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Concentration Inequalities

Concentration refers to the phenomena where random variables are very
close to their mean

This is very useful in randomised algorithms as it ensures an almost
deterministic behaviour
It gives us the best of two worlds:

1. Randomised Algorithms: Easy to Design and Implement
2. Deterministic Algorithms: They do what they claim
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Chernoff Bounds: A Tool for Concentration

Chernoffs bounds are “strong” bounds on the tail
probabilities of sums of independent random variables

random variables can be discrete (or continuous)

usually these bounds decrease exponentially as
opposed to a polynomial decrease in Markov’s or
Chebyshev’s inequality (see example)

easy to apply, but requires independence
have found various applications in:

Randomised Algorithms
Statistics
Random Projections and Dimensionality Reduction
Learning Theory (e.g., PAC-learning)

...

Hermann Chernoff (1923-)

(1 + δ)µ(1 − δ)µ µ
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Recap: Markov and Chebyshev

If X is a non-negative random variable, then for any a > 0,

P [ X ≥ a ] ≤ E [ X ] /a.

Markov’s Inequality

If X is a random variable, then for any a > 0,

P [ |X − E [ X ] | ≥ a ] ≤ V [ X ] /a2.

Chebyshev’s Inequality

Let f : R→ [0,∞) and increasing, then f (X ) ≥ 0, and thus

P [ X ≥ a ] ≤ P [ f (X ) ≥ f (a) ] ≤ E [ f (X ) ] /f (a).

Similarly, if g : R→ [0,∞) and decreasing, then g(X ) ≥ 0, and thus

P [ X ≤ a ] ≤ P [ g(X ) ≥ g(a) ] ≤ E [ g(X ) ] /g(a).

Chebyshev’s inequality (or Markov) can be obtained by
chosing f (X ) := (X − µ)2 (or f (X ) := X , respectively).
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From Markov and Chebyshev to Chernoff

Markov and Chebyshev use the first and second moment of the random
variable. Can we keep going?

Yes!

We can consider the first, second, third and more moments! That is the basic
idea behind the Chernoff Bounds
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Our First Chernoff Bound

Suppose X1, . . . ,Xn are independent Bernoulli random variables with
parameter pi . Let X = X1 + . . .+ Xn and µ = E [ X ] =

∑n
i=1 pi . Then, for

any δ > 0 it holds that

P [ X ≥ (1 + δ)µ ] ≤
[

eδ

(1 + δ)(1+δ)

]µ
. (F)

This implies that for any t > µ,

P [ X ≥ t ] ≤ e−µ
(eµ

t

)t
.

Chernoff Bounds (General Form, Upper Tail)

While (F) is one of the easiest (and most generic) Chernoff
bounds to derive, the bound is complicated and hard to apply...
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Example: Coin Flips (1/3)

Consider throwing a fair coin n times and count the total number of heads

Xi ∈ {0, 1}, X =
∑n

i=1 Xi and E [ X ] = n · 1/2 = n/2

The Chernoff Bound gives for any δ > 0,

P [ X ≥ (1 + δ)(n/2) ] ≤
[

eδ

(1 + δ)(1+δ)

]n/2

.

The above expression equals 1 only for δ = 0, and then it gives a value
strictly less than 1 (check this!)
The inequality is exponential in n, (for fixed δ) which is much better than
Chebyshev’s inequality.

What about a concrete value of n, say n = 100?
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Example: Coin Flips (2/3)

Consider 100 independent coin flips. We wish to find an upper bound on the
probability that the number of heads is greater or equal than 75.

Markov’s inequality: E [ X ] = 100/2 = 50.

P [ X ≥ 3/2 · E [ X ] ] ≤ 2/3 = 0.666.

Chebyshev’s inequality: V [ X ] =
∑100

i=1 V [ Xi ] = 100 · (1/2)2 = 25.

