Randomised Algorithms

Lecture 2-3: Concentration Inequalities

Thomas Sauerwald (tms41@cam.ac.uk)

Outline

Introduction to Chernoff Bounds

How to Derive Chernoff Bounds

Application 1: Balls into Bins

Application 2: Randomised QuickSort

Extensions of Chernoff Bounds

Applications of Method of Bounded Differences

Appendix

Concentration Inequalities

- Concentration refers to the phenomena where random variables are very close to their mean
- This is very useful in randomised algorithms as it ensures an almost deterministic behaviour
- It gives us the best of two worlds:

1. Randomised Algorithms: Easy to Design and Implement
2. Deterministic Algorithms: They do what they claim

Chernoff Bounds: A Tool for Concentration

- Chernoffs bounds are "strong" bounds on the tail probabilities of sums of independent random variables
- random variables can be discrete (or continuous)
- usually these bounds decrease exponentially as opposed to a polynomial decrease in Markov's or Chebyshev's inequality (see example)
- easy to apply, but requires independence
- have found various applications in:
- Randomised Algorithms
- Statistics

Hermann Chernoff (1923-)

- Random Projections and Dimensionality Reduction
- Learning Theory (e.g., PAC-learning)

Recap: Markov and Chebyshev

Markov's Inequality

If X is a non-negative random variable, then for any $a>0$,

$$
\mathbf{P}[X \geq a] \leq \mathbf{E}[X] / a .
$$

Chebyshev's Inequality

If X is a random variable, then for any $a>0$,

$$
\mathbf{P}[|X-\mathbf{E}[X]| \geq a] \leq \mathbf{V}[X] / a^{2}
$$

- Let $f: \mathbb{R} \rightarrow[0, \infty)$ and increasing, then $f(X) \geq 0$, and thus

$$
\mathbf{P}[X \geq a] \leq \mathbf{P}[f(X) \geq f(a)] \leq \mathbf{E}[f(X)] / f(a) .
$$

- Similarly, if $g: \mathbb{R} \rightarrow[0, \infty)$ and decreasing, then $g(X) \geq 0$, and thus

$$
\mathbf{P}[X \leq a] \leq \mathbf{P}[g(X) \geq g(a)] \leq \mathbf{E}[g(X)] / g(a) .
$$

Chebyshev's inequality (or Markov) can be obtained by chosing $f(X):=(X-\mu)^{2}$ (or $f(X):=X$, respectively).

From Markov and Chebyshev to Chernoff

Markov and Chebyshev use the first and second moment of the random variable. Can we keep going?

- Yes!

We can consider the first, second, third and more moments! That is the basic idea behind the Chernoff Bounds

Our First Chernoff Bound

Chernoff Bounds (General Form, Upper Tail)

Suppose X_{1}, \ldots, X_{n} are independent Bernoulli random variables with parameter p_{i}. Let $X=X_{1}+\ldots+X_{n}$ and $\mu=\mathbf{E}[X]=\sum_{i=1}^{n} p_{i}$. Then, for any $\delta>0$ it holds that

$$
\mathbf{P}[X \geq(1+\delta) \mu] \leq\left[\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right]^{\mu}
$$

This implies that for any $t>\mu$,

$$
\mathbf{P}[X \geq t] \leq e^{-\mu}\left(\frac{e \mu}{t}\right)^{t}
$$

While (\star) is one of the easiest (and most generic) Chernoff bounds to derive, the bound is complicated and hard to apply...

Example: Coin Flips (1/3)

- Consider throwing a fair coin n times and count the total number of heads
- $X_{i} \in\{0,1\}, X=\sum_{i=1}^{n} X_{i}$ and $\mathbf{E}[X]=n \cdot 1 / 2=n / 2$
- The Chernoff Bound gives for any $\delta>0$,

$$
\mathbf{P}[X \geq(1+\delta)(n / 2)] \leq\left[\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right]^{n / 2}
$$

- The above expression equals 1 only for $\delta=0$, and then it gives a value strictly less than 1 (check this!)
- The inequality is exponential in n, (for fixed δ) which is much better than Chebyshev's inequality.

$$
\text { What about a concrete value of } n \text {, say } n=100 \text { ? }
$$

Example: Coin Flips (2/3)

Consider 100 independent coin flips. We wish to find an upper bound on the probability that the number of heads is greater or equal than 75 .

