Randomised Algorithms

Lecture 5: Random Walks, Hitting Times and Application to 2-SAT

Thomas Sauerwald (tms41@cam.ac.uk)

Lent 2022

Random Walks on Graphs, Hitting Times and Cover Times

Random Walks on Paths and Grids

SAT and a Randomised Algorithm for 2-SAT

Appendix: Reversibility and Random Walks on Weighted Graphs (non-exam.)

$$P(u,v) = \begin{cases} \frac{1}{\deg(u)} & \text{if } \{u,v\} \in E, \\ 0 & \text{if } \{u,v\} \notin E. \end{cases} \text{ and } \pi(u) = \frac{\deg(u)}{2|E|}$$

$$P(u,v) = \begin{cases} \frac{1}{\deg(u)} & \text{if } \{u,v\} \in E, \\ 0 & \text{if } \{u,v\} \notin E. \end{cases} \text{ and } \pi(u) = \frac{\deg(u)}{2|E|}$$

$$P(u,v) = \begin{cases} \frac{1}{\deg(u)} & \text{if } \{u,v\} \in E, \\ 0 & \text{if } \{u,v\} \notin E. \end{cases} \text{ and } \pi(u) = \frac{\deg(u)}{2|E|}$$

$$P(u,v) = \begin{cases} \frac{1}{\deg(u)} & \text{if } \{u,v\} \in E, \\ 0 & \text{if } \{u,v\} \notin E. \end{cases} \text{ and } \pi(u) = \frac{\deg(u)}{2|E|}$$

$$P(u,v) = \begin{cases} \frac{1}{\deg(u)} & \text{if } \{u,v\} \in E, \\ 0 & \text{if } \{u,v\} \notin E. \end{cases} \text{ and } \pi(u) = \frac{\deg(u)}{2|E|}$$

$$P(u,v) = \begin{cases} \frac{1}{\deg(u)} & \text{if } \{u,v\} \in E, \\ 0 & \text{if } \{u,v\} \notin E. \end{cases} \text{ and } \pi(u) = \frac{\deg(u)}{2|E|}$$

$$P(u,v) = \begin{cases} \frac{1}{\deg(u)} & \text{if } \{u,v\} \in E, \\ 0 & \text{if } \{u,v\} \notin E. \end{cases} \text{ and } \pi(u) = \frac{\deg(u)}{2|E|}$$

$$P(u,v) = \begin{cases} \frac{1}{\deg(u)} & \text{if } \{u,v\} \in E, \\ 0 & \text{if } \{u,v\} \notin E. \end{cases} \text{ and } \pi(u) = \frac{\deg(u)}{2|E|}$$

$$P(u, v) = \begin{cases} \frac{1}{\deg(u)} & \text{if } \{u, v\} \in E, \\ 0 & \text{if } \{u, v\} \notin E. \end{cases} \text{ and } \pi(u) = \frac{\deg(u)}{2|E|}$$

Recall: $h(u, v) = \mathbf{E}_u[\min\{t \ge 1 : X_t = v\}]$ is the hitting time of v from u .

The Lazy Random Walk (LRW) on G given by $\tilde{P} = (P + I)/2$,

$$\widetilde{P}_{u,v} = \begin{cases} \frac{1}{2 \deg(u)} & \text{if } \{u, v\} \in E, \\ \frac{1}{2} & \text{if } u = v, \\ 0 & \text{otherwise} \end{cases}$$

The Lazy Random Walk (LRW) on G given by $\tilde{P} = (P + I)/2$,

$$\widetilde{P}_{u,v} = \begin{cases} \frac{1}{2 \operatorname{deg}(u)} & \text{if } \{u,v\} \in E, \\ \frac{1}{2} & \text{if } u = v, \\ 0 & \text{otherwise} \end{cases} \cdot \begin{array}{r} P \text{ - SRW matrix} \\ I \text{ - Identity matrix.} \end{cases}$$

The Lazy Random Walk (LRW) on *G* given by $\tilde{P} = (P + I)/2$,

$$\widetilde{P}_{u,v} = \begin{cases} \frac{1}{2 \deg(u)} & \text{if } \{u, v\} \in E, \\ \frac{1}{2} & \text{if } u = v, \\ 0 & \text{otherwise} \end{cases} \cdot \underbrace{\begin{array}{c} P \text{ - SRW matrix} \\ I \text{ - Identity matrix.} \end{cases}}_{P \text{ - SRW matrix}}$$

Fact: For any graph *G* the LRW on *G* is aperiodic.

The Lazy Random Walk (LRW) on G given by $\tilde{P} = (P + I)/2$,

$$\widetilde{P}_{u,v} = \begin{cases} \frac{1}{2 \deg(u)} & \text{if } \{u,v\} \in E, \\ \frac{1}{2} & \text{if } u = v, \\ 0 & \text{otherwise} \end{cases} \cdot \begin{array}{r} P \text{ - SRW matrix} \\ I \text{ - Identity matrix.} \end{cases}$$

Fact: For any graph G the LRW on G is aperiodic.

SRW on C₄, Periodic

The Lazy Random Walk (LRW) on G given by $\tilde{P} = (P + I)/2$,

$$\widetilde{P}_{u,v} = \begin{cases} \frac{1}{2 \operatorname{deg}(u)} & \text{if } \{u,v\} \in E, \\ \frac{1}{2} & \text{if } u = v, \\ 0 & \text{otherwise} \end{cases} \cdot \begin{array}{r} P \text{ - SRW matrix} \\ I \text{ - Identity matrix.} \end{cases}$$

Fact: For any graph G the LRW on G is aperiodic.

SRW on C₄, Periodic

LRW on C₄, Aperiodic

Let $t_{cov} := \max_{u \in V} \mathbf{E}_u[\min\{t \ge 1 : \bigcup_{s=0}^t X_s = V\}]$ be the cover time, that is, the worst-case expected time to visit all vertices.

Let $t_{cov} := \max_{u \in V} \mathbf{E}_u[\min\{t \ge 1 : \bigcup_{s=0}^t X_s = V\}]$ be the cover time, that is, the worst-case expected time to visit all vertices.

Aleliunas, Karp, Lipton, Lovász and Rackoff, FOCS'79 -

For any connected graph *G* with *n* vertices, $t_{cov}(G) \leq 2(n-1)|E|$.

Let $t_{cov} := \max_{u \in V} \mathbf{E}_u[\min\{t \ge 1 : \bigcup_{s=0}^t X_s = V\}]$ be the cover time, that is, the worst-case expected time to visit all vertices.

Aleliunas, Karp, Lipton, Lovász and Rackoff, FOCS'79 For any connected graph *G* with *n* vertices, $t_{cov}(G) \le 2(n-1)|E|$.

