Randomised Algorithms
Lecture 5: Random Walks, Hitting Times and Application to 2-SAT

Thomas Sauerwald (tms41@cam.ac.uk)

Lent 2022

B UNIVERSITY OF
9 CAMBRIDGE

Outline

Random Walks on Graphs, Hitting Times and Cover Times

Hitting Times © Thomas Sauerwald Random Walks on Graphs, Hitting Times and Cover Times

Random Walks on Graphs

A Simple Random Walk (SRW) on a graph G is a Markov chain on V(G) with

_1_f E
P(u,v) = {deg(") it{u, v} € E, and 7(u) = deg(u)

0 if {u,v} ¢ E.’ 2|E|

Hitting Times © Thomas Sauerwald Random Walks on Graphs, Hitting Times and Cover Times

Random Walks on Graphs

A Simple Random Walk (SRW) on a graph G is a Markov chain on V(G) with

_1_f E
P(u,v) = {deg(") it{u, v} € E, and 7(u) = deg(u)

0 if {u,v} ¢ E.’ 2|E|

Hitting Times © Thomas Sauerwald Random Walks on Graphs, Hitting Times and Cover Times

Random Walks on Graphs

A Simple Random Walk (SRW) on a graph G is a Markov chain on V(G) with

_1_f E
P(u,v) = {deg(") it{u, v} € E, and 7(u) = deg(u)

0 if {u,v} ¢ E.’ 2|E|

Hitting Times © Thomas Sauerwald Random Walks on Graphs, Hitting Times and Cover Times

Random Walks on Graphs

A Simple Random Walk (SRW) on a graph G is a Markov chain on V(G) with

_1_f E
P(u,v) = {deg(") it{u, v} € E, and 7(u) = deg(u)

0 if {u,v} ¢ E.’ 2|E|

Hitting Times © Thomas Sauerwald Random Walks on Graphs, Hitting Times and Cover Times

Random Walks on Graphs

A Simple Random Walk (SRW) on a graph G is a Markov chain on V(G) with

_1_f E
P(u,v) = {deg(") it{u, v} € E, and 7(u) = deg(u)

0 if {u,v} ¢ E.’ 2|E|

Hitting Times © Thomas Sauerwald Random Walks on Graphs, Hitting Times and Cover Times

Random Walks on Graphs

A Simple Random Walk (SRW) on a graph G is a Markov chain on V(G) with

_1_f E
P(u,v) = {deg(") it{u, v} € E, and 7(u) = deg(u)

0 if {u,v} ¢ E.’ 2|E|

Hitting Times © Thomas Sauerwald Random Walks on Graphs, Hitting Times and Cover Times

Random Walks on Graphs

A Simple Random Walk (SRW) on a graph G is a Markov chain on V(G) with

_1_f E
P(u,v) = {deg(") it{u, v} € E, and 7(u) = deg(u)

0 if {u,v} ¢ E.’ 2|E|

Hitting Times © Thomas Sauerwald Random Walks on Graphs, Hitting Times and Cover Times

Random Walks on Graphs

A Simple Random Walk (SRW) on a graph G is a Markov chain on V(G) with

_1_f E
P(u,v) = {deg(") it{u, v} € E, and 7(u) = deg(u)

0 if {u,v} ¢ E.’ 2|E|

Hitting Times © Thomas Sauerwald Random Walks on Graphs, Hitting Times and Cover Times

Random Walks on Graphs

A Simple Random Walk (SRW) on a graph G is a Markov chain on V(G) with

_1_f E
P(u,v) = {deg(") t{u,v} € E, and 7(u) = deg(u)

0 if {u,v} ¢ E.’ 2|E|
[Recan: h(u,v) = Ey[min{t > 1: X; = v}] is the hitting time of v from w. j

Hitting Times © Thomas Sauerwald Random Walks on Graphs, Hitting Times and Cover Times

Lazy Random Walks and Periodicity

The Lazy Random Walk (LRW) on G given by P = (P+1)/2,

saegm LUV} €E,
ifu=v,

ﬁu,v = %
0 otherwise

Hitting Times © Thomas Sauerwald Random Walks on Graphs, Hitting Times and Cover Times

Lazy Random Walks and Periodicity

The Lazy Random Walk (LRW) on G given by P = (P+1)/2,

saegm LUV} €E,
ifu=v,

:
2
0 otherwise

P - SRW matrix

Pov = I - Identity matrix.

Hitting Times © Thomas Sauerwald Random Walks on Graphs, Hitting Times and Cover Times

Lazy Random Walks and Periodicity

The Lazy Random Walk (LRW) on G given by P = (P+1)/2,

saegm LUV} €E,
ifu=v,

:
2
0 otherwise

P - SRW matrix

Pov = I - Identity matrix.

Fact: For any graph G the LRW on G is aperiodic.

Hitting Times © Thomas Sauerwald Random Walks on Graphs, Hitting Times and Cover Times

Lazy Random Walks and Periodicity

The Lazy Random Walk (LRW) on G given by P = (P+1)/2,

saegm UV} €E,
1 .

5 ifu=v,

0 otherwise

P - SRW matrix

Pov = I - Identity matrix.

Fact: For any graph G the LRW on G is aperiodic.
1

OE==0)
O===0)

SRW on C4, Periodic

nl=

Hitting Times © Thomas Sauerwald Random Walks on Graphs, Hitting Times and Cover Times

Lazy Random Walks and Periodicity

The Lazy Random Walk (LRW) on G given by P = (P+1)/2,

saegm LUV} €E,
ifu=v,

!
2
0 otherwise

P - SRW matrix

Pov = I - Identity matrix.

Fact: For any graph G the LRW on G is aperiodic.
1

1
4

Nl=
N=

N=

=
=

1 1
2 4

SRW on C4, Periodic LRW on C4, Aperiodic

Hitting Times © Thomas Sauerwald Random Walks on Graphs, Hitting Times and Cover Times

Application: Cover Time and Undirected Connectivity

Let teoy := maxuev Eu[min{t > 1: ULy Xs = V}] be the cover time, that s,
the worst-case expected time to visit all vertices.

Hitting Times © Thomas Sauerwald Random Walks on Graphs, Hitting Times and Cover Times

Application: Cover Time and Undirected Connectivity

Let teoy := maxuev Eu[min{t > 1: ULy Xs = V}] be the cover time, that s,
the worst-case expected time to visit all vertices.

Aleliunas, Karp, Lipton, Lovasz and Rackoff, FOCS'79
| For any connected graph G with n vertices, tcov(G) < 2(n— 1)|E]|.

Hitting Times © Thomas Sauerwald Random Walks on Graphs, Hitting Times and Cover Times

Application: Cover Time and Undirected Connectivity

Let teoy := maxuev Eu[min{t > 1: ULy Xs = V}] be the cover time, that s,
the worst-case expected time to visit all vertices.