- Markov's inequality: $\mathbf{E}[X]=100 / 2=50$.

$$
\mathbf{P}[X \geq 3 / 2 \cdot \mathbf{E}[X]] \leq 2 / 3=0.666 .
$$

- Chebyshev's inequality: $\mathbf{V}[X]=\sum_{i=1}^{100} \mathbf{V}\left[X_{i}\right]=100 \cdot(1 / 2)^{2}=25$.

$$
\mathbf{P}[|X-\mu| \geq t] \leq \frac{\mathbf{V}[X]}{t^{2}}
$$

and plugging in $t=25$ gives an upper bound of $25 / 25^{2}=1 / 25=0.04$, much better than what we obtained by Markov's inequality.

- The Chernoff bound: with $\delta=1 / 2$ gives:

$$
\mathbf{P}[X \geq 3 / 2 \cdot \mathbf{E}[X]] \leq\left(\frac{e^{1 / 2}}{(3 / 2)^{3 / 2}}\right)^{50}=0.004472 .
$$

- Remark: The exact probability is 0.00000028 ...

Chernoff bound yields a much better result (but needs independence!)

Example: Coin Flips (3/3)

Outline

Introduction to Chernoff Bounds

How to Derive Chernoff Bounds

Application 1: Balls into Bins

Application 2: Randomised QuickSort

Extensions of Chernoff Bounds

Applications of Method of Bounded Differences
Appendix

General Recipe for Deriving Chernoff Bounds

Recipe
The three main steps in deriving Chernoff bounds for sums of independent random variables $X=X_{1}+\cdots+X_{n}$ are:

1. Instead of working with X, we switch to the moment generating function $e^{\lambda X}, \lambda>0$ and apply Markov's inequality $\sim \mathbf{E}\left[e^{\lambda X}\right]$
2. Compute an upper bound for $\mathbf{E}\left[e^{\lambda X}\right]$ (using independence)
3. Optimise value of λ to obtain best tail bound

Chernoff Bound: Proof

Chernoff Bound (General Form, Upper Tail)

Suppose X_{1}, \ldots, X_{n} are independent Bernoulli random variables with parameter p_{i}. Let $X=X_{1}+\ldots+X_{n}$ and $\mu=\mathbf{E}[X]=\sum_{i=1}^{n} p_{i}$. Then, for any $\delta>0$ it holds that

$$
\mathbf{P}[X \geq(1+\delta) \mu] \leq\left[\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right]^{\mu}
$$

Proof:

1. For $\lambda>0$,

$$
\mathbf{P}[X \geq(1+\delta) \mu] \underset{e^{\lambda x} \text { is incr }}{\leq} \mathbf{P}\left[e^{\lambda X} \geq e^{\lambda(1+\delta) \mu}\right] \underset{\text { Markov }}{\leq} e^{-\lambda(1+\delta) \mu} \mathbf{E}\left[e^{\lambda X}\right]
$$

2. $\mathbf{E}\left[e^{\lambda X}\right]=\mathbf{E}\left[e^{\lambda \sum_{i=1}^{n} x_{i}}\right] \underset{\text { indep }}{=} \prod_{i=1}^{n} \mathbf{E}\left[e^{\lambda X_{i}}\right]$
3.

$$
\mathbf{E}\left[e^{\lambda x_{i}}\right]=e^{\lambda} p_{i}+\left(1-p_{i}\right)=1+p_{i}\left(e^{\lambda}-1\right) \underset{1+x \leq e^{x}}{\leq} e^{p_{i}\left(e^{\lambda}-1\right)}
$$