Let $t_{cov} := \max_{u \in V} \mathbf{E}_u[\min\{t \ge 1: \bigcup_{s=0}^t X_s = V\}]$ be the cover time, that is, the worst-case expected time to visit all vertices.

Aleliunas, Karp, Lipton, Lovász and Rackoff, FOCS'79 For any connected graph *G* with *n* vertices, $t_{cov}(G) \le 2(n-1)|E|$.

Proof:

Take a spanning tree T in G

Let $t_{cov} := \max_{u \in V} \mathbf{E}_u[\min\{t \ge 1 : \bigcup_{s=0}^t X_s = V\}]$ be the cover time, that is, the worst-case expected time to visit all vertices.

— Aleliunas, Karp, Lipton, Lovász and Rackoff, FOCS'79 — For any connected graph *G* with *n* vertices, $t_{cov}(G) \le 2(n-1)|E|$.

- Take a spanning tree T in G
- Consider a traversal that goes through every edge in T twice

Let $t_{cov} := \max_{u \in V} \mathbf{E}_u[\min\{t \ge 1 : \bigcup_{s=0}^t X_s = V\}]$ be the cover time, that is, the worst-case expected time to visit all vertices.

— Aleliunas, Karp, Lipton, Lovász and Rackoff, FOCS'79 — For any connected graph *G* with *n* vertices, $t_{cov}(G) \le 2(n-1)|E|$.

- Take a spanning tree T in G
- Consider a traversal that goes through every edge in T twice

Let $t_{cov} := \max_{u \in V} \mathbf{E}_u [\min\{t \ge 1 : \bigcup_{s=0}^t X_s = V\}]$ be the cover time, that is, the worst-case expected time to visit all vertices.

— Aleliunas, Karp, Lipton, Lovász and Rackoff, FOCS'79 — For any connected graph *G* with *n* vertices, $t_{cov}(G) \le 2(n-1)|E|$.

- Take a spanning tree T in G
- Consider a traversal that goes through every edge in T twice
- For any adjacent vertices u, v, $t_{hit}(u, v) + t_{hit}(v, u) \le 2|E|$ (Exercise!)

Let $t_{cov} := \max_{u \in V} \mathbf{E}_u [\min\{t \ge 1 : \bigcup_{s=0}^t X_s = V\}]$ be the cover time, that is, the worst-case expected time to visit all vertices.

— Aleliunas, Karp, Lipton, Lovász and Rackoff, FOCS'79 — For any connected graph *G* with *n* vertices, $t_{cov}(G) \le 2(n-1)|E|$.

- Take a spanning tree T in G
- Consider a traversal that goes through every edge in T twice
- For any adjacent vertices u, v, $t_{hit}(u, v) + t_{hit}(v, u) \le 2|E|$ (Exercise!)
- Thus,

$$t_{cov}(G) \leq \sum_{(u,v)\in E(T)} h(u,v) + h(v,u)$$

Let $t_{cov} := \max_{u \in V} \mathbf{E}_u [\min\{t \ge 1 : \bigcup_{s=0}^t X_s = V\}]$ be the cover time, that is, the worst-case expected time to visit all vertices.

— Aleliunas, Karp, Lipton, Lovász and Rackoff, FOCS'79 — For any connected graph *G* with *n* vertices, $t_{cov}(G) \le 2(n-1)|E|$.

- Take a spanning tree T in G
- Consider a traversal that goes through every edge in T twice
- For any adjacent vertices u, v, $t_{hit}(u, v) + t_{hit}(v, u) \le 2|E|$ (Exercise!)
- Thus,

$$t_{cov}(G) \leq \sum_{(u,v)\in E(T)} h(u,v) + h(v,u)$$
$$\leq 2(n-1) \cdot |E|.$$

Let $t_{cov} := \max_{u \in V} \mathbf{E}_u [\min\{t \ge 1 : \bigcup_{s=0}^t X_s = V\}]$ be the cover time, that is, the worst-case expected time to visit all vertices.

Aleliunas, Karp, Lipton, Lovász and Rackoff, FOCS'79 For any connected graph *G* with *n* vertices, $t_{cov}(G) \le 2(n-1)|E|$.

By Markov's inequality, all vertices are visited after 4(n-1)|E| steps with probability at least 1/2

- Take a spanning tree T in G
- Consider a traversal that goes through every edge in T twice
- For any adjacent vertices u, v, $t_{hit}(u, v) + t_{hit}(v, u) \le 2|E|$ (Exercise!)
- Thus,

$$t_{cov}(G) \leq \sum_{(u,v)\in E(T)} h(u,v) + h(v,u)$$

 $\leq 2(n-1) \cdot |E|.$

Let $t_{cov} := \max_{u \in V} \mathbf{E}_u [\min\{t \ge 1 : \bigcup_{s=0}^t X_s = V\}]$ be the cover time, that is, the worst-case expected time to visit all vertices.

Random Walks on Graphs, Hitting Times and Cover Times

Random Walks on Paths and Grids

SAT and a Randomised Algorithm for 2-SAT

Appendix: Reversibility and Random Walks on Weighted Graphs (non-exam.)

Will a random walk always return to the origin?

Will a random walk always return to the origin?

Infinite 2D Grid

Will a random walk always return to the origin?

Infinite 2D Grid

"A drunk man will find his way home, but a drunk bird may get lost forever."

"A drunk man will find his way home, but a drunk bird may get lost forever."

But for any regular (finite) graph, the expected return time to *u* is $1/\pi(u) = n$

Proposition ____

For the SRW on P_n we have $h(k, n) = n^2 - k^2$, for any $0 \le k \le n$.

Proposition -

For the SRW on P_n we have $h(k, n) = n^2 - k^2$, for any $0 \le k \le n$.

Recall: Hitting times are the solution to the set of linear equations:

$$h(x,y) \stackrel{\text{Markov Prop.}}{=} 1 + \sum_{z \in \Omega \setminus \{y\}} h(z,y) \cdot P(x,z) \quad \forall x \neq y \in V.$$

Proposition _____

For the SRW on
$$P_n$$
 we have $h(k, n) = n^2 - k^2$, for any $0 \le k \le n$.

Recall: Hitting times are the solution to the set of linear equations:

$$h(x,y) \stackrel{\text{Markov Prop.}}{=} 1 + \sum_{z \in \Omega \setminus \{y\}} h(z,y) \cdot P(x,z) \quad \forall x \neq y \in V.$$

Proof: Let f(k) = h(k, n) and set f(n) := 0.

Proposition ____

For the SRW on
$$P_n$$
 we have $h(k, n) = n^2 - k^2$, for any $0 \le k \le n$.