Aleliunas, Karp, Lipton, Lovasz and Rackoff, FOCS'79
| For any connected graph G with n vertices, o/ (G) < 2(n— 1)|E].

Proof:

Hitting Times © Thomas Sauerwald Random Walks on Graphs, Hitting Times and Cover Times

Application: Cover Time and Undirected Connectivity

Let teoy := maxuev Eu[min{t > 1: ULy Xs = V}] be the cover time, that s,
the worst-case expected time to visit all vertices.

Aleliunas, Karp, Lipton, Lovasz and Rackoff, FOCS'79

| For any connected graph G with n vertices, o/ (G) < 2(n— 1)|E].

Proof:
= Take a spanning tree T in G @ @

Hitting Times © Thomas Sauerwald Random Walks on Graphs, Hitting Times and Cover Times

Application: Cover Time and Undirected Connectivity

Let teoy := maxuev Eu[min{t > 1: ULy Xs = V}] be the cover time, that s,
the worst-case expected time to visit all vertices.

Aleliunas, Karp, Lipton, Lovasz and Rackoff, FOCS'79

| For any connected graph G with n vertices, o/ (G) < 2(n— 1)|E].

Proof:

= Take a spanning tree T in G @ @
= Consider a traversal that goes through

every edge in T twice @

@

Hitting Times © Thomas Sauerwald Random Walks on Graphs, Hitting Times and Cover Times

Application: Cover Time and Undirected Connectivity

Let teoy := maxuev Eu[min{t > 1: ULy Xs = V}] be the cover time, that s,
the worst-case expected time to visit all vertices.

Aleliunas, Karp, Lipton, Lovasz and Rackoff, FOCS'79
| For any connected graph G with n vertices, o/ (G) < 2(n— 1)|E].]
Proof:

= Take a spanning tree T in G
= Consider a traversal that goes through
every edge in T twice

Hitting Times © Thomas Sauerwald Random Walks on Graphs, Hitting Times and Cover Times 5

Application: Cover Time and Undirected Connectivity

Let teoy := maxuev Eu[min{t > 1: ULy Xs = V}] be the cover time, that s,
the worst-case expected time to visit all vertices.

Aleliunas, Karp, Lipton, Lovasz and Rackoff, FOCS'79
| For any connected graph G with n vertices, o/ (G) < 2(n— 1)|E].]
Proof:

= Take a spanning tree T in G

= Consider a traversal that goes through
every edge in T twice

= For any adjacent vertices u, v,
thit(U, v) + thie(v, u) < 2|E| (Exercise!)

Hitting Times © Thomas Sauerwald Random Walks on Graphs, Hitting Times and Cover Times 5

Application: Cover Time and Undirected Connectivity

Let teoy := maxuev Eu[min{t > 1: ULy Xs = V}] be the cover time, that s,
the worst-case expected time to visit all vertices.

Aleliunas, Karp, Lipton, Lovasz and Rackoff, FOCS'79
| For any connected graph G with n vertices, o/ (G) < 2(n— 1)|E].]

Proof:

= Take a spanning tree T in G
= Consider a traversal that goes through
every edge in T twice
= For any adjacent vertices u, v,
thit(U, v) + thie(v, u) < 2|E| (Exercise!)
= Thus,

tcov(G) < Z h(U7 V) + h(V7 U)
(u,v)EE(T)

Hitting Times © Thomas Sauerwald Random Walks on Graphs, Hitting Times and Cover Times 5

Application: Cover Time and Undirected Connectivity

Let teoy := maxuev Eu[min{t > 1: ULy Xs = V}] be the cover time, that s,
the worst-case expected time to visit all vertices.

Aleliunas, Karp, Lipton, Lovasz and Rackoff, FOCS'79
| For any connected graph G with n vertices, o/ (G) < 2(n— 1)|E].]

Proof:

= Take a spanning tree T in G
= Consider a traversal that goes through
every edge in T twice
= For any adjacent vertices u, v,
thit(U, v) + thie(v, u) < 2|E| (Exercise!)
= Thus,

tcov(G) < Z h(U7 V) + h(V7 U)
(u,v)EE(T)

<2(n-1)-|E|

Hitting Times © Thomas Sauerwald Random Walks on Graphs, Hitting Times and Cover Times 5

Application: Cover Time and Undirected Connectivity

Let teoy := maxuev Eu[min{t > 1: ULy Xs = V}] be the cover time, that s,
the worst-case expected time to visit all vertices.

| For any connected graph G with n vertices, o/ (G) < 2(n— 1)|E].

By Markov’s inequality, all vertices are visited after)
4(n — 1)|E| steps with probability at least 1/2 J

Aleliunas, Karp, Lipton, Lovasz and Rackoff, FOCS'79]

Proof:

= Take a spanning tree T in G
= Consider a traversal that goes through
every edge in T twice
= For any adjacent vertices u, v,
thit(U, v) + thie(v, u) < 2|E| (Exercise!)
= Thus,

tcov(G) < Z h(U7 V) + h(V7 U)
(u,v)EE(T)

<2(n-1)-|E|

Hitting Times © Thomas Sauerwald Random Walks on Graphs, Hitting Times and Cover Times 5

Application: Cover Time and Undirected Connectivity

Let teoy := maxuev Eu[min{t > 1: ULy Xs = V}] be the cover time, that s,
the worst-case expected time to visit all vertices.

Aleliunas, Karp, Lipton, Lovasz and Rackoff, FOCS'79
| For any connected graph G with n vertices, o/ (G) < 2(n— 1)|E].]

4(n — 1)|E| steps with probability at least 1/2 lem with O(log n) space (see

[By Markov’s inequality, all vertices are visited after = solves the USTCON prob-
Complexity Theory course)

Proof:

= Take a spanning tree T in G
= Consider a traversal that goes through
every edge in T twice
= For any adjacent vertices u, v,
thit(U, v) + thie(v, u) < 2|E| (Exercise!)
= Thus,

tcov(G) < Z /'I(U7 V) + h(V7 U)
(u,v)EE(T)

<2(n-1)-|E|

Hitting Times © Thomas Sauerwald Random Walks on Graphs, Hitting Times and Cover Times 5

Outline

Random Walks on Paths and Grids

Hitting Times © Thomas Sauerwald Random Walks on Paths and Grids

1921: The Birth of Random Walks on (Infinite) Graphs (Polya)

Will a random walk always return to the origin?

Hitting Times © Thomas Sauerwald Random Walks on Paths and Grids

1921: The Birth of Random Walks on (Infinite) Graphs (Polya)

Will a random walk always return to the origin?