Chernoff Bound: Proof

1. For $\lambda>0$,

$$
\mathbf{P}[X \geq(1+\delta) \mu] \underset{e^{\lambda x}}{\overline{\text { is is incr }}} \underset{ }{\mathbf{P}}\left[e^{\lambda X} \geq e^{\lambda(1+\delta) \mu}\right] \underset{\text { Ma⿱krovo }}{\leq} e^{-\lambda(1+\delta) \mu} \mathbf{E}\left[e^{\lambda X}\right]
$$

2. $\mathbf{E}\left[e^{\lambda X}\right]=\mathbf{E}\left[e^{\lambda \sum_{i=1}^{n} x_{i}}\right] \underset{\text { indep }}{=} \prod_{i=1}^{n} \mathbf{E}\left[e^{\lambda x_{i}}\right]$
3.

$$
\mathbf{E}\left[e^{\lambda X_{i}}\right]=e^{\lambda} p_{i}+\left(1-p_{i}\right)=1+p_{i}\left(e^{\lambda}-1\right) \underset{1+x \leq e^{x}}{\leq} e^{p_{i}\left(e^{\lambda}-1\right)}
$$

4. Putting all together

$$
\mathbf{P}[X \geq(1+\delta) \mu] \leq e^{-\lambda(1+\delta) \mu} \prod_{i=1}^{n} e^{p_{i}\left(e^{\lambda}-1\right)}=e^{-\lambda(1+\delta) \mu} e^{\mu\left(e^{\lambda}-1\right)}
$$

5. Choose $\lambda=\log (1+\delta)>0$ to get the result.

Chernoff Bounds: Lower Tails

We can also use Chernoff Bounds to show a random variable is not too small compared to its mean:

Chernoff Bounds (General Form, Lower Tail)
Suppose X_{1}, \ldots, X_{n} are independent Bernoulli random variables with parameter p_{i}. Let $X=X_{1}+\ldots+X_{n}$ and $\mu=\mathbf{E}[X]=\sum p_{i}$. Then, for any $\delta>0$ it holds that

$$
\mathbf{P}[X \leq(1-\delta) \mu] \leq\left[\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right]^{\mu},
$$

and thus, by substitution, for any $t<\mu$,

$$
\mathbf{P}[X \leq t] \leq e^{-\mu}\left(\frac{e \mu}{t}\right)^{t}
$$

Exercise on Supervision Sheet

Hint: multiply both sides by -1 and repeat the proof of the Chernoff Bound

Nicer Chernoff Bounds

"Nicer" Chernoff Bounds

Suppose X_{1}, \ldots, X_{n} are independent Bernoulli random variables with parameter p_{i}. Let $X=X_{1}+\ldots+X_{n}$ and $\mu=\mathbf{E}[X]=\sum_{i=1}^{n} p_{i}$. Then,

- For all $t>0$,

$$
\begin{aligned}
& \mathbf{P}[X \geq \mathbf{E}[X]+t] \leq e^{-2 t^{2} / n} \\
& \mathbf{P}[X \leq \mathbf{E}[X]-t] \leq e^{-2 t^{2} / n}
\end{aligned}
$$

- For $0<\delta<1$,

$$
\begin{aligned}
& \mathbf{P}[X \geq(1+\delta) \mathbf{E}[X]] \leq \exp \left(-\frac{\delta^{2} \mathbf{E}[X]}{3}\right) \\
& \mathbf{P}[X \leq(1-\delta) \mathbf{E}[X]] \leq \exp \left(-\frac{\delta^{2} \mathbf{E}[X]}{2}\right)
\end{aligned}
$$

All upper tail bounds hold even under a relaxed independence assumption: For all $1 \leq i \leq n$ and $x_{1}, x_{2}, \ldots, x_{i-1} \in\{0,1\}$,

$$
\mathbf{P}\left[X_{i}=1 \mid X_{1}=x_{1}, \ldots, X_{i-1}=x_{i-1}\right] \leq p_{i} .
$$

Outline

Introduction to Chernoff Bounds

How to Derive Chernoff Bounds

Application 1: Balls into Bins

Application 2: Randomised QuickSort

Extensions of Chernoff Bounds

Applications of Method of Bounded Differences

Appendix

Balls into Bins

Balls into Bins Model
You have m balls and n bins. Each ball is allocated in a bin picked independently and uniformly at random.

