Randomised Algorithms

Lecture 4: Markov Chains and Mixing Times

Thomas Sauerwald (tms41@cam.ac.uk)

Lent 2022

Recap of Markov Chain Basics

Irreducibility, Periodicity and Convergence

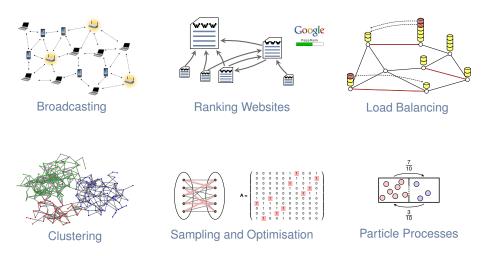
Total Variation Distance and Mixing Times

Application 1: Card Shuffling

Application 2: Ehrenfest Chain and Hypercubes

Application 3: Markov Chain Monte Carlo

Applications of Markov Chains in Computer Science



Markov Chains

Markov Chain (Discrete Time and State, Time Homogeneous) –

We say that $(X_t)_{t=0}^{\infty}$ is a Markov Chain on State Space Ω with Initial Distribution μ and Transition Matrix *P* if:

1. For any
$$x \in \Omega$$
, **P** [$X_0 = x$] = $\mu(x)$.

2. The Markov Property holds: for all $t \ge 0$ and any $x_0, \ldots, x_{t+1} \in \Omega$,

$$\mathbf{P}\left[X_{t+1} = x_{t+1} \mid X_t = x_t, \dots, X_0 = x_0\right] = \mathbf{P}\left[X_{t+1} = x_{t+1} \mid X_t = x_t\right]$$

:= $P(x_t, x_{t+1}).$

From the definition one can deduce that (check!)

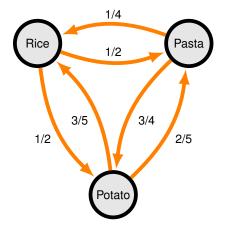
• For all $t, x_0, x_1, \ldots, x_t \in \Omega$,

$$\mathbf{P} [X_t = x_t, X_{t-1} = x_{t-1}, \dots, X_0 = x_0] \\ = \mu(x_0) \cdot P(x_0, x_1) \cdot \dots \cdot P(x_{t-2}, x_{t-1}) \cdot P(x_{t-1}, x_t).$$

• For all
$$0 \le t_1 < t_2, x \in \Omega$$
,

$$\mathbf{P}[X_{t_2} = x] = \sum_{y \in \Omega} \mathbf{P}[X_{t_2} = x \mid X_{t_1} = y] \cdot \mathbf{P}[X_{t_1} = y].$$

Example: the carbohydrate served with lunch in the college cafeteria.



This has transition matrix:

$$P = \begin{bmatrix} 0 & 1/2 & 1/2 \\ 1/4 & 0 & 3/4 \\ 3/5 & 2/5 & 0 \end{bmatrix}$$
 Rice
Pasta
Potato

Transition Matrices and Distributions

The Transition Matrix *P* of a Markov chain (μ, P) on $\Omega = \{1, ..., n\}$ is given by

$$P = \begin{pmatrix} P(1,1) & \dots & P(1,n) \\ \vdots & \ddots & \vdots \\ P(n,1) & \dots & P(n,n) \end{pmatrix}$$

• $\rho^t = (\rho^t(1), \rho^t(2), \dots, \rho^t(n))$: state vector at time *t* (row vector).

• Multiplying ρ^t by *P* corresponds to advancing the chain one step:

$$\rho^t(\mathbf{y}) = \sum_{j \in \Omega} \rho^{t-1}(\mathbf{x}) \cdot \mathbf{P}(\mathbf{x}, \mathbf{y}) \quad \text{and thus} \quad \rho^t = \rho^{t-1} \cdot \mathbf{P}.$$

• The Markov Property and line above imply that for any $t \ge 0$

$$\rho^t = \rho \cdot \mathcal{P}^{t-1}$$
 and thus $\mathcal{P}^t(x, y) = \mathbf{P}[X_t = y \mid X_0 = x].$

Thus $\rho^{t}(x) = (\mu P^{t})(x)$ and so $\rho^{t} = \mu P^{t} = (\mu P^{t}(1), \mu P^{t}(2), \dots, \mu P^{t}(n)).$

Everything boils down to deterministic vector/matrix computations
 ⇒ can replace ρ by any (load) vector and view P as a balancing matrix!