Infinite 2D Grid

© °
© o
“““ o) °
© °
© °

Hitting Times © Thomas Sauerwald Random Walks on Paths and Grids

1921: The Birth of Random Walks on (Infinite) Graphs (Polya)

Will a random walk always return to the origin?

Infinite 2D Grid

°o—0 o—0—0
°
o
“““ °
© °
© °

Hitting Times © Thomas Sauerwald Random Walks on Paths and Grids

1921: The Birth of Random Walks on (Infinite) Graphs (Polya)

Will a random walk always return to the origin?

Infinite 2D Grid Infinite 3D Grid
Q@

Hitting Times © Thomas Sauerwald Random Walks on Paths and Grids

1921: The Birth of Random Walks on (Infinite) Graphs (Polya)

Will a random walk always return to the origin?

Infinite 2D Grid Infinite 3D Grid
Q@
“““ o ¢ W]

Hitting Times © Thomas Sauerwald Random Walks on Paths and Grids

1921: The Birth of Random Walks on (Infinite) Graphs (Polya)

Will a random walk always return to the origin?

Infinite 2D Grid Infinite 3D Grid
Q@

“A drunk man will find his way home, but a drunk bird may get lost forever.”

Hitting Times © Thomas Sauerwald Random Walks on Paths and Grids

1921: The Birth of Random Walks on (Infinite) Graphs (Polya)

Will a random walk always return to the origin?

Infinite 2D Grid Infinite 3D Grid

S) Z
/ . Z
o o ~
o o
o) — AV
o o _
///
o o

2 -

“A drunk man will find his way home, but a drunk bird may get lost forever.”

[

[But for any regular (finite) graph, the expected return time to vis 1/7(u) = n]

Hitting Times © Thomas Sauerwald Random Walks on Paths and Grids 7

SRW Random Walk on Two-Dimensional Grids: Animation

Hitting Times © Thomas Sauerwald Random Walks on Paths and Grids

Random Walk on a Path (1/2)

The n-path P, is the graph with V(P,) = [n] and E(P,) = {{i,j}:j=i+1}.

O—0——C——~0C—®

Hitting Times © Thomas Sauerwald Random Walks on Paths and Grids

Random Walk on a Path (1/2)

The n-path P, is the graph with V(P,) = [n] and E(Ps) = {{i,j} :j=i+1}.

Proposition

For the SRW on P, we have h(k,n) = n* — k? forany 0 < k < n.

Hitting Times © Thomas Sauerwald Random Walks on Paths and Grids

Random Walk on a Path (1/2)

The n-path P, is the graph with V(P,) = [n] and E(Ps) = {{i,j} :j=i+1}.

@
N

©

&—0—®

Proposition

For the SRW on P, we have h(k,n) = n* — k? forany 0 < k < n.

Hitting Times © Thomas Sauerwald Random Walks on Paths and Grids

Random Walk on a Path (1/2)

The n-path P, is the graph with V(P,) = [n] and E(Ps) = {{i,j} :j=i+1}.

A

O—0O0—@0——(_—®

Proposition

For the SRW on P, we have h(k,n) = n* — k? forany 0 < k < n.

Hitting Times © Thomas Sauerwald Random Walks on Paths and Grids

Random Walk on a Path (1/2)

The n-path P, is the graph with V(P,) = [n] and E(Ps) = {{i,j} :j=i+1}.

@
N

©

&—0—®

Proposition

For the SRW on P, we have h(k,n) = n* — k? forany 0 < k < n.

Hitting Times © Thomas Sauerwald Random Walks on Paths and Grids

Random Walk on a Path (1/2)

The n-path P, is the graph with V(P,) = [n] and E(Ps) = {{i,j} :j=i+1}.

A

O—0O0—@0——(_—®

Proposition

For the SRW on P, we have h(k,n) = n* — k? forany 0 < k < n.

Hitting Times © Thomas Sauerwald Random Walks on Paths and Grids

Random Walk on a Path (1/2)

The n-path P, is the graph with V(P,) = [n] and E(Ps) = {{i,j} :j=i+1}.

X

O—0—@a—0E)—®

Proposition

For the SRW on P, we have h(k,n) = n* — k? forany 0 < k < n.

Hitting Times © Thomas Sauerwald Random Walks on Paths and Grids

Random Walk on a Path (1/2)

The n-path P, is the graph with V(P,) = [n] and E(Ps) = {{i,j} :j=i+1}.

Proposition

For the SRW on P, we have h(k,n) = n* — k? forany 0 < k < n.

Hitting Times © Thomas Sauerwald Random Walks on Paths and Grids

Random Walk on a Path (2/2)

Proposition

For the SRW on P, we have h(k,n) = n* — k2, forany 0 < k < n.

Hitting Times © Thomas Sauerwald Random Walks on Paths and Grids

Random Walk on a Path (2/2)

Proposition

For the SRW on P, we have h(k,n) = n* — k2, forany 0 < k < n.

Recall: Hitting times are the solution to the set of linear equations:

hoy) "SI ST h(zy) P(xz) Yx#ye V.

zeQ\{y}

Hitting Times © Thomas Sauerwald Random Walks on Paths and Grids

Random Walk on a Path (2/2)

Proposition

For the SRW on P, we have h(k,n) = n* — k2, forany 0 < k < n.

Recall: Hitting times are the solution to the set of linear equations:

hoy) "SI ST h(zy) P(xz) Yx#ye V.

zeQ\{y}

Proof: Let f(k) = h(k, n) and set f(n) := 0.

Hitting Times © Thomas Sauerwald Random Walks on Paths and Grids

Random Walk on a Path (2/2)

Proposition

For the SRW on P, we have h(k,n) = n* — k2, forany 0 < k < n.

Recall: Hitting times are the solution to the set of linear equations:

hoy) "SI ST h(zy) P(xz) Yx#ye V.

zeQ\{y}

Proof: Let f(k) = h(k, n) and set f(n) := 0. By the Markov property

£(0) = 1+ (1)

Hitting Times © Thomas Sauerwald Random Walks on Paths and Grids

Random Walk on a Path (2/2)

Proposition

For the SRW on P, we have h(k,n) = n* — k2, forany 0 < k < n.

Recall: Hitting times are the solution to the set of linear equations:

hoy) "SI ST h(zy) P(xz) Yx#ye V.
zeQ\{y}

Proof: Let f(k) = h(k, n) and set f(n) := 0. By the Markov property

fk—1) f(k+1)
2 T2

f(0)=1+f(1) and f(k)=1+ fori<k<n-—1.

Hitting Times © Thomas Sauerwald Random Walks on Paths and Grids 10

Random Walk on a Path (2/2)

Proposition

For the SRW on P, we have h(k,n) = n* — k2, forany 0 < k < n.

