \alpha=(\mathrm{T}, \mathrm{T}, \mathrm{F}, \mathrm{T})$.

2-SAT

RANDOMISED2-SAT (Input: a 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to $2 n^{2}$ times
3: \quad Pick an arbitrary unsatisfied clause
4: \quad Choose a random literal and switch its value
5: If formula is satisfied then return "Satisfiable"
6: return "Unsatisfiable"

- Call each loop of (2) a step. Let A_{i} be the variable assignment at step i.
- Let α be any solution and $X_{i}=\mid$ variable values shared by \boldsymbol{A}_{i} and $\alpha \mid$.

Example 1:

$\left(x_{1} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{3}}\right) \wedge\left(x_{1} \vee x_{2}\right) \wedge\left(x_{4} \vee \overline{x_{3}}\right) \wedge\left(x_{4} \vee \overline{x_{1}}\right) \quad \alpha=(\mathrm{T}, \mathrm{T}, \mathrm{F}, \mathrm{T})$.

2-SAT

RANDOMISED2-SAT (Input: a 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to $2 n^{2}$ times
3: \quad Pick an arbitrary unsatisfied clause
4: \quad Choose a random literal and switch its value
5: If formula is satisfied then return "Satisfiable"
6: return "Unsatisfiable"

- Call each loop of (2) a step. Let A_{i} be the variable assignment at step i.
- Let α be any solution and $X_{i}=\mid$ variable values shared by \boldsymbol{A}_{i} and $\alpha \mid$.

Example 1:

$\left(x_{1} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{3}}\right) \wedge\left(x_{1} \vee x_{2}\right) \wedge\left(x_{4} \vee \overline{x_{3}}\right) \wedge\left(x_{4} \vee \overline{x_{1}}\right) \quad \alpha=(\mathrm{T}, \mathrm{T}, \mathrm{F}, \mathrm{T})$.

T	F	F	T	T	T	T	T	T	F	t	X_{1}	χ_{2}	x_{3}	X_{4}
										0	F	F	F	F
										1	F	T	F	F
										2	T	T	F	F
0										3	T	T	F	T

2-SAT

RANDOMISED2-SAT (Input: a 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to $2 n^{2}$ times
3: \quad Pick an arbitrary unsatisfied clause
4: \quad Choose a random literal and switch its value
5: If formula is satisfied then return "Satisfiable"
6: return "Unsatisfiable"

- Call each loop of (2) a step. Let A_{i} be the variable assignment at step i.
- Let α be any solution and $X_{i}=\mid$ variable values shared by \boldsymbol{A}_{i} and $\alpha \mid$.

Example 1: Solution Found

$\left(x_{1} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{3}}\right) \wedge\left(x_{1} \vee x_{2}\right) \wedge\left(x_{4} \vee \overline{x_{3}}\right) \wedge\left(x_{4} \vee \overline{x_{1}}\right) \quad \alpha=(\mathrm{T}, \mathrm{T}, \mathrm{F}, \mathrm{T})$.

2-SAT

RANDOMISED2-SAT (Input: A 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to $2 n^{2}$ times
3: \quad Pick an arbitrary unsatisfied clauses
4: \quad Choose a random literal and switch its value
5: If formula is satisfied then return "Satisfiable"
6: return "Unsatisfiable"

- Call each loop of (2) a step. Let A_{i} be the variable assignment at step i.
- Let α be any solution and $X_{i}=\mid$ variable values shared by \boldsymbol{A}_{i} and $\alpha \mid$.

Example 2 :

$\left(x_{1} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{3}}\right) \wedge\left(x_{1} \vee x_{2}\right) \wedge\left(x_{4} \vee x_{3}\right) \wedge\left(x_{4} \vee \overline{x_{1}}\right) \quad \alpha=(\mathrm{T}, \mathrm{F}, \mathrm{F}, \mathrm{T})$.

2-SAT

RANDOMISED2-SAT (Input: A 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to $2 n^{2}$ times
3: \quad Pick an arbitrary unsatisfied clauses
4: \quad Choose a random literal and switch its value
5: If formula is satisfied then return "Satisfiable"
6: return "Unsatisfiable"

- Call each loop of (2) a step. Let A_{i} be the variable assignment at step i.
- Let α be any solution and $X_{i}=\mid$ variable values shared by A_{i} and $\alpha \mid$.

