Randomised Algorithms

Lecture 4：Markov Chains and Mixing Times

Thomas Sauerwald（tms41＠cam．ac．uk）

Outline

Recap of Markov Chain Basics

Irreducibility, Periodicity and Convergence

Total Variation Distance and Mixing Times

Application 1: Card Shuffling

Application 2: Ehrenfest Chain and Hypercubes

Application 3: Markov Chain Monte Carlo

Applications of Markov Chains in Computer Science

Applications of Markov Chains in Computer Science

Applications of Markov Chains in Computer Science

Applications of Markov Chains in Computer Science

Applications of Markov Chains in Computer Science

Clustering

Applications of Markov Chains in Computer Science

Broadcasting

Ranking Websites

Load Balancing

Clustering

Sampling and Optimisation

Applications of Markov Chains in Computer Science

Broadcasting

Ranking Websites

Load Balancing

Sampling and Optimisation

Particle Processes

Markov Chains

Markov Chain (Discrete Time and State, Time Homogeneous)
We say that $\left(X_{t}\right)_{t=0}^{\infty}$ is a Markov Chain on State Space Ω with Initial Distribution μ and Transition Matrix P if:

Markov Chains

Markov Chain (Discrete Time and State, Time Homogeneous)

We say that $\left(X_{t}\right)_{t=0}^{\infty}$ is a Markov Chain on State Space Ω with Initial Distribution μ and Transition Matrix P if:

1. For any $x \in \Omega, \mathbf{P}\left[X_{0}=x\right]=\mu(x)$.

Markov Chains

Markov Chain (Discrete Time and State, Time Homogeneous)

We say that $\left(X_{t}\right)_{t=0}^{\infty}$ is a Markov Chain on State Space Ω with Initial Distribution μ and Transition Matrix P if:

1. For any $x \in \Omega, \mathbf{P}\left[X_{0}=x\right]=\mu(x)$.
2. The Markov Property holds: for all $t \geq 0$ and any $x_{0}, \ldots, x_{t+1} \in \Omega$,

$$
\begin{aligned}
\mathbf{P}\left[X_{t+1}=x_{t+1} \mid X_{t}=x_{t}, \ldots, x_{0}=x_{0}\right] & =\mathbf{P}\left[X_{t+1}=x_{t+1} \mid X_{t}=x_{t}\right] \\
& :=P\left(x_{t}, x_{t+1}\right)
\end{aligned}
$$

Markov Chains

Markov Chain (Discrete Time and State, Time Homogeneous)

We say that $\left(X_{t}\right)_{t=0}^{\infty}$ is a Markov Chain on State Space Ω with Initial Distribution μ and Transition Matrix P if:

1. For any $x \in \Omega, \mathbf{P}\left[X_{0}=x\right]=\mu(x)$.
2. The Markov Property holds: for all $t \geq 0$ and any $x_{0}, \ldots, x_{t+1} \in \Omega$,

$$
\begin{aligned}
\mathbf{P}\left[X_{t+1}=x_{t+1} \mid X_{t}=x_{t}, \ldots, x_{0}=x_{0}\right] & =\mathbf{P}\left[X_{t+1}=x_{t+1} \mid X_{t}=x_{t}\right] \\
& :=P\left(x_{t}, x_{t+1}\right)
\end{aligned}
$$

From the definition one can deduce that (check!)

Markov Chains

Markov Chain (Discrete Time and State, Time Homogeneous)

We say that $\left(X_{t}\right)_{t=0}^{\infty}$ is a Markov Chain on State Space Ω with Initial Distribution μ and Transition Matrix P if:

1. For any $x \in \Omega, \mathbf{P}\left[X_{0}=x\right]=\mu(x)$.
2. The Markov Property holds: for all $t \geq 0$ and any $x_{0}, \ldots, x_{t+1} \in \Omega$,

$$
\begin{aligned}
\mathbf{P}\left[X_{t+1}=x_{t+1} \mid X_{t}=x_{t}, \ldots, X_{0}=x_{0}\right] & =\mathbf{P}\left[X_{t+1}=x_{t+1} \mid X_{t}=x_{t}\right] \\
& :=P\left(x_{t}, x_{t+1}\right)
\end{aligned}
$$

From the definition one can deduce that (check!)

- For all $t, x_{0}, x_{1}, \ldots, x_{t} \in \Omega$,

$$
\begin{aligned}
& \mathbf{P}\left[X_{t}=x_{t}, X_{t-1}=x_{t-1}, \ldots, X_{0}=x_{0}\right] \\
& =\mu\left(x_{0}\right) \cdot P\left(x_{0}, x_{1}\right) \cdot \ldots \cdot P\left(x_{t-2}, x_{t-1}\right) \cdot P\left(x_{t-1}, x_{t}\right)
\end{aligned}
$$

Markov Chains

Markov Chain (Discrete Time and State, Time Homogeneous)

We say that $\left(X_{t}\right)_{t=0}^{\infty}$ is a Markov Chain on State Space Ω with Initial Distribution μ and Transition Matrix P if:

1. For any $x \in \Omega, \mathbf{P}\left[X_{0}=x\right]=\mu(x)$.
2. The Markov Property holds: for all $t \geq 0$ and any $x_{0}, \ldots, x_{t+1} \in \Omega$,

$$
\begin{aligned}
\mathbf{P}\left[X_{t+1}=x_{t+1} \mid X_{t}=x_{t}, \ldots, x_{0}=x_{0}\right] & =\mathbf{P}\left[X_{t+1}=x_{t+1} \mid X_{t}=x_{t}\right] \\
& :=P\left(x_{t}, x_{t+1}\right)
\end{aligned}
$$

From the definition one can deduce that (check!)

- For all $t, x_{0}, x_{1}, \ldots, x_{t} \in \Omega$,

$$
\begin{aligned}
& \mathbf{P}\left[X_{t}=x_{t}, X_{t-1}=x_{t-1}, \ldots, X_{0}=x_{0}\right] \\
& =\mu\left(x_{0}\right) \cdot P\left(x_{0}, x_{1}\right) \cdot \ldots \cdot P\left(x_{t-2}, x_{t-1}\right) \cdot P\left(x_{t-1}, x_{t}\right)
\end{aligned}
$$

- For all $0 \leq t_{1}<t_{2}, x \in \Omega$,

$$
\mathbf{P}\left[X_{t_{2}}=x\right]=\sum_{y \in \Omega} \mathbf{P}\left[X_{t_{2}}=x \mid X_{t_{1}}=y\right] \cdot \mathbf{P}\left[X_{t_{1}}=y\right]
$$

What does a Markov Chain Look Like?

Example: the carbohydrate served with lunch in the college cafeteria.

This has transition matrix:

$$
P=\left[\begin{array}{ccc}
\text { Rice } & \text { Pasta } & \text { Potato } \\
{\left[\begin{array}{ccc}
0 & 1 / 2 & 1 / 2 \\
1 / 4 & 0 & 3 / 4 \\
3 / 5 & 2 / 5 & 0
\end{array}\right]}
\end{array} \begin{array}{l}
\text { Rice } \\
\text { Pasta } \\
\text { Potato }
\end{array}\right.
$$

Transition Matrices and Distributions

The Transition Matrix P of a Markov chain (μ, P) on $\Omega=\{1, \ldots n\}$ is given by

Transition Matrices and Distributions

The Transition Matrix P of a Markov chain (μ, P) on $\Omega=\{1, \ldots n\}$ is given by

$$
P=\left(\begin{array}{ccc}
P(1,1) & \ldots & P(1, n) \\
\vdots & \ddots & \vdots \\
P(n, 1) & \ldots & P(n, n)
\end{array}\right) .
$$

Transition Matrices and Distributions

The Transition Matrix P of a Markov chain (μ, P) on $\Omega=\{1, \ldots n\}$ is given by

$$
P=\left(\begin{array}{ccc}
P(1,1) & \ldots & P(1, n) \\
\vdots & \ddots & \vdots \\
P(n, 1) & \ldots & P(n, n)
\end{array}\right) .
$$

- $\rho^{t}=\left(\rho^{t}(1), \rho^{t}(2), \ldots, \rho^{t}(n)\right)$: state vector at time t (row vector).

Transition Matrices and Distributions

The Transition Matrix P of a Markov chain (μ, P) on $\Omega=\{1, \ldots n\}$ is given by

$$
P=\left(\begin{array}{ccc}
P(1,1) & \ldots & P(1, n) \\
\vdots & \ddots & \vdots \\
P(n, 1) & \ldots & P(n, n)
\end{array}\right)
$$

- $\rho^{t}=\left(\rho^{t}(1), \rho^{t}(2), \ldots, \rho^{t}(n)\right)$: state vector at time t (row vector).
- Multiplying ρ^{t} by P corresponds to advancing the chain one step:

$$
\rho^{t}(y)=\sum_{j \in \Omega} \rho^{t-1}(x) \cdot P(x, y) \quad \text { and thus } \quad \rho^{t}=\rho^{t-1} \cdot P .
$$

Transition Matrices and Distributions

The Transition Matrix P of a Markov chain (μ, P) on $\Omega=\{1, \ldots n\}$ is given by

$$
P=\left(\begin{array}{ccc}
P(1,1) & \ldots & P(1, n) \\
\vdots & \ddots & \vdots \\
P(n, 1) & \ldots & P(n, n)
\end{array}\right)
$$

- $\rho^{t}=\left(\rho^{t}(1), \rho^{t}(2), \ldots, \rho^{t}(n)\right)$: state vector at time t (row vector).
- Multiplying ρ^{t} by P corresponds to advancing the chain one step:

$$
\rho^{t}(y)=\sum_{j \in \Omega} \rho^{t-1}(x) \cdot P(x, y) \quad \text { and thus } \quad \rho^{t}=\rho^{t-1} \cdot P .
$$

- The Markov Property and line above imply that for any $t \geq 0$

$$
\rho^{t}=\rho \cdot P^{t-1} \quad \text { and thus } \quad P^{t}(x, y)=\mathbf{P}\left[X_{t}=y \mid X_{0}=x\right] .
$$

Transition Matrices and Distributions

The Transition Matrix P of a Markov chain (μ, P) on $\Omega=\{1, \ldots n\}$ is given by

$$
P=\left(\begin{array}{ccc}
P(1,1) & \ldots & P(1, n) \\
\vdots & \ddots & \vdots \\
P(n, 1) & \ldots & P(n, n)
\end{array}\right)
$$

- $\rho^{t}=\left(\rho^{t}(1), \rho^{t}(2), \ldots, \rho^{t}(n)\right)$: state vector at time t (row vector).
- Multiplying ρ^{t} by P corresponds to advancing the chain one step:

$$
\rho^{t}(y)=\sum_{j \in \Omega} \rho^{t-1}(x) \cdot P(x, y) \quad \text { and thus } \quad \rho^{t}=\rho^{t-1} \cdot P .
$$

- The Markov Property and line above imply that for any $t \geq 0$

$$
\rho^{t}=\rho \cdot P^{t-1} \quad \text { and thus } \quad P^{t}(x, y)=\mathbf{P}\left[X_{t}=y \mid X_{0}=x\right] .
$$

Thus $\rho^{t}(x)=\left(\mu P^{t}\right)(x)$ and so $\rho^{t}=\mu P^{t}=\left(\mu P^{t}(1), \mu P^{t}(2), \ldots, \mu P^{t}(n)\right)$.