Recall: Hitting times are the solution to the set of linear equations:

hoy) "SI ST h(zy) P(xz) Yx#ye V.
zeQ\{y}

Proof: Let f(k) = h(k, n) and set f(n) := 0. By the Markov property

fk—1) f(k+1)
2 T2

f(0)=1+f(1) and f(k)=1+ fori1<k<n-—1.

System of nindependent equations in n unknowns, so has a unique solution.

Hitting Times © Thomas Sauerwald Random Walks on Paths and Grids

Random Walk on a Path (2/2)

Proposition

For the SRW on P, we have h(k,n) = n* — k2, forany 0 < k < n.

Recall: Hitting times are the solution to the set of linear equations:

hoy) "SI ST h(zy) P(xz) Yx#ye V.
zeQ\{y}

Proof: Let f(k) = h(k, n) and set f(n) := 0. By the Markov property

fk—1) f(k+1)
2 T2

f(0)=1-+f(1) and f(k)=1+

System of nindependent equations in n unknowns, so has a unique solution.

Thus it suffices to check that f(k) = n? — k? satisfies the above.

for1 <k<n-1.

Hitting Times © Thomas Sauerwald Random Walks on Paths and Grids

Random Walk on a Path (2/2)

Proposition

For the SRW on P, we have h(k,n) = n* — k2, forany 0 < k < n.

Recall: Hitting times are the solution to the set of linear equations:

hoy) "SI ST h(zy) P(xz) Yx#ye V.
zeQ\{y}

Proof: Let f(k) = h(k, n) and set f(n) := 0. By the Markov property

fk—1) f(k+1)
2 T2

f(0)=1-+f(1) and f(k)=1+

System of nindependent equations in n unknowns, so has a unique solution.

Thus it suffices to check that f(k) = n? — k? satisfies the above. Indeed

f0)=1+f1) =1+ 1% =1’

for1 <k<n-1.

Hitting Times © Thomas Sauerwald Random Walks on Paths and Grids

Random Walk on a Path (2/2)

Proposition

For the SRW on P, we have h(k,n) = n* — k2, forany 0 < k < n.

Recall: Hitting times are the solution to the set of linear equations:

hoy) "SI ST h(zy) P(xz) Yx#ye V.
zeQ\{y}

Proof: Let f(k) = h(k, n) and set f(n) := 0. By the Markov property
f(k—1) . f(k+1)
2 2
System of nindependent equations in n unknowns, so has a unique solution.

f(0)=1+f(1) and f(k)=1+ for1 <k<n-1.

Thus it suffices to check that f(k) = n? — k? satisfies the above. Indeed
f0)=1+f1) =1+ 1% =1’

and forany 1 < k < n— 1 we have,

2 e {)2 2 2
(ES) LI CES) S -

Hitting Times © Thomas Sauerwald Random Walks on Paths and Grids 10

f(k)=1+"

Outline

SAT and a Randomised Algorithm for 2-SAT

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT

SAT Problems

A Satisfiability (SAT) formula is a logical expression that’s the conjunction
(AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT

SAT Problems

A Satisfiability (SAT) formula is a logical expression that’s the conjunction

(AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values
True and False so that all the clauses are satisfied.

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT

SAT Problems

A Satisfiability (SAT) formula is a logical expression that’s the conjunction

(AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values
True and False so that all the clauses are satisfied.

Example:

SAT: (X1 VX VX)) A (X1 VX3) A (X1 VXaV Xa)A(XaV X3)A (X V X7)

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT

SAT Problems

A Satisfiability (SAT) formula is a logical expression that’s the conjunction

(AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values
True and False so that all the clauses are satisfied.

Example:

SAT: (X1 VX VX)) A (X1 VX3) A (X1 VXaV Xa)A(XaV X3)A (X V X7)
Solution: x; = True, Xo = False, X3 =False and X4 = True.

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT

SAT Problems

A Satisfiability (SAT) formula is a logical expression that’s the conjunction

(AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values
True and False so that all the clauses are satisfied.

Example:

SAT: (X1 VX VX)) A (X1 VX3) A (X1 VXaV Xa)A(XaV X3)A (X V X7)
Solution: x; = True, Xo = False, X3 =False and X4 = True.

= If each clause has k literals we call the problem k-SAT.
= In general, determining if a SAT formula has a solution is NP-hard

= In practice solvers are fast and used to great effect
= A huge amount of problems can be posed as a SAT:

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT

SAT Problems

A Satisfiability (SAT) formula is a logical expression that’s the conjunction

(AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values
True and False so that all the clauses are satisfied.

Example:

SAT: (X1 VX VX)) A (X1 VX3) A (X1 VXaV Xa)A(XaV X3)A (X V X7)
Solution: x; = True, Xo = False, X3 =False and X4 = True.

= If each clause has k literals we call the problem k-SAT.
= In general, determining if a SAT formula has a solution is NP-hard

= In practice solvers are fast and used to great effect

= A huge amount of problems can be posed as a SAT:
— Model checking and hardware/software verification
— Design of experiments

— Classical planning
— ...

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT

2-SAT

RANDOMISED2-SAT (Input: a 2-SAT-Formula)

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT

2-SAT

RANDOMISED2-SAT (Input: a 2-SAT-Formula)
1: Start with an arbitrary truth assignment

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT

2-SAT

RANDOMISED2-SAT (Input: a 2-SAT-Formula)

1: Start with an arbitrary truth assignment
2: Repeat up to 21 times

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT

2-SAT

RANDOMISED2-SAT (Input: a 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to 21 times
3: Pick an arbitrary unsatisfied clause

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT

2-SAT

RANDOMISED2-SAT (Input: a 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to 21 times
3: Pick an arbitrary unsatisfied clause
4: Choose a random literal and switch its value

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT

o.

SAT

RANDOMISED2-SAT (Input: a 2-SAT-Formula)

1
2
3
4:
5
6

: Repeat up to 2r? times

: return “Unsatisfiable”

: Start with an arbitrary truth assignment

Pick an arbitrary unsatisfied clause
Choose a random literal and switch its value
If formula is satisfied then return “Satisfiable”

Hitting Times © Thomas Sauerwald

SAT and a Randomised Algorithm for 2-SAT

2-SAT

RANDOMISED2-SAT (Input: a 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to 21 times
3 Pick an arbitrary unsatisfied clause
4: Choose a random literal and switch its value
5 If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

= Call each loop of (2) a step. Let A; be the variable assignment at step i.

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT

2-SAT

RANDOMISED2-SAT (Input: a 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to 21 times
3 Pick an arbitrary unsatisfied clause
4: Choose a random literal and switch its value
5 If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

= Call each loop of (2) a step. Let A; be the variable assignment at step i.
= Let a be any solution and X; = |variable values shared by A; and «|.

