
Randomised Algorithms
Lecture 5: Random Walks, Hitting Times and Application to 2-SAT

Thomas Sauerwald (tms41@cam.ac.uk)

Lent 2022

Outline

Random Walks on Graphs, Hitting Times and Cover Times

Random Walks on Paths and Grids

SAT and a Randomised Algorithm for 2-SAT

Appendix: Reversibility and Random Walks on Weighted Graphs (non-exam.)

Hitting Times © Thomas Sauerwald Random Walks on Graphs, Hitting Times and Cover Times 2

Random Walks on Graphs

A Simple Random Walk (SRW) on a graph G is a Markov chain on V (G) with

P(u, v) =

{
1

deg(u)
if {u, v} ∈ E ,

0 if {u, v} 6∈ E .
, and π(u) =

deg(u)

2|E |

Recall: h(u, v) = Eu[min{t ≥ 1 : Xt = v}] is the hitting time of v from u.

Hitting Times © Thomas Sauerwald Random Walks on Graphs, Hitting Times and Cover Times 3

Random Walks on Graphs

A Simple Random Walk (SRW) on a graph G is a Markov chain on V (G) with

P(u, v) =

{
1

deg(u)
if {u, v} ∈ E ,

0 if {u, v} 6∈ E .
, and π(u) =

deg(u)

2|E |

Recall: h(u, v) = Eu[min{t ≥ 1 : Xt = v}] is the hitting time of v from u.

Hitting Times © Thomas Sauerwald Random Walks on Graphs, Hitting Times and Cover Times 3

Random Walks on Graphs

A Simple Random Walk (SRW) on a graph G is a Markov chain on V (G) with

P(u, v) =

{
1

deg(u)
if {u, v} ∈ E ,

0 if {u, v} 6∈ E .
, and π(u) =

deg(u)

2|E |

Recall: h(u, v) = Eu[min{t ≥ 1 : Xt = v}] is the hitting time of v from u.

Hitting Times © Thomas Sauerwald Random Walks on Graphs, Hitting Times and Cover Times 3

Random Walks on Graphs

A Simple Random Walk (SRW) on a graph G is a Markov chain on V (G) with

P(u, v) =

{
1

deg(u)
if {u, v} ∈ E ,

0 if {u, v} 6∈ E .
, and π(u) =

deg(u)

2|E |

Recall: h(u, v) = Eu[min{t ≥ 1 : Xt = v}] is the hitting time of v from u.

Hitting Times © Thomas Sauerwald Random Walks on Graphs, Hitting Times and Cover Times 3

Random Walks on Graphs

A Simple Random Walk (SRW) on a graph G is a Markov chain on V (G) with

P(u, v) =

{
1

deg(u)
if {u, v} ∈ E ,

0 if {u, v} 6∈ E .
, and π(u) =

deg(u)

2|E |

Recall: h(u, v) = Eu[min{t ≥ 1 : Xt = v}] is the hitting time of v from u.

Hitting Times © Thomas Sauerwald Random Walks on Graphs, Hitting Times and Cover Times 3

Random Walks on Graphs

A Simple Random Walk (SRW) on a graph G is a Markov chain on V (G) with

P(u, v) =

{
1

deg(u)
if {u, v} ∈ E ,

0 if {u, v} 6∈ E .
, and π(u) =

deg(u)

2|E |

Recall: h(u, v) = Eu[min{t ≥ 1 : Xt = v}] is the hitting time of v from u.

Hitting Times © Thomas Sauerwald Random Walks on Graphs, Hitting Times and Cover Times 3

Random Walks on Graphs

A Simple Random Walk (SRW) on a graph G is a Markov chain on V (G) with

P(u, v) =

{
1

deg(u)
if {u, v} ∈ E ,

0 if {u, v} 6∈ E .
, and π(u) =

deg(u)

2|E |

Recall: h(u, v) = Eu[min{t ≥ 1 : Xt = v}] is the hitting time of v from u.

Hitting Times © Thomas Sauerwald Random Walks on Graphs, Hitting Times and Cover Times 3

Random Walks on Graphs

A Simple Random Walk (SRW) on a graph G is a Markov chain on V (G) with

P(u, v) =

{
1

deg(u)
if {u, v} ∈ E ,

0 if {u, v} 6∈ E .
, and π(u) =

deg(u)

2|E |

Recall: h(u, v) = Eu[min{t ≥ 1 : Xt = v}] is the hitting time of v from u.

Hitting Times © Thomas Sauerwald Random Walks on Graphs, Hitting Times and Cover Times 3

Random Walks on Graphs

A Simple Random Walk (SRW) on a graph G is a Markov chain on V (G) with

P(u, v) =

{
1

deg(u)
if {u, v} ∈ E ,

0 if {u, v} 6∈ E .
, and π(u) =

deg(u)

2|E |

Recall: h(u, v) = Eu[min{t ≥ 1 : Xt = v}] is the hitting time of v from u.

Hitting Times © Thomas Sauerwald Random Walks on Graphs, Hitting Times and Cover Times 3

Lazy Random Walks and Periodicity

The Lazy Random Walk (LRW) on G given by P̃ = (P + I) /2,

P̃u,v =


1

2 deg(u)
if {u, v} ∈ E ,

1
2 if u = v ,
0 otherwise

.

P - SRW matrix
I - Identity matrix.

Fact: For any graph G the LRW on G is aperiodic.

a b

d c

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

SRW on C4, Periodic

a b

d c

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
2

1
2

1
2

1
2

LRW on C4, Aperiodic

Hitting Times © Thomas Sauerwald Random Walks on Graphs, Hitting Times and Cover Times 4

Lazy Random Walks and Periodicity

The Lazy Random Walk (LRW) on G given by P̃ = (P + I) /2,

P̃u,v =


1

2 deg(u)
if {u, v} ∈ E ,

1
2 if u = v ,
0 otherwise

.
P - SRW matrix

I - Identity matrix.

Fact: For any graph G the LRW on G is aperiodic.

a b

d c

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

SRW on C4, Periodic

a b

d c

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
2

1
2

1
2

1
2

LRW on C4, Aperiodic

Hitting Times © Thomas Sauerwald Random Walks on Graphs, Hitting Times and Cover Times 4

Lazy Random Walks and Periodicity

The Lazy Random Walk (LRW) on G given by P̃ = (P + I) /2,

P̃u,v =


1

2 deg(u)
if {u, v} ∈ E ,

1
2 if u = v ,
0 otherwise

.
P - SRW matrix

I - Identity matrix.

Fact: For any graph G the LRW on G is aperiodic.

a b

d c

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

SRW on C4, Periodic

a b

d c

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
2

1
2

1
2

1
2

LRW on C4, Aperiodic

Hitting Times © Thomas Sauerwald Random Walks on Graphs, Hitting Times and Cover Times 4

Lazy Random Walks and Periodicity

The Lazy Random Walk (LRW) on G given by P̃ = (P + I) /2,

P̃u,v =


1

2 deg(u)
if {u, v} ∈ E ,

1
2 if u = v ,
0 otherwise

.
P - SRW matrix

I - Identity matrix.

Fact: For any graph G the LRW on G is aperiodic.

a b

d c

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

SRW on C4, Periodic

a b

d c

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
2

1
2

1
2

1
2

LRW on C4, Aperiodic

Hitting Times © Thomas Sauerwald Random Walks on Graphs, Hitting Times and Cover Times 4

Lazy Random Walks and Periodicity

The Lazy Random Walk (LRW) on G given by P̃ = (P + I) /2,

P̃u,v =


1

2 deg(u)
if {u, v} ∈ E ,

1
2 if u = v ,
0 otherwise

.
P - SRW matrix

I - Identity matrix.

Fact: For any graph G the LRW on G is aperiodic.

a b

d c

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

SRW on C4, Periodic

a b

d c

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
2

1
2

1
2

1
2

LRW on C4, Aperiodic

Hitting Times © Thomas Sauerwald Random Walks on Graphs, Hitting Times and Cover Times 4

Application: Cover Time and Undirected Connectivity

Let tcov := maxu∈V Eu
[
min{t ≥ 1 : ∪t

s=0 Xs = V}
]

be the cover time, that is,
the worst-case expected time to visit all vertices.

For any connected graph G with n vertices, tcov (G) ≤ 2(n − 1)|E |.
Aleliunas, Karp, Lipton, Lovász and Rackoff, FOCS’79

By Markov’s inequality, all vertices are visited after
4(n − 1)|E | steps with probability at least 1/2

⇒ solves the USTCON prob-
lem with O(log n) space (see
Complexity Theory course)

Proof:

Take a spanning tree T in G
Consider a traversal that goes through
every edge in T twice
For any adjacent vertices u, v ,
thit (u, v) + thit (v , u) ≤ 2|E | (Exercise!)
Thus,

tcov (G) ≤
∑

(u,v)∈E(T)

h(u, v) + h(v , u)

≤ 2(n − 1) · |E |.

1 2

3 4

5

6

7

8

Hitting Times © Thomas Sauerwald Random Walks on Graphs, Hitting Times and Cover Times 5

Application: Cover Time and Undirected Connectivity

Let tcov := maxu∈V Eu
[
min{t ≥ 1 : ∪t

s=0 Xs = V}
]

be the cover time, that is,
the worst-case expected time to visit all vertices.