Recall: Hitting times are the solution to the set of linear equations:

$$h(x,y) \stackrel{\text{Markov Prop.}}{=} 1 + \sum_{z \in \Omega \setminus \{y\}} h(z,y) \cdot P(x,z) \quad \forall x \neq y \in V.$$

Proof: Let f(k) = h(k, n) and set f(n) := 0. By the Markov property

f(0) = 1 + f(1)

Proposition _____

For the SRW on
$$P_n$$
 we have $h(k, n) = n^2 - k^2$, for any $0 \le k \le n$.

Recall: Hitting times are the solution to the set of linear equations:

$$h(x,y) \stackrel{\text{Markov Prop.}}{=} 1 + \sum_{z \in \Omega \setminus \{y\}} h(z,y) \cdot P(x,z) \quad \forall x \neq y \in V.$$

Proof: Let f(k) = h(k, n) and set f(n) := 0. By the Markov property

$$f(0) = 1 + f(1)$$
 and $f(k) = 1 + \frac{f(k-1)}{2} + \frac{f(k+1)}{2}$ for $1 \le k \le n-1$.

Proposition ____

For the SRW on
$$P_n$$
 we have $h(k, n) = n^2 - k^2$, for any $0 \le k \le n$.

Recall: Hitting times are the solution to the set of linear equations:

$$h(x,y) \stackrel{\text{Markov Prop.}}{=} 1 + \sum_{z \in \Omega \setminus \{y\}} h(z,y) \cdot P(x,z) \quad \forall x \neq y \in V.$$

Proof: Let f(k) = h(k, n) and set f(n) := 0. By the Markov property

$$f(0) = 1 + f(1)$$
 and $f(k) = 1 + \frac{f(k-1)}{2} + \frac{f(k+1)}{2}$ for $1 \le k \le n-1$.

System of *n* independent equations in *n* unknowns, so has a unique solution.

Proposition ____

For the SRW on
$$P_n$$
 we have $h(k, n) = n^2 - k^2$, for any $0 \le k \le n$.

Recall: Hitting times are the solution to the set of linear equations:

$$h(x,y) \stackrel{\text{Markov Prop.}}{=} 1 + \sum_{z \in \Omega \setminus \{y\}} h(z,y) \cdot P(x,z) \quad \forall x \neq y \in V.$$

Proof: Let f(k) = h(k, n) and set f(n) := 0. By the Markov property

$$f(0) = 1 + f(1)$$
 and $f(k) = 1 + \frac{f(k-1)}{2} + \frac{f(k+1)}{2}$ for $1 \le k \le n-1$.

System of *n* independent equations in *n* unknowns, so has a unique solution. Thus it suffices to check that $f(k) = n^2 - k^2$ satisfies the above.

Proposition ____

For the SRW on
$$P_n$$
 we have $h(k, n) = n^2 - k^2$, for any $0 \le k \le n$.

Recall: Hitting times are the solution to the set of linear equations:

$$h(x,y) \stackrel{\text{Markov Prop.}}{=} 1 + \sum_{z \in \Omega \setminus \{y\}} h(z,y) \cdot P(x,z) \quad \forall x \neq y \in V.$$

Proof: Let f(k) = h(k, n) and set f(n) := 0. By the Markov property

$$f(0) = 1 + f(1)$$
 and $f(k) = 1 + \frac{f(k-1)}{2} + \frac{f(k+1)}{2}$ for $1 \le k \le n-1$.

System of *n* independent equations in *n* unknowns, so has a unique solution.

Thus it suffices to check that $f(k) = n^2 - k^2$ satisfies the above. Indeed

$$f(0) = 1 + f(1) = 1 + n^2 - 1^2 = n^2$$
,

Proposition ____

For the SRW on
$$P_n$$
 we have $h(k, n) = n^2 - k^2$, for any $0 \le k \le n$.

Recall: Hitting times are the solution to the set of linear equations:

$$h(x,y) \stackrel{\text{Markov Prop.}}{=} 1 + \sum_{z \in \Omega \setminus \{y\}} h(z,y) \cdot P(x,z) \quad \forall x \neq y \in V.$$

Proof: Let f(k) = h(k, n) and set f(n) := 0. By the Markov property

$$f(0) = 1 + f(1)$$
 and $f(k) = 1 + \frac{f(k-1)}{2} + \frac{f(k+1)}{2}$ for $1 \le k \le n-1$.

System of *n* independent equations in *n* unknowns, so has a unique solution. Thus it suffices to check that $f(k) = n^2 - k^2$ satisfies the above. Indeed

$$f(0) = 1 + f(1) = 1 + n^2 - 1^2 = n^2$$
,

and for any $1 \le k \le n-1$ we have,

$$f(k) = 1 + \frac{n^2 - (k-1)^2}{2} + \frac{n^2 - (k+1)^2}{2} = n^2 - k^2.$$

Random Walks on Graphs, Hitting Times and Cover Times

Random Walks on Paths and Grids

SAT and a Randomised Algorithm for 2-SAT

Appendix: Reversibility and Random Walks on Weighted Graphs (non-exam.)

A Solution to a SAT formula is an assignment of the variables to the values True and False so that all the clauses are satisfied.

A Solution to a SAT formula is an assignment of the variables to the values True and False so that all the clauses are satisfied.

Example:

SAT: $(x_1 \lor \overline{x_2} \lor \overline{x_3}) \land (\overline{x_1} \lor \overline{x_3}) \land (x_1 \lor x_2 \lor x_4) \land (x_4 \lor \overline{x_3}) \land (x_4 \lor \overline{x_1})$

A Solution to a SAT formula is an assignment of the variables to the values True and False so that all the clauses are satisfied.

Example:

SAT: $(x_1 \lor \overline{x_2} \lor \overline{x_3}) \land (\overline{x_1} \lor \overline{x_3}) \land (x_1 \lor x_2 \lor x_4) \land (x_4 \lor \overline{x_3}) \land (x_4 \lor \overline{x_1})$ Solution: $x_1 = \text{True}, x_2 = \text{False}, x_3 = \text{False} \text{ and } x_4 = \text{True}.$

A Solution to a SAT formula is an assignment of the variables to the values True and False so that all the clauses are satisfied.

Example:

SAT: $(x_1 \lor \overline{x_2} \lor \overline{x_3}) \land (\overline{x_1} \lor \overline{x_3}) \land (x_1 \lor x_2 \lor x_4) \land (x_4 \lor \overline{x_3}) \land (x_4 \lor \overline{x_1})$ Solution: $x_1 = \text{True}, x_2 = \text{False}, x_3 = \text{False} \text{ and } x_4 = \text{True}.$

- If each clause has k literals we call the problem k-SAT.
- In general, determining if a SAT formula has a solution is NP-hard
- In practice solvers are fast and used to great effect
- A huge amount of problems can be posed as a SAT:

A Solution to a SAT formula is an assignment of the variables to the values True and False so that all the clauses are satisfied.