Transition Matrices and Distributions

The Transition Matrix P of a Markov chain (μ, P) on $\Omega=\{1, \ldots n\}$ is given by

$$
P=\left(\begin{array}{ccc}
P(1,1) & \ldots & P(1, n) \\
\vdots & \ddots & \vdots \\
P(n, 1) & \ldots & P(n, n)
\end{array}\right)
$$

- $\rho^{t}=\left(\rho^{t}(1), \rho^{t}(2), \ldots, \rho^{t}(n)\right)$: state vector at time t (row vector).
- Multiplying ρ^{t} by P corresponds to advancing the chain one step:

$$
\rho^{t}(y)=\sum_{j \in \Omega} \rho^{t-1}(x) \cdot P(x, y) \quad \text { and thus } \quad \rho^{t}=\rho^{t-1} \cdot P
$$

- The Markov Property and line above imply that for any $t \geq 0$

$$
\rho^{t}=\rho \cdot P^{t-1} \quad \text { and thus } \quad P^{t}(x, y)=\mathbf{P}\left[X_{t}=y \mid \quad X_{0}=x\right]
$$

Thus $\rho^{t}(x)=\left(\mu P^{t}\right)(x)$ and so $\rho^{t}=\mu P^{t}=\left(\mu P^{t}(1), \mu P^{t}(2), \ldots, \mu P^{t}(n)\right)$.

- Everything boils down to deterministic vector/matrix computations

Transition Matrices and Distributions

The Transition Matrix P of a Markov chain (μ, P) on $\Omega=\{1, \ldots n\}$ is given by

$$
P=\left(\begin{array}{ccc}
P(1,1) & \ldots & P(1, n) \\
\vdots & \ddots & \vdots \\
P(n, 1) & \ldots & P(n, n)
\end{array}\right)
$$

- $\rho^{t}=\left(\rho^{t}(1), \rho^{t}(2), \ldots, \rho^{t}(n)\right)$: state vector at time t (row vector).
- Multiplying ρ^{t} by P corresponds to advancing the chain one step:

$$
\rho^{t}(y)=\sum_{j \in \Omega} \rho^{t-1}(x) \cdot P(x, y) \quad \text { and thus } \quad \rho^{t}=\rho^{t-1} \cdot P
$$

- The Markov Property and line above imply that for any $t \geq 0$

$$
\rho^{t}=\rho \cdot P^{t-1} \quad \text { and thus } \quad P^{t}(x, y)=\mathbf{P}\left[X_{t}=y \mid \quad X_{0}=x\right]
$$

Thus $\rho^{t}(x)=\left(\mu P^{t}\right)(x)$ and so $\rho^{t}=\mu P^{t}=\left(\mu P^{t}(1), \mu P^{t}(2), \ldots, \mu P^{t}(n)\right)$.

- Everything boils down to deterministic vector/matrix computations \Rightarrow can replace ρ by any (load) vector and view P as a balancing matrix!

Stopping and Hitting Times

A non-negative integer random variable τ is a stopping time for $\left(X_{t}\right)_{t \geq 0}$ if for every $s \geq 0$ the event $\{\tau=s\}$ depends only on X_{0}, \ldots, X_{s}.

Stopping and Hitting Times

A non-negative integer random variable τ is a stopping time for $\left(X_{t}\right)_{t \geq 0}$ if for every $s \geq 0$ the event $\{\tau=s\}$ depends only on X_{0}, \ldots, X_{s}.

Example - College Carbs Stopping times:
"We had rice yesterday"

Stopping and Hitting Times

A non-negative integer random variable τ is a stopping time for $\left(X_{t}\right)_{t \geq 0}$ if for every $s \geq 0$ the event $\{\tau=s\}$ depends only on X_{0}, \ldots, X_{s}.

Example - College Carbs Stopping times:
\checkmark "We had rice yesterday" $\sim \tau:=\min \left\{t \geq 1: X_{t-1}=\right.$ "rice" $\}$

Stopping and Hitting Times

A non-negative integer random variable τ is a stopping time for $\left(X_{t}\right)_{t \geq 0}$ if for every $s \geq 0$ the event $\{\tau=s\}$ depends only on X_{0}, \ldots, X_{s}.

Example - College Carbs Stopping times:
\checkmark "We had rice yesterday" $\sim \tau:=\min \left\{t \geq 1: X_{t-1}=\right.$ "rice" $\}$
\times "We are having pasta next Thursday"

Stopping and Hitting Times

A non-negative integer random variable τ is a stopping time for $\left(X_{t}\right)_{t \geq 0}$ if for every $s \geq 0$ the event $\{\tau=s\}$ depends only on X_{0}, \ldots, X_{s}.
Example - College Carbs Stopping times:
\checkmark "We had rice yesterday" $\sim \tau:=\min \left\{t \geq 1: X_{t-1}=\right.$ "rice" $\}$
\times "We are having pasta next Thursday"
For two states $x, y \in \Omega$ we call $h(x, y)$ the hitting time of y from x :

$$
h(x, y):=\mathbf{E}_{x}\left[\tau_{y}\right]=\mathbf{E}\left[\tau_{y} \mid X_{0}=x\right] \quad \text { where } \tau_{y}=\min \left\{t \geq 1: X_{t}=y\right\} .
$$

Stopping and Hitting Times

A non-negative integer random variable τ is a stopping time for $\left(X_{t}\right)_{t \geq 0}$ if for every $s \geq 0$ the event $\{\tau=s\}$ depends only on X_{0}, \ldots, X_{s}.

Example - College Carbs Stopping times:
\checkmark "We had rice yesterday" $\sim \tau:=\min \left\{t \geq 1: X_{t-1}=\right.$ "rice" $\}$
\times "We are having pasta next Thursday"
For two states $x, y \in \Omega$ we call $h(x, y)$ the hitting time of y from x :

$$
h(x, y):=\mathbf{E}_{x}\left[\tau_{y}\right]=\mathbf{E}\left[\tau_{y} \mid X_{0}=x\right] \quad \text { where } \tau_{y}=\min \left\{t \geq 1: X_{t}=y\right\} .
$$

$$
\text { Some distinguish between } \tau_{y}^{+}=\min \left\{t \geq 1: X_{t}=y\right\} \text { and } \tau_{y}=\min \left\{t \geq 0: X_{t}=y\right\}
$$

Stopping and Hitting Times

A non-negative integer random variable τ is a stopping time for $\left(X_{t}\right)_{t \geq 0}$ if for every $s \geq 0$ the event $\{\tau=s\}$ depends only on X_{0}, \ldots, X_{s}.

Example - College Carbs Stopping times:
\checkmark "We had rice yesterday" $\sim \tau:=\min \left\{t \geq 1: X_{t-1}=\right.$ "rice" $\}$
\times "We are having pasta next Thursday"
For two states $x, y \in \Omega$ we call $h(x, y)$ the hitting time of y from x :

$$
h(x, y):=\mathbf{E}_{x}\left[\tau_{y}\right]=\mathbf{E}\left[\tau_{y} \mid X_{0}=x\right] \quad \text { where } \tau_{y}=\min \left\{t \geq 1: X_{t}=y\right\}
$$

A Useful Identity

Hitting times are the solution to a set of linear equations:

$$
h(x, y) \stackrel{\text { Markov Prop. }}{=} 1+\sum_{z \in \Omega \backslash\{y\}} P(x, z) \cdot h(z, y) \quad \forall x \neq y \in \Omega
$$

Outline

Recap of Markov Chain Basics

Irreducibility, Periodicity and Convergence

Total Variation Distance and Mixing Times

Application 1: Card Shuffling

Application 2: Ehrenfest Chain and Hypercubes

Application 3: Markov Chain Monte Carlo

Irreducible Markov Chains

A Markov Chain is irreducible if for every state $x \in \Omega$ there is an integer $k \geq 0$ such that $P^{k}(x, x)>0$.

Irreducible Markov Chains

A Markov Chain is irreducible if for every state $x \in \Omega$ there is an integer $k \geq 0$ such that $P^{k}(x, x)>0$.

Irreducible Markov Chains

A Markov Chain is irreducible if for every state $x \in \Omega$ there is an integer $k \geq 0$ such that $P^{k}(x, x)>0$.

Exercise: Which of the two chains (if any) are irreducible?

Irreducible Markov Chains

A Markov Chain is irreducible if for every state $x \in \Omega$ there is an integer $k \geq 0$ such that $P^{k}(x, x)>0$.

\checkmark irreducible

\times not-irreducible (thus reducible)

Exercise: Which of the two chains (if any) are irreducible?

Irreducible Markov Chains

A Markov Chain is irreducible if for every state $x \in \Omega$ there is an integer $k \geq 0$ such that $P^{k}(x, x)>0$.

\checkmark irreducible

\times not-irreducible (thus reducible)

Finite Hitting Time Theorem
For any states x and y of a finite irreducible Markov Chain $h(x, y)<\infty$.

Stationary Distribution

A probability distribution $\pi=(\pi(1), \ldots, \pi(n))$ is the stationary distribution of a Markov Chain if $\pi P=\pi$ (π is a left eigenvector with eigenvalue 1)

Stationary Distribution

A probability distribution $\pi=(\pi(1), \ldots, \pi(n))$ is the stationary distribution of a Markov Chain if $\pi P=\pi$ (π is a left eigenvector with eigenvalue 1)

College carbs example:

$$
\left(\frac{4}{13}, \frac{4}{13}, \frac{5}{\pi}\right) \cdot\left(\begin{array}{ccc}
0 & 1 / 2 & 1 / 2 \\
1 / 4 & 0 & 3 / 4 \\
3 / 5 & 2 / 5 & 0
\end{array}\right)=\left(\frac{4}{13}, \frac{4}{13}, \frac{5}{\pi}\right)
$$

Stationary Distribution

A probability distribution $\pi=(\pi(1), \ldots, \pi(n))$ is the stationary distribution of a Markov Chain if $\pi P=\pi$ (π is a left eigenvector with eigenvalue 1)

College carbs example:

$$
\left(\frac{4}{13}, \frac{4}{13}, \frac{5}{\pi}\right) \cdot\left(\begin{array}{ccc}
0 & 1 / 2 & 1 / 2 \\
1 / 4 & 0 & 3 / 4 \\
3 / 5 & 2 / 5 & 0
\end{array}\right)=\left(\frac{4}{13}, \frac{4}{\pi}, \frac{5}{\pi}\right)
$$

- A Markov Chain reaches stationary distribution if $\rho^{t}=\pi$ for some t.

Stationary Distribution

A probability distribution $\pi=(\pi(1), \ldots, \pi(n))$ is the stationary distribution of a Markov Chain if $\pi P=\pi$ (π is a left eigenvector with eigenvalue 1)

College carbs example:

$$
\left(\frac{4}{13}, \frac{4}{13}, \frac{5}{\pi}\right) \cdot\left(\begin{array}{ccc}
0 & 1 / 2 & 1 / 2 \\
1 / 4 & 0 & 3 / 4 \\
3 / 5 & 2 / 5 & 0
\end{array}\right)=\left(\frac{4}{13}, \frac{4}{13}, \frac{5}{\pi}\right)
$$

- A Markov Chain reaches stationary distribution if $\rho^{t}=\pi$ for some t.
- If reached, then it persists: If $\rho^{t}=\pi$ then $\rho^{t+k}=\pi$ for all $k \geq 0$.