For any connected graph G with n vertices, tcov (G) ≤ 2(n − 1)|E |.
Aleliunas, Karp, Lipton, Lovász and Rackoff, FOCS’79

By Markov’s inequality, all vertices are visited after
4(n − 1)|E | steps with probability at least 1/2

⇒ solves the USTCON prob-
lem with O(log n) space (see
Complexity Theory course)

Proof:

Take a spanning tree T in G
Consider a traversal that goes through
every edge in T twice
For any adjacent vertices u, v ,
thit (u, v) + thit (v , u) ≤ 2|E | (Exercise!)
Thus,

tcov (G) ≤
∑

(u,v)∈E(T)

h(u, v) + h(v , u)

≤ 2(n − 1) · |E |.

1 2

3 4

5

6

7

8

Hitting Times © Thomas Sauerwald Random Walks on Graphs, Hitting Times and Cover Times 5

Application: Cover Time and Undirected Connectivity

Let tcov := maxu∈V Eu
[
min{t ≥ 1 : ∪t

s=0 Xs = V}
]

be the cover time, that is,
the worst-case expected time to visit all vertices.

For any connected graph G with n vertices, tcov (G) ≤ 2(n − 1)|E |.
Aleliunas, Karp, Lipton, Lovász and Rackoff, FOCS’79

By Markov’s inequality, all vertices are visited after
4(n − 1)|E | steps with probability at least 1/2

⇒ solves the USTCON prob-
lem with O(log n) space (see
Complexity Theory course)

Proof:

Take a spanning tree T in G
Consider a traversal that goes through
every edge in T twice
For any adjacent vertices u, v ,
thit (u, v) + thit (v , u) ≤ 2|E | (Exercise!)
Thus,

tcov (G) ≤
∑

(u,v)∈E(T)

h(u, v) + h(v , u)

≤ 2(n − 1) · |E |.

1 2

3 4

5

6

7

8

Hitting Times © Thomas Sauerwald Random Walks on Graphs, Hitting Times and Cover Times 5

Application: Cover Time and Undirected Connectivity

Let tcov := maxu∈V Eu
[
min{t ≥ 1 : ∪t

s=0 Xs = V}
]

be the cover time, that is,
the worst-case expected time to visit all vertices.

For any connected graph G with n vertices, tcov (G) ≤ 2(n − 1)|E |.
Aleliunas, Karp, Lipton, Lovász and Rackoff, FOCS’79

By Markov’s inequality, all vertices are visited after
4(n − 1)|E | steps with probability at least 1/2

⇒ solves the USTCON prob-
lem with O(log n) space (see
Complexity Theory course)

Proof:

Take a spanning tree T in G

Consider a traversal that goes through
every edge in T twice
For any adjacent vertices u, v ,
thit (u, v) + thit (v , u) ≤ 2|E | (Exercise!)
Thus,

tcov (G) ≤
∑

(u,v)∈E(T)

h(u, v) + h(v , u)

≤ 2(n − 1) · |E |.

1 2

3 4

5

6

7

8

Hitting Times © Thomas Sauerwald Random Walks on Graphs, Hitting Times and Cover Times 5

Application: Cover Time and Undirected Connectivity

Let tcov := maxu∈V Eu
[
min{t ≥ 1 : ∪t

s=0 Xs = V}
]

be the cover time, that is,
the worst-case expected time to visit all vertices.

For any connected graph G with n vertices, tcov (G) ≤ 2(n − 1)|E |.
Aleliunas, Karp, Lipton, Lovász and Rackoff, FOCS’79

By Markov’s inequality, all vertices are visited after
4(n − 1)|E | steps with probability at least 1/2

⇒ solves the USTCON prob-
lem with O(log n) space (see
Complexity Theory course)

Proof:

Take a spanning tree T in G
Consider a traversal that goes through
every edge in T twice

For any adjacent vertices u, v ,
thit (u, v) + thit (v , u) ≤ 2|E | (Exercise!)
Thus,

tcov (G) ≤
∑

(u,v)∈E(T)

h(u, v) + h(v , u)

≤ 2(n − 1) · |E |.

1 2

3 4

5

6

7

8

Hitting Times © Thomas Sauerwald Random Walks on Graphs, Hitting Times and Cover Times 5

Application: Cover Time and Undirected Connectivity

Let tcov := maxu∈V Eu
[
min{t ≥ 1 : ∪t

s=0 Xs = V}
]

be the cover time, that is,
the worst-case expected time to visit all vertices.

For any connected graph G with n vertices, tcov (G) ≤ 2(n − 1)|E |.
Aleliunas, Karp, Lipton, Lovász and Rackoff, FOCS’79

By Markov’s inequality, all vertices are visited after
4(n − 1)|E | steps with probability at least 1/2

⇒ solves the USTCON prob-
lem with O(log n) space (see
Complexity Theory course)

Proof:

Take a spanning tree T in G
Consider a traversal that goes through
every edge in T twice

For any adjacent vertices u, v ,
thit (u, v) + thit (v , u) ≤ 2|E | (Exercise!)
Thus,

tcov (G) ≤
∑

(u,v)∈E(T)

h(u, v) + h(v , u)

≤ 2(n − 1) · |E |.

1 2

3 4

5

6

7

8

Hitting Times © Thomas Sauerwald Random Walks on Graphs, Hitting Times and Cover Times 5

Application: Cover Time and Undirected Connectivity

Let tcov := maxu∈V Eu
[
min{t ≥ 1 : ∪t

s=0 Xs = V}
]

be the cover time, that is,
the worst-case expected time to visit all vertices.

For any connected graph G with n vertices, tcov (G) ≤ 2(n − 1)|E |.
Aleliunas, Karp, Lipton, Lovász and Rackoff, FOCS’79

By Markov’s inequality, all vertices are visited after
4(n − 1)|E | steps with probability at least 1/2

⇒ solves the USTCON prob-
lem with O(log n) space (see
Complexity Theory course)

Proof:

Take a spanning tree T in G
Consider a traversal that goes through
every edge in T twice
For any adjacent vertices u, v ,
thit (u, v) + thit (v , u) ≤ 2|E | (Exercise!)

Thus,

tcov (G) ≤
∑

(u,v)∈E(T)

h(u, v) + h(v , u)

≤ 2(n − 1) · |E |.

1 2

3 4

5

6

7

8

Hitting Times © Thomas Sauerwald Random Walks on Graphs, Hitting Times and Cover Times 5

Application: Cover Time and Undirected Connectivity

Let tcov := maxu∈V Eu
[
min{t ≥ 1 : ∪t

s=0 Xs = V}
]

be the cover time, that is,
the worst-case expected time to visit all vertices.

For any connected graph G with n vertices, tcov (G) ≤ 2(n − 1)|E |.
Aleliunas, Karp, Lipton, Lovász and Rackoff, FOCS’79

By Markov’s inequality, all vertices are visited after
4(n − 1)|E | steps with probability at least 1/2

⇒ solves the USTCON prob-
lem with O(log n) space (see
Complexity Theory course)

Proof:

Take a spanning tree T in G
Consider a traversal that goes through
every edge in T twice
For any adjacent vertices u, v ,
thit (u, v) + thit (v , u) ≤ 2|E | (Exercise!)
Thus,

tcov (G) ≤
∑

(u,v)∈E(T)

h(u, v) + h(v , u)

≤ 2(n − 1) · |E |.

1 2

3 4

5

6

7

8

Hitting Times © Thomas Sauerwald Random Walks on Graphs, Hitting Times and Cover Times 5

Application: Cover Time and Undirected Connectivity

Let tcov := maxu∈V Eu
[
min{t ≥ 1 : ∪t

s=0 Xs = V}
]

be the cover time, that is,
the worst-case expected time to visit all vertices.

For any connected graph G with n vertices, tcov (G) ≤ 2(n − 1)|E |.
Aleliunas, Karp, Lipton, Lovász and Rackoff, FOCS’79

By Markov’s inequality, all vertices are visited after
4(n − 1)|E | steps with probability at least 1/2

⇒ solves the USTCON prob-
lem with O(log n) space (see
Complexity Theory course)

Proof:

Take a spanning tree T in G
Consider a traversal that goes through
every edge in T twice
For any adjacent vertices u, v ,
thit (u, v) + thit (v , u) ≤ 2|E | (Exercise!)
Thus,

tcov (G) ≤
∑

(u,v)∈E(T)

h(u, v) + h(v , u)

≤ 2(n − 1) · |E |.

1 2

3 4

5

6

7

8

Hitting Times © Thomas Sauerwald Random Walks on Graphs, Hitting Times and Cover Times 5

Application: Cover Time and Undirected Connectivity

Let tcov := maxu∈V Eu
[
min{t ≥ 1 : ∪t

s=0 Xs = V}
]

be the cover time, that is,
the worst-case expected time to visit all vertices.

For any connected graph G with n vertices, tcov (G) ≤ 2(n − 1)|E |.
Aleliunas, Karp, Lipton, Lovász and Rackoff, FOCS’79

By Markov’s inequality, all vertices are visited after
4(n − 1)|E | steps with probability at least 1/2

⇒ solves the USTCON prob-
lem with O(log n) space (see
Complexity Theory course)

Proof:

Take a spanning tree T in G
Consider a traversal that goes through
every edge in T twice
For any adjacent vertices u, v ,
thit (u, v) + thit (v , u) ≤ 2|E | (Exercise!)
Thus,

tcov (G) ≤
∑

(u,v)∈E(T)

h(u, v) + h(v , u)

≤ 2(n − 1) · |E |.