Example:

SAT:
$$(x_1 \lor \overline{x_2} \lor \overline{x_3}) \land (\overline{x_1} \lor \overline{x_3}) \land (x_1 \lor x_2 \lor x_4) \land (x_4 \lor \overline{x_3}) \land (x_4 \lor \overline{x_1})$$

Solution: $x_1 = \text{True}, \quad x_2 = \text{False}, \quad x_2 = \text{False} \text{ and } \quad x_4 = \text{True},$

- If each clause has k literals we call the problem k-SAT.
- In general, determining if a SAT formula has a solution is NP-hard
- In practice solvers are fast and used to great effect
- A huge amount of problems can be posed as a SAT:
 - ightarrow Model checking and hardware/software verification
 - $\rightarrow~$ Design of experiments
 - → Classical planning
 - $\rightarrow \ldots$

RANDOMISED2-SAT (Input: a 2-SAT-Formula)

1: Start with an arbitrary truth assignment

- 1: Start with an arbitrary truth assignment
- 2: Repeat up to $2n^2$ times

RANDOMISED2-SAT (Input: a 2-SAT-Formula)

- 1: Start with an arbitrary truth assignment
- 2: Repeat up to $2n^2$ times
- 3: Pick an arbitrary unsatisfied clause

13

- 1: Start with an arbitrary truth assignment
- 2: Repeat up to $2n^2$ times
- 3: Pick an arbitrary unsatisfied clause
- 4: Choose a random literal and switch its value

- 1: Start with an arbitrary truth assignment
- 2: Repeat up to $2n^2$ times
- 3: Pick an arbitrary unsatisfied clause
- 4: Choose a random literal and switch its value
- 5: If formula is satisfied then return "Satisfiable"
- 6: return "Unsatisfiable"

- 1: Start with an arbitrary truth assignment
- 2: Repeat up to $2n^2$ times
- 3: Pick an arbitrary unsatisfied clause
- 4: Choose a random literal and switch its value
- 5: If formula is satisfied then return "Satisfiable"
- 6: return "Unsatisfiable"
- Call each loop of (2) a step. Let A_i be the variable assignment at step *i*.

- 1: Start with an arbitrary truth assignment
- 2: Repeat up to 2n² times
- 3: Pick an arbitrary unsatisfied clause
- 4: Choose a random literal and switch its value
- 5: If formula is satisfied then return "Satisfiable"
- 6: return "Unsatisfiable"
- Call each loop of (2) a step. Let A_i be the variable assignment at step *i*.
- Let α be any solution and $X_i = |$ variable values shared by A_i and $\alpha |$.

- 1: Start with an arbitrary truth assignment
- 2: Repeat up to 2n² times
- 3: Pick an arbitrary unsatisfied clause
- 4: Choose a random literal and switch its value
- 5: If formula is satisfied then return "Satisfiable"
- 6: return "Unsatisfiable"
- Call each loop of (2) a step. Let A_i be the variable assignment at step *i*.
- Let α be any solution and $X_i = |variable values shared by <math>A_i$ and $\alpha|$. Example 1 :

$$(x_{1} \lor \overline{x_{2}}) \land (\overline{x_{1}} \lor \overline{x_{3}}) \land (x_{1} \lor x_{2}) \land (x_{4} \lor \overline{x_{3}}) \land (x_{4} \lor \overline{x_{1}})$$

$$F T T T F F F T F T$$

$$(1 \land x_{1} \land x_{2} \land x_{3} \land x_{4})$$

$$(1 \land x_{1} \land x_{2} \land x_{3} \land x_{4})$$

$$(1 \land x_{1} \land x_{2} \land x_{3} \land x_{4})$$

$$(1 \land x_{1} \land x_{2} \land x_{3} \land x_{4})$$

$$(1 \land x_{1} \land x_{2} \land x_{3} \land x_{4})$$

$$(1 \land x_{1} \land x_{2} \land x_{3} \land x_{4})$$

$$(1 \land x_{1} \land x_{2} \land x_{3} \land x_{4})$$

$$(1 \land x_{1} \land x_{2} \land x_{3} \land x_{4})$$

$$(1 \land x_{1} \land x_{2} \land x_{3} \land x_{4})$$

$$(1 \land x_{1} \land x_{2} \land x_{3} \land x_{4})$$

$$(1 \land x_{1} \land x_{2} \land x_{3} \land x_{4})$$

$$(1 \land x_{1} \land x_{2} \land x_{3} \land x_{4})$$

$$(1 \land x_{1} \land x_{2} \land x_{3} \land x_{4})$$

$$(1 \land x_{1} \land x_{2} \land x_{3} \land x_{4})$$

$$(1 \land x_{1} \land x_{2} \land x_{3} \land x_{4})$$

$$(1 \land x_{1} \land x_{2} \land x_{3} \land x_{4})$$

- 1: Start with an arbitrary truth assignment
- 2: Repeat up to 2n² times
- 3: Pick an arbitrary unsatisfied clause
- 4: Choose a random literal and switch its value
- 5: If formula is satisfied then return "Satisfiable"
- 6: return "Unsatisfiable"
- Call each loop of (2) a step. Let A_i be the variable assignment at step *i*.
- Let α be any solution and $X_i = |variable values shared by <math>A_i$ and $\alpha|$. Example 1 :

- 1: Start with an arbitrary truth assignment
- 2: Repeat up to 2n² times
- 3: Pick an arbitrary unsatisfied clause
- 4: Choose a random literal and switch its value
- 5: If formula is satisfied then return "Satisfiable"
- 6: return "Unsatisfiable"
- Call each loop of (2) a step. Let A_i be the variable assignment at step *i*.
- Let α be any solution and $X_i = |variable values shared by <math>A_i$ and $\alpha|$. Example 1 :

$$(x_{1} \lor \overline{x_{2}}) \land (\overline{x_{1}} \lor \overline{x_{3}}) \land (x_{1} \lor x_{2}) \land (x_{4} \lor \overline{x_{3}}) \land (x_{4} \lor \overline{x_{1}})$$

$$F T T T F F F T F T$$

$$(1 \land x_{1} \land x_{2} \land x_{3} \land x_{4})$$

$$(1 \land y_{2} \land y_{3} \land y_{4})$$

$$(1 \land y_{2} \land y_{4})$$

$$(1 \land y_{4} \land y_{4})$$

- 1: Start with an arbitrary truth assignment
- 2: Repeat up to 2n² times
- 3: Pick an arbitrary unsatisfied clause
- 4: Choose a random literal and switch its value
- 5: If formula is satisfied then return "Satisfiable"
- 6: return "Unsatisfiable"
- Call each loop of (2) a step. Let A_i be the variable assignment at step *i*.
- Let *α* be any solution and *X_i* = |variable values shared by *A_i* and *α*|.
 Example 1 :