- A very natural but also rich mathematical model
- In computer science, there are several interpretations:

1. Bins are a hash table, balls are items
2. Bins are processors and balls are jobs
3. Bins are data servers and balls are queries

Exercise: Think about the relation between the Balls into Bins Model and the Coupon Collector Problem.

Balls into Bins: Bounding the Maximum Load (1/4)

Balls into Bins Model
You have m balls and n bins. Each ball is allocated in a bin picked independently and uniformly at random.

Question 1: How large is the maximum load if $m=2 n \log n$?

- Focus on an arbitrary single bin. Let X_{i} the indicator variable which is 1 iff ball i is assigned to this bin. Note that $p_{i}=\mathbf{P}\left[X_{i}=1\right]=1 / n$.
- The total balls in the bin is given by $X:=\sum_{i=1}^{n} X_{i}$.
- Since $m=2 n \log n$, then $\mu=\mathbf{E}[X]=2 \log n \quad$ the "nicer" bounds as well!
- By the Chernoff Bound,

$$
\mathbf{P}[X \geq 6 \log n] \leq e^{-2 \log n}\left(\frac{2 e \log n}{6 \log n}\right)^{6 \log n} \leq e^{-2 \log n}=n^{-2}
$$

Balls into Bins: Bounding the Maximum Load (2/4)

- Let $\mathcal{E}_{j}:=\{X(j) \geq 6 \log n\}$, that is, bin j receives at least $6 \log n$ balls.
- We are interested in the probability that at least one bin receives at least $6 \log n$ balls \Rightarrow this is the event $\bigcup_{j=1}^{n} \mathcal{E}_{j}$
- By the Union Bound,

$$
\mathbf{P}\left[\bigcup_{j=1}^{n} \mathcal{E}_{j}\right] \leq \sum_{j=1}^{n} \mathbf{P}\left[\mathcal{E}_{j}\right] \leq n \cdot n^{-2}=n^{-1} .
$$

- Therefore whp, no bin receives at least $6 \log n$ balls
- By pigeonhole principle, the max loaded bin receives at least $2 \log n$ balls. Hence our bound is pretty sharp.
whp stands for with high probability:
An event \mathcal{E} (that implicitly depends on an input parameter n) occurs whp if

$$
\mathbf{P}[\mathcal{E}] \rightarrow 1 \text { as } n \rightarrow \infty
$$

This is a very standard notation in randomised algorithms but it may vary from author to author. Be careful!

Balls into Bins: Bounding the Maximum Load (3/4)

Question 2: How large is the maximum load if $m=n$?

- Using the Chernoff Bound:

$$
\mathbf{P}[X \geq t] \leq e^{-\mu}(e \mu / t)^{t}
$$

$$
\mathbf{P}[X \geq t] \leq e^{-1}\left(\frac{e}{t}\right)^{t} \leq\left(\frac{e}{t}\right)^{t}
$$

- By setting $t=4 \log n / \log \log n$, we claim to obtain $\mathbf{P}[X \geq t] \leq n^{-2}$.
- Indeed:

$$
\left(\frac{e \log \log n}{4 \log n}\right)^{4 \log n / \log \log n}=\exp \left(\frac{4 \log n}{\log \log n} \cdot \log \left(\frac{e \log \log n}{4 \log n}\right)\right)
$$