1 2

3 4

5

6

7

8

Hitting Times © Thomas Sauerwald Random Walks on Graphs, Hitting Times and Cover Times 5

Application: Cover Time and Undirected Connectivity

Let tcov := maxu∈V Eu
[
min{t ≥ 1 : ∪t

s=0 Xs = V}
]

be the cover time, that is,
the worst-case expected time to visit all vertices.

For any connected graph G with n vertices, tcov (G) ≤ 2(n − 1)|E |.
Aleliunas, Karp, Lipton, Lovász and Rackoff, FOCS’79

By Markov’s inequality, all vertices are visited after
4(n − 1)|E | steps with probability at least 1/2

⇒ solves the USTCON prob-
lem with O(log n) space (see
Complexity Theory course)

Proof:

Take a spanning tree T in G
Consider a traversal that goes through
every edge in T twice
For any adjacent vertices u, v ,
thit (u, v) + thit (v , u) ≤ 2|E | (Exercise!)
Thus,

tcov (G) ≤
∑

(u,v)∈E(T)

h(u, v) + h(v , u)

≤ 2(n − 1) · |E |.

1 2

3 4

5

6

7

8

Hitting Times © Thomas Sauerwald Random Walks on Graphs, Hitting Times and Cover Times 5

Outline

Random Walks on Graphs, Hitting Times and Cover Times

Random Walks on Paths and Grids

SAT and a Randomised Algorithm for 2-SAT

Appendix: Reversibility and Random Walks on Weighted Graphs (non-exam.)

Hitting Times © Thomas Sauerwald Random Walks on Paths and Grids 6

1921: The Birth of Random Walks on (Infinite) Graphs (Polyá)

Will a random walk always return to the origin?

Infinite 2D Grid Infinite 3D Grid

“A drunk man will find his way home, but a drunk bird may get lost forever.”

But for any regular (finite) graph, the expected return time to u is 1/π(u) = n

Hitting Times © Thomas Sauerwald Random Walks on Paths and Grids 7

1921: The Birth of Random Walks on (Infinite) Graphs (Polyá)

Will a random walk always return to the origin?

Infinite 2D Grid

Infinite 3D Grid

“A drunk man will find his way home, but a drunk bird may get lost forever.”

But for any regular (finite) graph, the expected return time to u is 1/π(u) = n

Hitting Times © Thomas Sauerwald Random Walks on Paths and Grids 7

1921: The Birth of Random Walks on (Infinite) Graphs (Polyá)

Will a random walk always return to the origin?

Infinite 2D Grid

Infinite 3D Grid

“A drunk man will find his way home, but a drunk bird may get lost forever.”

But for any regular (finite) graph, the expected return time to u is 1/π(u) = n

Hitting Times © Thomas Sauerwald Random Walks on Paths and Grids 7

1921: The Birth of Random Walks on (Infinite) Graphs (Polyá)

Will a random walk always return to the origin?

Infinite 2D Grid Infinite 3D Grid

“A drunk man will find his way home, but a drunk bird may get lost forever.”

But for any regular (finite) graph, the expected return time to u is 1/π(u) = n

Hitting Times © Thomas Sauerwald Random Walks on Paths and Grids 7

1921: The Birth of Random Walks on (Infinite) Graphs (Polyá)

Will a random walk always return to the origin?

Infinite 2D Grid Infinite 3D Grid

“A drunk man will find his way home, but a drunk bird may get lost forever.”

But for any regular (finite) graph, the expected return time to u is 1/π(u) = n

Hitting Times © Thomas Sauerwald Random Walks on Paths and Grids 7

1921: The Birth of Random Walks on (Infinite) Graphs (Polyá)

Will a random walk always return to the origin?

Infinite 2D Grid Infinite 3D Grid

“A drunk man will find his way home, but a drunk bird may get lost forever.”

But for any regular (finite) graph, the expected return time to u is 1/π(u) = n

Hitting Times © Thomas Sauerwald Random Walks on Paths and Grids 7

1921: The Birth of Random Walks on (Infinite) Graphs (Polyá)

Will a random walk always return to the origin?

Infinite 2D Grid Infinite 3D Grid

“A drunk man will find his way home, but a drunk bird may get lost forever.”

But for any regular (finite) graph, the expected return time to u is 1/π(u) = n

Hitting Times © Thomas Sauerwald Random Walks on Paths and Grids 7

SRW Random Walk on Two-Dimensional Grids: Animation

Hitting Times © Thomas Sauerwald Random Walks on Paths and Grids 8

Random Walk on a Path (1/2)

The n-path Pn is the graph with V (Pn) = [n] and E(Pn) = {{i, j} : j = i + 1}.

0 1 2 3 4

For the SRW on Pn we have h(k , n) = n2 − k2, for any 0 ≤ k < n.

Proposition

Hitting Times © Thomas Sauerwald Random Walks on Paths and Grids 9

Random Walk on a Path (1/2)

The n-path Pn is the graph with V (Pn) = [n] and E(Pn) = {{i, j} : j = i + 1}.

0 1 2 3 4

For the SRW on Pn we have h(k , n) = n2 − k2, for any 0 ≤ k < n.

Proposition

Hitting Times © Thomas Sauerwald Random Walks on Paths and Grids 9

Random Walk on a Path (1/2)

The n-path Pn is the graph with V (Pn) = [n] and E(Pn) = {{i, j} : j = i + 1}.

0 1 2 3 4

For the SRW on Pn we have h(k , n) = n2 − k2, for any 0 ≤ k < n.

Proposition

Hitting Times © Thomas Sauerwald Random Walks on Paths and Grids 9

Random Walk on a Path (1/2)

The n-path Pn is the graph with V (Pn) = [n] and E(Pn) = {{i, j} : j = i + 1}.

0 1 2 3 4

For the SRW on Pn we have h(k , n) = n2 − k2, for any 0 ≤ k < n.

Proposition

Hitting Times © Thomas Sauerwald Random Walks on Paths and Grids 9

Random Walk on a Path (1/2)

The n-path Pn is the graph with V (Pn) = [n] and E(Pn) = {{i, j} : j = i + 1}.

0 1 2 3 4

For the SRW on Pn we have h(k , n) = n2 − k2, for any 0 ≤ k < n.

Proposition

Hitting Times © Thomas Sauerwald Random Walks on Paths and Grids 9

Random Walk on a Path (1/2)

The n-path Pn is the graph with V (Pn) = [n] and E(Pn) = {{i, j} : j = i + 1}.

0 1 2 3 4

For the SRW on Pn we have h(k , n) = n2 − k2, for any 0 ≤ k < n.

Proposition

Hitting Times © Thomas Sauerwald Random Walks on Paths and Grids 9

Random Walk on a Path (1/2)

The n-path Pn is the graph with V (Pn) = [n] and E(Pn) = {{i, j} : j = i + 1}.

0 1 2 3 4

For the SRW on Pn we have h(k , n) = n2 − k2, for any 0 ≤ k < n.

Proposition

Hitting Times © Thomas Sauerwald Random Walks on Paths and Grids 9

Random Walk on a Path (1/2)

The n-path Pn is the graph with V (Pn) = [n] and E(Pn) = {{i, j} : j = i + 1}.

0 1 2 3 4

For the SRW on Pn we have h(k , n) = n2 − k2, for any 0 ≤ k < n.

Proposition

Hitting Times © Thomas Sauerwald Random Walks on Paths and Grids 9

Random Walk on a Path (2/2)

For the SRW on Pn we have h(k , n) = n2 − k2, for any 0 ≤ k ≤ n.

Proposition

Recall: Hitting times are the solution to the set of linear equations:

h(x , y)
Markov Prop.

= 1 +
∑

z∈Ω\{y}

h(z, y) · P(x , z) ∀x 6= y ∈ V .

Proof: Let f (k) = h(k , n) and set f (n) := 0. By the Markov property

f (0) = 1 + f (1)

and f (k) = 1 +
f (k − 1)

2
+

f (k + 1)

2
for 1 ≤ k ≤ n − 1.

System of n independent equations in n unknowns, so has a unique solution.

Thus it suffices to check that f (k) = n2 − k2 satisfies the above. Indeed

f (0) = 1 + f (1) = 1 + n2 − 12 = n2,

and for any 1 ≤ k ≤ n − 1 we have,

f (k) = 1 +
n2 − (k − 1)2

2
+

n2 − (k + 1)2

2
= n2 − k2.

Hitting Times © Thomas Sauerwald Random Walks on Paths and Grids 10

Random Walk on a Path (2/2)

For the SRW on Pn we have h(k , n) = n2 − k2, for any 0 ≤ k ≤ n.

Proposition

Recall: Hitting times are the solution to the set of linear equations:

h(x , y)
Markov Prop.

= 1 +
∑

z∈Ω\{y}

h(z, y) · P(x , z) ∀x 6= y ∈ V .

Proof: Let f (k) = h(k , n) and set f (n) := 0. By the Markov property

f (0) = 1 + f (1)

and f (k) = 1 +
f (k − 1)

2
+

f (k + 1)

2
for 1 ≤ k ≤ n − 1.

System of n independent equations in n unknowns, so has a unique solution.

Thus it suffices to check that f (k) = n2 − k2 satisfies the above. Indeed

f (0) = 1 + f (1) = 1 + n2 − 12 = n2,

and for any 1 ≤ k ≤ n − 1 we have,

f (k) = 1 +
n2 − (k − 1)2

2
+

n2 − (k + 1)2

2
= n2 − k2.

Hitting Times © Thomas Sauerwald Random Walks on Paths and Grids 10

Random Walk on a Path (2/2)

For the SRW on Pn we have h(k , n) = n2 − k2, for any 0 ≤ k ≤ n.