$$(x_{1} \lor \overline{x_{2}}) \land (\overline{x_{1}} \lor \overline{x_{3}}) \land (x_{1} \lor x_{2}) \land (x_{4} \lor \overline{x_{3}}) \land (x_{4} \lor \overline{x_{1}})$$

$$F F T T F T F T F T F T$$

$$(t x_{1} x_{2} x_{3} x_{4})$$

$$(t x_{1} x_{2} x_{5} x_{5})$$

$$(t x_{1} x_{2} x_{5})$$

$$(t x_{2} x_{5})$$

$$(t x_{1} x_{2} x_{5})$$

$$(t x_{1} x_$$

- 1: Start with an arbitrary truth assignment
- 2: Repeat up to 2n² times
- 3: Pick an arbitrary unsatisfied clause
- 4: Choose a random literal and switch its value
- 5: If formula is satisfied then return "Satisfiable"
- 6: return "Unsatisfiable"
- Call each loop of (2) a step. Let A_i be the variable assignment at step *i*.
- Let *α* be any solution and *X_i* = |variable values shared by *A_i* and *α*|.
 Example 1 :

$$(x_{1} \lor \overline{x_{2}}) \land (\overline{x_{1}} \lor \overline{x_{3}}) \land (x_{1} \lor x_{2}) \land (x_{4} \lor \overline{x_{3}}) \land (x_{4} \lor \overline{x_{1}})$$

$$F F T T F T F T F T F T$$

$$(t x_{1} x_{2} x_{3} x_{4})$$

$$(t x_{1} x_{2} x_{4})$$

$$(t x_{1} x_$$

- 1: Start with an arbitrary truth assignment
- 2: Repeat up to 2n² times
- 3: Pick an arbitrary unsatisfied clause
- 4: Choose a random literal and switch its value
- 5: If formula is satisfied then return "Satisfiable"
- 6: return "Unsatisfiable"
- Call each loop of (2) a step. Let A_i be the variable assignment at step *i*.
- Let *α* be any solution and *X_i* = |variable values shared by *A_i* and *α*|.
 Example 1 :

RANDOMISED2-SAT (Input: a 2-SAT-Formula)

- 1: Start with an arbitrary truth assignment
- 2: Repeat up to 2n² times
- Pick an arbitrary unsatisfied clause 3:
- Choose a random literal and switch its value 4:
- 5· If formula is satisfied then return "Satisfiable"
- 6: return "Unsatisfiable"
- Call each loop of (2) a step. Let A_i be the variable assignment at step i.
- Let α be any solution and $X_i = |variable values shared by <math>A_i$ and $\alpha|$. Example 1:

$$(x_{1} \lor \overline{x_{2}}) \land (\overline{x_{1}} \lor \overline{x_{3}}) \land (x_{1} \lor x_{2}) \land (x_{4} \lor \overline{x_{3}}) \land (x_{4} \lor \overline{x_{1}}) \qquad \alpha = (T, T, F, T).$$

$$T F F T T T F T F F$$

$$(1 F T F F)$$

$$(1 F T F F)$$

$$(2 T T F)$$

F

- 1: Start with an arbitrary truth assignment
- 2: Repeat up to 2n² times
- 3: Pick an arbitrary unsatisfied clause
- 4: Choose a random literal and switch its value
- 5: If formula is satisfied then return "Satisfiable"
- 6: return "Unsatisfiable"
- Call each loop of (2) a step. Let A_i be the variable assignment at step *i*.
- Let *α* be any solution and *X_i* = |variable values shared by *A_i* and *α*|.
 Example 1 :

 $\alpha = (\mathsf{T}, \mathsf{T}, \mathsf{F}, \mathsf{T}).$

t	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>X</i> ₄
0	F	F	F	F
1	F	Т	F	F
2	Т	Т	F	F

- 1: Start with an arbitrary truth assignment
- 2: Repeat up to 2n² times
- 3: Pick an arbitrary unsatisfied clause
- 4: Choose a random literal and switch its value
- 5: If formula is satisfied then return "Satisfiable"
- 6: return "Unsatisfiable"
- Call each loop of (2) a step. Let A_i be the variable assignment at step *i*.
- Let *α* be any solution and *X_i* = |variable values shared by *A_i* and *α*|.
 Example 1 :

$$(X_{1} \lor \overline{X_{2}}) \land (\overline{X_{1}} \lor \overline{X_{3}}) \land (X_{1} \lor X_{2}) \land (X_{4} \lor \overline{X_{3}}) \land (X_{4} \lor \overline{X_{1}}) \qquad \alpha = (T, T, F, T).$$

$$T F F T T T F T F F$$

$$(1 F T F F)$$

$$(0 1 2 3 4$$

- 1: Start with an arbitrary truth assignment
- 2: Repeat up to 2n² times
- 3: Pick an arbitrary unsatisfied clause
- 4: Choose a random literal and switch its value
- 5: If formula is satisfied then return "Satisfiable"
- 6: return "Unsatisfiable"
- Call each loop of (2) a step. Let A_i be the variable assignment at step *i*.
- Let α be any solution and $X_i = |variable values shared by <math>A_i$ and $\alpha|$. Example 1 :

$$(x_{1} \lor \overline{x_{2}}) \land (\overline{x_{1}} \lor \overline{x_{3}}) \land (x_{1} \lor x_{2}) \land (x_{4} \lor \overline{x_{3}}) \land (x_{4} \lor \overline{x_{1}}) \qquad \alpha = (T, T, F, T).$$

$$T F F T T T T T T F F$$

$$(0 1 2 3 4)$$

$$\alpha = (T, T, F, T).$$

$$\alpha = (T, T, F, T).$$

RANDOMISED2-SAT (Input: a 2-SAT-Formula)

- 1: Start with an arbitrary truth assignment
- 2: Repeat up to 2n² times
- 3: Pick an arbitrary unsatisfied clause
- 4: Choose a random literal and switch its value
- 5: If formula is satisfied then return "Satisfiable"
- 6: return "Unsatisfiable"
- Call each loop of (2) a step. Let A_i be the variable assignment at step *i*.
- Let α be any solution and $X_i = |variable values shared by <math>A_i$ and $\alpha|$.

Example 1 : Solution Found

RANDOMISED2-SAT (Input: A 2-SAT-Formula)

- 1: Start with an arbitrary truth assignment
- 2: Repeat up to $2n^2$ times
- 3: Pick an arbitrary unsatisfied clauses
- 4: Choose a random literal and switch its value
- 5: If formula is satisfied then return "Satisfiable"
- 6: return "Unsatisfiable"
- Call each loop of (2) a step. Let A_i be the variable assignment at step *i*.
- Let α be any solution and $X_i = |variable values shared by <math>A_i$ and $\alpha|$.