- The term inside the exponential is

$$
\begin{aligned}
& \frac{4 \log n}{\log \log n} \cdot(\log (4 / e)+\log \log \log n-\log \log n) \leq \frac{4 \log n}{\log \log n}\left(-\frac{1}{2} \log \log n\right), \\
& \text { obtaining that } \mathbf{P}[X \geq t] \leq n^{-4 / 2}=n^{-2} \cdot\left(\begin{array}{c}
\text { This inequality only } \\
\text { works for large enough } n .
\end{array}\right.
\end{aligned}
$$

Balls into Bins: Bounding the Maximum Load (4/4)

We just proved that

$$
\mathbf{P}[X \geq 4 \log n / \log \log n] \leq n^{-2},
$$

thus by the Union Bound, no bin receives more than $\Omega(\log n / \log \log n)$ balls with probability at least $1-1 / n$.

Simulations

- We plot the load configuration for $m \in\left\{n, n \log n, n^{2}\right\}$
- We consider $n \in\{300,1000,100000\}$
- In plots, we take the normalised load, that is, actual bin load minus average load

Acknowledgements: experiments and plots created by Dimitris Los

Balls-into-Bins Plot (1/3)

Balls-into-Bins Plot (2/3)

Balls-into-Bins Plot (3/3) (only $m \in\{n, n \log n\}$)

Conclusions

- If the number of balls is $2 \log n$ times n (the number of bins), then to distribute balls at random is a good algorithm
- This is because the worst case maximum load is whp. $6 \log n$, while the average load is $2 \log n$
- For the case $m=n$, the algorithm is not good, since the maximum load is whp. $\Theta(\log n / \log \log n)$, while the average load is 1 .

A Better Load Balancing Approach

For any $m \geq n$, we can improve the balls into bin process by sampling two bins in each step, then assigning the ball into the bin with lesser load. \Rightarrow gives a (normalised) maximum load $\Theta(\log \log n)$ w.p. $1-1 / n$.

This is called the power of two choices: It is a common technique to improve the performance of randomised algorithms.

Outline

Introduction to Chernoff Bounds

How to Derive Chernoff Bounds

Application 1: Balls into Bins

Application 2: Randomised QuickSort

Extensions of Chernoff Bounds

Applications of Method of Bounded Differences

Appendix

QuickSort

QuickSort (Input $A[1], A[2], \ldots, A[n])$
1: Pick an element from the array, the so-called pivot
2: If $|A|=0$ or $|A|=1$ then return A
else
Create two subarrays A_{1} and A_{2} (without the pivot) such that:
A_{1} contains the elements that are smaller than the pivot
A_{2} contains the elements that are greater (or equal) than the pivot
QuickSort (A_{1})
QuickSort (A_{2})
return A

- Example: Let $A=(2,8,9,1,7,5,6,3,4)$ with $A[7]=6$ as pivot.
$\Rightarrow A_{1}=(2,1,5,3,4)$ and $A_{2}=(8,9,7)$
- Worst-Case Complexity (number of comparisons) is $\Theta\left(n^{2}\right)$, while Average-Case Complexity is $O(n \log n)$.

We will now give a proof of this "well-known" result!

QuickSort: How to Count Comparisons

Randomised QuickSort: Analysis (1/4)

How to pick a good pivot? We don't, just pick one at random.

$$
\text { This should be your standard answer in this course } \odot
$$

Let us analyse QuickSort with random pivots.

1. Assume A consists of n different numbers, w.l.o.g., $\{1,2, \ldots, n\}$
2. Let H_{i} be the deepest level where element i appears in the tree.

Then the number of comparison is $H=\sum_{i=1}^{n} H_{i}$
3. We will prove that exists $C>0$ such that

$$
\mathbf{P}[H \leq C n \log n] \geq 1-n^{-1}
$$

4. Actually, we will prove sth slightly stronger:

$$
\mathbf{P}\left[\bigcap_{i=1}^{n}\left\{H_{i} \leq C \log n\right\}\right] \geq 1-n^{-1}
$$

Randomised QuickSort: Analysis (2/4)

- Let P be a path from the root to the deepest level of some element
- A node in P is called good if the corresponding pivot partitions the array into two subarrays each of size at most $2 / 3$ of the previous one
- otherwise, the node is bad
- Further let s_{t} be the size of the array at level t in P.