Proposition

Recall: Hitting times are the solution to the set of linear equations:

h(x , y)
Markov Prop.

= 1 +
∑

z∈Ω\{y}

h(z, y) · P(x , z) ∀x 6= y ∈ V .

Proof: Let f (k) = h(k , n) and set f (n) := 0.

By the Markov property

f (0) = 1 + f (1)

and f (k) = 1 +
f (k − 1)

2
+

f (k + 1)

2
for 1 ≤ k ≤ n − 1.

System of n independent equations in n unknowns, so has a unique solution.

Thus it suffices to check that f (k) = n2 − k2 satisfies the above. Indeed

f (0) = 1 + f (1) = 1 + n2 − 12 = n2,

and for any 1 ≤ k ≤ n − 1 we have,

f (k) = 1 +
n2 − (k − 1)2

2
+

n2 − (k + 1)2

2
= n2 − k2.

Hitting Times © Thomas Sauerwald Random Walks on Paths and Grids 10

Random Walk on a Path (2/2)

For the SRW on Pn we have h(k , n) = n2 − k2, for any 0 ≤ k ≤ n.

Proposition

Recall: Hitting times are the solution to the set of linear equations:

h(x , y)
Markov Prop.

= 1 +
∑

z∈Ω\{y}

h(z, y) · P(x , z) ∀x 6= y ∈ V .

Proof: Let f (k) = h(k , n) and set f (n) := 0. By the Markov property

f (0) = 1 + f (1)

and f (k) = 1 +
f (k − 1)

2
+

f (k + 1)

2
for 1 ≤ k ≤ n − 1.

System of n independent equations in n unknowns, so has a unique solution.

Thus it suffices to check that f (k) = n2 − k2 satisfies the above. Indeed

f (0) = 1 + f (1) = 1 + n2 − 12 = n2,

and for any 1 ≤ k ≤ n − 1 we have,

f (k) = 1 +
n2 − (k − 1)2

2
+

n2 − (k + 1)2

2
= n2 − k2.

Hitting Times © Thomas Sauerwald Random Walks on Paths and Grids 10

Random Walk on a Path (2/2)

For the SRW on Pn we have h(k , n) = n2 − k2, for any 0 ≤ k ≤ n.

Proposition

Recall: Hitting times are the solution to the set of linear equations:

h(x , y)
Markov Prop.

= 1 +
∑

z∈Ω\{y}

h(z, y) · P(x , z) ∀x 6= y ∈ V .

Proof: Let f (k) = h(k , n) and set f (n) := 0. By the Markov property

f (0) = 1 + f (1) and f (k) = 1 +
f (k − 1)

2
+

f (k + 1)

2
for 1 ≤ k ≤ n − 1.

System of n independent equations in n unknowns, so has a unique solution.

Thus it suffices to check that f (k) = n2 − k2 satisfies the above. Indeed

f (0) = 1 + f (1) = 1 + n2 − 12 = n2,

and for any 1 ≤ k ≤ n − 1 we have,

f (k) = 1 +
n2 − (k − 1)2

2
+

n2 − (k + 1)2

2
= n2 − k2.

Hitting Times © Thomas Sauerwald Random Walks on Paths and Grids 10

Random Walk on a Path (2/2)

For the SRW on Pn we have h(k , n) = n2 − k2, for any 0 ≤ k ≤ n.

Proposition

Recall: Hitting times are the solution to the set of linear equations:

h(x , y)
Markov Prop.

= 1 +
∑

z∈Ω\{y}

h(z, y) · P(x , z) ∀x 6= y ∈ V .

Proof: Let f (k) = h(k , n) and set f (n) := 0. By the Markov property

f (0) = 1 + f (1) and f (k) = 1 +
f (k − 1)

2
+

f (k + 1)

2
for 1 ≤ k ≤ n − 1.

System of n independent equations in n unknowns, so has a unique solution.

Thus it suffices to check that f (k) = n2 − k2 satisfies the above. Indeed

f (0) = 1 + f (1) = 1 + n2 − 12 = n2,

and for any 1 ≤ k ≤ n − 1 we have,

f (k) = 1 +
n2 − (k − 1)2

2
+

n2 − (k + 1)2

2
= n2 − k2.

Hitting Times © Thomas Sauerwald Random Walks on Paths and Grids 10

Random Walk on a Path (2/2)

For the SRW on Pn we have h(k , n) = n2 − k2, for any 0 ≤ k ≤ n.

Proposition

Recall: Hitting times are the solution to the set of linear equations:

h(x , y)
Markov Prop.

= 1 +
∑

z∈Ω\{y}

h(z, y) · P(x , z) ∀x 6= y ∈ V .

Proof: Let f (k) = h(k , n) and set f (n) := 0. By the Markov property

f (0) = 1 + f (1) and f (k) = 1 +
f (k − 1)

2
+

f (k + 1)

2
for 1 ≤ k ≤ n − 1.

System of n independent equations in n unknowns, so has a unique solution.

Thus it suffices to check that f (k) = n2 − k2 satisfies the above.

Indeed

f (0) = 1 + f (1) = 1 + n2 − 12 = n2,

and for any 1 ≤ k ≤ n − 1 we have,

f (k) = 1 +
n2 − (k − 1)2

2
+

n2 − (k + 1)2

2
= n2 − k2.

Hitting Times © Thomas Sauerwald Random Walks on Paths and Grids 10

Random Walk on a Path (2/2)

For the SRW on Pn we have h(k , n) = n2 − k2, for any 0 ≤ k ≤ n.

Proposition

Recall: Hitting times are the solution to the set of linear equations:

h(x , y)
Markov Prop.

= 1 +
∑

z∈Ω\{y}

h(z, y) · P(x , z) ∀x 6= y ∈ V .

Proof: Let f (k) = h(k , n) and set f (n) := 0. By the Markov property

f (0) = 1 + f (1) and f (k) = 1 +
f (k − 1)

2
+

f (k + 1)

2
for 1 ≤ k ≤ n − 1.

System of n independent equations in n unknowns, so has a unique solution.

Thus it suffices to check that f (k) = n2 − k2 satisfies the above. Indeed

f (0) = 1 + f (1) = 1 + n2 − 12 = n2,

and for any 1 ≤ k ≤ n − 1 we have,

f (k) = 1 +
n2 − (k − 1)2

2
+

n2 − (k + 1)2

2
= n2 − k2.

Hitting Times © Thomas Sauerwald Random Walks on Paths and Grids 10

Random Walk on a Path (2/2)

For the SRW on Pn we have h(k , n) = n2 − k2, for any 0 ≤ k ≤ n.

Proposition

Recall: Hitting times are the solution to the set of linear equations:

h(x , y)
Markov Prop.

= 1 +
∑

z∈Ω\{y}

h(z, y) · P(x , z) ∀x 6= y ∈ V .

Proof: Let f (k) = h(k , n) and set f (n) := 0. By the Markov property

f (0) = 1 + f (1) and f (k) = 1 +
f (k − 1)

2
+

f (k + 1)

2
for 1 ≤ k ≤ n − 1.

System of n independent equations in n unknowns, so has a unique solution.

Thus it suffices to check that f (k) = n2 − k2 satisfies the above. Indeed

f (0) = 1 + f (1) = 1 + n2 − 12 = n2,

and for any 1 ≤ k ≤ n − 1 we have,

f (k) = 1 +
n2 − (k − 1)2

2
+

n2 − (k + 1)2

2
= n2 − k2.

Hitting Times © Thomas Sauerwald Random Walks on Paths and Grids 10

Outline

Random Walks on Graphs, Hitting Times and Cover Times

Random Walks on Paths and Grids

SAT and a Randomised Algorithm for 2-SAT

Appendix: Reversibility and Random Walks on Weighted Graphs (non-exam.)

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT 11

SAT Problems

A Satisfiability (SAT) formula is a logical expression that’s the conjunction
(AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values
True and False so that all the clauses are satisfied.

Example:

SAT: (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

Solution: x1 = True, x2 = False, x3 = False and x4 = True.

If each clause has k literals we call the problem k -SAT.

In general, determining if a SAT formula has a solution is NP-hard

In practice solvers are fast and used to great effect
A huge amount of problems can be posed as a SAT:

→ Model checking and hardware/software verification
→ Design of experiments
→ Classical planning
→ . . .

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT 12

SAT Problems

A Satisfiability (SAT) formula is a logical expression that’s the conjunction
(AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values
True and False so that all the clauses are satisfied.

Example:

SAT: (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

Solution: x1 = True, x2 = False, x3 = False and x4 = True.

If each clause has k literals we call the problem k -SAT.

In general, determining if a SAT formula has a solution is NP-hard

In practice solvers are fast and used to great effect
A huge amount of problems can be posed as a SAT:

→ Model checking and hardware/software verification
→ Design of experiments
→ Classical planning
→ . . .

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT 12

SAT Problems

A Satisfiability (SAT) formula is a logical expression that’s the conjunction
(AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values
True and False so that all the clauses are satisfied.

Example:

SAT: (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

Solution: x1 = True, x2 = False, x3 = False and x4 = True.

If each clause has k literals we call the problem k -SAT.

In general, determining if a SAT formula has a solution is NP-hard

In practice solvers are fast and used to great effect
A huge amount of problems can be posed as a SAT:

→ Model checking and hardware/software verification
→ Design of experiments
→ Classical planning
→ . . .

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT 12

SAT Problems

A Satisfiability (SAT) formula is a logical expression that’s the conjunction
(AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values
True and False so that all the clauses are satisfied.