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT

2-SAT

RANDOMISED2-SAT (Input: a 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to 21 times
3 Pick an arbitrary unsatisfied clause
4: Choose a random literal and switch its value
5 If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

Call each loop of (2) a step. Let A; be the variable assignment at step /.
= Let a be any solution and X; = |variable values shared by A; and «|.
Example 1 :

(K VXR)A TV X)) A (X1 V X) A(XaVX3) A (Xe V X7) a=(T,T,F,T).
F T T T F F F T F T

© &—~C0E——®

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT

2-SAT

RANDOMISED2-SAT (Input: a 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to 21 times
3 Pick an arbitrary unsatisfied clause
4: Choose a random literal and switch its value
5 If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

Call each loop of (2) a step. Let A; be the variable assignment at step /.
= Let a be any solution and X; = |variable values shared by A; and «|.
Example 1 :

(K VXR)A TV X)) A (X1 Vxe) A(XaVXa) A (Xe V X7) a=(T,T,F,T).
F T T T F F F T F T

© &—~C0E——®

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT

2-SAT

RANDOMISED2-SAT (Input: a 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to 21 times
3 Pick an arbitrary unsatisfied clause
4: Choose a random literal and switch its value
5 If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

Call each loop of (2) a step. Let A; be the variable assignment at step /.
= Let a be any solution and X; = |variable values shared by A; and «|.
Example 1 :

(K VXR)A TV X)) A (X1 V X) A(XaVX3) A (Xe V X7) a=(T,T,F,T).
F T T T F F F T F T

© &—~C0E——®

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT

2-SAT

RANDOMISED2-SAT (Input: a 2-SAT-Formula)

1: Start with an arbitrary truth assignment

2: Repeat up to 21 times

3 Pick an arbitrary unsatisfied clause

4: Choose a random literal and switch its value

5 If formula is satisfied then return “Satisfiable”

6: return “Unsatisfiable”

= Call each loop of (2) a step. Let A; be the variable assignment at step i.

= Let a be any solution and X; = |variable values shared by A; and «|.
Example 1 :

(K VXR)A TV X)) A (X1 V X) A(XaVX3) A (Xe V X7) a=(T,T,F,T).
F F T T F T F T F T

O—C0—00——~CE—~0O

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT

2-SAT

RANDOMISED2-SAT (Input: a 2-SAT-Formula)

1: Start with an arbitrary truth assignment

2: Repeat up to 21 times

3 Pick an arbitrary unsatisfied clause

4: Choose a random literal and switch its value

5 If formula is satisfied then return “Satisfiable”

6: return “Unsatisfiable”

= Call each loop of (2) a step. Let A; be the variable assignment at step i.

= Let a be any solution and X; = |variable values shared by A; and «|.
Example 1 :

(VX)) AAVXE)A (X1 VX)) A(Xa VXa) A (Xa V X7) a=(T,T,F,T).
F F T T F T F T F T

O—C0—00——~CE—~0O

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT

2-SAT

RANDOMISED2-SAT (Input: a 2-SAT-Formula)

1: Start with an arbitrary truth assignment

2: Repeat up to 21 times

3 Pick an arbitrary unsatisfied clause

4: Choose a random literal and switch its value

5 If formula is satisfied then return “Satisfiable”

6: return “Unsatisfiable”

= Call each loop of (2) a step. Let A; be the variable assignment at step i.

= Let a be any solution and X; = |variable values shared by A; and «|.
Example 1 :

(K VXR)A TV X)) A (X1 V X) A(XaVX3) A (Xe V X7) a=(T,T,F,T).
F F T T F T F T F T

O—C0—00——~CE—~0O

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT

2-SAT

RANDOMISED2-SAT (Input: a 2-SAT-Formula)

1
2
3
4:
5
6

T

©

(1 VX)A GV XE)A (X1 V Xe) A (Xa V X5) A (Xa V X1) o
F T T T F T F F

Lt

0

1

—e—o—®

: Start with an arbitrary truth assignment
: Repeat up to 2r? times

Pick an arbitrary unsatisfied clause
Choose a random literal and switch its value
If formula is satisfied then return “Satisfiable”

: return “Unsatisfiable”

Call each loop of (2) a step. Let A; be the variable assignment at step /.
Let o be any solution and X; = |variable values shared by A; and «|.
Example 1 :

F

=(T,T,F,T).

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT

2-SAT

RANDOMISED2-SAT (Input: a 2-SAT-Formula)

1
2
3
4:
5
6

T

©

(VX)) AV X)) A (X1 V Xe) A (Xa V Xg) A (Xa V X7) o
F T T T F T F F

Lt

0

1

—e—o—®

: Start with an arbitrary truth assignment
: Repeat up to 2r? times

Pick an arbitrary unsatisfied clause
Choose a random literal and switch its value
If formula is satisfied then return “Satisfiable”

: return “Unsatisfiable”

Call each loop of (2) a step. Let A; be the variable assignment at step /.
Let o be any solution and X; = |variable values shared by A; and «|.
Example 1 :

F

=(T,T,F,T).

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT

2-SAT

RANDOMISED2-SAT (Input: a 2-SAT-Formula)

1
2
3
4:
5
6

T

©

(1 VX)A GV XE)A (X1 V Xe) A (Xa V X5) A (Xa V X1) o
F T T T F T F F

Lt

0

1

—e—o—®

: Start with an arbitrary truth assignment
: Repeat up to 2r? times

Pick an arbitrary unsatisfied clause
Choose a random literal and switch its value
If formula is satisfied then return “Satisfiable”

: return “Unsatisfiable”

Call each loop of (2) a step. Let A; be the variable assignment at step /.
Let o be any solution and X; = |variable values shared by A; and «|.
Example 1 :

F

=(T,T,F,T).

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT

2-SAT

RANDOMISED2-SAT (Input: a 2-SAT-Formula)

1: Start with an arbitrary truth assignment

2: Repeat up to 21 times

3 Pick an arbitrary unsatisfied clause

4: Choose a random literal and switch its value
5 If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

= Call each loop of (2) a step. Let A; be the variable assignment at step i.
= Let a be any solution and X; = |variable values shared by A; and «|.
Example 1 :

(K VXR)A TV X)) A (X1 V X) A(XaVX3) A (Xe V X7) a=(T,T,F,T).
T F F T T T T T T F

([t [x][e][x]x

O|F | F|F |F

1| F | T | F | F

2
O—OD—@—@—0@ AESESERE;

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT 13

2-SAT

RANDOMISED2-SAT (Input: a 2-SAT-Formula)

1: Start with an arbitrary truth assignment

2: Repeat up to 21 times

3 Pick an arbitrary unsatisfied clause

4: Choose a random literal and switch its value

5 If formula is satisfied then return “Satisfiable”

6: return “Unsatisfiable”

= Call each loop of (2) a step. Let A; be the variable assignment at step i.