- Element 2: $(2,8,9,1,7,5,6,3,4) \rightarrow(2,1,5,3,4) \rightarrow(2,5,3,4) \rightarrow(2,3) \rightarrow(2)$

Randomised QuickSort: Analysis (3/4)

- Consider now any element $i \in\{1,2, \ldots, n\}$ and construct the path $P=P(i)$ one level by one
- For P to proceed from level k to $k+1$, the condition $s_{k}>1$ is necessary

How far could such a path P possibly run until we have $s_{k}=1$?

- We start with $s_{0}=n$
- First Case, good node: $s_{k+1} \leq \frac{2}{3} \cdot s_{k}$. This even holds always,
- Second Case, bad node: $s_{k+1} \leq s_{k}$. i.e., deterministically!
\Rightarrow There are at most $T=\frac{\log n}{\log (3 / 2)}<3 \log n$ many good nodes on any path P.
- Assume $|P| \geq C \log n$ for $C:=24$
\Rightarrow number of bad vertices in the first $24 \log n$ levels is more than $21 \log n$.
Let us now upper bound the probability that this "bad event" happens!

Randomised QuickSort: Analysis (4/4)

- Consider the first $24 \log n$ vertices of P to the deepest level of element i.
- For any level $j \in\{0,1, \ldots, 24 \log n-1\}$, define an indicator variable X_{j} :
- $X_{j}=1$ if the node at level j is bad
- $X_{j}=0$ if the node at level j is good.
- $\mathbf{P}\left[X_{j}=1 \mid X_{0}=x_{0}, \ldots, X_{j-1}=X_{j-1}\right] \leq \frac{2}{3}$

- $X:=\sum_{j=0}^{24 \log n-1} X_{j}$ satisfies relaxed independence assumption (slide 16)

Question: But what if the path P does not reach level j ?
Answer: We can then simply define X_{j} as the result of an independent coin flip with probability $2 / 3$.

Randomised QuickSort: Analysis (4/4)

- Consider the first $24 \log n$ vertices of P to the deepest level of element i.
- For any level $j \in\{0,1, \ldots, 24 \log n-1\}$, define an indicator variable X_{j} :
- $X_{j}=1$ if the node at level j is bad
- $X_{j}=0$ if the node at level j is good.
- $\mathbf{P}\left[X_{j}=1 \mid X_{0}=x_{0}, \ldots, X_{j-1}=X_{j-1}\right] \leq \frac{2}{3}$

- $X:=\sum_{j=0}^{24 \log n-1} X_{j}$ satisfies relaxed independence assumption (slide 16)

We can now apply the "nicer" Chernoff Bound!

- We have $\mathbf{E}[X] \leq(2 / 3) \cdot 24 \log n=16 \log n$
- Then, by the "nicer" Chernoff Bounds $\quad \mathbf{P}[X \geq \mathbf{E}[X]+t] \leq e^{-2 t^{2} / n}$

$$
\begin{aligned}
\mathbf{P}[X>21 \log n] \leq \mathbf{P}[X>\mathbf{E}[X]+5 \log n] & \leq e^{-2(5 \log n)^{2} /(24 \log n)} \\
& =e^{-(50 / 24) \log n} \leq n^{-2}
\end{aligned}
$$

- Hence P has more than $24 \log n$ nodes with probability at most n^{-2}.
- As there are in total n paths, by the union bound, the probability that at least one of them has more than $24 \log n$ nodes is at most n^{-1}.

Randomised QuickSort: Final Remarks

- Well-known: any comparison-based sorting algorithm needs $\Omega(n \log n)$
- A classical result: expected number of comparison of randomised QuickSort is $2 n \log n+O(n)$ (see, e.g., book by Mitzenmacher \& Upfal)

Supervision Exercise: Our upper bound of $O(n \log n)$ whp also immediately implies a $O(n \log n)$ bound on the expected number of comparisons!