Stopping and Hitting Times

A non-negative integer random variable τ is a stopping time for $(X_t)_{t\geq 0}$ if for every $s \geq 0$ the event $\{\tau = s\}$ depends only on X_0, \ldots, X_s .

Example - College Carbs Stopping times:

 \checkmark "We had rice yesterday" \rightsquigarrow $\tau := \min \{t \ge 1 : X_{t-1} = \text{"rice"}\}$

× "We are having pasta next Thursday"

For two states $x, y \in \Omega$ we call h(x, y) the hitting time of y from x:

$$h(x, y) := \mathbf{E}_x[\tau_y] = \mathbf{E}[\tau_y \mid X_0 = x] \quad \text{where } \tau_y = \min\{t \ge 1 : X_t = y\}.$$

Some distinguish between $\tau_y^+ = \min\{t \ge 1 : X_t = y\}$ and $\tau_y = \min\{t \ge 0 : X_t = y\}$

– A Useful Identity —

Hitting times are the solution to a set of linear equations:

$$h(x,y) \stackrel{\text{Markov Prop.}}{=} 1 + \sum_{z \in \Omega \setminus \{y\}} P(x,z) \cdot h(z,y) \quad \forall x \neq y \in \Omega.$$

Recap of Markov Chain Basics

Irreducibility, Periodicity and Convergence

Total Variation Distance and Mixing Times

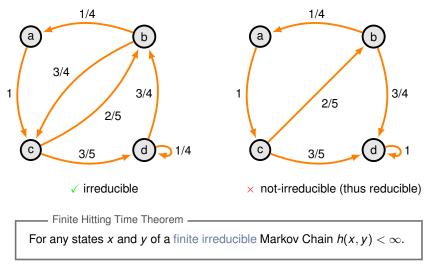
Application 1: Card Shuffling

Application 2: Ehrenfest Chain and Hypercubes

Application 3: Markov Chain Monte Carlo

Irreducible Markov Chains

A Markov Chain is irreducible if for every state $x \in \Omega$ there is an integer $k \ge 0$ such that $P^k(x, x) > 0$.



Stationary Distribution

A probability distribution $\pi = (\pi(1), \dots, \pi(n))$ is the stationary distribution of a Markov Chain if $\pi P = \pi$ (π is a left eigenvector with eigenvalue 1)

College carbs example:

$$\begin{pmatrix} \frac{4}{13}, \frac{4}{13}, \frac{5}{13} \\ \pi \end{pmatrix} \cdot \begin{pmatrix} 0 & 1/2 & 1/2 \\ 1/4 & 0 & 3/4 \\ 3/5 & 2/5 & 0 \\ P \end{pmatrix} = \begin{pmatrix} \frac{4}{13}, \frac{4}{13}, \frac{5}{13} \\ \pi \end{pmatrix}$$

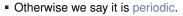
- A Markov Chain reaches stationary distribution if $\rho^t = \pi$ for some *t*.
- If reached, then it persists: If $\rho^t = \pi$ then $\rho^{t+k} = \pi$ for all $k \ge 0$.

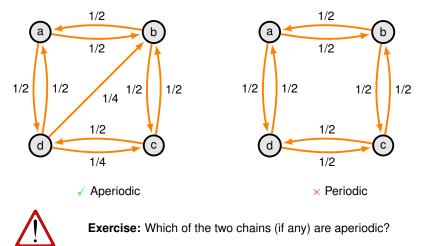
Existence and Uniqueness of a Positive Stationary Distribution — Let *P* be finite, irreducible M.C., then there exists a unique probability distribution π on Ω such that $\pi = \pi P$ and $\pi(x) = 1/h(x, x) > 0$, $\forall x \in \Omega$.