= Let o be any solution and X; = |variable values shared by A; and «|.
Example 1 : Solution Found

(K VXR)A TV X)) A (X1 V X) A(XaVX3) A (Xe V X7) a=(T,T,F,T).
T F F T T T T T T F

([t [x][e][x]x

O|F | F|F |F

1| F | T | F | F

2
O—OD—@—@—0@ AESESERE;

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT 13

2-SAT

RANDOMISED2-SAT (Input: A 2-SAT-Formula)

1: Start with an arbitrary truth assignment

2: Repeat up to 21 times

3 Pick an arbitrary unsatisfied clauses

4: Choose a random literal and switch its value

5 If formula is satisfied then return “Satisfiable”

6: return “Unsatisfiable”

= Call each loop of (2) a step. Let A; be the variable assignment at step i.

= Let o be any solution and X; = |variable values shared by A; and «|.
Example 2 :

(K VXR)AGTVX) A X1V X) A(XaV X3) A (Xa V X7) a = (T,F,F,T).
F T T T F F F F F T

O—C0—0E0—~CE—~WO

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT

2-SAT

RANDOMISED2-SAT (Input: A 2-SAT-Formula)
1: Start with an arbitrary truth assignment
2: Repeat up to 21 times
3 Pick an arbitrary unsatisfied clauses
4: Choose a random literal and switch its value
5 If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

Call each loop of (2) a step. Let A; be the variable assignment at step i.
= Let a be any solution and X; = |variable values shared by A; and «|.
Example 2 :

(VX)) AV XE) A (X1 VX)) A (Xa V X3) A (Xa V X7) a = (T,F,F,T).
F T T T F F F T

O—C0—0E0—~CE—~WO

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT

2-SAT

RANDOMISED2-SAT (Input: A 2-SAT-Formula)

1: Start with an arbitrary truth assignment

2: Repeat up to 21 times

3 Pick an arbitrary unsatisfied clauses

4: Choose a random literal and switch its value

5 If formula is satisfied then return “Satisfiable”

6: return “Unsatisfiable”

= Call each loop of (2) a step. Let A; be the variable assignment at step i.

= Let o be any solution and X; = |variable values shared by A; and «|.
Example 2 :

(K VXR)A TV X)) A X1V X)) A(Xa V X3) A (Xa V X7) a = (T,F,F,T).
F T T T F F F F F T

O—C0—0E0—~CE—~WO

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT

2-SAT

RANDOMISED2-SAT (Input: A 2-SAT-Formula)

1: Start with an arbitrary truth assignment

2: Repeat up to 21 times

3 Pick an arbitrary unsatisfied clauses

4: Choose a random literal and switch its value

5 If formula is satisfied then return “Satisfiable”

6: return “Unsatisfiable”

= Call each loop of (2) a step. Let A; be the variable assignment at step i.

= Let o be any solution and X; = |variable values shared by A; and «|.
Example 2 :

(K VXR)AGTVX) A X1V X) A(XaV X3) A (Xa V X7) a = (T,F,F,T).
F T T T F F F F F T

O—C0—0E0—~CE—~WO

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT

2-SAT

RANDOMISED2-SAT (Input: A 2-SAT-Formula)

1: Start with an arbitrary truth assignment

2: Repeat up to 21 times

3 Pick an arbitrary unsatisfied clauses

4: Choose a random literal and switch its value
5 If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

Call each loop of (2) a step. Let A; be the variable assignment at step i.
= Let a be any solution and X; = |variable values shared by A; and «|.
Example 2 :

(K VXR)AGTVX) A X1V X) A(XaV X3) A (Xa V X7) a = (T,F,F,T).
F T T T F F T T

O—C0—0E0—~CE—~WO

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT

2-SAT

RANDOMISED2-SAT (Input: A 2-SAT-Formula)

1: Start with an arbitrary truth assignment

2: Repeat up to 21 times

3 Pick an arbitrary unsatisfied clauses

4: Choose a random literal and switch its value
5 If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

Call each loop of (2) a step. Let A; be the variable assignment at step i.
= Let a be any solution and X; = |variable values shared by A; and «|.
Example 2 :

(1 VX)A GV XE)A (X1 Vx2) A (XaV X3) A (Xa V X7) a = (T,F,F,T).
F T T T F F T T

O—C0—0E0—~CE—~WO

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT

2-SAT

RANDOMISED2-SAT (Input: A 2-SAT-Formula)

1: Start with an arbitrary truth assignment

2: Repeat up to 21 times

3 Pick an arbitrary unsatisfied clauses

4: Choose a random literal and switch its value
5 If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

Call each loop of (2) a step. Let A; be the variable assignment at step i.
= Let a be any solution and X; = |variable values shared by A; and «|.
Example 2 :

(K VXR)AGTVX) A X1V X) A(XaV X3) A (Xa V X7) a = (T,F,F,T).
F T T T F F T T

O—C0—0E0—~CE—~WO

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT

2-SAT

RANDOMISED2-SAT (Input: A 2-SAT-Formula)

1
2
3
4:
5
6

(VX)) AGVXE) A (X1 VX)) A (Xa V X3) A (Xa V X7)

F

O—C0—0E0—~CE—~WO

: Start with an arbitrary truth assignment
: Repeat up to 2r? times

Pick an arbitrary unsatisfied clauses
Choose a random literal and switch its value
If formula is satisfied then return “Satisfiable”

: return “Unsatisfiable”

Call each loop of (2) a step. Let A; be the variable assignment at step i.
Let « be any solution and X; = |variable values shared by A; and «|.
Example 2 :

F

T T F T T F T T

= (T,F,F,T).

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT

2-SAT

RANDOMISED2-SAT (Input: A 2-SAT-Formula)

1
2
3
4:
5
6

(VX)) AGVXE)A (X1 V Xe) A (Xa V X3) A (Xa V X7)

F

O—C0—0E0—~CE—~WO

: Start with an arbitrary truth assignment
: Repeat up to 2r? times

Pick an arbitrary unsatisfied clauses
Choose a random literal and switch its value
If formula is satisfied then return “Satisfiable”

: return “Unsatisfiable”

Call each loop of (2) a step. Let A; be the variable assignment at step i.
Let « be any solution and X; = |variable values shared by A; and «|.
Example 2 :

F

T T F T T F T T

= (T,F,F,T).