Example 2 :

```
\(\left(x_{1} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{3}}\right) \wedge\left(x_{1} \vee x_{2}\right) \wedge\left(x_{4} \vee x_{3}\right) \wedge\left(x_{4} \vee \overline{x_{1}}\right)\)
\[
\alpha=(\mathrm{T}, \mathrm{~F}, \mathrm{~F}, \mathrm{~T}) .
\]
```

F	T	T	T	F	F	F	F	F	T

3
4

t	x_{1}	x_{2}	x_{3}	x_{4}
0	F	F	F	F

2-SAT

RANDOMISED2-SAT (Input: A 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to $2 n^{2}$ times
3: \quad Pick an arbitrary unsatisfied clauses
4: \quad Choose a random literal and switch its value
5: If formula is satisfied then return "Satisfiable"
6: return "Unsatisfiable"

- Call each loop of (2) a step. Let A_{i} be the variable assignment at step i.
- Let α be any solution and $X_{i}=\mid$ variable values shared by \boldsymbol{A}_{i} and $\alpha \mid$.

Example 2 :

$\left(x_{1} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{3}}\right) \wedge\left(x_{1} \vee x_{2}\right) \wedge\left(x_{4} \vee x_{3}\right) \wedge\left(x_{4} \vee \overline{x_{1}}\right) \quad \alpha=(\mathrm{T}, \mathrm{F}, \mathrm{F}, \mathrm{T})$.

2-SAT

RANDOMISED2-SAT (Input: A 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to $2 n^{2}$ times
3: \quad Pick an arbitrary unsatisfied clauses
4: \quad Choose a random literal and switch its value
5: If formula is satisfied then return "Satisfiable"
6: return "Unsatisfiable"

- Call each loop of (2) a step. Let A_{i} be the variable assignment at step i.
- Let α be any solution and $X_{i}=\mid$ variable values shared by \boldsymbol{A}_{i} and $\alpha \mid$.

Example 2 :

$\left(x_{1} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{3}}\right) \wedge\left(x_{1} \vee x_{2}\right) \wedge\left(x_{4} \vee x_{3}\right) \wedge\left(x_{4} \vee \overline{x_{1}}\right) \quad \alpha=(\mathrm{T}, \mathrm{F}, \mathrm{F}, \mathrm{T})$.

2-SAT

RANDOMISED2-SAT (Input: A 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to $2 n^{2}$ times
3: \quad Pick an arbitrary unsatisfied clauses
4: \quad Choose a random literal and switch its value
5: If formula is satisfied then return "Satisfiable"
6: return "Unsatisfiable"

- Call each loop of (2) a step. Let A_{i} be the variable assignment at step i.
- Let α be any solution and $X_{i}=\mid$ variable values shared by \boldsymbol{A}_{i} and $\alpha \mid$.

Example 2 :

$\left(x_{1} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{3}}\right) \wedge\left(x_{1} \vee x_{2}\right) \wedge\left(x_{4} \vee x_{3}\right) \wedge\left(x_{4} \vee \overline{x_{1}}\right) \quad \alpha=(\mathrm{T}, \mathrm{F}, \mathrm{F}, \mathrm{T})$.

2-SAT

RANDOMISED2-SAT (Input: A 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to $2 n^{2}$ times
3: \quad Pick an arbitrary unsatisfied clauses
4: \quad Choose a random literal and switch its value
5: If formula is satisfied then return "Satisfiable"
6: return "Unsatisfiable"

- Call each loop of (2) a step. Let A_{i} be the variable assignment at step i.
- Let α be any solution and $X_{i}=\mid$ variable values shared by \boldsymbol{A}_{i} and $\alpha \mid$.

Example 2 :

$\left(x_{1} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{3}}\right) \wedge\left(x_{1} \vee x_{2}\right) \wedge\left(x_{4} \vee x_{3}\right) \wedge\left(x_{4} \vee \overline{x_{1}}\right) \quad \alpha=(\mathrm{T}, \mathrm{F}, \mathrm{F}, \mathrm{T})$.