Stationary Distribution

A probability distribution $\pi=(\pi(1), \ldots, \pi(n))$ is the stationary distribution of a Markov Chain if $\pi P=\pi$ (π is a left eigenvector with eigenvalue 1)

College carbs example:

$$
\left(\frac{4}{13}, \frac{4}{13}, \frac{5}{\pi}\right) \cdot\left(\begin{array}{ccc}
0 & 1 / 2 & 1 / 2 \\
1 / 4 & 0 & 3 / 4 \\
3 / 5 & 2 / 5 & 0
\end{array}\right)=\left(\frac{4}{13}, \frac{4}{13}, \frac{5}{\pi}\right)
$$

- A Markov Chain reaches stationary distribution if $\rho^{t}=\pi$ for some t.
- If reached, then it persists: If $\rho^{t}=\pi$ then $\rho^{t+k}=\pi$ for all $k \geq 0$.

Existence and Uniqueness of a Positive Stationary Distribution
Let P be finite, irreducible M.C., then there exists a unique probability distribution π on Ω such that $\pi=\pi P$ and $\pi(x)=1 / h(x, x)>0, \forall x \in \Omega$.

Periodicity

- A Markov Chain is aperiodic if for all $x \in \Omega, \operatorname{gcd}\left\{t \geq 1: P_{x, x}^{t}>0\right\}=1$.

Periodicity

- A Markov Chain is aperiodic if for all $x \in \Omega, \operatorname{gcd}\left\{t \geq 1: P_{x, x}^{t}>0\right\}=1$.
- Otherwise we say it is periodic.

Periodicity

- A Markov Chain is aperiodic if for all $x \in \Omega, \operatorname{gcd}\left\{t \geq 1: P_{x, x}^{t}>0\right\}=1$.
- Otherwise we say it is periodic.

Periodicity

- A Markov Chain is aperiodic if for all $x \in \Omega, \operatorname{gcd}\left\{t \geq 1: P_{x, x}^{t}>0\right\}=1$.
- Otherwise we say it is periodic.

Exercise: Which of the two chains (if any) are aperiodic?

Periodicity

- A Markov Chain is aperiodic if for all $x \in \Omega, \operatorname{gcd}\left\{t \geq 1: P_{x, x}^{t}>0\right\}=1$.
- Otherwise we say it is periodic.

\checkmark Aperiodic

\times Periodic

Exercise: Which of the two chains (if any) are aperiodic?

Convergence Theorem

Convergence Theorem
Let P be any finite, irreducible, aperiodic Markov Chain with stationary distribution π. Then for any $x, y \in \Omega$,

$$
\lim _{t \rightarrow \infty} P_{x, y}^{t}=\pi_{y}
$$

Convergence Theorem

Convergence Theorem | Ergodic = Irreducible + Aperiodic |
| :--- |
| Let P be any finite, irreducible, aperiodic Markov Chain with stationary |
| distribution π. Then for any $x, y \in \Omega$, |
| $\qquad \lim _{t \rightarrow \infty} P_{x, y}^{t}=\pi_{y}$. |

Convergence Theorem

Convergence Theorem $\begin{aligned} & \text { Ergodic = Irreducible + Aperiodic } \\ & P \text { be any finite, irreducible, aperiodic Markov Chain with stationary }\end{aligned}$ distribution π. Then for any $x, y \in \Omega$,

$$
\lim _{t \rightarrow \infty} P_{x, y}^{t}=\pi_{y}
$$

- mentioned before: For finite irreducible M.C.'s π exists, is unique and

$$
\pi_{y}=\frac{1}{h(y, y)}>0
$$

Convergence Theorem

Ergodic $=$ Irreducible + Aperiodic

Let P be any finite, irreducible, aperiodic Markov Chain with stationary distribution π. Then for any $x, y \in \Omega$,

$$
\lim _{t \rightarrow \infty} P_{x, y}^{t}=\pi_{y}
$$

- mentioned before: For finite irreducible M.C.'s π exists, is unique and

$$
\pi_{y}=\frac{1}{h(y, y)}>0
$$

- We will prove a simpler version of the Convergence Theorem after introducing Spectral Graph Theory.

Convergence to Stationarity (Example)

- Markov Chain: stays put with $1 / 2$ and moves left (or right) w.p. 1/4
- At step t the value at vertex $x \in\{1,2, \ldots, 12\}$ is $P^{t}(1, x)$.

Convergence to Stationarity (Example)

- Markov Chain: stays put with $1 / 2$ and moves left (or right) w.p. 1/4
- At step t the value at vertex $x \in\{1,2, \ldots, 12\}$ is $P^{t}(1, x)$.

Convergence to Stationarity (Example)

- Markov Chain: stays put with $1 / 2$ and moves left (or right) w.p. 1/4
- At step t the value at vertex $x \in\{1,2, \ldots, 12\}$ is $P^{t}(1, x)$.

Convergence to Stationarity (Example)

- Markov Chain: stays put with $1 / 2$ and moves left (or right) w.p. 1/4
- At step t the value at vertex $x \in\{1,2, \ldots, 12\}$ is $P^{t}(1, x)$.

Convergence to Stationarity (Example)

- Markov Chain: stays put with $1 / 2$ and moves left (or right) w.p. 1/4
- At step t the value at vertex $x \in\{1,2, \ldots, 12\}$ is $P^{t}(1, x)$.

Convergence to Stationarity (Example)

- Markov Chain: stays put with $1 / 2$ and moves left (or right) w.p. 1/4
- At step t the value at vertex $x \in\{1,2, \ldots, 12\}$ is $P^{t}(1, x)$.

Convergence to Stationarity (Example)

- Markov Chain: stays put with $1 / 2$ and moves left (or right) w.p. 1/4
- At step t the value at vertex $x \in\{1,2, \ldots, 12\}$ is $P^{t}(1, x)$.

Convergence to Stationarity (Example)

- Markov Chain: stays put with $1 / 2$ and moves left (or right) w.p. 1/4
- At step t the value at vertex $x \in\{1,2, \ldots, 12\}$ is $P^{t}(1, x)$.

Convergence to Stationarity (Example)

- Markov Chain: stays put with $1 / 2$ and moves left (or right) w.p. 1/4
- At step t the value at vertex $x \in\{1,2, \ldots, 12\}$ is $P^{t}(1, x)$.

Convergence to Stationarity (Example)

- Markov Chain: stays put with $1 / 2$ and moves left (or right) w.p. 1/4
- At step t the value at vertex $x \in\{1,2, \ldots, 12\}$ is $P^{t}(1, x)$.

Convergence to Stationarity (Example)

- Markov Chain: stays put with $1 / 2$ and moves left (or right) w.p. 1/4
- At step t the value at vertex $x \in\{1,2, \ldots, 12\}$ is $P^{t}(1, x)$.

Convergence to Stationarity (Example)

- Markov Chain: stays put with $1 / 2$ and moves left (or right) w.p. 1/4
- At step t the value at vertex $x \in\{1,2, \ldots, 12\}$ is $P^{t}(1, x)$.

Convergence to Stationarity (Example)

- Markov Chain: stays put with $1 / 2$ and moves left (or right) w.p. 1/4
- At step t the value at vertex $x \in\{1,2, \ldots, 12\}$ is $P^{t}(1, x)$.

Convergence to Stationarity (Example)

- Markov Chain: stays put with $1 / 2$ and moves left (or right) w.p. 1/4
- At step t the value at vertex $x \in\{1,2, \ldots, 12\}$ is $P^{t}(1, x)$.

Convergence to Stationarity (Example)

- Markov Chain: stays put with $1 / 2$ and moves left (or right) w.p. 1/4
- At step t the value at vertex $x \in\{1,2, \ldots, 12\}$ is $P^{t}(1, x)$.

Convergence to Stationarity (Example)

- Markov Chain: stays put with $1 / 2$ and moves left (or right) w.p. 1/4
- At step t the value at vertex $x \in\{1,2, \ldots, 12\}$ is $P^{t}(1, x)$.

Convergence to Stationarity (Example)

- Markov Chain: stays put with $1 / 2$ and moves left (or right) w.p. 1/4
- At step t the value at vertex $x \in\{1,2, \ldots, 12\}$ is $P^{t}(1, x)$.

Convergence to Stationarity (Example)

- Markov Chain: stays put with $1 / 2$ and moves left (or right) w.p. 1/4
- At step t the value at vertex $x \in\{1,2, \ldots, 12\}$ is $P^{t}(1, x)$.

Convergence to Stationarity (Example)

- Markov Chain: stays put with $1 / 2$ and moves left (or right) w.p. 1/4
- At step t the value at vertex $x \in\{1,2, \ldots, 12\}$ is $P^{t}(1, x)$.

Convergence to Stationarity (Example)

- Markov Chain: stays put with $1 / 2$ and moves left (or right) w.p. 1/4
- At step t the value at vertex $x \in\{1,2, \ldots, 12\}$ is $P^{t}(1, x)$.

Convergence to Stationarity (Example)

- Markov Chain: stays put with $1 / 2$ and moves left (or right) w.p. 1/4
- At step t the value at vertex $x \in\{1,2, \ldots, 12\}$ is $P^{t}(1, x)$.

Convergence to Stationarity (Example)

- Markov Chain: stays put with $1 / 2$ and moves left (or right) w.p. 1/4
- At step t the value at vertex $x \in\{1,2, \ldots, 12\}$ is $P^{t}(1, x)$.

Convergence to Stationarity (Example)

- Markov Chain: stays put with $1 / 2$ and moves left (or right) w.p. 1/4
- At step t the value at vertex $x \in\{1,2, \ldots, 12\}$ is $P^{t}(1, x)$.

Convergence to Stationarity (Example)

- Markov Chain: stays put with $1 / 2$ and moves left (or right) w.p. 1/4
- At step t the value at vertex $x \in\{1,2, \ldots, 12\}$ is $P^{t}(1, x)$.

Convergence to Stationarity (Example)

- Markov Chain: stays put with $1 / 2$ and moves left (or right) w.p. 1/4
- At step t the value at vertex $x \in\{1,2, \ldots, 12\}$ is $P^{t}(1, x)$.

Convergence to Stationarity (Example)

- Markov Chain: stays put with $1 / 2$ and moves left (or right) w.p. 1/4
- At step t the value at vertex $x \in\{1,2, \ldots, 12\}$ is $P^{t}(1, x)$.

Convergence to Stationarity (Example)

- Markov Chain: stays put with $1 / 2$ and moves left (or right) w.p. 1/4
- At step t the value at vertex $x \in\{1,2, \ldots, 12\}$ is $P^{t}(1, x)$.

Convergence to Stationarity (Example)

- Markov Chain: stays put with $1 / 2$ and moves left (or right) w.p. 1/4
- At step t the value at vertex $x \in\{1,2, \ldots, 12\}$ is $P^{t}(1, x)$.