P [ |X − µ| ≥ t ] ≤ V [ X ]

t2 ,

and plugging in t = 25 gives an upper bound of 25/252 = 1/25 = 0.04,
much better than what we obtained by Markov’s inequality.

The Chernoff bound: with δ = 1/2 gives:

P [ X ≥ 3/2 · E [ X ] ] ≤
(

e1/2

(3/2)3/2

)50

= 0.004472.

Remark: The exact probability is 0.00000028 . . .

Chernoff bound yields a much better result (but needs independence!)
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Example: Coin Flips (3/3)

0 10 20 30 40 50 60 70 80 90 100

0.00

0.02

0.04

0.06

0.08

0.10

x

P [ Bin(100, 1/2) = x ]
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General Recipe for Deriving Chernoff Bounds

The three main steps in deriving Chernoff bounds for sums of independ-
ent random variables X = X1 + · · ·+ Xn are:

1. Instead of working with X , we switch to the moment generating
function eλX , λ > 0 and apply Markov’s inequality ; E

[
eλX ]

2. Compute an upper bound for E
[

eλX ] (using independence)

3. Optimise value of λ to obtain best tail bound

Recipe
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Chernoff Bound: Proof

Suppose X1, . . . ,Xn are independent Bernoulli random variables with
parameter pi . Let X = X1 + . . .+ Xn and µ = E [ X ] =

∑n
i=1 pi . Then, for

any δ > 0 it holds that

P [ X ≥ (1 + δ)µ ] ≤
[

eδ

(1 + δ)(1+δ)

]µ
.

Chernoff Bound (General Form, Upper Tail)

Proof:

1. For λ > 0,

P [ X ≥ (1 + δ)µ ] ≤
eλx is incr

P
[

eλX ≥ eλ(1+δ)µ
]
≤

Markov
e−λ(1+δ)µE

[
eλX

]

2. E
[

eλX ] = E
[

eλ
∑n

i=1 Xi
]

=
indep

∏n
i=1 E

[
eλXi

]
3.

E
[

eλXi
]

= eλpi + (1− pi ) = 1 + pi (eλ − 1) ≤
1+x≤ex

epi (e
λ−1)
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∏n
i=1 E

[
eλXi

]
3.

E
[

eλXi
]

= eλpi + (1− pi ) = 1 + pi (eλ − 1) ≤
1+x≤ex

epi (e
λ−1)
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Chernoff Bounds: Lower Tails

We can also use Chernoff Bounds to show a random variable is not too
small compared to its mean:

Suppose X1, . . . ,Xn are independent Bernoulli random variables with
parameter pi . Let X = X1 + . . . + Xn and µ = E [ X ] =

∑
pi . Then,

for any δ > 0 it holds that

P [ X ≤ (1− δ)µ ] ≤
[

e−δ

(1− δ)1−δ

]µ
,

and thus, by substitution, for any t < µ,

P [ X ≤ t ] ≤ e−µ
(eµ

t

)t
.

Chernoff Bounds (General Form, Lower Tail)

Exercise on Supervision Sheet
Hint: multiply both sides by −1 and repeat the proof of the Chernoff Bound
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Nicer Chernoff Bounds

Suppose X1, . . . ,Xn are independent Bernoulli random variables with
parameter pi . Let X = X1 + . . .+ Xn and µ = E [ X ] =

∑n
i=1 pi . Then,

For all t > 0,
P [ X ≥ E [ X ] + t ] ≤ e−2t2/n

P [ X ≤ E [ X ]− t ] ≤ e−2t2/n

For 0 < δ < 1,

P [ X ≥ (1 + δ)E [ X ] ] ≤ exp

(
−δ

2E [ X ]

3

)

P [ X ≤ (1− δ)E [ X ] ] ≤ exp

(
−δ

2E [ X ]

2

)

“Nicer” Chernoff Bounds

All upper tail bounds hold even under a relaxed independence assumption:
For all 1 ≤ i ≤ n and x1, x2, . . . , xi−1 ∈ {0, 1},

P [ Xi = 1 | X1 = x1, . . . ,Xi−1 = xi−1 ] ≤ pi .
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Balls into Bins

You have m balls and n bins. Each ball is allocated in a bin picked inde-
pendently and uniformly at random.