Example:

SAT: (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

Solution: x1 = True, x2 = False, x3 = False and x4 = True.

If each clause has k literals we call the problem k -SAT.

In general, determining if a SAT formula has a solution is NP-hard

In practice solvers are fast and used to great effect
A huge amount of problems can be posed as a SAT:

→ Model checking and hardware/software verification
→ Design of experiments
→ Classical planning
→ . . .

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT 12

SAT Problems

A Satisfiability (SAT) formula is a logical expression that’s the conjunction
(AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values
True and False so that all the clauses are satisfied.

Example:

SAT: (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

Solution: x1 = True, x2 = False, x3 = False and x4 = True.

If each clause has k literals we call the problem k -SAT.

In general, determining if a SAT formula has a solution is NP-hard

In practice solvers are fast and used to great effect
A huge amount of problems can be posed as a SAT:

→ Model checking and hardware/software verification
→ Design of experiments
→ Classical planning
→ . . .

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT 12

SAT Problems

A Satisfiability (SAT) formula is a logical expression that’s the conjunction
(AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values
True and False so that all the clauses are satisfied.

Example:

SAT: (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

Solution: x1 = True, x2 = False, x3 = False and x4 = True.

If each clause has k literals we call the problem k -SAT.

In general, determining if a SAT formula has a solution is NP-hard

In practice solvers are fast and used to great effect
A huge amount of problems can be posed as a SAT:
→ Model checking and hardware/software verification
→ Design of experiments
→ Classical planning
→ . . .

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT 12

2-SAT

RANDOMISED2-SAT (Input: a 2-SAT-Formula)

1: Start with an arbitrary truth assignment
2: Repeat up to 2n2 times
3: Pick an arbitrary unsatisfied clause
4: Choose a random literal and switch its value
5: If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

Call each loop of (2) a step. Let Ai be the variable assignment at step i .

Let α be any solution and Xi = |variable values shared by Ai and α|.
Example 1 :

Solution Found

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

F T T F F T F

0 1 2 3 4

α = (T, T, F, T).

t x1 x2 x3 x4

0 F F F F

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT 13

2-SAT

RANDOMISED2-SAT (Input: a 2-SAT-Formula)
1: Start with an arbitrary truth assignment

2: Repeat up to 2n2 times
3: Pick an arbitrary unsatisfied clause
4: Choose a random literal and switch its value
5: If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

Call each loop of (2) a step. Let Ai be the variable assignment at step i .

Let α be any solution and Xi = |variable values shared by Ai and α|.
Example 1 :

Solution Found

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

F T T F F T F

0 1 2 3 4

α = (T, T, F, T).

t x1 x2 x3 x4

0 F F F F

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT 13

2-SAT

RANDOMISED2-SAT (Input: a 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to 2n2 times

3: Pick an arbitrary unsatisfied clause
4: Choose a random literal and switch its value
5: If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

Call each loop of (2) a step. Let Ai be the variable assignment at step i .

Let α be any solution and Xi = |variable values shared by Ai and α|.
Example 1 :

Solution Found

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

F T T F F T F

0 1 2 3 4

α = (T, T, F, T).

t x1 x2 x3 x4

0 F F F F

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT 13

2-SAT

RANDOMISED2-SAT (Input: a 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to 2n2 times
3: Pick an arbitrary unsatisfied clause

4: Choose a random literal and switch its value
5: If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

Call each loop of (2) a step. Let Ai be the variable assignment at step i .

Let α be any solution and Xi = |variable values shared by Ai and α|.
Example 1 :

Solution Found

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

F T T F F T F

0 1 2 3 4

α = (T, T, F, T).

t x1 x2 x3 x4

0 F F F F

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT 13

2-SAT

RANDOMISED2-SAT (Input: a 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to 2n2 times
3: Pick an arbitrary unsatisfied clause
4: Choose a random literal and switch its value

5: If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

Call each loop of (2) a step. Let Ai be the variable assignment at step i .

Let α be any solution and Xi = |variable values shared by Ai and α|.
Example 1 :

Solution Found

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

F T T F F T F

0 1 2 3 4

α = (T, T, F, T).

t x1 x2 x3 x4

0 F F F F

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT 13

2-SAT

RANDOMISED2-SAT (Input: a 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to 2n2 times
3: Pick an arbitrary unsatisfied clause
4: Choose a random literal and switch its value
5: If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

Call each loop of (2) a step. Let Ai be the variable assignment at step i .

Let α be any solution and Xi = |variable values shared by Ai and α|.
Example 1 :

Solution Found

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

F T T F F T F

0 1 2 3 4

α = (T, T, F, T).

t x1 x2 x3 x4

0 F F F F

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT 13

2-SAT

RANDOMISED2-SAT (Input: a 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to 2n2 times
3: Pick an arbitrary unsatisfied clause
4: Choose a random literal and switch its value
5: If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

Call each loop of (2) a step. Let Ai be the variable assignment at step i .

Let α be any solution and Xi = |variable values shared by Ai and α|.
Example 1 :

Solution Found

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

F T T F F T F

0 1 2 3 4

α = (T, T, F, T).

t x1 x2 x3 x4

0 F F F F

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT 13

2-SAT

RANDOMISED2-SAT (Input: a 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to 2n2 times
3: Pick an arbitrary unsatisfied clause
4: Choose a random literal and switch its value
5: If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

Call each loop of (2) a step. Let Ai be the variable assignment at step i .

Let α be any solution and Xi = |variable values shared by Ai and α|.

Example 1 :

Solution Found

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

F T T F F T F

0 1 2 3 4

α = (T, T, F, T).

t x1 x2 x3 x4

0 F F F F

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT 13

2-SAT

RANDOMISED2-SAT (Input: a 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to 2n2 times
3: Pick an arbitrary unsatisfied clause
4: Choose a random literal and switch its value
5: If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

Call each loop of (2) a step. Let Ai be the variable assignment at step i .

Let α be any solution and Xi = |variable values shared by Ai and α|.
Example 1 :

Solution Found

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

F T T T F F F T F T

0 1 2 3 4

α = (T, T, F, T).

t x1 x2 x3 x4

0 F F F F

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT 13

2-SAT

RANDOMISED2-SAT (Input: a 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to 2n2 times
3: Pick an arbitrary unsatisfied clause
4: Choose a random literal and switch its value
5: If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

Call each loop of (2) a step. Let Ai be the variable assignment at step i .

Let α be any solution and Xi = |variable values shared by Ai and α|.
Example 1 :

Solution Found

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

F T T T F F F T F T

0 1 2 3 4

α = (T, T, F, T).

t x1 x2 x3 x4

0 F F F F

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT 13

2-SAT

RANDOMISED2-SAT (Input: a 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to 2n2 times
3: Pick an arbitrary unsatisfied clause
4: Choose a random literal and switch its value
5: If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

Call each loop of (2) a step. Let Ai be the variable assignment at step i .

Let α be any solution and Xi = |variable values shared by Ai and α|.
Example 1 :

Solution Found

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

F T T T F F F T F T

0 1 2 3 4

α = (T, T, F, T).

t x1 x2 x3 x4

0 F F F F

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT 13

2-SAT

RANDOMISED2-SAT (Input: a 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to 2n2 times
3: Pick an arbitrary unsatisfied clause
4: Choose a random literal and switch its value
5: If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

Call each loop of (2) a step. Let Ai be the variable assignment at step i .

Let α be any solution and Xi = |variable values shared by Ai and α|.
Example 1 :

Solution Found

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

F F T T F T F T F T

0 1 2 3 4

α = (T, T, F, T).

t x1 x2 x3 x4

0 F F F F
1 F T F F

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT 13

2-SAT

RANDOMISED2-SAT (Input: a 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to 2n2 times
3: Pick an arbitrary unsatisfied clause
4: Choose a random literal and switch its value
5: If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

Call each loop of (2) a step. Let Ai be the variable assignment at step i .

Let α be any solution and Xi = |variable values shared by Ai and α|.
Example 1 :

Solution Found

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

F F T T F T F T F T

0 1 2 3 4

α = (T, T, F, T).

t x1 x2 x3 x4

0 F F F F
1 F T F F

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT 13

2-SAT

RANDOMISED2-SAT (Input: a 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to 2n2 times
3: Pick an arbitrary unsatisfied clause
4: Choose a random literal and switch its value
5: If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

Call each loop of (2) a step. Let Ai be the variable assignment at step i .

Let α be any solution and Xi = |variable values shared by Ai and α|.
Example 1 :

Solution Found

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

F F T T F T F T F T

0 1 2 3 4

α = (T, T, F, T).

t x1 x2 x3 x4

0 F F F F
1 F T F F

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT 13

2-SAT

RANDOMISED2-SAT (Input: a 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to 2n2 times
3: Pick an arbitrary unsatisfied clause
4: Choose a random literal and switch its value
5: If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

Call each loop of (2) a step. Let Ai be the variable assignment at step i .

Let α be any solution and Xi = |variable values shared by Ai and α|.
Example 1 :

Solution Found

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

T F F T T T F T F F

0 1 2 3 4

α = (T, T, F, T).

t x1 x2 x3 x4

0 F F F F
1 F T F F
2 T T F F

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT 13

2-SAT

RANDOMISED2-SAT (Input: a 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to 2n2 times
3: Pick an arbitrary unsatisfied clause
4: Choose a random literal and switch its value
5: If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

Call each loop of (2) a step. Let Ai be the variable assignment at step i .