- It is possible to deterministically find the best pivot element that divides the array into two subarrays of the same size.
- The latter requires to compute the median of the array in linear time, which is not easy...
- The presented randomised algorithm for QuickSORT is much easier to implement!

Outline

Introduction to Chernoff Bounds

How to Derive Chernoff Bounds

Application 1: Balls into Bins

Application 2: Randomised QuickSort

Extensions of Chernoff Bounds

Applications of Method of Bounded Differences

Appendix

Hoeffding's Extension

- Besides sums of independent bernoulli random variables, sums of independent and bounded random variables are very frequent in applications.
- Unfortunately the distribution of the X_{i} may be unknown or hard to compute, thus it will be hard to compute the moment-aenerating function.
- Hoeffding's Lemma helps us here:

$$
\binom{\text { You can always consider }}{X^{\prime}=X-\mathbf{E}[X]}
$$

Hoeffding's Extension Lemma
Let X be a random variable with mean 0 such that $a \leq X \leq b$. Then for all $\lambda \in \mathbb{R}$,

$$
\mathbf{E}\left[e^{\lambda X}\right] \leq \exp \left(\frac{(b-a)^{2} \lambda^{2}}{8}\right)
$$

We omit the proof of this lemma!

Hoeffding Bounds

Hoeffding's Inequality

Let X_{1}, \ldots, X_{n} be independent random variable with mean μ_{i} such that $a_{i} \leq X_{i} \leq b_{i}$. Let $X=X_{1}+\ldots+X_{n}$, and let $\mu=\mathbf{E}[X]=\sum_{i=1}^{n} \mu_{i}$. Then for any $t>0$

$$
\mathbf{P}[X \geq \mu+t] \leq \exp \left(-\frac{2 t^{2}}{\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}}\right)
$$

and

$$
\mathbf{P}[X \leq \mu-t] \leq \exp \left(-\frac{2 t^{2}}{\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}}\right) .
$$

Proof Outline (skipped):

- Let $X_{i}^{\prime}=X_{i}-\mu_{i}$ and $X^{\prime}=X_{1}^{\prime}+\ldots+X_{n}^{\prime}$, then $\mathbf{P}[X \geq \mu+t]=\mathbf{P}\left[X^{\prime} \geq t\right]$
- $\mathbf{P}\left[X^{\prime} \geq t\right] \leq e^{-\lambda t} \prod_{i=1}^{n} \mathbf{E}\left[e^{\lambda X_{i}^{\prime}}\right] \leq \exp \left[-\lambda t+\frac{\lambda^{2}}{8} \sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}\right]$
- Choose $\lambda=\frac{4 t}{\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}}$ to get the result.

This is not magic! you just need to optimise λ !

Method of Bounded Differences

Framework

Suppose, we have independent random variables X_{1}, \ldots, X_{n}. We want to study the random variable:

$$
f\left(X_{1}, \ldots, X_{n}\right)
$$

Some examples:

1. $X=X_{1}+\ldots+X_{n}$
2. In balls into bins, X_{i} indicates where ball i is allocated, and $f\left(X_{1}, \ldots, X_{m}\right)$ is the number of empty bins
3. X_{i} indicates if the i-th edge is present in a graph, and $f\left(X_{1}, \ldots, X_{m}\right)$ represents the number of connected components of G

In all those cases (and more) we can easily prove concentration of $f\left(X_{1}, \ldots, X_{n}\right)$ around its mean by the so-called Method of Bounded Differences.