Balls into Bins Model

A very natural but also rich mathematical model

In computer science, there are several interpretations:

1. Bins are a hash table, balls are items
2. Bins are processors and balls are jobs
3. Bins are data servers and balls are queries

Exercise: Think about the relation between the Balls into Bins
Model and the Coupon Collector Problem.
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Balls into Bins: Bounding the Maximum Load (1/4)

You have m balls and n bins. Each ball is allocated in a bin picked inde-
pendently and uniformly at random.

Balls into Bins Model

Question 1: How large is the maximum load if m = 2n log n?

Focus on an arbitrary single bin. Let Xi the indicator variable which is 1 iff
ball i is assigned to this bin. Note that pi = P [ Xi = 1 ] = 1/n.

The total balls in the bin is given by X :=
∑n

i=1 Xi .

Since m = 2n log n, then µ = E [ X ] = 2 log n

P [ X ≥ t ] ≤ e−µ(eµ/t)t

here we could have used
the “nicer” bounds as well!

By the Chernoff Bound,

P [ X ≥ 6 log n ] ≤ e−2 log n
(

2e log n
6 log n

)6 log n
≤ e−2 log n = n−2
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Balls into Bins: Bounding the Maximum Load (2/4)

Let Ej := {X (j) ≥ 6 log n}, that is, bin j receives at least 6 log n balls.

We are interested in the probability that at least one bin receives at least
6 log n balls⇒ this is the event

⋃n
j=1 Ej

By the Union Bound,

P

 n⋃
j=1

Ej

 ≤ n∑
j=1

P [ Ej ] ≤ n · n−2 = n−1.

Therefore whp, no bin receives at least 6 log n balls

By pigeonhole principle, the max loaded bin receives at least 2 log n balls.
Hence our bound is pretty sharp.

whp stands for with high probability :
An event E (that implicitly depends on an input parameter n) occurs whp if

P [ E ]→ 1 as n→∞.
This is a very standard notation in randomised algorithms

but it may vary from author to author. Be careful!
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Balls into Bins: Bounding the Maximum Load (3/4)

Question 2: How large is the maximum load if m = n?

Using the Chernoff Bound:

P [ X ≥ t ] ≤ e−1
(e

t

)t
≤
(e

t

)t

P [ X ≥ t ] ≤ e−µ(eµ/t)t

By setting t = 4 log n/ log log n, we claim to obtain P [ X ≥ t ] ≤ n−2.

Indeed:(
e log log n

4 log n

)4 log n/ log log n

= exp

(
4 log n

log log n
· log

(
e log log n

4 log n

))
The term inside the exponential is

4 log n
log log n

·(log(4/e) + log log log n − log log n)

≤ 4 log n
log log n

(
−1

2
log log n

)
,

obtaining that P [ X ≥ t ] ≤ n−4/2 = n−2.

This inequality only
works for large enough n.
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Balls into Bins: Bounding the Maximum Load (4/4)

We just proved that

P [ X ≥ 4 log n/ log log n ] ≤ n−2,

thus by the Union Bound, no bin receives more than Ω (log n/ log log n) balls
with probability at least 1− 1/n.
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Simulations

We plot the load configuration for m ∈ {n, n log n, n2}
We consider n ∈ {300, 1000, 100000}
In plots, we take the normalised load, that is, actual bin load minus
average load

Acknowledgements: experiments and plots created by Dimitris Los
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Balls-into-Bins Plot (1/3)
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Balls-into-Bins Plot (2/3)
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Balls-into-Bins Plot (3/3) (only m ∈ {n,n log n})
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Conclusions

If the number of balls is 2 log n times n (the number of bins), then to
distribute balls at random is a good algorithm

This is because the worst case maximum load is whp. 6 log n, while the
average load is 2 log n

For the case m = n, the algorithm is not good, since the maximum load is
whp. Θ(log n/ log log n), while the average load is 1.