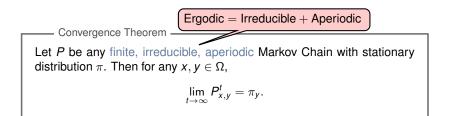
1/4

Periodicity

• A Markov Chain is aperiodic if for all $x \in \Omega$, $gcd\{t \ge 1 : P_{x,x}^t > 0\} = 1$.





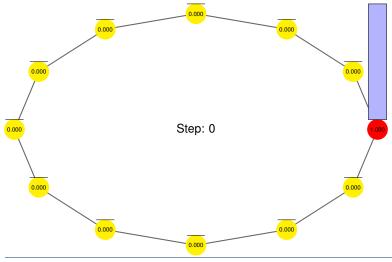


• mentioned before: For finite irreducible M.C.'s π exists, is unique and

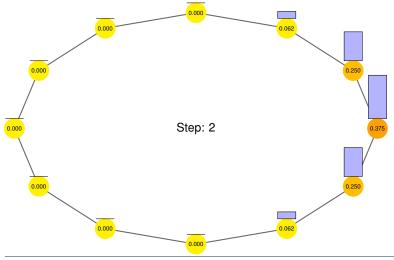
$$\pi_y=\frac{1}{h(y,y)}>0.$$

• We will prove a simpler version of the Convergence Theorem after introducing Spectral Graph Theory.

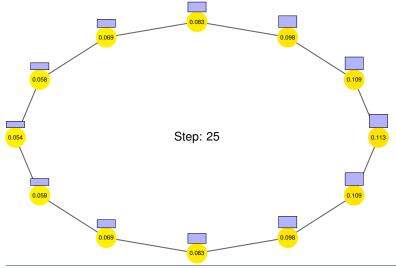
- Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
- At step *t* the value at vertex $x \in \{1, 2, \dots, 12\}$ is $P^t(1, x)$.



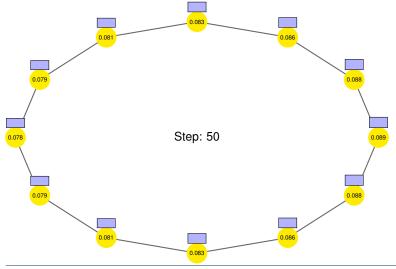
- Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
- At step *t* the value at vertex $x \in \{1, 2, \dots, 12\}$ is $P^t(1, x)$.



- Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
- At step *t* the value at vertex $x \in \{1, 2, \dots, 12\}$ is $P^t(1, x)$.



- Markov Chain: stays put with 1/2 and moves left (or right) w.p. 1/4
- At step *t* the value at vertex $x \in \{1, 2, \dots, 12\}$ is $P^t(1, x)$.



Recap of Markov Chain Basics

Irreducibility, Periodicity and Convergence

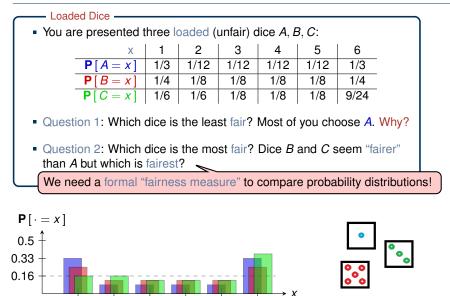
Total Variation Distance and Mixing Times

Application 1: Card Shuffling

Application 2: Ehrenfest Chain and Hypercubes

Application 3: Markov Chain Monte Carlo

How Similar are Two Probability Measures?