Convergence to Stationarity (Example)

- Markov Chain: stays put with $1 / 2$ and moves left (or right) w.p. 1/4
- At step t the value at vertex $x \in\{1,2, \ldots, 12\}$ is $P^{t}(1, x)$.

Convergence to Stationarity (Example)

- Markov Chain: stays put with $1 / 2$ and moves left (or right) w.p. 1/4
- At step t the value at vertex $x \in\{1,2, \ldots, 12\}$ is $P^{t}(1, x)$.

Convergence to Stationarity (Example)

- Markov Chain: stays put with $1 / 2$ and moves left (or right) w.p. 1/4
- At step t the value at vertex $x \in\{1,2, \ldots, 12\}$ is $P^{t}(1, x)$.

Convergence to Stationarity (Example)

- Markov Chain: stays put with $1 / 2$ and moves left (or right) w.p. 1/4
- At step t the value at vertex $x \in\{1,2, \ldots, 12\}$ is $P^{t}(1, x)$.

Convergence to Stationarity (Example)

- Markov Chain: stays put with $1 / 2$ and moves left (or right) w.p. 1/4
- At step t the value at vertex $x \in\{1,2, \ldots, 12\}$ is $P^{t}(1, x)$.

Convergence to Stationarity (Example)

- Markov Chain: stays put with $1 / 2$ and moves left (or right) w.p. 1/4
- At step t the value at vertex $x \in\{1,2, \ldots, 12\}$ is $P^{t}(1, x)$.

Convergence to Stationarity (Example)

- Markov Chain: stays put with $1 / 2$ and moves left (or right) w.p. 1/4
- At step t the value at vertex $x \in\{1,2, \ldots, 12\}$ is $P^{t}(1, x)$.

Convergence to Stationarity (Example)

- Markov Chain: stays put with $1 / 2$ and moves left (or right) w.p. 1/4
- At step t the value at vertex $x \in\{1,2, \ldots, 12\}$ is $P^{t}(1, x)$.

Convergence to Stationarity (Example)

- Markov Chain: stays put with $1 / 2$ and moves left (or right) w.p. 1/4
- At step t the value at vertex $x \in\{1,2, \ldots, 12\}$ is $P^{t}(1, x)$.

Convergence to Stationarity (Example)

- Markov Chain: stays put with $1 / 2$ and moves left (or right) w.p. 1/4
- At step t the value at vertex $x \in\{1,2, \ldots, 12\}$ is $P^{t}(1, x)$.

Convergence to Stationarity (Example)

- Markov Chain: stays put with $1 / 2$ and moves left (or right) w.p. 1/4
- At step t the value at vertex $x \in\{1,2, \ldots, 12\}$ is $P^{t}(1, x)$.

Convergence to Stationarity (Example)

- Markov Chain: stays put with $1 / 2$ and moves left (or right) w.p. 1/4
- At step t the value at vertex $x \in\{1,2, \ldots, 12\}$ is $P^{t}(1, x)$.

Convergence to Stationarity (Example)

- Markov Chain: stays put with $1 / 2$ and moves left (or right) w.p. 1/4
- At step t the value at vertex $x \in\{1,2, \ldots, 12\}$ is $P^{t}(1, x)$.

Convergence to Stationarity (Example)

- Markov Chain: stays put with $1 / 2$ and moves left (or right) w.p. 1/4
- At step t the value at vertex $x \in\{1,2, \ldots, 12\}$ is $P^{t}(1, x)$.

Convergence to Stationarity (Example)

- Markov Chain: stays put with $1 / 2$ and moves left (or right) w.p. 1/4
- At step t the value at vertex $x \in\{1,2, \ldots, 12\}$ is $P^{t}(1, x)$.

Convergence to Stationarity (Example)

- Markov Chain: stays put with $1 / 2$ and moves left (or right) w.p. 1/4
- At step t the value at vertex $x \in\{1,2, \ldots, 12\}$ is $P^{t}(1, x)$.

Convergence to Stationarity (Example)

- Markov Chain: stays put with $1 / 2$ and moves left (or right) w.p. 1/4
- At step t the value at vertex $x \in\{1,2, \ldots, 12\}$ is $P^{t}(1, x)$.

Convergence to Stationarity (Example)

- Markov Chain: stays put with $1 / 2$ and moves left (or right) w.p. 1/4
- At step t the value at vertex $x \in\{1,2, \ldots, 12\}$ is $P^{t}(1, x)$.

Convergence to Stationarity (Example)

- Markov Chain: stays put with $1 / 2$ and moves left (or right) w.p. 1/4
- At step t the value at vertex $x \in\{1,2, \ldots, 12\}$ is $P^{t}(1, x)$.

Convergence to Stationarity (Example)

- Markov Chain: stays put with $1 / 2$ and moves left (or right) w.p. 1/4
- At step t the value at vertex $x \in\{1,2, \ldots, 12\}$ is $P^{t}(1, x)$.

Convergence to Stationarity (Example)

- Markov Chain: stays put with $1 / 2$ and moves left (or right) w.p. 1/4
- At step t the value at vertex $x \in\{1,2, \ldots, 12\}$ is $P^{t}(1, x)$.

Convergence to Stationarity (Example)

- Markov Chain: stays put with $1 / 2$ and moves left (or right) w.p. 1/4
- At step t the value at vertex $x \in\{1,2, \ldots, 12\}$ is $P^{t}(1, x)$.

Convergence to Stationarity (Example)

- Markov Chain: stays put with $1 / 2$ and moves left (or right) w.p. 1/4
- At step t the value at vertex $x \in\{1,2, \ldots, 12\}$ is $P^{t}(1, x)$.

Outline

Recap of Markov Chain Basics
 Irreducibility, Periodicity and Convergence

Total Variation Distance and Mixing Times

Application 1: Card Shuffling

Application 2: Ehrenfest Chain and Hypercubes

Application 3: Markov Chain Monte Carlo

How Similar are Two Probability Measures?

Loaded Dice

- You are presented three loaded (unfair) dice A, B, C :

x	1	2	3	4	5	6
$\mathbf{P}[A=x]$	$1 / 3$	$1 / 12$	$1 / 12$	$1 / 12$	$1 / 12$	$1 / 3$
$\mathbf{P}[B=x]$	$1 / 4$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 4$
$\mathbf{P}[C=x]$	$1 / 6$	$1 / 6$	$1 / 8$	$1 / 8$	$1 / 8$	$9 / 24$

How Similar are Two Probability Measures?

Loaded Dice

- You are presented three loaded (unfair) dice A, B, C :

x	1	2	3	4	5	6
$\mathbf{P}[A=x]$	$1 / 3$	$1 / 12$	$1 / 12$	$1 / 12$	$1 / 12$	$1 / 3$
$\mathbf{P}[B=x]$	$1 / 4$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 4$
$\mathbf{P}[C=x]$	$1 / 6$	$1 / 6$	$1 / 8$	$1 / 8$	$1 / 8$	$9 / 24$

- Question 1: Which dice is the least fair?

How Similar are Two Probability Measures?

Loaded Dice

- You are presented three loaded (unfair) dice A, B, C :

x	1	2	3	4	5	6
$\mathbf{P}[A=x]$	$1 / 3$	$1 / 12$	$1 / 12$	$1 / 12$	$1 / 12$	$1 / 3$
$\mathbf{P}[B=x]$	$1 / 4$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 4$
$\mathbf{P}[C=x]$	$1 / 6$	$1 / 6$	$1 / 8$	$1 / 8$	$1 / 8$	$9 / 24$

- Question 1: Which dice is the least fair?
- Question 2: Which dice is the most fair?

How Similar are Two Probability Measures?

Loaded Dice

- You are presented three loaded (unfair) dice A, B, C :

x	1	2	3	4	5	6
$\mathbf{P}[A=x]$	$1 / 3$	$1 / 12$	$1 / 12$	$1 / 12$	$1 / 12$	$1 / 3$
$\mathbf{P}[B=x]$	$1 / 4$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 4$
$\mathbf{P}[C=x]$	$1 / 6$	$1 / 6$	$1 / 8$	$1 / 8$	$1 / 8$	$9 / 24$

- Question 1: Which dice is the least fair?
- Question 2: Which dice is the most fair?

How Similar are Two Probability Measures?

Loaded Dice

- You are presented three loaded (unfair) dice A, B, C :

x	1	2	3	4	5	6
$\mathbf{P}[A=x]$	$1 / 3$	$1 / 12$	$1 / 12$	$1 / 12$	$1 / 12$	$1 / 3$
$\mathbf{P}[B=x]$	$1 / 4$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 4$
$\mathbf{P}[C=x]$	$1 / 6$	$1 / 6$	$1 / 8$	$1 / 8$	$1 / 8$	$9 / 24$

- Question 1: Which dice is the least fair?
- Question 2: Which dice is the most fair?

How Similar are Two Probability Measures?

Loaded Dice

- You are presented three loaded (unfair) dice A, B, C :

x	1	2	3	4	5	6
$\mathbf{P}[A=x]$	$1 / 3$	$1 / 12$	$1 / 12$	$1 / 12$	$1 / 12$	$1 / 3$
$\mathbf{P}[B=x]$	$1 / 4$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 4$
$\mathbf{P}[C=x]$	$1 / 6$	$1 / 6$	$1 / 8$	$1 / 8$	$1 / 8$	$9 / 24$

- Question 1: Which dice is the least fair?
- Question 2: Which dice is the most fair?

How Similar are Two Probability Measures?

Loaded Dice

- You are presented three loaded (unfair) dice A, B, C :

x	1	2	3	4	5	6
$\mathbf{P}[A=x]$	$1 / 3$	$1 / 12$	$1 / 12$	$1 / 12$	$1 / 12$	$1 / 3$
$\mathbf{P}[B=x]$	$1 / 4$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 4$
$\mathbf{P}[C=x]$	$1 / 6$	$1 / 6$	$1 / 8$	$1 / 8$	$1 / 8$	$9 / 24$

- Question 1: Which dice is the least fair?
- Question 2: Which dice is the most fair?

How Similar are Two Probability Measures?

Loaded Dice

- You are presented three loaded (unfair) dice A, B, C :

x	1	2	3	4	5	6
$\mathbf{P}[A=x]$	$1 / 3$	$1 / 12$	$1 / 12$	$1 / 12$	$1 / 12$	$1 / 3$
$\mathbf{P}[B=x]$	$1 / 4$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 4$
$\mathbf{P}[C=x]$	$1 / 6$	$1 / 6$	$1 / 8$	$1 / 8$	$1 / 8$	$9 / 24$

- Question 1: Which dice is the least fair? Most of you choose A.
- Question 2: Which dice is the most fair?

How Similar are Two Probability Measures?

Loaded Dice

- You are presented three loaded (unfair) dice A, B, C :

x	1	2	3	4	5	6
$\mathbf{P}[A=x]$	$1 / 3$	$1 / 12$	$1 / 12$	$1 / 12$	$1 / 12$	$1 / 3$
$\mathbf{P}[B=x]$	$1 / 4$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 4$
$\mathbf{P}[C=x]$	$1 / 6$	$1 / 6$	$1 / 8$	$1 / 8$	$1 / 8$	$9 / 24$

- Question 1: Which dice is the least fair? Most of you choose A. Why?
- Question 2: Which dice is the most fair?