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT

2-SAT

RANDOMISED2-SAT (Input: A 2-SAT-Formula)

1
2
3
4:
5
6

(VX)) AGVXE) A (X1 VX)) A (Xa V X3) A (Xa V X7)

F

O—C0—0E0—~CE—~WO

: Start with an arbitrary truth assignment
: Repeat up to 2r? times

Pick an arbitrary unsatisfied clauses
Choose a random literal and switch its value
If formula is satisfied then return “Satisfiable”

: return “Unsatisfiable”

Call each loop of (2) a step. Let A; be the variable assignment at step i.
Let « be any solution and X; = |variable values shared by A; and «|.
Example 2 :

F

T T F T T F T T

= (T,F,F,T).

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT

2-SAT

RANDOMISED2-SAT (Input: A 2-SAT-Formula)

1: Start with an arbitrary truth assignment

2: Repeat up to 21 times

3 Pick an arbitrary unsatisfied clauses

4: Choose a random literal and switch its value
5 If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

Call each loop of (2) a step. Let A; be the variable assignment at step i.
= Let a be any solution and X; = |variable values shared by A; and «|.
Example 2 :

(X1 VX2) A (X1 V Xs) A (X1 V X2) A (Xa V Xg) A (Xa V X7) a = (T,F,F,T).

T F F T T T T F T F
([t [x][e][x]x
0 F F F F
1 F F F T
2| F|T|F|T

0—0—0—0—@ OCrhnh

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT 14

2-SAT

RANDOMISED2-SAT (Input: A 2-SAT-Formula)

1: Start with an arbitrary truth assignment

2: Repeat up to 21 times

3 Pick an arbitrary unsatisfied clauses

4: Choose a random literal and switch its value
5 If formula is satisfied then return “Satisfiable”
6: return “Unsatisfiable”

Call each loop of (2) a step. Let A; be the variable assignment at step i.
= Let a be any solution and X; = |variable values shared by A; and «|.
Example 2 : (Another) Solution Found

(X1 VX2) A (X1 V Xs) A (X1 V X2) A (Xa V Xg) A (Xa V X7) a = (T,F,F,T).

T F F T T T T F T F
([t [x][e][x]x
0 F F F F
1 F F F T
2| F|T|F|T

0—0—0—0—@ OCrhnh

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT 14

2-SAT and the SRW on the Path

Expected iterations of (2) in RANDOMISED2-SAT

If the formula is satisfiable, then the expected number of steps before
RANDOMISED2-SAT outputs a valid solution is at most n?.

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT

2-SAT and the SRW on the Path

Expected iterations of (2) in RANDOMISED2-SAT

If the formula is satisfiable, then the expected number of steps before
RANDOMISED2-SAT outputs a valid solution is at most n?.

Proof: Fix any solution o, then forany i > 0and 1 < k< n-1,

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT 15

2-SAT and the SRW on the Path

Expected iterations of (2) in RANDOMISED2-SAT

If the formula is satisfiable, then the expected number of steps before
RANDOMISED2-SAT outputs a valid solution is at most n?.

Proof: Fix any solution o, then forany i > 0and 1 < k< n-1,
(i) P[Xipr =1 Xi=0] =1

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT 15

2-SAT and the SRW on the Path

Expected iterations of (2) in RANDOMISED2-SAT

If the formula is satisfiable, then the expected number of steps before
RANDOMISED2-SAT outputs a valid solution is at most r?.

Proof: Fix any solution o, then forany i > 0and 1 < k< n-1,
() P[Xi1=1]X=0]=1
(i) P[X1 =k +1| X, =k]>1/2

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT

2-SAT and the SRW on the Path

Expected iterations of (2) in RANDOMISED2-SAT

If the formula is satisfiable, then the expected number of steps before
RANDOMISED2-SAT outputs a valid solution is at most r?.

Proof: Fix any solution o, then forany i > 0and 1 < k< n-1,
() P[Xi1=1]X=0]=1

(i) P[X1 =k +1| X, =k]>1/2

(i) P[X =k —1] Xi=k] < 1/2.

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT

2-SAT and the SRW on the Path

Expected iterations of (2) in RANDOMISED2-SAT

If the formula is satisfiable, then the expected number of steps before
RANDOMISED2-SAT outputs a valid solution is at most r?.

Proof: Fix any solution «, thenforany i >0and1 <k<n-1,
() P[Xp1=1]X=0]=1

(i) P[X1 =k +1| X, =k]>1/2

(i) P[X1 =k —1] X = k] < 1/2.

Notice that if X; = nthen A; = « thus solution found (may find another first).

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT 15

2-SAT and the SRW on the Path

Expected iterations of (2) in RANDOMISED2-SAT

If the formula is satisfiable, then the expected number of steps before
RANDOMISED2-SAT outputs a valid solution is at most r?.

Proof: Fix any solution «, thenforany i >0and1 <k<n-1,

() P[Xp1=1]X=0]=1

(i) P[X1 =k +1| X, =k]>1/2

(i) P[Xim =k -1 Xi=k] < 1/2.

Notice that if X; = nthen A; = « thus solution found (may find another first).
Assume (pessimistically) that Xo = 0 (none of our initial guesses is right).

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT 15

2-SAT and the SRW on the Path

Expected iterations of (2) in RANDOMISED2-SAT

If the formula is satisfiable, then the expected number of steps before
RANDOMISED2-SAT outputs a valid solution is at most r?.

Proof: Fix any solution «, thenforany i >0and1 <k<n-1,
() P[Xp1=1]X=0]=1

(i) P[X1 =k +1| X, =k]>1/2

(i) P[Xin =k =1 Xi=k] < 1/2.

Notice that if X; = nthen A; = « thus solution found (may find another first).

Assume (pessimistically) that Xo = 0 (none of our initial guesses is right).

The stochastic process X; is complicated to describe in full; however by
(f) — (iii) we can bound it by Y; (SRW on the n-path from 0).

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT

2-SAT and the SRW on the Path

Expected iterations of (2) in RANDOMISED2-SAT

If the formula is satisfiable, then the expected number of steps before
RANDOMISED2-SAT outputs a valid solution is at most r?.

Proof: Fix any solution «, thenforany i >0and1 <k<n-1,

() P[Xp1=1]X=0]=1

(i) P[X1 =k +1| X, =k]>1/2

(i) P[Xim =k -1 Xi=k] < 1/2.

Notice that if X; = nthen A; = « thus solution found (may find another first).
Assume (pessimistically) that Xo = 0 (none of our initial guesses is right).

The stochastic process X; is complicated to describe in full; however by
(f) — (iii) we can bound it by Y; (SRW on the n-path from 0). This gives

E [time to find sol] < Eg[min{t: X; = n}] < Eo[min{t: Y; = n}] = h(0, n) = r’.
O

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT

2-SAT and the SRW on the Path

Expected iterations of (2) in RANDOMISED2-SAT

If the formula is satisfiable, then the expected number of steps before
RANDOMISED2-SAT outputs a valid solution is at most r?.