For any m ≥ n, we can improve the balls into bin process by sampling two
bins in each step, then assigning the ball into the bin with lesser load.

⇒ gives a (normalised) maximum load Θ(log log n) w.p. 1− 1/n.

A Better Load Balancing Approach

This is called the power of two choices: It is a common tech-
nique to improve the performance of randomised algorithms.
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QuickSort

QUICKSORT (Input A[1],A[2], . . . ,A[n])
1: Pick an element from the array, the so-called pivot
2: If |A| = 0 or |A| = 1 then
3: return A
4: else
5: Create two subarrays A1 and A2 (without the pivot) such that:
6: A1 contains the elements that are smaller than the pivot
7: A2 contains the elements that are greater (or equal) than the pivot
8: QUICKSORT(A1)
9: QUICKSORT(A2)

10: return A

Example: Let A = (2, 8, 9, 1, 7, 5, 6, 3, 4) with A[7] = 6 as pivot.

⇒ A1 = (2, 1, 5, 3, 4) and A2 = (8, 9, 7)

Worst-Case Complexity (number of comparisons) is Θ(n2),

while Average-Case Complexity is O(n log n).

We will now give a proof of this “well-known” result!
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QuickSort: How to Count Comparisons

2,8,9,1,7,5,6,3,4

2,1,5,3,4

2,5,3,4

2,3

2

5

8,9,7

8,9

8

What is the number of comparisons?

Note that the number of comparison by QUICKSORT is equivalent to
the sum of the height of all nodes in the tree (why?).

In this case:

0 + 1 + 1 + 2 + 2 + 3 + 3 + 3 + 4 = 19.
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Randomised QuickSort: Analysis (1/4)

How to pick a good pivot? We don’t, just pick one at random.

This should be your standard answer in this course ,

Let us analyse QUICKSORT with random pivots.

1. Assume A consists of n different numbers, w.l.o.g., {1, 2, . . . , n}
2. Let Hi be the deepest level where element i appears in the tree.

Then the number of comparison is H =
∑n

i=1 Hi

3. We will prove that exists C > 0 such that

P [ H ≤ Cn log n ] ≥ 1− n−1.

4. Actually, we will prove sth slightly stronger:

P

[
n⋂

i=1

{Hi ≤ C log n}

]
≥ 1− n−1.

Concentration © Thomas Sauerwald Application 2: Randomised QuickSort 31



Randomised QuickSort: Analysis (1/4)

How to pick a good pivot? We don’t, just pick one at random.

This should be your standard answer in this course ,

Let us analyse QUICKSORT with random pivots.

1. Assume A consists of n different numbers, w.l.o.g., {1, 2, . . . , n}
2. Let Hi be the deepest level where element i appears in the tree.

Then the number of comparison is H =
∑n

i=1 Hi

3. We will prove that exists C > 0 such that

P [ H ≤ Cn log n ] ≥ 1− n−1.

4. Actually, we will prove sth slightly stronger:

P

[
n⋂

i=1

{Hi ≤ C log n}

]
≥ 1− n−1.

Concentration © Thomas Sauerwald Application 2: Randomised QuickSort 31



Randomised QuickSort: Analysis (1/4)

How to pick a good pivot? We don’t, just pick one at random.

This should be your standard answer in this course ,

Let us analyse QUICKSORT with random pivots.

1. Assume A consists of n different numbers, w.l.o.g., {1, 2, . . . , n}
2. Let Hi be the deepest level where element i appears in the tree.

Then the number of comparison is H =
∑n

i=1 Hi

3. We will prove that exists C > 0 such that

P [ H ≤ Cn log n ] ≥ 1− n−1.