Total Variation Distance

The Total Variation Distance between two probability distributions μ and η on a countable state space Ω is given by

$$\|\mu - \eta\|_{tv} = \frac{1}{2} \sum_{\omega \in \Omega} |\mu(\omega) - \eta(\omega)|.$$

Loaded Dice: let $D = Unif\{1, 2, 3, 4, 5, 6\}$ be the law of a fair dice:

$$\begin{split} \|D - A\|_{tv} &= \frac{1}{2} \left(2 \left| \frac{1}{6} - \frac{1}{3} \right| + 4 \left| \frac{1}{6} - \frac{1}{12} \right| \right) = \frac{1}{3} \\ \|D - B\|_{tv} &= \frac{1}{2} \left(2 \left| \frac{1}{6} - \frac{1}{4} \right| + 4 \left| \frac{1}{6} - \frac{1}{8} \right| \right) = \frac{1}{6} \\ \|D - C\|_{tv} &= \frac{1}{2} \left(3 \left| \frac{1}{6} - \frac{1}{8} \right| + \left| \frac{1}{6} - \frac{9}{24} \right| \right) = \frac{1}{6}. \end{split}$$

Thus

 $\|D - B\|_{tv} = \|D - C\|_{tv} \text{ and } \|D - B\|_{tv}, \|D - C\|_{tv} < \|D - A\|_{tv}.$ So *A* is the least "fair" however *B* and *C* are equally "fair" (in TV distance). Let *P* be a finite Markov Chain with stationary distribution π .

• Let μ be a prob. vector on Ω (might be just one vertex) and $t \ge 0$. Then

$$P^t_{\mu} := \mathbf{P} \left[X_t = \cdot \mid X_0 \sim \mu \right],$$

is a probability measure on Ω .

For any μ,

$$\left\| oldsymbol{P}_{\mu}^{t} - \pi
ight\|_{tv} \leq \max_{x \in \Omega} \left\| oldsymbol{P}_{x}^{t} - \pi
ight\|_{tv}.$$

Convergence Theorem (Implication for TV Distance) -

For any finite, irreducible, aperiodic Markov Chain

$$\lim_{t\to\infty}\max_{x\in\Omega}\left\|\boldsymbol{P}^t_x-\pi\right\|_{t\nu}=0.$$

We will prove a similar result later after introducing spectral techniques!

Convergence Theorem: "Nice" Markov Chains converge to stationarity.

Question: How fast do they converge?

EXAMPLE Mixing Time The Mixing time $\tau_x(\epsilon)$ of a finite Markov Chain *P* with stationary distribution π is defined as

$$au_{\mathbf{X}}(\epsilon) = \min\left\{t: \left\| \mathbf{P}_{\mathbf{X}}^{t} - \pi \right\|_{t\mathbf{V}} \leq \epsilon\right\},\$$

and,

$$\tau(\epsilon) = \max_{x} \tau_{x}(\epsilon).$$

- This is how long we need to wait until we are "ε-close" to stationarity
- We often take $\varepsilon = 1/4$, indeed let $t_{mix} := \tau(1/4)$

Recap of Markov Chain Basics

Irreducibility, Periodicity and Convergence

Total Variation Distance and Mixing Times

Application 1: Card Shuffling

Application 2: Ehrenfest Chain and Hypercubes

Application 3: Markov Chain Monte Carlo

His research revealed a lot of beautiful connections between Markov Chains and Algebra.

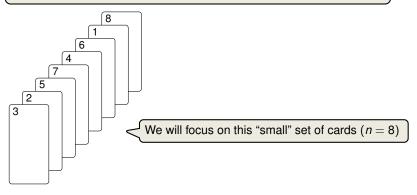
Persi Diaconis (Professor of Statistics and former Magician)

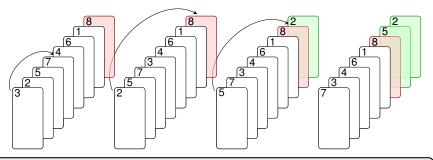
Source: www.soundcloud.com

TOPTORANDOMSHUFFLE (Input: A pile of *n* cards)

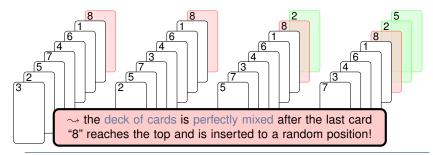
- 1: **For** *t* = 1, 2, . . .
- 2: Pick $i \in \{1, 2, ..., n\}$ uniformly at random
- 3: Take the top card and insert it behind the *i*-th card

This is a slightly informal definition, so let us look at a small example...