2-SAT

RANDOMISED2-SAT (Input: A 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to $2 n^{2}$ times
3: \quad Pick an arbitrary unsatisfied clauses
4: \quad Choose a random literal and switch its value
5: If formula is satisfied then return "Satisfiable"
6: return "Unsatisfiable"

- Call each loop of (2) a step. Let A_{i} be the variable assignment at step i.
- Let α be any solution and $X_{i}=\mid$ variable values shared by \boldsymbol{A}_{i} and $\alpha \mid$.

Example 2 :

$\left(x_{1} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{3}}\right) \wedge\left(x_{1} \vee x_{2}\right) \wedge\left(x_{4} \vee x_{3}\right) \wedge\left(x_{4} \vee \overline{x_{1}}\right) \quad \alpha=(\mathrm{T}, \mathrm{F}, \mathrm{F}, \mathrm{T})$.

2-SAT

RANDOMISED2-SAT (Input: A 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to $2 n^{2}$ times
3: \quad Pick an arbitrary unsatisfied clauses
4: \quad Choose a random literal and switch its value
5: If formula is satisfied then return "Satisfiable"
6: return "Unsatisfiable"

- Call each loop of (2) a step. Let A_{i} be the variable assignment at step i.
- Let α be any solution and $X_{i}=\mid$ variable values shared by \boldsymbol{A}_{i} and $\alpha \mid$.

Example 2 :

$\left(x_{1} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{3}}\right) \wedge\left(x_{1} \vee x_{2}\right) \wedge\left(x_{4} \vee x_{3}\right) \wedge\left(x_{4} \vee \overline{x_{1}}\right) \quad \alpha=(\mathrm{T}, \mathrm{F}, \mathrm{F}, \mathrm{T})$.
$\begin{array}{llllllllll}\mathrm{F} & \mathrm{F} & \mathrm{T} & \mathrm{T} & \mathrm{F} & \mathrm{T} & \mathrm{T} & \mathrm{F} & \mathrm{T} & \mathrm{T}\end{array}$

3
4

t	x_{1}	x_{2}	x_{3}	x_{4}
0	F	F	F	F
1	F	F	F	T
2	F	T	F	T

2-SAT

RANDOMISED2-SAT (Input: A 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to $2 n^{2}$ times
3: \quad Pick an arbitrary unsatisfied clauses
4: \quad Choose a random literal and switch its value
5: If formula is satisfied then return "Satisfiable"
6: return "Unsatisfiable"

- Call each loop of (2) a step. Let A_{i} be the variable assignment at step i.
- Let α be any solution and $X_{i}=\mid$ variable values shared by \boldsymbol{A}_{i} and $\alpha \mid$.

Example 2 :

$\left(x_{1} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{3}}\right) \wedge\left(x_{1} \vee x_{2}\right) \wedge\left(x_{4} \vee x_{3}\right) \wedge\left(x_{4} \vee \overline{x_{1}}\right) \quad \alpha=(\mathrm{T}, \mathrm{F}, \mathrm{F}, \mathrm{T})$.
$\begin{array}{llllllllll}\mathrm{F} & \mathrm{F} & \mathrm{T} & \mathrm{T} & \mathrm{F} & \mathrm{T} & \mathrm{T} & \mathrm{F} & \mathrm{T} & \mathrm{T}\end{array}$

3
4

t	x_{1}	x_{2}	x_{3}	x_{4}
0	F	F	F	F
1	F	F	F	T
2	F	T	F	T

2-SAT

RANDOMISED2-SAT (Input: A 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to $2 n^{2}$ times
3: \quad Pick an arbitrary unsatisfied clauses
4: \quad Choose a random literal and switch its value
5: If formula is satisfied then return "Satisfiable"
6: return "Unsatisfiable"

- Call each loop of (2) a step. Let A_{i} be the variable assignment at step i.
- Let α be any solution and $X_{i}=\mid$ variable values shared by \boldsymbol{A}_{i} and $\alpha \mid$.