4. Actually, we will prove sth slightly stronger:

P

[
n⋂

i=1

{Hi ≤ C log n}

]
≥ 1− n−1.

Concentration © Thomas Sauerwald Application 2: Randomised QuickSort 31



Randomised QuickSort: Analysis (1/4)

How to pick a good pivot? We don’t, just pick one at random.

This should be your standard answer in this course ,

Let us analyse QUICKSORT with random pivots.

1. Assume A consists of n different numbers, w.l.o.g., {1, 2, . . . , n}

2. Let Hi be the deepest level where element i appears in the tree.
Then the number of comparison is H =

∑n
i=1 Hi

3. We will prove that exists C > 0 such that

P [ H ≤ Cn log n ] ≥ 1− n−1.

4. Actually, we will prove sth slightly stronger:

P

[
n⋂

i=1

{Hi ≤ C log n}

]
≥ 1− n−1.

Concentration © Thomas Sauerwald Application 2: Randomised QuickSort 31



Randomised QuickSort: Analysis (1/4)

How to pick a good pivot? We don’t, just pick one at random.

This should be your standard answer in this course ,

Let us analyse QUICKSORT with random pivots.

1. Assume A consists of n different numbers, w.l.o.g., {1, 2, . . . , n}
2. Let Hi be the deepest level where element i appears in the tree.

Then the number of comparison is H =
∑n

i=1 Hi

3. We will prove that exists C > 0 such that

P [ H ≤ Cn log n ] ≥ 1− n−1.

4. Actually, we will prove sth slightly stronger:

P

[
n⋂

i=1

{Hi ≤ C log n}

]
≥ 1− n−1.

Concentration © Thomas Sauerwald Application 2: Randomised QuickSort 31



Randomised QuickSort: Analysis (1/4)

How to pick a good pivot? We don’t, just pick one at random.

This should be your standard answer in this course ,

Let us analyse QUICKSORT with random pivots.

1. Assume A consists of n different numbers, w.l.o.g., {1, 2, . . . , n}
2. Let Hi be the deepest level where element i appears in the tree.

Then the number of comparison is H =
∑n

i=1 Hi

3. We will prove that exists C > 0 such that

P [ H ≤ Cn log n ] ≥ 1− n−1.

4. Actually, we will prove sth slightly stronger:

P

[
n⋂

i=1

{Hi ≤ C log n}

]
≥ 1− n−1.

Concentration © Thomas Sauerwald Application 2: Randomised QuickSort 31



Randomised QuickSort: Analysis (1/4)

How to pick a good pivot? We don’t, just pick one at random.

This should be your standard answer in this course ,

Let us analyse QUICKSORT with random pivots.

1. Assume A consists of n different numbers, w.l.o.g., {1, 2, . . . , n}
2. Let Hi be the deepest level where element i appears in the tree.

Then the number of comparison is H =
∑n

i=1 Hi

3. We will prove that exists C > 0 such that

P [ H ≤ Cn log n ] ≥ 1− n−1.

4. Actually, we will prove sth slightly stronger:

P

[
n⋂

i=1

{Hi ≤ C log n}

]
≥ 1− n−1.

Concentration © Thomas Sauerwald Application 2: Randomised QuickSort 31



Randomised QuickSort: Analysis (2/4)

Let P be a path from the root to the deepest level of some element

A node in P is called good if the corresponding pivot partitions the array into
two subarrays each of size at most 2/3 of the previous one
otherwise, the node is bad

Further let st be the size of the array at level t in P.

2,8,9,1,7,5,6,3,4

2,1,5,3,4

2,5,3,4

2,3

2

5

8,9,7

8,9

8

good

bad

good

good

good

s0 = 9

s1 = 5

s2 = 4

s3 = 2

s4 = 1

Element 2: (2, 8, 9, 1, 7, 5, 6, 3, 4)→ (2, 1, 5, 3, 4)→ (2, 5, 3, 4)→ (2, 3)→ (2)
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Randomised QuickSort: Analysis (3/4)

Consider now any element i ∈ {1, 2, . . . , n} and construct the path
P = P(i) one level by one

For P to proceed from level k to k + 1, the condition sk > 1 is necessary

How far could such a path P possibly run until we have sk = 1?