How Similar are Two Probability Measures?

Loaded Dice

- You are presented three loaded (unfair) dice A, B, C :

x	1	2	3	4	5	6
$\mathbf{P}[A=x]$	$1 / 3$	$1 / 12$	$1 / 12$	$1 / 12$	$1 / 12$	$1 / 3$
$\mathbf{P}[B=x]$	$1 / 4$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 4$
$\mathbf{P}[C=x]$	$1 / 6$	$1 / 6$	$1 / 8$	$1 / 8$	$1 / 8$	$9 / 24$

- Question 1: Which dice is the least fair? Most of you choose A. Why?
- Question 2: Which dice is the most fair? Dice B and C seem "fairer" than A but which is fairest?

How Similar are Two Probability Measures?

Loaded Dice

- You are presented three loaded (unfair) dice A, B, C :

x	1	2	3	4	5	6
$\mathbf{P}[A=x]$	$1 / 3$	$1 / 12$	$1 / 12$	$1 / 12$	$1 / 12$	$1 / 3$
$\mathbf{P}[B=x]$	$1 / 4$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 4$
$\mathbf{P}[C=x]$	$1 / 6$	$1 / 6$	$1 / 8$	$1 / 8$	$1 / 8$	$9 / 24$

- Question 1: Which dice is the least fair? Most of you choose A. Why?
- Question 2: Which dice is the most fair? Dice B and C seem "fairer" than A but which is fairest?
We need a formal "fairness measure" to compare probability distributions!

Total Variation Distance

The Total Variation Distance between two probability distributions μ and η on a countable state space Ω is given by

$$
\|\mu-\eta\|_{t v}=\frac{1}{2} \sum_{\omega \in \Omega}|\mu(\omega)-\eta(\omega)| .
$$

Total Variation Distance

The Total Variation Distance between two probability distributions μ and η on a countable state space Ω is given by

$$
\|\mu-\eta\|_{t v}=\frac{1}{2} \sum_{\omega \in \Omega}|\mu(\omega)-\eta(\omega)|
$$

Loaded Dice: let $D=\operatorname{Unif}\{1,2,3,4,5,6\}$ be the law of a fair dice:

$$
\|D-A\|_{t v}=\frac{1}{2}\left(2\left|\frac{1}{6}-\frac{1}{3}\right|+4\left|\frac{1}{6}-\frac{1}{12}\right|\right)=\frac{1}{3}
$$

Total Variation Distance

The Total Variation Distance between two probability distributions μ and η on a countable state space Ω is given by

$$
\|\mu-\eta\|_{t v}=\frac{1}{2} \sum_{\omega \in \Omega}|\mu(\omega)-\eta(\omega)| .
$$

Loaded Dice: let $D=\operatorname{Unif}\{1,2,3,4,5,6\}$ be the law of a fair dice:

$$
\begin{aligned}
& \|D-A\|_{t v}=\frac{1}{2}\left(2\left|\frac{1}{6}-\frac{1}{3}\right|+4\left|\frac{1}{6}-\frac{1}{12}\right|\right)=\frac{1}{3} \\
& \|D-B\|_{t v}=\frac{1}{2}\left(2\left|\frac{1}{6}-\frac{1}{4}\right|+4\left|\frac{1}{6}-\frac{1}{8}\right|\right)=\frac{1}{6} \\
& \|D-C\|_{t v}=\frac{1}{2}\left(3\left|\frac{1}{6}-\frac{1}{8}\right|+\left|\frac{1}{6}-\frac{9}{24}\right|\right)=\frac{1}{6} .
\end{aligned}
$$

Total Variation Distance

The Total Variation Distance between two probability distributions μ and η on a countable state space Ω is given by

$$
\|\mu-\eta\|_{t v}=\frac{1}{2} \sum_{\omega \in \Omega}|\mu(\omega)-\eta(\omega)| .
$$

Loaded Dice: let $D=\operatorname{Unif}\{1,2,3,4,5,6\}$ be the law of a fair dice:

$$
\begin{aligned}
& \|D-A\|_{t v}=\frac{1}{2}\left(2\left|\frac{1}{6}-\frac{1}{3}\right|+4\left|\frac{1}{6}-\frac{1}{12}\right|\right)=\frac{1}{3} \\
& \|D-B\|_{t v}=\frac{1}{2}\left(2\left|\frac{1}{6}-\frac{1}{4}\right|+4\left|\frac{1}{6}-\frac{1}{8}\right|\right)=\frac{1}{6} \\
& \|D-C\|_{t v}=\frac{1}{2}\left(3\left|\frac{1}{6}-\frac{1}{8}\right|+\left|\frac{1}{6}-\frac{9}{24}\right|\right)=\frac{1}{6} .
\end{aligned}
$$

Thus

$$
\|D-B\|_{t v}=\|D-C\|_{t v} \quad \text { and } \quad\|D-B\|_{t v},\|D-C\|_{t v}<\|D-A\|_{t v} .
$$

So A is the least "fair" however B and C are equally "fair" (in TV distance).

TV Distances and Markov Chains

Let P be a finite Markov Chain with stationary distribution π.

TV Distances and Markov Chains

Let P be a finite Markov Chain with stationary distribution π.

- Let μ be a prob. vector on Ω (might be just one vertex) and $t \geq 0$. Then

$$
P_{\mu}^{t}:=\mathbf{P}\left[X_{t}=\cdot \mid X_{0} \sim \mu\right],
$$

is a probability measure on Ω.

TV Distances and Markov Chains

Let P be a finite Markov Chain with stationary distribution π.

- Let μ be a prob. vector on Ω (might be just one vertex) and $t \geq 0$. Then

$$
P_{\mu}^{t}:=\mathbf{P}\left[X_{t}=\cdot \mid X_{0} \sim \mu\right],
$$

is a probability measure on Ω.

- For any μ,

$$
\left\|P_{\mu}^{t}-\pi\right\|_{t v} \leq \max _{x \in \Omega}\left\|P_{x}^{t}-\pi\right\|_{t v}
$$

TV Distances and Markov Chains

Let P be a finite Markov Chain with stationary distribution π.

- Let μ be a prob. vector on Ω (might be just one vertex) and $t \geq 0$. Then

$$
P_{\mu}^{t}:=\mathbf{P}\left[X_{t}=\cdot \mid X_{0} \sim \mu\right],
$$

is a probability measure on Ω.

- For any μ,

$$
\left\|P_{\mu}^{t}-\pi\right\|_{t v} \leq \max _{x \in \Omega}\left\|P_{x}^{t}-\pi\right\|_{t v}
$$

Convergence Theorem (Implication for TV Distance)
For any finite, irreducible, aperiodic Markov Chain

$$
\lim _{t \rightarrow \infty} \max _{x \in \Omega}\left\|P_{x}^{t}-\pi\right\|_{t v}=0
$$

TV Distances and Markov Chains

Let P be a finite Markov Chain with stationary distribution π.

- Let μ be a prob. vector on Ω (might be just one vertex) and $t \geq 0$. Then

$$
P_{\mu}^{t}:=\mathbf{P}\left[X_{t}=\cdot \mid X_{0} \sim \mu\right],
$$

is a probability measure on Ω.

- For any μ,

$$
\left\|P_{\mu}^{t}-\pi\right\|_{t v} \leq \max _{x \in \Omega}\left\|P_{x}^{t}-\pi\right\|_{t v}
$$

Convergence Theorem (Implication for TV Distance)
For any finite, irreducible, aperiodic Markov Chain

$$
\lim _{t \rightarrow \infty} \max _{x \in \Omega}\left\|P_{x}^{t}-\pi\right\|_{t v}=0
$$

We will prove a similar result later after introducing spectral techniques!

Mixing Time of a Markov Chain

Convergence Theorem: "Nice" Markov Chains converge to stationarity.

Mixing Time of a Markov Chain

Convergence Theorem: "Nice" Markov Chains converge to stationarity.
Question: How fast do they converge?

Mixing Time of a Markov Chain

Convergence Theorem: "Nice" Markov Chains converge to stationarity.
Question: How fast do they converge?

Mixing Time
The Mixing time $\tau_{x}(\epsilon)$ of a finite Markov Chain P with stationary distribution π is defined as

$$
\tau_{x}(\epsilon)=\min \left\{t:\left\|P_{x}^{t}-\pi\right\|_{t v} \leq \epsilon\right\},
$$

Mixing Time of a Markov Chain

Convergence Theorem: "Nice" Markov Chains converge to stationarity.
Question: How fast do they converge?

Mixing Time
The Mixing time $\tau_{x}(\epsilon)$ of a finite Markov Chain P with stationary distribution π is defined as

$$
\tau_{x}(\epsilon)=\min \left\{t:\left\|P_{x}^{t}-\pi\right\|_{t v} \leq \epsilon\right\},
$$

and,

$$
\tau(\epsilon)=\max _{x} \tau_{x}(\epsilon)
$$

Mixing Time of a Markov Chain

Convergence Theorem: "Nice" Markov Chains converge to stationarity.
Question: How fast do they converge?

Mixing Time
The Mixing time $\tau_{x}(\epsilon)$ of a finite Markov Chain P with stationary distribution π is defined as

$$
\tau_{x}(\epsilon)=\min \left\{t:\left\|P_{x}^{t}-\pi\right\|_{t v} \leq \epsilon\right\},
$$

and,

$$
\tau(\epsilon)=\max _{x} \tau_{x}(\epsilon)
$$

- This is how long we need to wait until we are " ε-close" to stationarity

Mixing Time of a Markov Chain

Convergence Theorem: "Nice" Markov Chains converge to stationarity.
Question: How fast do they converge?

Mixing Time
The Mixing time $\tau_{x}(\epsilon)$ of a finite Markov Chain P with stationary distribution π is defined as

$$
\tau_{x}(\epsilon)=\min \left\{t:\left\|P_{x}^{t}-\pi\right\|_{t v} \leq \epsilon\right\}
$$

and,

$$
\tau(\epsilon)=\max _{x} \tau_{x}(\epsilon)
$$

- This is how long we need to wait until we are " ε-close" to stationarity
- We often take $\varepsilon=1 / 4$, indeed let $t_{\text {mix }}:=\tau(1 / 4)$

Outline

Recap of Markov Chain Basics

Irreducibility, Periodicity and Convergence

Total Variation Distance and Mixing Times

Application 1: Card Shuffling

Application 2: Ehrenfest Chain and Hypercubes

Application 3: Markov Chain Monte Carlo

What is Card Shuffling?

Source: wikipedia

How long does it take to shuffle a deck of 52 cards?

What is Card Shuffling?

Source: wikipedia

How long does it take to shuffle a deck of 52 cards?

Persi Diaconis (Professor of Statistics and former Magician)
Source: www.soundcloud.com

What is Card Shuffling?

Source: wikipedia

How long does it take to shuffle a deck of 52 cards?

His research revealed a lot of beautiful connections between Markov Chains and Algebra.

Persi Diaconis (Professor of Statistics and former Magician)

What is Card Shuffling?

Source: wikipedia
Here we will focus on one shuffling scheme which is easy to analyse.
How long does it take to shuffle a deck of 52 cards?