RANDOMISED2-SAT (Input: A 2-SAT-Formula)

- 1: Start with an arbitrary truth assignment
- 2: Repeat up to 2n² times
- 3: Pick an arbitrary unsatisfied clauses
- 4: Choose a random literal and switch its value
- 5: If formula is satisfied then return "Satisfiable"
- 6: return "Unsatisfiable"
- Call each loop of (2) a step. Let A_i be the variable assignment at step *i*.
- Let α be any solution and $X_i = |variable values shared by <math>A_i$ and $\alpha|$.

RANDOMISED2-SAT (Input: A 2-SAT-Formula)

- 1: Start with an arbitrary truth assignment
- 2: Repeat up to 2n² times
- 3: Pick an arbitrary unsatisfied clauses
- 4: Choose a random literal and switch its value
- 5: If formula is satisfied then return "Satisfiable"
- 6: return "Unsatisfiable"
- Call each loop of (2) a step. Let A_i be the variable assignment at step *i*.
- Let α be any solution and $X_i = |variable values shared by <math>A_i$ and $\alpha|$.

RANDOMISED2-SAT (Input: A 2-SAT-Formula)

- 1: Start with an arbitrary truth assignment
- 2: Repeat up to 2n² times
- 3: Pick an arbitrary unsatisfied clauses
- 4: Choose a random literal and switch its value
- 5: If formula is satisfied then return "Satisfiable"
- 6: return "Unsatisfiable"
- Call each loop of (2) a step. Let A_i be the variable assignment at step *i*.
- Let α be any solution and $X_i = |variable values shared by <math>A_i$ and $\alpha|$.

RANDOMISED2-SAT (Input: A 2-SAT-Formula)

- 1: Start with an arbitrary truth assignment
- 2: Repeat up to 2n² times
- 3: Pick an arbitrary unsatisfied clauses
- 4: Choose a random literal and switch its value
- 5: If formula is satisfied then return "Satisfiable"
- 6: return "Unsatisfiable"
- Call each loop of (2) a step. Let A_i be the variable assignment at step *i*.
- Let α be any solution and $X_i = |$ variable values shared by A_i and $\alpha|$.

$$(x_1 \lor \overline{x_2}) \land (\overline{x_1} \lor \overline{x_3}) \land (x_1 \lor x_2) \land (x_4 \lor x_3) \land (x_4 \lor \overline{x_1}) \qquad \alpha = ($$
F T T F F T F T T

$$\alpha = (\mathtt{T}, \mathtt{F}, \mathtt{F}, \mathtt{T}).$$

t	<i>X</i> 1	<i>X</i> ₂	<i>X</i> 3	<i>X</i> ₄
0	F	F	F	F
1	F	F	F	Т

RANDOMISED2-SAT (Input: A 2-SAT-Formula)

- 1: Start with an arbitrary truth assignment
- 2: Repeat up to 2n² times
- Pick an arbitrary unsatisfied clauses 3:
- Choose a random literal and switch its value 4٠
- 5· If formula is satisfied then return "Satisfiable"
- 6: return "Unsatisfiable"
- Call each loop of (2) a step. Let A_i be the variable assignment at step i.
- Let α be any solution and $X_i = |variable values shared by <math>A_i$ and $\alpha|$.

Example 2:

X2

F

F

X3

F F

F

X٨

Т

RANDOMISED2-SAT (Input: A 2-SAT-Formula)

- 1: Start with an arbitrary truth assignment
- 2. Repeat up to $2n^2$ times
- Pick an arbitrary unsatisfied clauses 3:
- Choose a random literal and switch its value 4٠
- 5· If formula is satisfied then return "Satisfiable"
- 6: return "Unsatisfiable"
- Call each loop of (2) a step. Let A_i be the variable assignment at step i.

F

• Let α be any solution and $X_i = |variable values shared by <math>A_i$ and $\alpha|$.

Example 2:

F

$$\begin{array}{c} (x_1 \lor \overline{x_2}) \land (\overline{x_1} \lor \overline{x_3}) \land (x_1 \lor x_2) \land (x_4 \lor x_3) \land (x_4 \lor \overline{x_1}) \\ F & T & T & F & F & T & F & T \\ \end{array}$$

$$\alpha = (\mathsf{T}, \mathsf{F}, \mathsf{F}, \mathsf{T}).$$

t	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>X</i> 4
0	F	F	F	F
1	F	F	F	Т

т

F

т

RANDOMISED2-SAT (Input: A 2-SAT-Formula)

- 1: Start with an arbitrary truth assignment
- 2: Repeat up to 2n² times
- 3: Pick an arbitrary unsatisfied clauses
- 4: Choose a random literal and switch its value
- 5: If formula is satisfied then return "Satisfiable"
- 6: return "Unsatisfiable"
- Call each loop of (2) a step. Let A_i be the variable assignment at step *i*.
- Let α be any solution and $X_i = |variable values shared by <math>A_i$ and $\alpha|$.

- 1: Start with an arbitrary truth assignment
- 2: Repeat up to 2n² times
- 3: Pick an arbitrary unsatisfied clauses
- 4: Choose a random literal and switch its value
- 5: If formula is satisfied then return "Satisfiable"
- 6: return "Unsatisfiable"
- Call each loop of (2) a step. Let A_i be the variable assignment at step *i*.
- Let *α* be any solution and *X_i* = |variable values shared by *A_i* and *α*|.
 Example 2 :

RANDOMISED2-SAT (Input: A 2-SAT-Formula)

- 1: Start with an arbitrary truth assignment
- 2: Repeat up to $2n^2$ times
- 3: Pick an arbitrary unsatisfied clauses
- 4: Choose a random literal and switch its value
- 5: If formula is satisfied then return "Satisfiable"
- 6: return "Unsatisfiable"
- Call each loop of (2) a step. Let A_i be the variable assignment at step *i*.
- Let α be any solution and $X_i = |variable values shared by <math>A_i$ and $\alpha|$.