Let α be any solution and Xi = |variable values shared by Ai and α|.
Example 1 :

Solution Found

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

T F F T T T F T F F

0 1 2 3 4

α = (T, T, F, T).

t x1 x2 x3 x4

0 F F F F
1 F T F F
2 T T F F

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT 13

2-SAT

RANDOMISED2-SAT (Input: a 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to 2n2 times
3: Pick an arbitrary unsatisfied clause
4: Choose a random literal and switch its value
5: If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

Call each loop of (2) a step. Let Ai be the variable assignment at step i .

Let α be any solution and Xi = |variable values shared by Ai and α|.
Example 1 :

Solution Found

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

T F F T T T F T F F

0 1 2 3 4

α = (T, T, F, T).

t x1 x2 x3 x4

0 F F F F
1 F T F F
2 T T F F

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT 13

2-SAT

RANDOMISED2-SAT (Input: a 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to 2n2 times
3: Pick an arbitrary unsatisfied clause
4: Choose a random literal and switch its value
5: If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

Call each loop of (2) a step. Let Ai be the variable assignment at step i .

Let α be any solution and Xi = |variable values shared by Ai and α|.
Example 1 :

Solution Found

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

T F F T T T T T T F

0 1 2 3 4

α = (T, T, F, T).

t x1 x2 x3 x4

0 F F F F
1 F T F F
2 T T F F
3 T T F T

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT 13

2-SAT

RANDOMISED2-SAT (Input: a 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to 2n2 times
3: Pick an arbitrary unsatisfied clause
4: Choose a random literal and switch its value
5: If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

Call each loop of (2) a step. Let Ai be the variable assignment at step i .

Let α be any solution and Xi = |variable values shared by Ai and α|.
Example 1 : Solution Found

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

T F F T T T T T T F

0 1 2 3 4

α = (T, T, F, T).

t x1 x2 x3 x4

0 F F F F
1 F T F F
2 T T F F
3 T T F T

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT 13

2-SAT

RANDOMISED2-SAT (Input: A 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to 2n2 times
3: Pick an arbitrary unsatisfied clauses
4: Choose a random literal and switch its value
5: If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

Call each loop of (2) a step. Let Ai be the variable assignment at step i .

Let α be any solution and Xi = |variable values shared by Ai and α|.
Example 2 :

(Another) Solution Found

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

F T T T F F F F F T

0 1 2 3 4

α = (T, F, F, T).

t x1 x2 x3 x4

0 F F F F

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT 14

2-SAT

RANDOMISED2-SAT (Input: A 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to 2n2 times
3: Pick an arbitrary unsatisfied clauses
4: Choose a random literal and switch its value
5: If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

Call each loop of (2) a step. Let Ai be the variable assignment at step i .

Let α be any solution and Xi = |variable values shared by Ai and α|.
Example 2 :

(Another) Solution Found

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

F T T T F F F F F T

0 1 2 3 4

α = (T, F, F, T).

t x1 x2 x3 x4

0 F F F F

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT 14

2-SAT

RANDOMISED2-SAT (Input: A 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to 2n2 times
3: Pick an arbitrary unsatisfied clauses
4: Choose a random literal and switch its value
5: If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

Call each loop of (2) a step. Let Ai be the variable assignment at step i .

Let α be any solution and Xi = |variable values shared by Ai and α|.
Example 2 :

(Another) Solution Found

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

F T T T F F F F F T

0 1 2 3 4

α = (T, F, F, T).

t x1 x2 x3 x4

0 F F F F

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT 14

2-SAT

RANDOMISED2-SAT (Input: A 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to 2n2 times
3: Pick an arbitrary unsatisfied clauses
4: Choose a random literal and switch its value
5: If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

Call each loop of (2) a step. Let Ai be the variable assignment at step i .

Let α be any solution and Xi = |variable values shared by Ai and α|.
Example 2 :

(Another) Solution Found

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

F T T T F F F F F T

0 1 2 3 4

α = (T, F, F, T).

t x1 x2 x3 x4

0 F F F F

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT 14

2-SAT

RANDOMISED2-SAT (Input: A 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to 2n2 times
3: Pick an arbitrary unsatisfied clauses
4: Choose a random literal and switch its value
5: If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

Call each loop of (2) a step. Let Ai be the variable assignment at step i .

Let α be any solution and Xi = |variable values shared by Ai and α|.
Example 2 :

(Another) Solution Found

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

F T T T F F T F T T

0 1 2 3 4

α = (T, F, F, T).

t x1 x2 x3 x4

0 F F F F
1 F F F T

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT 14

2-SAT

RANDOMISED2-SAT (Input: A 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to 2n2 times
3: Pick an arbitrary unsatisfied clauses
4: Choose a random literal and switch its value
5: If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

Call each loop of (2) a step. Let Ai be the variable assignment at step i .

Let α be any solution and Xi = |variable values shared by Ai and α|.
Example 2 :

(Another) Solution Found

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

F T T T F F T F T T

0 1 2 3 4

α = (T, F, F, T).

t x1 x2 x3 x4

0 F F F F
1 F F F T

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT 14

2-SAT

RANDOMISED2-SAT (Input: A 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to 2n2 times
3: Pick an arbitrary unsatisfied clauses
4: Choose a random literal and switch its value
5: If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

Call each loop of (2) a step. Let Ai be the variable assignment at step i .

Let α be any solution and Xi = |variable values shared by Ai and α|.
Example 2 :

(Another) Solution Found

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

F T T T F F T F T T

0 1 2 3 4

α = (T, F, F, T).

t x1 x2 x3 x4

0 F F F F
1 F F F T

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT 14

2-SAT

RANDOMISED2-SAT (Input: A 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to 2n2 times
3: Pick an arbitrary unsatisfied clauses
4: Choose a random literal and switch its value
5: If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

Call each loop of (2) a step. Let Ai be the variable assignment at step i .

Let α be any solution and Xi = |variable values shared by Ai and α|.
Example 2 :

(Another) Solution Found

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

F F T T F T T F T T

0 1 2 3 4

α = (T, F, F, T).

t x1 x2 x3 x4

0 F F F F
1 F F F T
2 F T F T

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT 14

2-SAT

RANDOMISED2-SAT (Input: A 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to 2n2 times
3: Pick an arbitrary unsatisfied clauses
4: Choose a random literal and switch its value
5: If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

Call each loop of (2) a step. Let Ai be the variable assignment at step i .

Let α be any solution and Xi = |variable values shared by Ai and α|.
Example 2 :

(Another) Solution Found

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

F F T T F T T F T T

0 1 2 3 4

α = (T, F, F, T).

t x1 x2 x3 x4

0 F F F F
1 F F F T
2 F T F T

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT 14

2-SAT

RANDOMISED2-SAT (Input: A 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to 2n2 times
3: Pick an arbitrary unsatisfied clauses
4: Choose a random literal and switch its value
5: If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

Call each loop of (2) a step. Let Ai be the variable assignment at step i .

Let α be any solution and Xi = |variable values shared by Ai and α|.
Example 2 :

(Another) Solution Found

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

F F T T F T T F T T

0 1 2 3 4

α = (T, F, F, T).

t x1 x2 x3 x4

0 F F F F
1 F F F T
2 F T F T

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT 14

2-SAT

RANDOMISED2-SAT (Input: A 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to 2n2 times
3: Pick an arbitrary unsatisfied clauses
4: Choose a random literal and switch its value
5: If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

Call each loop of (2) a step. Let Ai be the variable assignment at step i .

Let α be any solution and Xi = |variable values shared by Ai and α|.
Example 2 :

(Another) Solution Found

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

T F F T T T T F T F

0 1 2 3 4

α = (T, F, F, T).

t x1 x2 x3 x4

0 F F F F
1 F F F T
2 F T F T
3 T T F T

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT 14

2-SAT

RANDOMISED2-SAT (Input: A 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to 2n2 times
3: Pick an arbitrary unsatisfied clauses
4: Choose a random literal and switch its value
5: If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

Call each loop of (2) a step. Let Ai be the variable assignment at step i .

Let α be any solution and Xi = |variable values shared by Ai and α|.
Example 2 : (Another) Solution Found

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

T F F T T T T F T F

0 1 2 3 4

α = (T, F, F, T).

t x1 x2 x3 x4

0 F F F F
1 F F F T
2 F T F T
3 T T F T

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT 14

2-SAT and the SRW on the Path

If the formula is satisfiable, then the expected number of steps before
RANDOMISED2-SAT outputs a valid solution is at most n2.

Expected iterations of (2) in RANDOMISED2-SAT

Proof: Fix any solution α, then for any i ≥ 0 and 1 ≤ k ≤ n − 1,

(i) P [Xi+1 = 1 | Xi = 0] = 1
(ii) P [Xi+1 = k + 1 | Xi = k] ≥ 1/2
(iii) P [Xi+1 = k − 1 | Xi = k] ≤ 1/2.

Notice that if Xi = n then Ai = α thus solution found (may find another first).

Assume (pessimistically) that X0 = 0 (none of our initial guesses is right).

The stochastic process Xi is complicated to describe in full; however by
(i)− (iii) we can bound it by Yi (SRW on the n-path from 0). This gives

E [time to find sol] ≤ E0[min{t : Xt = n}] ≤ E0[min{t : Yt = n}] = h(0, n) = n2.

Provided a solution exists, RANDOMISED2-SAT will return a valid solution
in O

(
n2) time with probability at least 1/2.