Method of Bounded Differences

A function f is called Lipschitz with parameters $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right)$ if for all $i=1,2, \ldots, n$,

$$
\left|f\left(x_{1}, x_{2}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{n}\right)-f\left(x_{1}, x_{2}, \ldots, x_{i-1}, y_{i}, x_{i+1}, \ldots, x_{n}\right)\right| \leq c_{i},
$$

where x_{i} and y_{i} are in the domain of the i-th coordinate.
McDiarmid's inequality
Let X_{1}, \ldots, X_{n} be independent random variables. Let f be Lipschitz with parameters $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right)$. Let $X=f\left(X_{1}, \ldots, X_{n}\right)$. Then for any $t>0$,

$$
\mathbf{P}[X \geq \mu+t] \leq \exp \left(-\frac{2 t^{2}}{\sum_{i=1}^{n} c_{i}^{2}}\right)
$$

and

$$
\mathbf{P}[X \leq \mu-t] \leq \exp \left(-\frac{2 t^{2}}{\sum_{i=1}^{n} c_{i}^{2}}\right)
$$

- Notice the similarity with Hoeffding's inequality!
- The proof is omitted here (it requires the concept of martingales).

Outline

Introduction to Chernoff Bounds

How to Derive Chernoff Bounds

Application 1: Balls into Bins

Application 2: Randomised QuickSort

Extensions of Chernoff Bounds

Applications of Method of Bounded Differences

Appendix

Application 3: Balls into Bins (again...)

- Consider again m balls assigned uniformly at random into n bins.
- Enumerate the balls from 1 to m. Ball i is assigned to a random bin X_{i}
- Let Z be the number of empty bins (after assigning the m balls)
- $Z=Z\left(X_{1}, \ldots, X_{m}\right)$ and Z is Lipschitz with $\mathbf{c}=(1, \ldots, 1)$ (If we move one ball to another bin, number of empty bins changes by ≤ 1.)
- By McDiarmid's inequality, for any $t \geq 0$,

$$
\mathbf{P}[|Z-\mathbf{E}[Z]|>t] \leq 2 \cdot e^{-2 t^{2} / m} .
$$

This is a decent bound, but for some values of m it is far from tight and stronger bounds are possible through a refined analysis.

Application 4: Bin Packing

- We are given n items of sizes in the unit interval $[0,1]$
- We want to pack those items into the fewest number of unit-capacity bins
- Suppose the item sizes X_{i} are independent random variables in $[0,1]$
- Let $B=B\left(X_{1}, \ldots, X_{n}\right)$ be the optimal number of bins
- The Lipschitz conditions holds with $\boldsymbol{c}=(1, \ldots, 1)$. Why?
- Therefore

$$
\mathbf{P}[|B-\mathbf{E}[B]| \geq t] \leq 2 \cdot e^{-2 t^{2} / n}
$$

This is a typical example where proving concentration is much easier than calculating (or estimating) the expectation!

Outline

Introduction to Chernoff Bounds

How to Derive Chernoff Bounds

Application 1: Balls into Bins

Application 2: Randomised QuickSort

Extensions of Chernoff Bounds

Applications of Method of Bounded Differences

Appendix

Moment Generating Functions

Moment-Generating Function

The moment-generating function of a random variable X is

$$
M_{X}(t)=\mathbf{E}\left[e^{t X}\right], \quad \text { where } t \in \mathbb{R}
$$

Using power series of e and differentiating shows that $M_{X}(t)$ encapsulates all moments of X.

Lemma

1. If X and Y are two r.v.'s with $M_{X}(t)=M_{Y}(t)$ for all $t \in(-\delta,+\delta)$ for some $\delta>0$, then the distributions X and Y are identical.
2. If X and Y are independent random variables, then

$$
M_{X+Y}(t)=M_{X}(t) \cdot M_{Y}(t)
$$

Proof of 2:
$M_{X+Y}(t)=\mathbf{E}\left[e^{t(X+Y)}\right]=\mathbf{E}\left[e^{t X} \cdot e^{t Y}\right] \stackrel{(!)}{=} \mathbf{E}\left[e^{t X}\right] \cdot \mathbf{E}\left[e^{t Y}\right]=M_{X}(t) M_{Y}(t) \quad \square$