RANDOMISED2-SAT (Input: A 2-SAT-Formula)

- 1: Start with an arbitrary truth assignment
- 2: Repeat up to 2n² times
- 3: Pick an arbitrary unsatisfied clauses
- 4: Choose a random literal and switch its value
- 5: If formula is satisfied then return "Satisfiable"
- 6: return "Unsatisfiable"
- Call each loop of (2) a step. Let A_i be the variable assignment at step *i*.
- Let α be any solution and $X_i = |variable values shared by <math>A_i$ and $\alpha|$. Example 2 :

$$(x_{1} \lor \overline{x_{2}}) \land (\overline{x_{1}} \lor \overline{x_{3}}) \land (x_{1} \lor x_{2}) \land (x_{4} \lor x_{3}) \land (x_{4} \lor \overline{x_{1}})$$

$$T F F T T T T F T F$$

$$(1 F F F)$$

$$(1 - 2)$$

$$(x_{1} \lor \overline{x_{2}}) \land (x_{1} \lor x_{2}) \land (x_{4} \lor x_{3}) \land (x_{4} \lor \overline{x_{1}})$$

$$\alpha = (T, F, F, T).$$

$$\alpha = (T, F, F, T).$$

$$\alpha = (T, F, F, T).$$

X₄ F T T

RANDOMISED2-SAT (Input: A 2-SAT-Formula)

- 1: Start with an arbitrary truth assignment
- 2: Repeat up to 2n² times
- 3: Pick an arbitrary unsatisfied clauses
- 4: Choose a random literal and switch its value
- 5: If formula is satisfied then return "Satisfiable"
- 6: return "Unsatisfiable"
- Call each loop of (2) a step. Let A_i be the variable assignment at step *i*.
- Let α be any solution and $X_i = |$ variable values shared by A_i and $\alpha |$.

Example 2 : (Another) Solution Found

- Expected iterations of (2) in RANDOMISED2-SAT -

If the formula is satisfiable, then the expected number of steps before RANDOMISED2-SAT outputs a valid solution is at most n^2 .

- Expected iterations of (2) in RANDOMISED2-SAT -

If the formula is satisfiable, then the expected number of steps before RANDOMISED2-SAT outputs a valid solution is at most n^2 .

Proof: Fix any solution α , then for any $i \ge 0$ and $1 \le k \le n - 1$,

- Expected iterations of (2) in RANDOMISED2-SAT -

If the formula is satisfiable, then the expected number of steps before RANDOMISED2-SAT outputs a valid solution is at most n^2 .

Proof: Fix any solution α , then for any $i \ge 0$ and $1 \le k \le n-1$, (i) $\mathbf{P}[X_{i+1} = 1 \mid X_i = 0] = 1$

- Expected iterations of (2) in RANDOMISED2-SAT

If the formula is satisfiable, then the expected number of steps before RANDOMISED2-SAT outputs a valid solution is at most n^2 .

Proof: Fix any solution α , then for any $i \ge 0$ and $1 \le k \le n - 1$, (i) **P**[$X_{i+1} = 1 \mid X_i = 0$] = 1 (ii) **P**[$X_{i+1} = k + 1 \mid X_i = k$] $\ge 1/2$

- Expected iterations of (2) in RANDOMISED2-SAT

If the formula is satisfiable, then the expected number of steps before RANDOMISED2-SAT outputs a valid solution is at most n^2 .

Proof: Fix any solution α , then for any $i \ge 0$ and $1 \le k \le n - 1$, (i) $\mathbf{P}[X_{i+1} = 1 \mid X_i = 0] = 1$ (ii) $\mathbf{P}[X_{i+1} = k + 1 \mid X_i = k] \ge 1/2$ (iii) $\mathbf{P}[X_{i+1} = k - 1 \mid X_i = k] \le 1/2$.

- Expected iterations of (2) in RANDOMISED2-SAT -

If the formula is satisfiable, then the expected number of steps before RANDOMISED2-SAT outputs a valid solution is at most n^2 .

Proof: Fix any solution α , then for any $i \ge 0$ and $1 \le k \le n - 1$,

- (i) $\mathbf{P}[X_{i+1} = 1 | X_i = 0] = 1$ (ii) $\mathbf{P}[X_{i+1} = k+1 | X_i = k] \ge 1/2$
- (ii) $\mathbf{P}[X_{i+1} = k 1 | X_i = k] \le 1/2$.

Notice that if $X_i = n$ then $A_i = \alpha$ thus solution found (may find another first).

- Expected iterations of (2) in RANDOMISED2-SAT -

If the formula is satisfiable, then the expected number of steps before RANDOMISED2-SAT outputs a valid solution is at most n^2 .

Proof: Fix any solution α , then for any $i \ge 0$ and $1 \le k \le n-1$, (i) $\mathbf{P}[X_{i+1} = 1 \mid X_i = 0] = 1$

(ii) $\mathbf{P}[X_{i+1} = k+1 \mid X_i = k] \ge 1/2$ (iii) $\mathbf{P}[X_{i+1} = k-1 \mid X_i = k] \le 1/2$.

Notice that if $X_i = n$ then $A_i = \alpha$ thus solution found (may find another first).

Assume (pessimistically) that $X_0 = 0$ (none of our initial guesses is right).

- Expected iterations of (2) in RANDOMISED2-SAT -

If the formula is satisfiable, then the expected number of steps before RANDOMISED2-SAT outputs a valid solution is at most n^2 .

Proof: Fix any solution α , then for any $i \ge 0$ and $1 \le k \le n - 1$,

- (i) $\mathbf{P}[X_{i+1} = 1 | X_i = 0] = 1$ (ii) $\mathbf{P}[X_{i+1} = k + 1 | X_i = k] > 1/2$
- (iii) $\mathbf{P}[X_{i+1} = k 1 \mid X_i = k] \leq 1/2.$

Notice that if $X_i = n$ then $A_i = \alpha$ thus solution found (may find another first).

Assume (pessimistically) that $X_0 = 0$ (none of our initial guesses is right).

The stochastic process X_i is complicated to describe in full; however by (i) - (iii) we can **bound** it by Y_i (SRW on the *n*-path from 0).

- Expected iterations of (2) in RANDOMISED2-SAT -

If the formula is satisfiable, then the expected number of steps before RANDOMISED2-SAT outputs a valid solution is at most n^2 .

Proof: Fix any solution α , then for any $i \ge 0$ and $1 \le k \le n - 1$,

- (i) $\mathbf{P}[X_{i+1} = 1 | X_i = 0] = 1$ (ii) $\mathbf{P}[X_{i+1} = k+1 | X_i = k] > 1/2$
- (iii) $\mathbf{P}[X_{i+1} = k 1 \mid X_i = k] \leq 1/2.$

Notice that if $X_i = n$ then $A_i = \alpha$ thus solution found (may find another first).

Assume (pessimistically) that $X_0 = 0$ (none of our initial guesses is right).

The stochastic process X_i is complicated to describe in full; however by (i) - (iii) we can **bound** it by Y_i (SRW on the *n*-path from 0). This gives $\mathbf{E}[\text{time to find sol}] \le \mathbf{E}_0[\min\{t : X_t = n\}] \le \mathbf{E}_0[\min\{t : Y_t = n\}] = h(0, n) = n^2$.