Example 2 :

$\left(x_{1} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{3}}\right) \wedge\left(x_{1} \vee x_{2}\right) \wedge\left(x_{4} \vee x_{3}\right) \wedge\left(x_{4} \vee \overline{x_{1}}\right) \quad \alpha=(\mathrm{T}, \mathrm{F}, \mathrm{F}, \mathrm{T})$.

3
4

t	x_{1}	x_{2}	x_{3}	x_{4}
0	F	F	F	F
1	F	F	F	T
2	F	T	F	T

2-SAT

RANDOMISED2-SAT (Input: A 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to $2 n^{2}$ times
3: \quad Pick an arbitrary unsatisfied clauses
4: \quad Choose a random literal and switch its value
5: If formula is satisfied then return "Satisfiable"
6: return "Unsatisfiable"

- Call each loop of (2) a step. Let A_{i} be the variable assignment at step i.
- Let α be any solution and $X_{i}=\mid$ variable values shared by \boldsymbol{A}_{i} and $\alpha \mid$.

Example 2 :

$\left(x_{1} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{3}}\right) \wedge\left(x_{1} \vee x_{2}\right) \wedge\left(x_{4} \vee x_{3}\right) \wedge\left(x_{4} \vee \overline{x_{1}}\right) \quad \alpha=(\mathrm{T}, \mathrm{F}, \mathrm{F}, \mathrm{T})$.

2-SAT

RANDOMISED2-SAT (Input: A 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to $2 n^{2}$ times
3: \quad Pick an arbitrary unsatisfied clauses
4: \quad Choose a random literal and switch its value
5: If formula is satisfied then return "Satisfiable"
6: return "Unsatisfiable"

- Call each loop of (2) a step. Let A_{i} be the variable assignment at step i.
- Let α be any solution and $X_{i}=\mid$ variable values shared by A_{i} and $\alpha \mid$.

Example 2 : (Another) Solution Found

$\left(x_{1} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{3}}\right) \wedge\left(x_{1} \vee x_{2}\right) \wedge\left(x_{4} \vee x_{3}\right) \wedge\left(x_{4} \vee \overline{x_{1}}\right) \quad \alpha=(\mathrm{T}, \mathrm{F}, \mathrm{F}, \mathrm{T})$.

2-SAT and the SRW on the Path

Expected iterations of (2) in Randomised2-SAT
If the formula is satisfiable, then the expected number of steps before RANDOMISED2-SAT outputs a valid solution is at most n^{2}.

2-SAT and the SRW on the Path

Expected iterations of (2) in Randomised2-SAT
If the formula is satisfiable, then the expected number of steps before RANDOMISED2-SAT outputs a valid solution is at most n^{2}.

Proof: Fix any solution α, then for any $i \geq 0$ and $1 \leq k \leq n-1$,

2-SAT and the SRW on the Path

Expected iterations of (2) in Randomised2-SAT
If the formula is satisfiable, then the expected number of steps before RANDOMISED2-SAT outputs a valid solution is at most n^{2}.

Proof: Fix any solution α, then for any $i \geq 0$ and $1 \leq k \leq n-1$,
(i) $\mathbf{P}\left[X_{i+1}=1 \mid X_{i}=0\right]=1$

2-SAT and the SRW on the Path

Expected iterations of (2) in Randomised2-SAT
If the formula is satisfiable, then the expected number of steps before RANDOMISED2-SAT outputs a valid solution is at most n^{2}.

Proof: Fix any solution α, then for any $i \geq 0$ and $1 \leq k \leq n-1$,
(i) $\mathbf{P}\left[X_{i+1}=1 \mid X_{i}=0\right]=1$
(ii) $\mathbf{P}\left[X_{i+1}=k+1 \mid X_{i}=k\right] \geq 1 / 2$

2-SAT and the SRW on the Path

Expected iterations of (2) in Randomised2-SAT

If the formula is satisfiable, then the expected number of steps before RANDOMISED2-SAT outputs a valid solution is at most n^{2}.