We start with s0 = n

First Case, good node: sk+1 ≤ 2
3 · sk .

Second Case, bad node: sk+1 ≤ sk .

⇒ There are at most T = log n
log(3/2) < 3 log n many good nodes on any path P.

Assume |P| ≥ C log n for C := 24

⇒ number of bad vertices in the first 24 log n levels is more than 21 log n.

This even holds always,
i.e., deterministically!

Let us now upper bound the probability that this “bad event” happens!
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Randomised QuickSort: Analysis (4/4)

Consider the first 24 log n vertices of P to the deepest level of element i .

For any level j ∈ {0, 1, . . . , 24 log n − 1}, define an indicator variable Xj :

Xj = 1 if the node at level j is bad
Xj = 0 if the node at level j is good.

P [ Xj = 1 | X0 = x0, . . . ,Xj−1 = xj−1 ] ≤ 2
3

X :=
∑24 log n−1

j=0 Xj satisfies relaxed independence assumption (slide 16)

pivot
1 `/3 2`/3 `

We can now apply the “nicer” Chernoff Bound!

We have E [ X ] ≤ (2/3) · 24 log n = 16 log n

Then, by the “nicer” Chernoff Bounds

P [ X ≥ E [ X ] + t ] ≤ e−2t2/n

P [ X > 21 log n ] ≤ P [ X > E [ X ] + 5 log n ]

≤ e−2(5 log n)2/(24 log n)

= e−(50/24) log n ≤ n−2.

Hence P has more than 24 log n nodes with probability at most n−2.

As there are in total n paths, by the union bound, the probability that at
least one of them has more than 24 log n nodes is at most n−1.
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Randomised QuickSort: Final Remarks

Well-known: any comparison-based sorting algorithm needs Ω(n log n)

A classical result: expected number of comparison of randomised
QUICKSORT is 2n log n + O(n) (see, e.g., book by Mitzenmacher & Upfal)

Supervision Exercise: Our upper bound of O(n log n) whp also immediately
implies a O(n log n) bound on the expected number of comparisons!

It is possible to deterministically find the best pivot element that divides
the array into two subarrays of the same size.

The latter requires to compute the median of the array in linear time,
which is not easy...

The presented randomised algorithm for QUICKSORT is much easier to
implement!
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Hoeffding’s Extension

Besides sums of independent bernoulli random variables, sums of
independent and bounded random variables are very frequent in
applications.

Unfortunately the distribution of the Xi may be unknown or hard to
compute, thus it will be hard to compute the moment-generating function.

Hoeffding’s Lemma helps us here:

Let X be a random variable with mean 0 such that a ≤ X ≤ b. Then for
all λ ∈ R,

E
[

eλX
]
≤ exp

(
(b − a)2λ2

8

)
Hoeffding’s Extension Lemma

You can always consider
X ′ = X − E [ X ]

We omit the proof of this lemma!
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Hoeffding Bounds

Let X1, . . . ,Xn be independent random variable with mean µi such that
ai ≤ Xi ≤ bi . Let X = X1 + . . . + Xn, and let µ = E [ X ] =

∑n
i=1 µi . Then

for any t > 0

P [ X ≥ µ+ t ] ≤ exp

(
− 2t2∑n

i=1(bi − ai )2

)
,

and

P [ X ≤ µ− t ] ≤ exp

(
− 2t2∑n

i=1(bi − ai )2

)
.