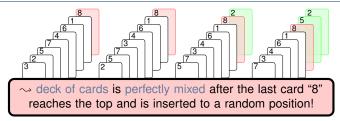




Even if we know which set of cards come after 8, every permutation is equally likely!



Analysing the Mixing Time (Intuition)



- How long does it take for the last card "n" to become top card?
- At the last position, card "n" moves up with probability $\frac{1}{n}$ at each step
- At the second last position, card "n" moves up with probability $\frac{2}{n}$
- At the second position, card "n" moves up with probability n-1 n
- One final step to randomise card "n" (with probability 1)

This is a "reversed" coupon collector process with n cards, which takes $n \log n$ in expectation.

Using the so-called coupling method, one could prove $t_{mix} \leq n \log n$.

Analysis of Riffle-Shuffle

Riffle Shuffle

- 1. Split a deck of *n* cards into two piles (thus the size of each portion will be Binomial)
- 2. Riffle the cards together so that the card drops from the left (or right) pile with probability proportional to the number of remaining cards

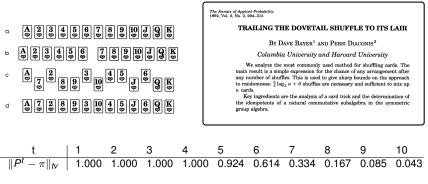


Figure: Total Variation Distance for t riffle shuffles of 52 cards.

Recap of Markov Chain Basics

Irreducibility, Periodicity and Convergence

Total Variation Distance and Mixing Times

Application 1: Card Shuffling

Application 2: Ehrenfest Chain and Hypercubes

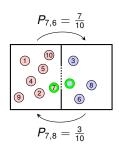
Application 3: Markov Chain Monte Carlo

The Ehrenfest Markov Chain

Ehrenfest Model -

- A simple model for the exchange of molecules between two boxes
- We have *d* particles labelled 1, 2, ..., *d*
- At each step a particle is selected uniformly at random and switches to the other box
- If Ω = {0, 1, ..., d} denotes the number of particles in the red box, then:

$$P_{x,x-1}=rac{x}{d}$$
 and $P_{x,x+1}=rac{d-x}{d}$.



Let us now enlarge the state space by looking at each particle individually!

Random Walk on the Hypercube —

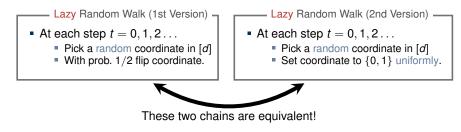
- For each particle an indicator variable $\Rightarrow \Omega = \{0, 1\}^d$
- At each step: pick a random coordinate in [d] and flip it

(Non-Lazy) Random Walk on the Hypercube

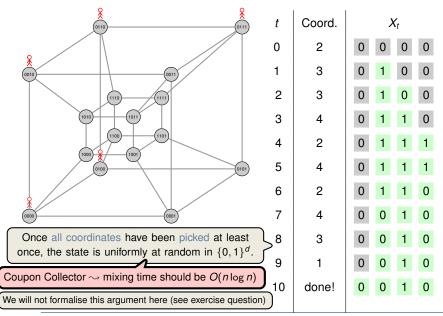
- For each particle an indicator variable $\Rightarrow \Omega = \{0, 1\}^d$
- At each step: pick a random coordinate in [d] and flip it

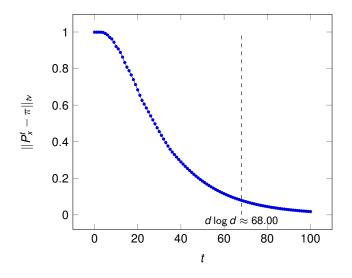
Problem: This Markov Chain is periodic, as the number of ones always switches from odd to even!