Proof: Fix any solution α, then for any $i \geq 0$ and $1 \leq k \leq n-1$,
(i) $\mathbf{P}\left[X_{i+1}=1 \mid X_{i}=0\right]=1$
(ii) $\mathbf{P}\left[X_{i+1}=k+1 \mid X_{i}=k\right] \geq 1 / 2$
(iii) $\mathbf{P}\left[X_{i+1}=k-1 \mid X_{i}=k\right] \leq 1 / 2$.

2-SAT and the SRW on the Path

Expected iterations of (2) in Randomised2-SAT

If the formula is satisfiable, then the expected number of steps before RANDOMISED2-SAT outputs a valid solution is at most n^{2}.

Proof: Fix any solution α, then for any $i \geq 0$ and $1 \leq k \leq n-1$,
(i) $\mathbf{P}\left[X_{i+1}=1 \mid X_{i}=0\right]=1$
(ii) $\mathbf{P}\left[X_{i+1}=k+1 \mid X_{i}=k\right] \geq 1 / 2$
(iii) $\mathbf{P}\left[X_{i+1}=k-1 \mid X_{i}=k\right] \leq 1 / 2$.

Notice that if $X_{i}=n$ then $A_{i}=\alpha$ thus solution found (may find another first).

2-SAT and the SRW on the Path

Expected iterations of (2) in Randomised2-SAT

If the formula is satisfiable, then the expected number of steps before RANDOMISED2-SAT outputs a valid solution is at most n^{2}.

Proof: Fix any solution α, then for any $i \geq 0$ and $1 \leq k \leq n-1$,
(i) $\mathbf{P}\left[X_{i+1}=1 \mid X_{i}=0\right]=1$
(ii) $\mathrm{P}\left[X_{i+1}=k+1 \mid X_{i}=k\right] \geq 1 / 2$
(iii) $\mathbf{P}\left[X_{i+1}=k-1 \mid X_{i}=k\right] \leq 1 / 2$.

Notice that if $X_{i}=n$ then $A_{i}=\alpha$ thus solution found (may find another first).
Assume (pessimistically) that $X_{0}=0$ (none of our initial guesses is right).

2-SAT and the SRW on the Path

Expected iterations of (2) in Randomised2-SAT

If the formula is satisfiable, then the expected number of steps before RANDOMISED2-SAT outputs a valid solution is at most n^{2}.

Proof: Fix any solution α, then for any $i \geq 0$ and $1 \leq k \leq n-1$,
(i) $\mathbf{P}\left[X_{i+1}=1 \mid X_{i}=0\right]=1$
(ii) $\mathrm{P}\left[X_{i+1}=k+1 \mid X_{i}=k\right] \geq 1 / 2$
(iii) $\mathbf{P}\left[X_{i+1}=k-1 \mid X_{i}=k\right] \leq 1 / 2$.

Notice that if $X_{i}=n$ then $A_{i}=\alpha$ thus solution found (may find another first).
Assume (pessimistically) that $X_{0}=0$ (none of our initial guesses is right).
The stochastic process X_{i} is complicated to describe in full; however by (i) - (iii) we can bound it by Y_{i} (SRW on the n-path from 0).

2-SAT and the SRW on the Path

Expected iterations of (2) in Randomised2-SAT

If the formula is satisfiable, then the expected number of steps before RANDOMISED2-SAT outputs a valid solution is at most n^{2}.

Proof: Fix any solution α, then for any $i \geq 0$ and $1 \leq k \leq n-1$,
(i) $\mathbf{P}\left[X_{i+1}=1 \mid X_{i}=0\right]=1$
(ii) $\mathbf{P}\left[X_{i+1}=k+1 \mid X_{i}=k\right] \geq 1 / 2$
(iii) $\mathbf{P}\left[X_{i+1}=k-1 \mid X_{i}=k\right] \leq 1 / 2$.

Notice that if $X_{i}=n$ then $A_{i}=\alpha$ thus solution found (may find another first).
Assume (pessimistically) that $X_{0}=0$ (none of our initial guesses is right).
The stochastic process X_{i} is complicated to describe in full; however by (i) - (iii) we can bound it by Y_{i} (SRW on the n-path from 0). This gives $\mathbf{E}[$ time to find sol $] \leq \mathbf{E}_{0}\left[\min \left\{t: X_{t}=n\right\}\right] \leq \mathbf{E}_{0}\left[\min \left\{t: Y_{t}=n\right\}\right]=h(0, n)=n^{2}$.