Hoeffding’s Inequality

Proof Outline (skipped):

Let X ′i = Xi − µi and X ′ = X ′1 + . . .+ X ′n, then P [ X ≥ µ+ t ] = P [ X ′ ≥ t ]

P [ X ′ ≥ t ] ≤ e−λt ∏n
i=1 E

[
eλX ′i

]
≤ exp

[
−λt + λ2

8

∑n
i=1(bi − ai )

2
]

Choose λ = 4t∑n
i=1(bi−ai )

2 to get the result.

This is not magic! you just need to optimise λ!
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Method of Bounded Differences

Suppose, we have independent random variables X1, . . . ,Xn. We want
to study the random variable:

f (X1, . . . ,Xn)

Framework

Some examples:

1. X = X1 + . . .+ Xn

2. In balls into bins, Xi indicates where ball i is allocated, and f (X1, . . . ,Xm)
is the number of empty bins

3. Xi indicates if the i-th edge is present in a graph, and f (X1, . . . ,Xm)
represents the number of connected components of G

In all those cases (and more) we can easily prove
concentration of f (X1, . . . ,Xn) around its mean by
the so-called Method of Bounded Differences.
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Method of Bounded Differences

A function f is called Lipschitz with parameters c = (c1, . . . , cn) if for all
i = 1, 2, . . . , n,

|f (x1, x2, . . . , xi−1, xi , xi+1, . . . , xn)− f (x1, x2, . . . , xi−1, yi , xi+1, . . . , xn)| ≤ ci ,

where xi and yi are in the domain of the i-th coordinate.

Let X1, . . . ,Xn be independent random variables. Let f be Lipschitz with
parameters c = (c1, . . . , cn). Let X = f (X1, . . . ,Xn). Then for any t > 0,

P [ X ≥ µ+ t ] ≤ exp

(
− 2t2∑n

i=1 c2
i

)
,

and

P [ X ≤ µ− t ] ≤ exp

(
− 2t2∑n

i=1 c2
i

)
.

McDiarmid’s inequality

Notice the similarity with Hoeffding’s inequality!

The proof is omitted here (it requires the concept of martingales).
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Application 3: Balls into Bins (again...)

Consider again m balls assigned uniformly at random into n bins.

Enumerate the balls from 1 to m. Ball i is assigned to a random bin Xi

Let Z be the number of empty bins (after assigning the m balls)
Z = Z (X1, . . . ,Xm) and Z is Lipschitz with c = (1, . . . , 1)

(If we move one ball to another bin, number of empty bins changes by ≤ 1.)

By McDiarmid’s inequality, for any t ≥ 0,

P [ |Z − E [ Z ] | > t ] ≤ 2 · e−2t2/m.

This is a decent bound, but for some values of m it is far from
tight and stronger bounds are possible through a refined analysis.
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Application 4: Bin Packing

1

0.4

0.5

0.2

0.8

0.35

0.4

0.15

0.85

0.2

We are given n items of sizes in the unit interval [0, 1]

We want to pack those items into the fewest number of unit-capacity bins

Suppose the item sizes Xi are independent random variables in [0, 1]

Let B = B(X1, . . . ,Xn) be the optimal number of bins

The Lipschitz conditions holds with c = (1, . . . , 1). Why?
Therefore

P [ |B − E [ B ] | ≥ t ] ≤ 2 · e−2t2/n.

This is a typical example where proving concentration is
much easier than calculating (or estimating) the expectation!
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Moment Generating Functions

The moment-generating function of a random variable X is

MX (t) = E
[

etX
]
, where t ∈ R.

Moment-Generating Function

Using power series of e and differentiating shows
that MX (t) encapsulates all moments of X .

1. If X and Y are two r.v.’s with MX (t) = MY (t) for all t ∈ (−δ,+δ) for
some δ > 0, then the distributions X and Y are identical.

2. If X and Y are independent random variables, then

MX+Y (t) = MX (t) ·MY (t).

Lemma

Proof of 2:

MX+Y (t) = E
[

et(X+Y )
]

= E
[

etX · etY
]

(!)
= E

[
etX
]
· E
[

etY
]

= MX (t)MY (t)
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