His research revealed a lot of beautiful connections between Markov Chains and Algebra.

Persi Diaconis (Professor of Statistics and former Magician)

What is Card Shuffling?

Source: wikipedia
Here we will focus on one shuffling scheme which is easy to analyse.

How long does it take to shuffle a deck of 52 cards?

How quickly do we converge to the uniform distribution over all n ! permutations?

His research revealed a lot of beautiful connections between Markov Chains and Algebra.

Persi Diaconis (Professor of Statistics and former Magician)

The Card Shuffling Markov Chain

TopToRandomShuFfle (Input: A pile of n cards)
1: For $t=1,2, \ldots$
2: \quad Pick $i \in\{1,2, \ldots, n\}$ uniformly at random
3: \quad Take the top card and insert it behind the i-th card

The Card Shuffling Markov Chain

TopToRandomShuffle (Input: A pile of n cards)
1: For $t=1,2, \ldots$
Pick $i \in\{1,2, \ldots, n\}$ uniformly at random
3: \quad Take the top card and insert it behind the i-th card
This is a slightly informal definition, so let us look at a small example...

The Card Shuffling Markov Chain

TopToRandomShuffle (Input: A pile of n cards)
1: For $t=1,2, \ldots$
2: \quad Pick $i \in\{1,2, \ldots, n\}$ uniformly at random
3: \quad Take the top card and insert it behind the i-th card
This is a slightly informal definition, so let us look at a small example...

$$
\text { We will focus on this "small" set of cards }(n=8)
$$

Even if we know which set of cards come after 8, every permutation is equally likely!

Even if we know which set of cards come after 8, every permutation is equally likely!

Even if we know which set of cards come after 8 , every permutation is equally likely!

Even if we know which set of cards come after 8, every permutation is equally likely!

Analysing the Mixing Time (Intuition)

Analysing the Mixing Time (Intuition)

- How long does it take for the last card "n" to become top card?

Analysing the Mixing Time (Intuition)

- How long does it take for the last card " n " to become top card?
- At the last position, card " n " moves up with probability $\frac{1}{n}$ at each step

Analysing the Mixing Time (Intuition)

- How long does it take for the last card " n " to become top card?
- At the last position, card " n " moves up with probability $\frac{1}{n}$ at each step
- At the second last position, card " n " moves up with probability $\frac{2}{n}$

Analysing the Mixing Time (Intuition)

- How long does it take for the last card " n " to become top card?
- At the last position, card " n " moves up with probability $\frac{1}{n}$ at each step
- At the second last position, card " n " moves up with probability $\frac{2}{n}$

Analysing the Mixing Time (Intuition)

- How long does it take for the last card " n " to become top card?
- At the last position, card " n " moves up with probability $\frac{1}{n}$ at each step
- At the second last position, card " n " moves up with probability $\frac{2}{n}$ \vdots
- At the second position, card " n " moves up with probability $\frac{n-1}{n}$

Analysing the Mixing Time (Intuition)

- How long does it take for the last card " n " to become top card?
- At the last position, card " n " moves up with probability $\frac{1}{n}$ at each step
- At the second last position, card " n " moves up with probability $\frac{2}{n}$ \vdots
- At the second position, card " n " moves up with probability $\frac{n-1}{n}$
- One final step to randomise card " n "

Analysing the Mixing Time (Intuition)

- How long does it take for the last card " n " to become top card?
- At the last position, card " n " moves up with probability $\frac{1}{n}$ at each step
- At the second last position, card " n " moves up with probability $\frac{2}{n}$ \vdots
- At the second position, card " n " moves up with probability $\frac{n-1}{n}$
- One final step to randomise card " n " (with probability 1)

Analysing the Mixing Time (Intuition)

\sim deck of cards is perfectly mixed after the last card "8" reaches the top and is inserted to a random position!

- How long does it take for the last card " n " to become top card?
- At the last position, card " n " moves up with probability $\frac{1}{n}$ at each step
- At the second last position, card " n " moves up with probability $\frac{2}{n}$
\vdots
- At the second position, card " n " moves up with probability $\frac{n-1}{n}$
- One final step to randomise card "n" (with probability 1)

This is a "reversed" coupon collector process with n cards, which takes $n \log n$ in expectation.

Analysing the Mixing Time (Intuition)

- How long does it take for the last card " n " to become top card?
- At the last position, card " n " moves up with probability $\frac{1}{n}$ at each step
- At the second last position, card " n " moves up with probability $\frac{2}{n}$
\vdots
- At the second position, card " n " moves up with probability $\frac{n-1}{n}$
- One final step to randomise card " n " (with probability 1)

> This is a "reversed" coupon collector process with n cards, which takes $n \log n$ in expectation.

Using the so-called coupling method, one could prove $t_{\text {mix }} \leq n \log n$.

Analysis of Riffle-Shuffle

Analysis of Riffle-Shuffle

Riffle Shuffle

1. Split a deck of n cards into two piles (thus the size of each portion will be Binomial)

Analysis of Riffle-Shuffle

Riffle Shuffle

1. Split a deck of n cards into two piles (thus the size of each portion will be Binomial)
2. Riffle the cards together so that the card drops from the left (or right) pile with probability proportional to the number of remaining cards

Analysis of Riffle-Shuffle

Riffle Shuffle

1. Split a deck of n cards into two piles (thus the size of each portion will be Binomial)
2. Riffle the cards together so that the card drops from the left (or right) pile with probability proportional to the number of remaining cards

Analysis of Riffle-Shuffle

Riffle Shuffle

1. Split a deck of n cards into two piles (thus the size of each portion will be Binomial)
2. Riffle the cards together so that the card drops from the left (or right) pile with probability proportional to the number of remaining cards

- A

- A (

t	1	2	3	4	5	6	7	8	9	10		
$\left\\|P^{t}-\pi\right\\|_{t v}$	1.000	1.000	1.000	1.000	0.924	0.614	0.334	0.167	0.085	0.043		

Figure: Total Variation Distance for t riffle shuffles of 52 cards.

Analysis of Riffle-Shuffle

Riffle Shuffle

1. Split a deck of n cards into two piles (thus the size of each portion will be Binomial)
2. Riffle the cards together so that the card drops from the left (or right) pile with probability proportional to the number of remaining cards


```
The Annals of Applied Probability
```

1992, Vol. 2, No. 2, 294-313

TRAILING THE DOVETAIL SHUFFLE TO ITS LAIR

By Dave Bayer ${ }^{1}$ and Persi Diaconis ${ }^{2}$
Columbia University and Harvard University
We analyze the most commonly used method for shuffling cards. The main result is a simple expression for the chance of any arrangement after any number of shuffles. This is used to give sharp bounds on the approach to randomness: $\frac{3}{2} \log _{2} n+\theta$ shuffles are necessary and sufficient to mix up n cards.

Key ingredients are the analysis of a card trick and the determination of the idempotents of a natural commutative subalgebra in the symmetric group algebra.

t	1	2	3	4	5	6	7	8	9	10		
$\left\\|P^{t}-\pi\right\\|_{t v}$	1.000	1.000	1.000	1.000	0.924	0.614	0.334	0.167	0.085	0.043		

Figure: Total Variation Distance for t riffle shuffles of 52 cards.

Outline

Recap of Markov Chain Basics

Irreducibility, Periodicity and Convergence

Total Variation Distance and Mixing Times

Application 1: Card Shuffling

Application 2: Ehrenfest Chain and Hypercubes

Application 3: Markov Chain Monte Carlo

The Ehrenfest Markov Chain

Ehrenfest Model

- A simple model for the exchange of molecules between two boxes

The Ehrenfest Markov Chain

Ehrenfest Model

- A simple model for the exchange of molecules between two boxes

The Ehrenfest Markov Chain

Ehrenfest Model

- A simple model for the exchange of molecules between two boxes
- We have d particles

The Ehrenfest Markov Chain

Ehrenfest Model

- A simple model for the exchange of molecules between two boxes
- We have d particles
- At each step a particle is selected uniformly at random and switches to the other box

The Ehrenfest Markov Chain

Ehrenfest Model

- A simple model for the exchange of molecules between two boxes
- We have d particles
- At each step a particle is selected uniformly at random and switches to the other box

The Ehrenfest Markov Chain

Ehrenfest Model

- A simple model for the exchange of molecules between two boxes
- We have d particles
- At each step a particle is selected uniformly at random and switches to the other box

The Ehrenfest Markov Chain

Ehrenfest Model

- A simple model for the exchange of molecules between two boxes
- We have d particles
- At each step a particle is selected uniformly at random and switches to the other box

The Ehrenfest Markov Chain

Ehrenfest Model

- A simple model for the exchange of molecules between two boxes
- We have d particles
- At each step a particle is selected uniformly at random and switches to the other box
- If $\Omega=\{0,1, \ldots, d\}$ denotes the number of
 particles in the red box, then:

$$
P_{x, x-1}=\frac{x}{d} \quad \text { and } \quad P_{x, x+1}=\frac{d-x}{d}
$$

The Ehrenfest Markov Chain

Ehrenfest Model

- A simple model for the exchange of molecules between two boxes
- We have d particles
- At each step a particle is selected uniformly at random and switches to the other box
- If $\Omega=\{0,1, \ldots, d\}$ denotes the number of particles in the red box, then:

$$
P_{x, x-1}=\frac{x}{d} \quad \text { and } \quad P_{x, x+1}=\frac{d-x}{d}
$$

The Ehrenfest Markov Chain

Ehrenfest Model

- A simple model for the exchange of molecules between two boxes
- We have d particles
- At each step a particle is selected uniformly at random and switches to the other box
- If $\Omega=\{0,1, \ldots, d\}$ denotes the number of particles in the red box, then:

$$
P_{x, x-1}=\frac{x}{d} \quad \text { and } \quad P_{x, x+1}=\frac{d-x}{d}
$$

Let us now enlarge the state space by looking at each particle individually!

The Ehrenfest Markov Chain

Ehrenfest Model

- A simple model for the exchange of molecules between two boxes
- We have d particles labelled $1,2, \ldots, d$
- At each step a particle is selected uniformly at random and switches to the other box
- If $\Omega=\{0,1, \ldots, d\}$ denotes the number of particles in the red box, then:

$$
P_{x, x-1}=\frac{x}{d} \quad \text { and } \quad P_{x, x+1}=\frac{d-x}{d}
$$

Let us now enlarge the state space by looking at each particle individually!

The Ehrenfest Markov Chain

Ehrenfest Model

- A simple model for the exchange of molecules between two boxes
- We have d particles labelled $1,2, \ldots, d$
- At each step a particle is selected uniformly at random and switches to the other box
- If $\Omega=\{0,1, \ldots, d\}$ denotes the number of particles in the red box, then:

$$
P_{x, x-1}=\frac{x}{d} \quad \text { and } \quad P_{x, x+1}=\frac{d-x}{d}
$$

Let us now enlarge the state space by looking at each particle individually!

Random Walk on the Hypercube

The Ehrenfest Markov Chain

Ehrenfest Model

- A simple model for the exchange of molecules between two boxes
- We have d particles labelled $1,2, \ldots, d$
- At each step a particle is selected uniformly at random and switches to the other box
- If $\Omega=\{0,1, \ldots, d\}$ denotes the number of particles in the red box, then:

$$
P_{x, x-1}=\frac{x}{d} \quad \text { and } \quad P_{x, x+1}=\frac{d-x}{d}
$$

Let us now enlarge the state space by looking at each particle individually!