Proof: Fix any solution «, thenforany i >0and1 <k<n-1,

() P[Xp1=1]X=0]=1

(i) P[X1 =k +1| X, =k]>1/2

(i) P[Xim =k -1 Xi=k] < 1/2.

Notice that if X; = nthen A; = « thus solution found (may find another first).
Assume (pessimistically) that Xo = 0 (none of our initial guesses is right).

The stochastic process X; is complicated to describe in full; however by
(f) — (iii) we can bound it by Y; (SRW on the n-path from 0). This gives

E [time to find sol] < Eg[min{t: X; = n}] < Eo[min{t: Y; = n}] = h(0, n) = r’.
O

[Running for 2n? time and using Markov’s inequality yields:]
(2

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT 15

2-SAT and the SRW on the Path

Expected iterations of (2) in RANDOMISED2-SAT

If the formula is satisfiable, then the expected number of steps before
RANDOMISED2-SAT outputs a valid solution is at most r?.

Proof: Fix any solution «, thenforany i >0and1 <k<n-1,
() P[Xp1=1]X=0]=1

(i) P[X1 =k +1| X, =k]>1/2

(i) P[Xin =k =1 Xi=k] < 1/2.

Notice that if X; = nthen A; = « thus solution found (may find another first).

Assume (pessimistically) that Xo = 0 (none of our initial guesses is right).

The stochastic process X; is complicated to describe in full; however by
(f) — (iii) we can bound it by Y; (SRW on the n-path from 0). This gives

E [time to find sol] < Eg[min{t: X; = n}] < Eo[min{t: Y; = n}] = h(0, n) = r’.
O

Proposition _[Running for 2n? time and using Markov’s inequality yields:
(%
Provided a solution exists, RANDOMISED2-SAT will return a valid solution

in O(n?) time with probability at least 1/2.

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT

Boosting Success Probabilities

Boosting Lemma

Suppose a randomised algorithm succeeds with probability (at least) p.
Then forany C > 1, (% - log n] repetitions are sufficient to succeed (in at

least one repetition) with probability at least 1 — n~C.

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT

Boosting Success Probabilities

Boosting Lemma

Suppose a randomised algorithm succeeds with probability (at least) p.
Then forany C > 1, (% - log n] repetitions are sufficient to succeed (in at

least one repetition) with probability at least 1 — n~C.

Proof: Recall that 1 — p < e P for all real p. Let t = [% log n] and observe

P[truns all fail] < (1 — p)’
<e”
<nC

thus the probability one of the runs succeeds is at least 1 — n~C.

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT

Boosting Success Probabilities

Boosting Lemma

Suppose a randomised algorithm succeeds with probability (at least) p.
Then forany C > 1, (% - log n] repetitions are sufficient to succeed (in at

least one repetition) with probability at least 1 — n~C.

Proof: Recall that 1 — p < e P for all real p. Let t = [% log n] and observe

P[truns all fail] < (1 — p)’
<e”
c

)

<n”

thus the probability one of the runs succeeds is at least 1 — n~C.

RANDOMISED2-SAT

There is a O(n” log n)-time algorithm for 2-SAT which succeeds w.h.p.

Hitting Times © Thomas Sauerwald SAT and a Randomised Algorithm for 2-SAT

Outline

Appendix: Reversibility and Random Walks on Weighted Graphs (non-exam.)

Hitting Times © Thomas Sauerwald Appendix: Reversibility and Random Walks on Weighted Graphs (non-exam.)

Random Walks on Weighted Graphs

An (edge) weighted graph G = (V, E, w) where w : E — R on the edges.

Hitting Times © Thomas Sauerwald Appendix: Reversibility and Random Walks on Weighted Graphs (non-exam.)

Random Walks on Weighted Graphs

An (edge) weighted graph G = (V, E, w) where w : E — R on the edges.
A Simple Random Walk (SRW) on a weighted graph Gis a MC on V(G) with

P(Iv,l) = E{X,Y}EE w(X,y) if {Iv.l} cE .
0 it {i.j} ¢ E

1
3
3
2
3 1
Directed

Hitting Times © Thomas Sauerwald Appendix: Reversibility and Random Walks on Weighted Graphs (non-exam.)

Random Walks on Weighted Graphs

An (edge) weighted graph G = (V, E, w) where w : E — R on the edges.
A Simple Random Walk (SRW) on a weighted graph Gis a MC on V(G) with

P(Iv,l) = E{X,Y}EE w(X,y) if {Iv.l} cE .
0 it {i.j} ¢ E

1
3
3
2
3 1
Directed Undirected

Hitting Times © Thomas Sauerwald Appendix: Reversibility and Random Walks on Weighted Graphs (non-exam.)

Reversible Markov Chains

= Any Markov Chain can be described as random walk on a weighted
directed graph.

Hitting Times © Thomas Sauerwald Appendix: Reversibility and Random Walks on Weighted Graphs (non-exam.)

Reversible Markov Chains

= Any Markov Chain can be described as random walk on a weighted
directed graph.

Definition

A Markov chain on Q with transition matrix P and stationary distribution
« is called reversible if, for any x, y € Q,

m(x)P(x,y) = 7(y)P(y, x)

Hitting Times © Thomas Sauerwald Appendix: Reversibility and Random Walks on Weighted Graphs (non-exam.)

Reversible Markov Chains

= Any Markov Chain can be described as random walk on a weighted
directed graph.

Definition

A Markov chain on Q with transition matrix P and stationary distribution
« is called reversible if, for any x, y € Q,

m(x)P(x,y) = 7(y)P(y, x)

= Reversible Markov Chains are equivalent to random walks on weighted
undirected graphs.

Hitting Times © Thomas Sauerwald Appendix: Reversibility and Random Walks on Weighted Graphs (non-exam.)

Reversible Markov Chains

= Any Markov Chain can be described as random walk on a weighted
directed graph.

Definition

A Markov chain on Q with transition matrix P and stationary distribution
= is called reversible if, for any x,y € Q,

m(X)P(x,y) = m(y)P(y,x)

= Reversible Markov Chains are equivalent to random walks on weighted
undirected graphs.

= A reversible Markov Chain identified with the (undirected) weighted graph
G = (V, E, w) has stationary distribution given by

iqijree Wi,)

ﬂ.(l) N 2Z{x,y}€E W(va)

Hitting Times © Thomas Sauerwald Appendix: Reversibility and Random Walks on Weighted Graphs (non-exam.)

	Random Walks on Graphs, Hitting Times and Cover Times
	Random Walks on Paths and Grids
	SAT and a Randomised Algorithm for 2-SAT
	Appendix: Reversibility and Random Walks on Weighted Graphs (non-exam.)