- Expected iterations of (2) in RANDOMISED2-SAT -

If the formula is satisfiable, then the expected number of steps before RANDOMISED2-SAT outputs a valid solution is at most n^2 .

Proof: Fix any solution α , then for any $i \ge 0$ and $1 \le k \le n-1$,

(i)
$$\mathbf{P}[X_{i+1} = 1 | X_i = 0] = 1$$

(ii) $\mathbf{P}[X_{i+1} = k+1 | X_i = k] >$

(ii) $\mathbf{P}[X_{i+1} = k+1 \mid X_i = k] \ge 1/2$ (iii) $\mathbf{P}[X_{i+1} = k-1 \mid X_i = k] \le 1/2$.

Notice that if $X_i = n$ then $A_i = \alpha$ thus solution found (may find another first).

Assume (pessimistically) that $X_0 = 0$ (none of our initial guesses is right).

The stochastic process X_i is complicated to describe in full; however by (i) - (iii) we can **bound** it by Y_i (SRW on the *n*-path from 0). This gives

 $\mathbf{E} [\text{time to find sol}] \leq \mathbf{E}_0[\min\{t : X_t = n\}] \leq \mathbf{E}_0[\min\{t : Y_t = n\}] = h(0, n) = n^2.$

Running for $2n^2$ time and using Markov's inequality yields:

- Expected iterations of (2) in RANDOMISED2-SAT -

If the formula is satisfiable, then the expected number of steps before RANDOMISED2-SAT outputs a valid solution is at most n^2 .

Proof: Fix any solution α , then for any $i \ge 0$ and $1 \le k \le n - 1$,

(i)
$$\mathbf{P}[X_{i+1} = 1 | X_i = 0] = 1$$

(ii) $\mathbf{P}[X_{i+1} = k + 1 | X_i = k] >$

(ii) $\mathbf{P}[X_{i+1} = k+1 \mid X_i = k] \ge 1/2$ (iii) $\mathbf{P}[X_{i+1} = k-1 \mid X_i = k] \le 1/2$.

Notice that if $X_i = n$ then $A_i = \alpha$ thus solution found (may find another first).

Assume (pessimistically) that $X_0 = 0$ (none of our initial guesses is right).

The stochastic process X_i is complicated to describe in full; however by (i) - (iii) we can **bound** it by Y_i (SRW on the *n*-path from 0). This gives

 $\mathbf{E} [\text{time to find sol}] \leq \mathbf{E}_0[\min\{t : X_t = n\}] \leq \mathbf{E}_0[\min\{t : Y_t = n\}] = h(0, n) = n^2.$

Proposition ______Running for
$$2n^2$$
 time and using Markov's inequality yields:
Provided a solution exists, RANDOMISED2-SAT will return a valid solution
in $O(n^2)$ time with probability at least 1/2.

Boosting Lemma

Suppose a randomised algorithm succeeds with probability (at least) *p*. Then for any $C \ge 1$, $\lceil \frac{C}{p} \cdot \log n \rceil$ repetitions are sufficient to succeed (in at least one repetition) with probability at least $1 - n^{-C}$.

Boosting Lemma

Suppose a randomised algorithm succeeds with probability (at least) *p*. Then for any $C \ge 1$, $\lceil \frac{C}{p} \cdot \log n \rceil$ repetitions are sufficient to succeed (in at least one repetition) with probability at least $1 - n^{-C}$.

Proof: Recall that $1 - p \le e^{-p}$ for all real p. Let $t = \lceil \frac{c}{p} \log n \rceil$ and observe

$$\mathbf{P}[t \text{ runs all fail}] \le (1-p)^t$$
$$\le e^{-pt}$$
$$\le n^{-C},$$

thus the probability one of the runs succeeds is at least $1 - n^{-C}$.

Boosting Lemma

Suppose a randomised algorithm succeeds with probability (at least) *p*. Then for any $C \ge 1$, $\lceil \frac{C}{p} \cdot \log n \rceil$ repetitions are sufficient to succeed (in at least one repetition) with probability at least $1 - n^{-C}$.

Proof: Recall that $1 - p \le e^{-p}$ for all real p. Let $t = \lceil \frac{c}{p} \log n \rceil$ and observe

$$\mathbf{P}[t \text{ runs all fail}] \le (1-p)^t$$
$$\le e^{-pt}$$
$$\le n^{-C},$$

thus the probability one of the runs succeeds is at least $1 - n^{-C}$.

Random Walks on Graphs, Hitting Times and Cover Times

Random Walks on Paths and Grids

SAT and a Randomised Algorithm for 2-SAT

Appendix: Reversibility and Random Walks on Weighted Graphs (non-exam.)

Random Walks on Weighted Graphs

An (edge) weighted graph G = (V, E, w) where $w : E \to \mathbb{R}_+$ on the edges.

Random Walks on Weighted Graphs

An (edge) weighted graph G = (V, E, w) where $w : E \to \mathbb{R}_+$ on the edges.

A Simple Random Walk (SRW) on a weighted graph G is a MC on V(G) with

Random Walks on Weighted Graphs

An (edge) weighted graph G = (V, E, w) where $w : E \to \mathbb{R}_+$ on the edges.

A Simple Random Walk (SRW) on a weighted graph G is a MC on V(G) with

Reversible Markov Chains

 Any Markov Chain can be described as random walk on a weighted directed graph.

Reversible Markov Chains

 Any Markov Chain can be described as random walk on a weighted directed graph.

Definition

A Markov chain on Ω with transition matrix *P* and stationary distribution π is called reversible if, for any $x, y \in \Omega$,

 $\pi(x)P(x,y)=\pi(y)P(y,x)$

Reversible Markov Chains

 Any Markov Chain can be described as random walk on a weighted directed graph.

Definition

A Markov chain on Ω with transition matrix *P* and stationary distribution π is called reversible if, for any $x, y \in \Omega$,

 $\pi(x)P(x,y)=\pi(y)P(y,x)$

 Reversible Markov Chains are equivalent to random walks on weighted undirected graphs. Any Markov Chain can be described as random walk on a weighted directed graph.

Definition

A Markov chain on Ω with transition matrix P and stationary distribution π is called reversible if, for any $x, y \in \Omega$,

$$\pi(x)P(x,y)=\pi(y)P(y,x)$$

- Reversible Markov Chains are equivalent to random walks on weighted undirected graphs.
- A reversible Markov Chain identified with the (undirected) weighted graph G = (V, E, w) has stationary distribution given by

$$\pi(i) = \frac{\sum_{j:\{i,j\}\in E} w(i,j)}{2\sum_{\{x,y\}\in E} w(x,y)}$$