Proposition Running for 2n2 time and using Markov’s inequality yields:

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT 15

2-SAT and the SRW on the Path

If the formula is satisfiable, then the expected number of steps before
RANDOMISED2-SAT outputs a valid solution is at most n2.

Expected iterations of (2) in RANDOMISED2-SAT

Proof: Fix any solution α, then for any i ≥ 0 and 1 ≤ k ≤ n − 1,

(i) P [Xi+1 = 1 | Xi = 0] = 1
(ii) P [Xi+1 = k + 1 | Xi = k] ≥ 1/2
(iii) P [Xi+1 = k − 1 | Xi = k] ≤ 1/2.

Notice that if Xi = n then Ai = α thus solution found (may find another first).

Assume (pessimistically) that X0 = 0 (none of our initial guesses is right).

The stochastic process Xi is complicated to describe in full; however by
(i)− (iii) we can bound it by Yi (SRW on the n-path from 0). This gives

E [time to find sol] ≤ E0[min{t : Xt = n}] ≤ E0[min{t : Yt = n}] = h(0, n) = n2.

Provided a solution exists, RANDOMISED2-SAT will return a valid solution
in O

(
n2) time with probability at least 1/2.

Proposition Running for 2n2 time and using Markov’s inequality yields:

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT 15

2-SAT and the SRW on the Path

If the formula is satisfiable, then the expected number of steps before
RANDOMISED2-SAT outputs a valid solution is at most n2.

Expected iterations of (2) in RANDOMISED2-SAT

Proof: Fix any solution α, then for any i ≥ 0 and 1 ≤ k ≤ n − 1,
(i) P [Xi+1 = 1 | Xi = 0] = 1

(ii) P [Xi+1 = k + 1 | Xi = k] ≥ 1/2
(iii) P [Xi+1 = k − 1 | Xi = k] ≤ 1/2.

Notice that if Xi = n then Ai = α thus solution found (may find another first).

Assume (pessimistically) that X0 = 0 (none of our initial guesses is right).

The stochastic process Xi is complicated to describe in full; however by
(i)− (iii) we can bound it by Yi (SRW on the n-path from 0). This gives

E [time to find sol] ≤ E0[min{t : Xt = n}] ≤ E0[min{t : Yt = n}] = h(0, n) = n2.

Provided a solution exists, RANDOMISED2-SAT will return a valid solution
in O

(
n2) time with probability at least 1/2.

Proposition Running for 2n2 time and using Markov’s inequality yields:

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT 15

2-SAT and the SRW on the Path

If the formula is satisfiable, then the expected number of steps before
RANDOMISED2-SAT outputs a valid solution is at most n2.

Expected iterations of (2) in RANDOMISED2-SAT

Proof: Fix any solution α, then for any i ≥ 0 and 1 ≤ k ≤ n − 1,
(i) P [Xi+1 = 1 | Xi = 0] = 1
(ii) P [Xi+1 = k + 1 | Xi = k] ≥ 1/2

(iii) P [Xi+1 = k − 1 | Xi = k] ≤ 1/2.

Notice that if Xi = n then Ai = α thus solution found (may find another first).

Assume (pessimistically) that X0 = 0 (none of our initial guesses is right).

The stochastic process Xi is complicated to describe in full; however by
(i)− (iii) we can bound it by Yi (SRW on the n-path from 0). This gives

E [time to find sol] ≤ E0[min{t : Xt = n}] ≤ E0[min{t : Yt = n}] = h(0, n) = n2.

Provided a solution exists, RANDOMISED2-SAT will return a valid solution
in O

(
n2) time with probability at least 1/2.

Proposition Running for 2n2 time and using Markov’s inequality yields:

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT 15

2-SAT and the SRW on the Path

If the formula is satisfiable, then the expected number of steps before
RANDOMISED2-SAT outputs a valid solution is at most n2.

Expected iterations of (2) in RANDOMISED2-SAT

Proof: Fix any solution α, then for any i ≥ 0 and 1 ≤ k ≤ n − 1,
(i) P [Xi+1 = 1 | Xi = 0] = 1
(ii) P [Xi+1 = k + 1 | Xi = k] ≥ 1/2
(iii) P [Xi+1 = k − 1 | Xi = k] ≤ 1/2.

Notice that if Xi = n then Ai = α thus solution found (may find another first).

Assume (pessimistically) that X0 = 0 (none of our initial guesses is right).

The stochastic process Xi is complicated to describe in full; however by
(i)− (iii) we can bound it by Yi (SRW on the n-path from 0). This gives

E [time to find sol] ≤ E0[min{t : Xt = n}] ≤ E0[min{t : Yt = n}] = h(0, n) = n2.

Provided a solution exists, RANDOMISED2-SAT will return a valid solution
in O

(
n2) time with probability at least 1/2.

Proposition Running for 2n2 time and using Markov’s inequality yields:

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT 15

2-SAT and the SRW on the Path

If the formula is satisfiable, then the expected number of steps before
RANDOMISED2-SAT outputs a valid solution is at most n2.

Expected iterations of (2) in RANDOMISED2-SAT

Proof: Fix any solution α, then for any i ≥ 0 and 1 ≤ k ≤ n − 1,
(i) P [Xi+1 = 1 | Xi = 0] = 1
(ii) P [Xi+1 = k + 1 | Xi = k] ≥ 1/2
(iii) P [Xi+1 = k − 1 | Xi = k] ≤ 1/2.

Notice that if Xi = n then Ai = α thus solution found (may find another first).

Assume (pessimistically) that X0 = 0 (none of our initial guesses is right).

The stochastic process Xi is complicated to describe in full; however by
(i)− (iii) we can bound it by Yi (SRW on the n-path from 0). This gives

E [time to find sol] ≤ E0[min{t : Xt = n}] ≤ E0[min{t : Yt = n}] = h(0, n) = n2.

Provided a solution exists, RANDOMISED2-SAT will return a valid solution
in O

(
n2) time with probability at least 1/2.

Proposition Running for 2n2 time and using Markov’s inequality yields:

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT 15

2-SAT and the SRW on the Path

If the formula is satisfiable, then the expected number of steps before
RANDOMISED2-SAT outputs a valid solution is at most n2.

Expected iterations of (2) in RANDOMISED2-SAT

Proof: Fix any solution α, then for any i ≥ 0 and 1 ≤ k ≤ n − 1,
(i) P [Xi+1 = 1 | Xi = 0] = 1
(ii) P [Xi+1 = k + 1 | Xi = k] ≥ 1/2
(iii) P [Xi+1 = k − 1 | Xi = k] ≤ 1/2.

Notice that if Xi = n then Ai = α thus solution found (may find another first).

Assume (pessimistically) that X0 = 0 (none of our initial guesses is right).

The stochastic process Xi is complicated to describe in full; however by
(i)− (iii) we can bound it by Yi (SRW on the n-path from 0). This gives

E [time to find sol] ≤ E0[min{t : Xt = n}] ≤ E0[min{t : Yt = n}] = h(0, n) = n2.

Provided a solution exists, RANDOMISED2-SAT will return a valid solution
in O

(
n2) time with probability at least 1/2.

Proposition Running for 2n2 time and using Markov’s inequality yields:

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT 15

2-SAT and the SRW on the Path

If the formula is satisfiable, then the expected number of steps before
RANDOMISED2-SAT outputs a valid solution is at most n2.

Expected iterations of (2) in RANDOMISED2-SAT

Proof: Fix any solution α, then for any i ≥ 0 and 1 ≤ k ≤ n − 1,
(i) P [Xi+1 = 1 | Xi = 0] = 1
(ii) P [Xi+1 = k + 1 | Xi = k] ≥ 1/2
(iii) P [Xi+1 = k − 1 | Xi = k] ≤ 1/2.

Notice that if Xi = n then Ai = α thus solution found (may find another first).

Assume (pessimistically) that X0 = 0 (none of our initial guesses is right).

The stochastic process Xi is complicated to describe in full; however by
(i)− (iii) we can bound it by Yi (SRW on the n-path from 0).

This gives

E [time to find sol] ≤ E0[min{t : Xt = n}] ≤ E0[min{t : Yt = n}] = h(0, n) = n2.

Provided a solution exists, RANDOMISED2-SAT will return a valid solution
in O

(
n2) time with probability at least 1/2.

Proposition Running for 2n2 time and using Markov’s inequality yields:

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT 15

2-SAT and the SRW on the Path

If the formula is satisfiable, then the expected number of steps before
RANDOMISED2-SAT outputs a valid solution is at most n2.

Expected iterations of (2) in RANDOMISED2-SAT

Proof: Fix any solution α, then for any i ≥ 0 and 1 ≤ k ≤ n − 1,
(i) P [Xi+1 = 1 | Xi = 0] = 1
(ii) P [Xi+1 = k + 1 | Xi = k] ≥ 1/2
(iii) P [Xi+1 = k − 1 | Xi = k] ≤ 1/2.

Notice that if Xi = n then Ai = α thus solution found (may find another first).

Assume (pessimistically) that X0 = 0 (none of our initial guesses is right).

The stochastic process Xi is complicated to describe in full; however by
(i)− (iii) we can bound it by Yi (SRW on the n-path from 0). This gives

E [time to find sol] ≤ E0[min{t : Xt = n}] ≤ E0[min{t : Yt = n}] = h(0, n) = n2.

Provided a solution exists, RANDOMISED2-SAT will return a valid solution
in O

(
n2) time with probability at least 1/2.

Proposition Running for 2n2 time and using Markov’s inequality yields:

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT 15

2-SAT and the SRW on the Path

If the formula is satisfiable, then the expected number of steps before
RANDOMISED2-SAT outputs a valid solution is at most n2.