Random Walk on the Hypercube

- For each particle an indicator variable $\Rightarrow \Omega=\{0,1\}^{d}$

The Ehrenfest Markov Chain

Ehrenfest Model

- A simple model for the exchange of molecules between two boxes
- We have d particles labelled $1,2, \ldots, d$
- At each step a particle is selected uniformly at random and switches to the other box
- If $\Omega=\{0,1, \ldots, d\}$ denotes the number of particles in the red box, then:

$$
P_{x, x-1}=\frac{x}{d} \quad \text { and } \quad P_{x, x+1}=\frac{d-x}{d}
$$

Let us now enlarge the state space by looking at each particle individually!

Random Walk on the Hypercube

- For each particle an indicator variable $\Rightarrow \Omega=\{0,1\}^{d}$
- At each step: pick a random coordinate in [d] and flip it

Analysis of the Mixing Time

(Non-Lazy) Random Walk on the Hypercube

- For each particle an indicator variable $\Rightarrow \Omega=\{0,1\}^{d}$
- At each step: pick a random coordinate in [d] and flip it

Analysis of the Mixing Time

(Non-Lazy) Random Walk on the Hypercube

- For each particle an indicator variable $\Rightarrow \Omega=\{0,1\}^{d}$
- At each step: pick a random coordinate in [d] and flip it

Problem: This Markov Chain is periodic, as the number of ones always switches from odd to even!

Analysis of the Mixing Time

(Non-Lazy) Random Walk on the Hypercube

- For each particle an indicator variable $\Rightarrow \Omega=\{0,1\}^{d}$
- At each step: pick a random coordinate in [d] and flip it

Problem: This Markov Chain is periodic, as the number of ones always switches from odd to even!

Solution: Add self-loops to break periodic behaviour!

Analysis of the Mixing Time

(Non-Lazy) Random Walk on the Hypercube

- For each particle an indicator variable $\Rightarrow \Omega=\{0,1\}^{d}$
- At each step: pick a random coordinate in [d] and flip it

Problem: This Markov Chain is periodic, as the number of ones always switches from odd to even!

Solution: Add self-loops to break periodic behaviour!

Analysis of the Mixing Time

(Non-Lazy) Random Walk on the Hypercube

- For each particle an indicator variable $\Rightarrow \Omega=\{0,1\}^{d}$
- At each step: pick a random coordinate in [d] and flip it

Problem: This Markov Chain is periodic, as the number of ones always switches from odd to even!

Solution: Add self-loops to break periodic behaviour!

Lazy Random Walk (1st Version)

- At each step $t=0,1,2 \ldots$

Analysis of the Mixing Time

(Non-Lazy) Random Walk on the Hypercube

- For each particle an indicator variable $\Rightarrow \Omega=\{0,1\}^{d}$
- At each step: pick a random coordinate in [d] and flip it

Problem: This Markov Chain is periodic, as the number of ones always switches from odd to even!

Solution: Add self-loops to break periodic behaviour!

Lazy Random Walk (1st Version)

- At each step $t=0,1,2 \ldots$
- Pick a random coordinate in [d]

Analysis of the Mixing Time

(Non-Lazy) Random Walk on the Hypercube

- For each particle an indicator variable $\Rightarrow \Omega=\{0,1\}^{d}$
- At each step: pick a random coordinate in [d] and flip it

Problem: This Markov Chain is periodic, as the number of ones always switches from odd to even!

Solution: Add self-loops to break periodic behaviour!

Lazy Random Walk (1st Version)

- At each step $t=0,1,2 \ldots$
- Pick a random coordinate in [d]
- With prob. 1/2 flip coordinate.

Analysis of the Mixing Time

(Non-Lazy) Random Walk on the Hypercube

- For each particle an indicator variable $\Rightarrow \Omega=\{0,1\}^{d}$
- At each step: pick a random coordinate in [d] and flip it

Problem: This Markov Chain is periodic, as the number of ones always switches from odd to even!

Solution: Add self-loops to break periodic behaviour!

Lazy Random Walk (1st Version)

- At each step $t=0,1,2 \ldots$
- Pick a random coordinate in [d]
- With prob. 1/2 flip coordinate.

Lazy Random Walk (2nd Version)

- At each step $t=0,1,2 \ldots$
- Pick a random coordinate in [d]

Analysis of the Mixing Time

(Non-Lazy) Random Walk on the Hypercube

- For each particle an indicator variable $\Rightarrow \Omega=\{0,1\}^{d}$
- At each step: pick a random coordinate in [d] and flip it

Problem: This Markov Chain is periodic, as the number of ones always switches from odd to even!

Solution: Add self-loops to break periodic behaviour!

Lazy Random Walk (1st Version)

- At each step $t=0,1,2 \ldots$
- Pick a random coordinate in [d]
- With prob. 1/2 flip coordinate.

Lazy Random Walk (2nd Version)

- At each step $t=0,1,2 \ldots$
- Pick a random coordinate in [d]
- Set coordinate to $\{0,1\}$ uniformly.

Analysis of the Mixing Time

(Non-Lazy) Random Walk on the Hypercube

- For each particle an indicator variable $\Rightarrow \Omega=\{0,1\}^{d}$
- At each step: pick a random coordinate in [d] and flip it

Problem: This Markov Chain is periodic, as the number of ones always switches from odd to even!

Solution: Add self-loops to break periodic behaviour!

These two chains are equivalent!

Example of a Random Walk on a 4-Dimensional Hypercube

Example of a Random Walk on a 4-Dimensional Hypercube

Example of a Random Walk on a 4-Dimensional Hypercube

Example of a Random Walk on a 4-Dimensional Hypercube

Example of a Random Walk on a 4-Dimensional Hypercube

Example of a Random Walk on a 4-Dimensional Hypercube

Example of a Random Walk on a 4-Dimensional Hypercube

Example of a Random Walk on a 4-Dimensional Hypercube

Example of a Random Walk on a 4-Dimensional Hypercube

t	Coord.	X_{t}			
0	2	0	0	0	0
1	3	0	1	0	0
2	3	0	1	0	0
3	4	0	1	1	0
4		0	1	1	1

Example of a Random Walk on a 4-Dimensional Hypercube

Example of a Random Walk on a 4-Dimensional Hypercube

Example of a Random Walk on a 4-Dimensional Hypercube

t	Coord.	X_{t}			
0	2	0	0	0	0
1	3	0	1	0	0
2	3	0	1	0	0
3	4	0	1	1	0
4	2	0	1	1	1
5	4	0	1	1	1
6		0	1	1	$?$

Example of a Random Walk on a 4-Dimensional Hypercube

t	Coord.	X_{t}			
0	2	0	0	0	0
1	3	0	1	0	0
2	3	0	1	0	0
3	4	0	1	1	0
4	2	0	1	1	1
5	4	0	1	1	1
6		0	1	1	0

Example of a Random Walk on a 4-Dimensional Hypercube

t	Coord.	X_{t}			
0	2	0	0	0	0
1	3	0	1	0	0
2	3	0	1	0	0
3	4	0	1	1	0
4	2	0	1	1	1
5	4	0	1	1	1
6	2	0	1	1	0
7		0	$?$	1	0

Example of a Random Walk on a 4-Dimensional Hypercube

Example of a Random Walk on a 4-Dimensional Hypercube

Example of a Random Walk on a 4-Dimensional Hypercube

Example of a Random Walk on a 4-Dimensional Hypercube

Example of a Random Walk on a 4-Dimensional Hypercube

Example of a Random Walk on a 4-Dimensional Hypercube

Example of a Random Walk on a 4-Dimensional Hypercube

Example of a Random Walk on a 4-Dimensional Hypercube

Example of a Random Walk on a 4-Dimensional Hypercube

Total Variation Distance of Random Walk on Hypercube $(d=22)$

Total Variation Distance of Random Walk on Hypercube $(d=22)$

Theoretical Results (by Diaconis, Graham and Morrison)

Fig. 1. The variation distance V as a function of N, for $n=10^{12}$.
Source: "Asymptotic analysis of a random walk on a hypercube with many dimensions", P. Diaconis, R.L. Graham, J.A. Morrison; Random Structures \& Algorithms, 1990.

Theoretical Results (by Diaconis, Graham and Morrison)

Fig. 1. The variation distance V as a function of N, for $n=10^{12}$.
Source: "Asymptotic analysis of a random walk on a hypercube with many dimensions", P. Diaconis, R.L. Graham, J.A. Morrison; Random Structures \& Algorithms, 1990.

- This is a numerical plot of a theoretical bound, where $d=10^{12}$ (Minor Remark: This random walk is with a loop probability of $1 /(d+1)$)
- The variation distance exhibits a so-called cut-off phenomena:

Theoretical Results (by Diaconis, Graham and Morrison)

Fig. 1. The variation distance V as a function of N, for $n=10^{12}$.
Source: "Asymptotic analysis of a random walk on a hypercube with many dimensions", P. Diaconis, R.L. Graham, J.A. Morrison; Random Structures \& Algorithms, 1990.

- This is a numerical plot of a theoretical bound, where $d=10^{12}$ (Minor Remark: This random walk is with a loop probability of $1 /(d+1)$)
- The variation distance exhibits a so-called cut-off phenomena:
- Distance remains close to its maximum value 1 until step $\frac{1}{4} n \log n-\Theta(n)$
- Then distance moves close to 0 before step $\frac{1}{4} n \log n+\Theta(n)$

Outline

Recap of Markov Chain Basics

Irreducibility, Periodicity and Convergence

Total Variation Distance and Mixing Times

Application 1: Card Shuffling

Application 2: Ehrenfest Chain and Hypercubes

Application 3: Markov Chain Monte Carlo

A Markov Chain for Sampling Independent Sets (1/2)

Independent Set

Given an undirected graph $G=(V, E)$, an independent set is a subset $S \subseteq V$ such that there are no two vertices $u, v \in S$ with $\{u, v\} \in E(G)$.

A Markov Chain for Sampling Independent Sets (1/2)

$$
S=\{1,4\} \text { is an independent set } \checkmark
$$

Independent Set
Given an undirected graph $G=(V, E)$, an independent set is a subset $S \subseteq V$ such that there are no two vertices $u, v \in S$ with $\{u, v\} \in E(G)$.

A Markov Chain for Sampling Independent Sets (1/2)

$$
S=\{2,6,8\} \text { is an independent set } \checkmark
$$

Independent Set
Given an undirected graph $G=(V, E)$, an independent set is a subset $S \subseteq V$ such that there are no two vertices $u, v \in S$ with $\{u, v\} \in E(G)$.

A Markov Chain for Sampling Independent Sets (1/2)

$S=\{1,7,8\}$ is not an independent set \times
Independent Set
Given an undirected graph $G=(V, E)$, an independent set is a subset $S \subseteq V$ such that there are no two vertices $u, v \in S$ with $\{u, v\} \in E(G)$.

A Markov Chain for Sampling Independent Sets (1/2)

Independent Set

Given an undirected graph $G=(V, E)$, an independent set is a subset $S \subseteq V$ such that there are no two vertices $u, v \in S$ with $\{u, v\} \in E(G)$.