Solution: Add self-loops to break periodic behaviour!



Example of a Random Walk on a 4-Dimensional Hypercube





Theoretical Results (by Diaconis, Graham and Morrison)

RANDOM WALK ON A HYPERCUBE

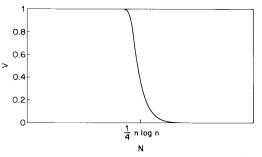


Fig. 1. The variation distance V as a function of N, for $n = 10^{12}$.

Source: "Asymptotic analysis of a random walk on a hypercube with many dimensions", P. Diaconis, R.L. Graham, J.A. Morrison; Random Structures & Algorithms, 1990.

- This is a numerical plot of a theoretical bound, where $d = 10^{12}$ (Minor Remark: This random walk is with a loop probability of 1/(d + 1))
- The variation distance exhibits a so-called cut-off phenomena:
 - Distance remains close to its maximum value 1 until step $\frac{1}{4}n \log n \Theta(n)$
 - Then distance moves close to 0 before step $\frac{1}{4}n \log n + \Theta(n)$

53

Recap of Markov Chain Basics

Irreducibility, Periodicity and Convergence

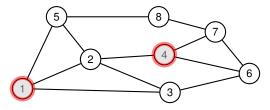
Total Variation Distance and Mixing Times

Application 1: Card Shuffling

Application 2: Ehrenfest Chain and Hypercubes

Application 3: Markov Chain Monte Carlo

A Markov Chain for Sampling Independent Sets (1/2)



 $S = \{1, 4\}$ is an independent set \checkmark

Independent Set

Given an undirected graph G = (V, E), an independent set is a subset $S \subseteq V$ such that there are no two vertices $u, v \in S$ with $\{u, v\} \in E(G)$.

How can we take a sample from the space of all independent sets?

Naive brute-force would take an insane amount of time (and space)!

We can use a generic Markov Chain Monte Carlo approach to tackle this problem!

A Markov Chain for Sampling Independent Sets (2/2)

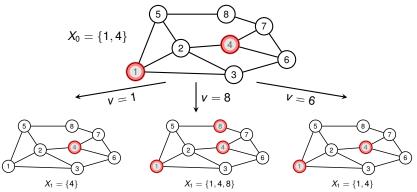
INDEPENDENTSETSAMPLER

1: Let X_0 be an arbitrary independent set in G

3: Pick a vertex $v \in V(G)$ uniformly at random

4: If
$$v \in X_t$$
 then $X_{t+1} \leftarrow X_t \setminus \{v\}$

- 5: elif $v \notin X_t$ and $X_t \cup \{v\}$ is an independent set then $X_{t+1} \leftarrow X_t \cup \{v\}$
- 6: **else** $X_{t+1} \leftarrow X_t$



A Markov Chain for Sampling Independent Sets (2/2)

INDEPENDENTSETSAMPLER

1: Let X_0 be an arbitrary independent set in G

```
2: For t = 1, 2, . . .:
```

3: Pick a vertex $v \in V(G)$ uniformly at random

4: If
$$v \in X_t$$
 then $X_{t+1} \leftarrow X_t \setminus \{v\}$

5: elif $v \notin X_t$ and $X_t \cup \{v\}$ is an independent set then $X_{t+1} \leftarrow X_t \cup \{v\}$

```
6: else X_{t+1} \leftarrow X_t
```

- Remark

- This is a local definition (no explicit definition of P!)
- This chain is irreducible (every independent set is reachable)
- This chain is aperiodic (Check!)
- The stationary distribution is uniform, since $P_{u,v} = P_{v,u}$ (Check!)

Key Question: What is the mixing time of this Markov Chain?

not covered here, see the textbook of Mitzenmacher & Upfal