Expected iterations of (2) in RANDOMISED2-SAT

Proof: Fix any solution α, then for any i ≥ 0 and 1 ≤ k ≤ n − 1,
(i) P [Xi+1 = 1 | Xi = 0] = 1
(ii) P [Xi+1 = k + 1 | Xi = k] ≥ 1/2
(iii) P [Xi+1 = k − 1 | Xi = k] ≤ 1/2.

Notice that if Xi = n then Ai = α thus solution found (may find another first).

Assume (pessimistically) that X0 = 0 (none of our initial guesses is right).

The stochastic process Xi is complicated to describe in full; however by
(i)− (iii) we can bound it by Yi (SRW on the n-path from 0). This gives

E [time to find sol] ≤ E0[min{t : Xt = n}] ≤ E0[min{t : Yt = n}] = h(0, n) = n2.

Provided a solution exists, RANDOMISED2-SAT will return a valid solution
in O

(
n2) time with probability at least 1/2.

Proposition

Running for 2n2 time and using Markov’s inequality yields:

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT 15

2-SAT and the SRW on the Path

If the formula is satisfiable, then the expected number of steps before
RANDOMISED2-SAT outputs a valid solution is at most n2.

Expected iterations of (2) in RANDOMISED2-SAT

Proof: Fix any solution α, then for any i ≥ 0 and 1 ≤ k ≤ n − 1,
(i) P [Xi+1 = 1 | Xi = 0] = 1
(ii) P [Xi+1 = k + 1 | Xi = k] ≥ 1/2
(iii) P [Xi+1 = k − 1 | Xi = k] ≤ 1/2.

Notice that if Xi = n then Ai = α thus solution found (may find another first).

Assume (pessimistically) that X0 = 0 (none of our initial guesses is right).

The stochastic process Xi is complicated to describe in full; however by
(i)− (iii) we can bound it by Yi (SRW on the n-path from 0). This gives

E [time to find sol] ≤ E0[min{t : Xt = n}] ≤ E0[min{t : Yt = n}] = h(0, n) = n2.

Provided a solution exists, RANDOMISED2-SAT will return a valid solution
in O

(
n2) time with probability at least 1/2.

Proposition Running for 2n2 time and using Markov’s inequality yields:

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT 15

Boosting Success Probabilities

Suppose a randomised algorithm succeeds with probability (at least) p.
Then for any C ≥ 1, dC

p · log ne repetitions are sufficient to succeed (in at
least one repetition) with probability at least 1− n−C .

Boosting Lemma

Proof: Recall that 1− p ≤ e−p for all real p. Let t = dC
p log ne and observe

P [t runs all fail] ≤ (1− p)t

≤ e−pt

≤ n−C ,

thus the probability one of the runs succeeds is at least 1− n−C .

There is a O
(
n2 log n

)
-time algorithm for 2-SAT which succeeds w.h.p.

RANDOMISED2-SAT

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT 16

Boosting Success Probabilities

Suppose a randomised algorithm succeeds with probability (at least) p.
Then for any C ≥ 1, dC

p · log ne repetitions are sufficient to succeed (in at
least one repetition) with probability at least 1− n−C .

Boosting Lemma

Proof: Recall that 1− p ≤ e−p for all real p. Let t = dC
p log ne and observe

P [t runs all fail] ≤ (1− p)t

≤ e−pt

≤ n−C ,

thus the probability one of the runs succeeds is at least 1− n−C .

There is a O
(
n2 log n

)
-time algorithm for 2-SAT which succeeds w.h.p.

RANDOMISED2-SAT

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT 16

Boosting Success Probabilities

Suppose a randomised algorithm succeeds with probability (at least) p.
Then for any C ≥ 1, dC

p · log ne repetitions are sufficient to succeed (in at
least one repetition) with probability at least 1− n−C .

Boosting Lemma

Proof: Recall that 1− p ≤ e−p for all real p. Let t = dC
p log ne and observe

P [t runs all fail] ≤ (1− p)t

≤ e−pt

≤ n−C ,

thus the probability one of the runs succeeds is at least 1− n−C .

There is a O
(
n2 log n

)
-time algorithm for 2-SAT which succeeds w.h.p.

RANDOMISED2-SAT

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT 16

Outline

Random Walks on Graphs, Hitting Times and Cover Times

Random Walks on Paths and Grids

SAT and a Randomised Algorithm for 2-SAT

Appendix: Reversibility and Random Walks on Weighted Graphs (non-exam.)

Hitting Times © Thomas Sauerwald Appendix: Reversibility and Random Walks on Weighted Graphs (non-exam.) 17

Random Walks on Weighted Graphs

An (edge) weighted graph G = (V ,E ,w) where w : E → R+ on the edges.

A Simple Random Walk (SRW) on a weighted graph G is a MC on V (G) with

P(i, j) =

{ w(i,j)∑
{x,y}∈E w(x,y)

if {i, j} ∈ E

0 if {i, j} 6∈ E
.

a b

c d

1

1

3

3

2

3 1

Directed

a b

c d

1

1

3
2

3 1

Undirected

Hitting Times © Thomas Sauerwald Appendix: Reversibility and Random Walks on Weighted Graphs (non-exam.) 18

Random Walks on Weighted Graphs

An (edge) weighted graph G = (V ,E ,w) where w : E → R+ on the edges.

A Simple Random Walk (SRW) on a weighted graph G is a MC on V (G) with

P(i, j) =

{ w(i,j)∑
{x,y}∈E w(x,y)

if {i, j} ∈ E

0 if {i, j} 6∈ E
.

a b

c d

1

1

3

3

2

3 1

Directed

a b

c d

1

1

3
2

3 1

Undirected

Hitting Times © Thomas Sauerwald Appendix: Reversibility and Random Walks on Weighted Graphs (non-exam.) 18

Random Walks on Weighted Graphs

An (edge) weighted graph G = (V ,E ,w) where w : E → R+ on the edges.

A Simple Random Walk (SRW) on a weighted graph G is a MC on V (G) with

P(i, j) =

{ w(i,j)∑
{x,y}∈E w(x,y)

if {i, j} ∈ E

0 if {i, j} 6∈ E
.

a b

c d

1

1

3

3

2

3 1

Directed

a b

c d

1

1

3
2

3 1

Undirected

Hitting Times © Thomas Sauerwald Appendix: Reversibility and Random Walks on Weighted Graphs (non-exam.) 18

Reversible Markov Chains

Any Markov Chain can be described as random walk on a weighted
directed graph.

A Markov chain on Ω with transition matrix P and stationary distribution
π is called reversible if, for any x , y ∈ Ω,

π(x)P(x , y) = π(y)P(y , x)

Definition

Reversible Markov Chains are equivalent to random walks on weighted
undirected graphs.

A reversible Markov Chain identified with the (undirected) weighted graph
G = (V ,E ,w) has stationary distribution given by

π(i) =

∑
j:{i,j}∈E w(i, j)

2
∑
{x,y}∈E w(x , y)

Hitting Times © Thomas Sauerwald Appendix: Reversibility and Random Walks on Weighted Graphs (non-exam.) 19

Reversible Markov Chains

Any Markov Chain can be described as random walk on a weighted
directed graph.

A Markov chain on Ω with transition matrix P and stationary distribution
π is called reversible if, for any x , y ∈ Ω,

π(x)P(x , y) = π(y)P(y , x)

Definition

Reversible Markov Chains are equivalent to random walks on weighted
undirected graphs.

A reversible Markov Chain identified with the (undirected) weighted graph
G = (V ,E ,w) has stationary distribution given by

π(i) =

∑
j:{i,j}∈E w(i, j)

2
∑
{x,y}∈E w(x , y)

Hitting Times © Thomas Sauerwald Appendix: Reversibility and Random Walks on Weighted Graphs (non-exam.) 19

Reversible Markov Chains

Any Markov Chain can be described as random walk on a weighted
directed graph.

A Markov chain on Ω with transition matrix P and stationary distribution
π is called reversible if, for any x , y ∈ Ω,

π(x)P(x , y) = π(y)P(y , x)

Definition

Reversible Markov Chains are equivalent to random walks on weighted
undirected graphs.

A reversible Markov Chain identified with the (undirected) weighted graph
G = (V ,E ,w) has stationary distribution given by

π(i) =

∑
j:{i,j}∈E w(i, j)

2
∑
{x,y}∈E w(x , y)

Hitting Times © Thomas Sauerwald Appendix: Reversibility and Random Walks on Weighted Graphs (non-exam.) 19

Reversible Markov Chains

Any Markov Chain can be described as random walk on a weighted
directed graph.

A Markov chain on Ω with transition matrix P and stationary distribution
π is called reversible if, for any x , y ∈ Ω,

π(x)P(x , y) = π(y)P(y , x)

Definition

Reversible Markov Chains are equivalent to random walks on weighted
undirected graphs.

A reversible Markov Chain identified with the (undirected) weighted graph
G = (V ,E ,w) has stationary distribution given by

π(i) =

∑
j:{i,j}∈E w(i, j)

2
∑
{x,y}∈E w(x , y)

Hitting Times © Thomas Sauerwald Appendix: Reversibility and Random Walks on Weighted Graphs (non-exam.) 19

	Random Walks on Graphs, Hitting Times and Cover Times
	Random Walks on Paths and Grids
	SAT and a Randomised Algorithm for 2-SAT
	Appendix: Reversibility and Random Walks on Weighted Graphs (non-exam.)