A Markov Chain for Sampling Independent Sets (1/2)

- Independent Set

Given an undirected graph $G=(V, E)$, an independent set is a subset $S \subseteq V$ such that there are no two vertices $u, v \in S$ with $\{u, v\} \in E(G)$.

How can we take a sample from the space of all independent sets?

A Markov Chain for Sampling Independent Sets (1/2)

Independent Set
Given an undirected graph $G=(V, E)$, an independent set is a subset $S \subseteq V$ such that there are no two vertices $u, v \in S$ with $\{u, v\} \in E(G)$.

How can we take a sample from the space of all independent sets?
Naive brute-force would take an insane amount of time (and space)!

A Markov Chain for Sampling Independent Sets (1/2)

Independent Set
Given an undirected graph $G=(V, E)$, an independent set is a subset $S \subseteq V$ such that there are no two vertices $u, v \in S$ with $\{u, v\} \in E(G)$.

How can we take a sample from the space of all independent sets?
Naive brute-force would take an insane amount of time (and space)!

We can use a generic Markov Chain Monte Carlo approach to tackle this problem!

A Markov Chain for Sampling Independent Sets (2/2)

IndependentSetSampler
1: Let X_{0} be an arbitrary independent set in G
2: For $t=1,2, \ldots$:
Pick a vertex $v \in V(G)$ uniformly at random
4: \quad If $v \in X_{t}$ then $X_{t+1} \leftarrow X_{t} \backslash\{v\}$
5: \quad elif $v \notin X_{t}$ and $X_{t} \cup\{v\}$ is an independent set then $X_{t+1} \leftarrow X_{t} \cup\{v\}$
6: \quad else $X_{t+1} \leftarrow X_{t}$

A Markov Chain for Sampling Independent Sets (2/2)

IndependentSetSampler
1: Let X_{0} be an arbitrary independent set in G
2: For $t=1,2, \ldots$:
Pick a vertex $v \in V(G)$ uniformly at random
4: \quad If $v \in X_{t}$ then $X_{t+1} \leftarrow X_{t} \backslash\{v\}$
5: \quad elif $v \notin X_{t}$ and $X_{t} \cup\{v\}$ is an independent set then $X_{t+1} \leftarrow X_{t} \cup\{v\}$
6: \quad else $X_{t+1} \leftarrow X_{t}$

A Markov Chain for Sampling Independent Sets (2/2)

IndependentSetSampler
1: Let X_{0} be an arbitrary independent set in G
2: For $t=1,2, \ldots$:
Pick a vertex $v \in V(G)$ uniformly at random
4: \quad If $v \in X_{t}$ then $X_{t+1} \leftarrow X_{t} \backslash\{v\}$
5: \quad elif $v \notin X_{t}$ and $X_{t} \cup\{v\}$ is an independent set then $X_{t+1} \leftarrow X_{t} \cup\{v\}$
6: \quad else $X_{t+1} \leftarrow X_{t}$

A Markov Chain for Sampling Independent Sets (2/2)

IndependentSetSampler
1: Let X_{0} be an arbitrary independent set in G
2: For $t=1,2, \ldots$:
Pick a vertex $v \in V(G)$ uniformly at random
4: \quad If $v \in X_{t}$ then $X_{t+1} \leftarrow X_{t} \backslash\{v\}$
5: \quad elif $v \notin X_{t}$ and $X_{t} \cup\{v\}$ is an independent set then $X_{t+1} \leftarrow X_{t} \cup\{v\}$
6: \quad else $X_{t+1} \leftarrow X_{t}$

A Markov Chain for Sampling Independent Sets (2/2)

IndependentSetSampler
1: Let X_{0} be an arbitrary independent set in G
2: For $t=1,2, \ldots$:
Pick a vertex $v \in V(G)$ uniformly at random
4: \quad If $v \in X_{t}$ then $X_{t+1} \leftarrow X_{t} \backslash\{v\}$
5: \quad elif $v \notin X_{t}$ and $X_{t} \cup\{v\}$ is an independent set then $X_{t+1} \leftarrow X_{t} \cup\{v\}$
6: \quad else $X_{t+1} \leftarrow X_{t}$

A Markov Chain for Sampling Independent Sets (2/2)

IndependentSetSampler
1: Let X_{0} be an arbitrary independent set in G
2: For $t=1,2, \ldots$:
Pick a vertex $v \in V(G)$ uniformly at random
4: \quad If $v \in X_{t}$ then $X_{t+1} \leftarrow X_{t} \backslash\{v\}$
5: \quad elif $v \notin X_{t}$ and $X_{t} \cup\{v\}$ is an independent set then $X_{t+1} \leftarrow X_{t} \cup\{v\}$
6: \quad else $X_{t+1} \leftarrow X_{t}$

A Markov Chain for Sampling Independent Sets (2/2)

IndependentSetSampler
1: Let X_{0} be an arbitrary independent set in G
2: For $t=1,2, \ldots$:
Pick a vertex $v \in V(G)$ uniformly at random
4: \quad If $v \in X_{t}$ then $X_{t+1} \leftarrow X_{t} \backslash\{v\}$
5: \quad elif $v \notin X_{t}$ and $X_{t} \cup\{v\}$ is an independent set then $X_{t+1} \leftarrow X_{t} \cup\{v\}$
6: \quad else $X_{t+1} \leftarrow X_{t}$

A Markov Chain for Sampling Independent Sets (2/2)

IndependentSetSampler
1: Let X_{0} be an arbitrary independent set in G
2: For $t=1,2, \ldots$:
Pick a vertex $v \in V(G)$ uniformly at random
4: \quad If $v \in X_{t}$ then $X_{t+1} \leftarrow X_{t} \backslash\{v\}$
5: \quad elif $v \notin X_{t}$ and $X_{t} \cup\{v\}$ is an independent set then $X_{t+1} \leftarrow X_{t} \cup\{v\}$
6: \quad else $X_{t+1} \leftarrow X_{t}$

A Markov Chain for Sampling Independent Sets (2/2)

IndependentSetSampler
1: Let X_{0} be an arbitrary independent set in G
2: For $t=1,2, \ldots$:
Pick a vertex $v \in V(G)$ uniformly at random
4: \quad If $v \in X_{t}$ then $X_{t+1} \leftarrow X_{t} \backslash\{v\}$
5: \quad elif $v \notin X_{t}$ and $X_{t} \cup\{v\}$ is an independent set then $X_{t+1} \leftarrow X_{t} \cup\{v\}$
6: \quad else $X_{t+1} \leftarrow X_{t}$

A Markov Chain for Sampling Independent Sets (2/2)

IndependentSetSampler
1: Let X_{0} be an arbitrary independent set in G
2: For $t=1,2, \ldots$:
Pick a vertex $v \in V(G)$ uniformly at random
If $v \in X_{t}$ then $X_{t+1} \leftarrow X_{t} \backslash\{v\}$ elif $v \notin X_{t}$ and $X_{t} \cup\{v\}$ is an independent set then $X_{t+1} \leftarrow X_{t} \cup\{v\}$ else $X_{t+1} \leftarrow X_{t}$

Remark

- This is a local definition (no explicit definition of P !)

A Markov Chain for Sampling Independent Sets (2/2)

IndependentSetSampler

1: Let X_{0} be an arbitrary independent set in G
2: For $t=1,2, \ldots$:
Pick a vertex $v \in V(G)$ uniformly at random
If $v \in X_{t}$ then $X_{t+1} \leftarrow X_{t} \backslash\{v\}$ elif $v \notin X_{t}$ and $X_{t} \cup\{v\}$ is an independent set then $X_{t+1} \leftarrow X_{t} \cup\{v\}$ else $X_{t+1} \leftarrow X_{t}$

Remark

- This is a local definition (no explicit definition of P !)
- This chain is irreducible (every independent set is reachable)

A Markov Chain for Sampling Independent Sets (2/2)

IndependentSetSampler

1: Let X_{0} be an arbitrary independent set in G
2: For $t=1,2, \ldots$:
Pick a vertex $v \in V(G)$ uniformly at random
If $v \in X_{t}$ then $X_{t+1} \leftarrow X_{t} \backslash\{v\}$ elif $v \notin X_{t}$ and $X_{t} \cup\{v\}$ is an independent set then $X_{t+1} \leftarrow X_{t} \cup\{v\}$ else $X_{t+1} \leftarrow X_{t}$

Remark

- This is a local definition (no explicit definition of P !)
- This chain is irreducible (every independent set is reachable)
- This chain is aperiodic (Check!)

A Markov Chain for Sampling Independent Sets (2/2)

IndependentSetSampler

1: Let X_{0} be an arbitrary independent set in G
2: For $t=1,2, \ldots$:
Pick a vertex $v \in V(G)$ uniformly at random
If $v \in X_{t}$ then $X_{t+1} \leftarrow X_{t} \backslash\{v\}$
elif $v \notin X_{t}$ and $X_{t} \cup\{v\}$ is an independent set then $X_{t+1} \leftarrow X_{t} \cup\{v\}$ else $X_{t+1} \leftarrow X_{t}$

Remark

- This is a local definition (no explicit definition of P !)
- This chain is irreducible (every independent set is reachable)
- This chain is aperiodic (Check!)
- The stationary distribution is uniform, since $P_{u, v}=P_{v, u}$ (Check!)

A Markov Chain for Sampling Independent Sets (2/2)

IndependentSetSampler

1: Let X_{0} be an arbitrary independent set in G
2: For $t=1,2, \ldots$:
Pick a vertex $v \in V(G)$ uniformly at random
If $v \in X_{t}$ then $X_{t+1} \leftarrow X_{t} \backslash\{v\}$
elif $v \notin X_{t}$ and $X_{t} \cup\{v\}$ is an independent set then $X_{t+1} \leftarrow X_{t} \cup\{v\}$ else $X_{t+1} \leftarrow X_{t}$

Remark

- This is a local definition (no explicit definition of P !)
- This chain is irreducible (every independent set is reachable)
- This chain is aperiodic (Check!)
- The stationary distribution is uniform, since $P_{u, v}=P_{v, u}$ (Check!)

Key Question: What is the mixing time of this Markov Chain?

A Markov Chain for Sampling Independent Sets (2/2)

IndependentSetSampler

1: Let X_{0} be an arbitrary independent set in G
2: For $t=1,2, \ldots$:
3: \quad Pick a vertex $v \in V(G)$ uniformly at random
4: \quad If $v \in X_{t}$ then $X_{t+1} \leftarrow X_{t} \backslash\{v\}$
5: \quad elif $v \notin X_{t}$ and $X_{t} \cup\{v\}$ is an independent set then $X_{t+1} \leftarrow X_{t} \cup\{v\}$
6: \quad else $X_{t+1} \leftarrow X_{t}$

Remark

- This is a local definition (no explicit definition of P !)
- This chain is irreducible (every independent set is reachable)
- This chain is aperiodic (Check!)
- The stationary distribution is uniform, since $P_{u, v}=P_{v, u}$ (Check!)

Key Question: What is the mixing time of this Markov Chain?
not covered here, see the textbook of Mitzenmacher \& Upfal