2-SAT and the SRW on the Path

Expected iterations of (2) in Randomised2-SAT

If the formula is satisfiable, then the expected number of steps before RANDOMISED2-SAT outputs a valid solution is at most n^{2}.

Proof: Fix any solution α, then for any $i \geq 0$ and $1 \leq k \leq n-1$,
(i) $\mathbf{P}\left[X_{i+1}=1 \mid X_{i}=0\right]=1$
(ii) $\mathbf{P}\left[X_{i+1}=k+1 \mid X_{i}=k\right] \geq 1 / 2$
(iii) $\mathbf{P}\left[X_{i+1}=k-1 \mid X_{i}=k\right] \leq 1 / 2$.

Notice that if $X_{i}=n$ then $A_{i}=\alpha$ thus solution found (may find another first).
Assume (pessimistically) that $X_{0}=0$ (none of our initial guesses is right).
The stochastic process X_{i} is complicated to describe in full; however by (i) - (iii) we can bound it by Y_{i} (SRW on the n-path from 0). This gives $\mathbf{E}[$ time to find sol $] \leq \mathbf{E}_{0}\left[\min \left\{t: X_{t}=n\right\}\right] \leq \mathbf{E}_{0}\left[\min \left\{t: Y_{t}=n\right\}\right]=h(0, n)=n^{2}$.

$$
\text { Running for } 2 n^{2} \text { time and using Markov's inequality yields: }
$$

2-SAT and the SRW on the Path

Expected iterations of (2) in Randomised2-SAT

If the formula is satisfiable, then the expected number of steps before RANDOMISED2-SAT outputs a valid solution is at most n^{2}.

Proof: Fix any solution α, then for any $i \geq 0$ and $1 \leq k \leq n-1$,
(i) $\mathbf{P}\left[X_{i+1}=1 \mid X_{i}=0\right]=1$
(ii) $\mathbf{P}\left[X_{i+1}=k+1 \mid X_{i}=k\right] \geq 1 / 2$
(iii) $\mathbf{P}\left[X_{i+1}=k-1 \mid X_{i}=k\right] \leq 1 / 2$.

Notice that if $X_{i}=n$ then $A_{i}=\alpha$ thus solution found (may find another first).
Assume (pessimistically) that $X_{0}=0$ (none of our initial guesses is right).
The stochastic process X_{i} is complicated to describe in full; however by (i) - (iii) we can bound it by Y_{i} (SRW on the n-path from 0). This gives $\mathbf{E}[$ time to find sol $] \leq \mathbf{E}_{0}\left[\min \left\{t: X_{t}=n\right\}\right] \leq \mathbf{E}_{0}\left[\min \left\{t: Y_{t}=n\right\}\right]=h(0, n)=n^{2}$.

Proposition Running for $2 n^{2}$ time and using Markov's inequality yields:
Provided a solution exists, RANDOMISED2-SAT will return a valid solution in $O\left(n^{2}\right)$ time with probability at least $1 / 2$.

Boosting Success Probabilities

Boosting Lemma
Suppose a randomised algorithm succeeds with probability (at least) p. Then for any $C \geq 1,\left\lceil\frac{C}{p} \cdot \log n\right\rceil$ repetitions are sufficient to succeed (in at least one repetition) with probability at least $1-n^{-C}$.

Boosting Success Probabilities

Boosting Lemma

Suppose a randomised algorithm succeeds with probability (at least) p. Then for any $C \geq 1,\left\lceil\frac{C}{p} \cdot \log n\right\rceil$ repetitions are sufficient to succeed (in at least one repetition) with probability at least $1-n^{-C}$.

Proof: Recall that $1-p \leq e^{-p}$ for all real p. Let $t=\left\lceil\frac{C}{p} \log n\right\rceil$ and observe

$$
\begin{aligned}
\mathbf{P}[t \text { runs all fail }] & \leq(1-p)^{t} \\
& \leq e^{-p t} \\
& \leq n^{-c}
\end{aligned}
$$

thus the probability one of the runs succeeds is at least $1-n^{-c}$.

Boosting Success Probabilities

Boosting Lemma

Suppose a randomised algorithm succeeds with probability (at least) p. Then for any $C \geq 1,\left\lceil\frac{C}{p} \cdot \log n\right\rceil$ repetitions are sufficient to succeed (in at least one repetition) with probability at least $1-n^{-C}$.

Proof: Recall that $1-p \leq e^{-p}$ for all real p. Let $t=\left\lceil\frac{C}{p} \log n\right\rceil$ and observe

$$
\begin{aligned}
\mathbf{P}[t \text { runs all fail }] & \leq(1-p)^{t} \\
& \leq e^{-p t} \\
& \leq n^{-c},
\end{aligned}
$$

thus the probability one of the runs succeeds is at least $1-n^{-c}$.
Randomised2-SAT
There is a $O\left(n^{2} \log n\right)$-time algorithm for 2-SAT which succeeds w.h.p.

Outline

Random Walks on Graphs, Hitting Times and Cover Times

Random Walks on Paths and Grids

SAT and a Randomised Algorithm for 2-SAT

Appendix: Reversibility and Random Walks on Weighted Graphs (non-exam.)

Random Walks on Weighted Graphs

An (edge) weighted graph $G=(V, E, w)$ where $w: E \rightarrow \mathbb{R}_{+}$on the edges.

Random Walks on Weighted Graphs

An (edge) weighted graph $G=(V, E, w)$ where $w: E \rightarrow \mathbb{R}_{+}$on the edges.
A Simple Random Walk (SRW) on a weighted graph G is a MC on $V(G)$ with

$$
P(i, j)=\left\{\begin{array}{ll}
\frac{w(i, j)}{\sum_{\{x, y\} \in E} w(x, y)} & \text { if }\{i, j\} \in E \\
0 & \text { if }\{i, j\} \notin E
\end{array} .\right.
$$

Directed

Random Walks on Weighted Graphs

An (edge) weighted graph $G=(V, E, w)$ where $w: E \rightarrow \mathbb{R}_{+}$on the edges.
A Simple Random Walk (SRW) on a weighted graph G is a MC on $V(G)$ with

$$
P(i, j)=\left\{\begin{array}{ll}
\frac{w(i, j)}{\sum_{\{x, y\} \in E} w(x, y)} & \text { if }\{i, j\} \in E \\
0 & \text { if }\{i, j\} \notin E
\end{array} .\right.
$$

Directed

Undirected

Reversible Markov Chains

- Any Markov Chain can be described as random walk on a weighted directed graph.

Reversible Markov Chains

- Any Markov Chain can be described as random walk on a weighted directed graph.

Definition
A Markov chain on Ω with transition matrix P and stationary distribution π is called reversible if, for any $x, y \in \Omega$,

$$
\pi(x) P(x, y)=\pi(y) P(y, x)
$$

Reversible Markov Chains

- Any Markov Chain can be described as random walk on a weighted directed graph.

Definition
A Markov chain on Ω with transition matrix P and stationary distribution π is called reversible if, for any $x, y \in \Omega$,

$$
\pi(x) P(x, y)=\pi(y) P(y, x)
$$

- Reversible Markov Chains are equivalent to random walks on weighted undirected graphs.

Reversible Markov Chains

- Any Markov Chain can be described as random walk on a weighted directed graph.

Definition
A Markov chain on Ω with transition matrix P and stationary distribution π is called reversible if, for any $x, y \in \Omega$,

$$
\pi(x) P(x, y)=\pi(y) P(y, x)
$$

- Reversible Markov Chains are equivalent to random walks on weighted undirected graphs.
- A reversible Markov Chain identified with the (undirected) weighted graph $G=(V, E, w)$ has stationary distribution given by

$$
\pi(i)=\frac{\sum_{j:\{i, j\} \in E} w(i, j)}{2 \sum_{\{\{, y\} \in E} w(x, y)}
$$

