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Concentration Inequalities

= Concentration refers to the phenomena where random variables are very
close to their mean
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Concentration Inequalities

= Concentration refers to the phenomena where random variables are very
close to their mean

= This is very useful in randomised algorithms as it ensures an almost
deterministic behaviour
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Concentration Inequalities

= Concentration refers to the phenomena where random variables are very
close to their mean

= This is very useful in randomised algorithms as it ensures an almost
deterministic behaviour

= It gives us the best of two worlds:

1. Randomised Algorithms: Easy to Design and Implement
2. Deterministic Algorithms: They do what they claim
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Chernoff Bounds: A Tool for Concentration

= Chernoffs bounds are “strong” bounds on the tail
probabilities of sums of independent random variables

= random variables can be discrete (or continuous)

= usually these bounds decrease exponentially as
opposed to a polynomial decrease in Markov’s or
Chebyshev’s inequality (see example)

Hermann Chernoff (1923-)
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Chernoff Bounds: A Tool for Concentration

= Chernoffs bounds are “strong” bounds on the tail
probabilities of sums of independent random variables

= random variables can be discrete (or continuous)

= usually these bounds decrease exponentially as
opposed to a polynomial decrease in Markov’s or
Chebyshev’s inequality (see example)

= easy to apply, but requires independence

Hermann Chernoff (1923-)
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Chernoff Bounds: A Tool for Concentration

= Chernoffs bounds are “strong” bounds on the tail
probabilities of sums of independent random variables

= random variables can be discrete (or continuous)

= usually these bounds decrease exponentially as
opposed to a polynomial decrease in Markov’s or
Chebyshev’s inequality (see example)

= easy to apply, but requires independence
= have found various applications in:

= Randomised Algorithms

= Statistics Hermann Chernoff (1923-)

= Random Projections and Dimensionality Reduction
= Learning Theory (e.g., PAC-learning)

1
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Recap: Markov and Chebyshev

Markov’s Inequality
If X is a non-negative random variable, then for any a > 0,

P[X>a]<E[X]/a

——— Chebyshev’s Inequality
If X is a random variable, then for any a > 0,

P[IX -E[X]|>a] <V[X]/d"

Concentration © Thomas Sauerwald Introduction to Chernoff Bounds



Recap: Markov and Chebyshev

Markov’s Inequality

If X is a non-negative random variable, then for any a > 0,

P[X >a] <E[X]/a

——— Chebyshev’s Inequality
If X is a random variable, then for any a > 0,

P[IX -E[X]|>a] <V[X]/d"

= Let f: R — [0,00) and increasing, then f(X) > 0, and thus
P[X > a] <P[f(X) > f(a)] < E[{(X)] /(a).

Concentration © Thomas Sauerwald Introduction to Chernoff Bounds



Recap: Markov and Chebyshev

Markov’s Inequality

If X is a non-negative random variable, then for any a > 0,

P[X >a] <E[X]/a

——— Chebyshev’s Inequality
If X is a random variable, then for any a > 0,

P[IX -E[X]|>a] <V[X]/d"

= Let f: R — [0,00) and increasing, then f(X) > 0, and thus
P[X > a] <P[f(X)>f(a)] <E[f(X)]/f(a).
= Similarly, if g : R — [0, c0) and decreasing, then g(X) > 0, and thus

P[X <a]<P[g(X)>g(a)] <E[9(X)]/9(a)-
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Recap: Markov and Chebyshev

Markov’s Inequality

If X is a non-negative random variable, then for any a > 0,

P[X>a]<E[X]/a

——— Chebyshev’s Inequality
If X is a random variable, then for any a > 0,

P[IX -E[X]|>a] <V[X]/d"

= Let f: R — [0,00) and increasing, then f(X) > 0, and thus
P[X > a] < P[f(X) > f(a)] < E[£(X)]/{(a).
= Similarly, if g : R — [0, c0) and decreasing, then g(X) > 0, and thus

P[X <a] <P[g(X)>g(a)] <E[g(X)]/g(a)
[N
Chebyshev’s inequality (or Markov) can be obtained by
chosing f(X) := (X — p)? (or f(X) := X, respectively).
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From Markov and Chebyshev to Chernoff

Markov and Chebyshev use the first and second moment of the random
variable. Can we keep going?
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From Markov and Chebyshev to Chernoff

Markov and Chebyshev use the first and second moment of the random
variable. Can we keep going?

= Yes!
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From Markov and Chebyshev to Chernoff

Markov and Chebyshev use the first and second moment of the random
variable. Can we keep going?

= Yes!

We can consider the first, second, third and more moments! That is the basic
idea behind the Chernoff Bounds

Concentration © Thomas Sauerwald Introduction to Chernoff Bounds



Our First Chernoff Bound

Chernoff Bounds (General Form, Upper Tail)

Suppose Xi, ..., X, are independent Bernoulli random variables with
parameter pi. Let X = Xi +...+ Xpand u = E[X] = Y7, p;. Then, for
any § > 0 it holds that

e’ w
P[X>(1+du]l< [W] . (%)
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Our First Chernoff Bound

Chernoff Bounds (General Form, Upper Tail)
Suppose Xi, ..., X, are independent Bernoulli random variables with
parameter pi. Let X = Xi +...+ Xpand u = E[X] = Y7, p;. Then, for
any ¢ > 0 it holds that

e’ w
P[X>(1+du]l< [W} . (%)

N
\

While (%) is one of the easiest (and most generic) Chernoff
bounds to derive, the bound is complicated and hard to apply...
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Our First Chernoff Bound

Chernoff Bounds (General Form, Upper Tail)

Suppose Xi,..., X, are independent Bernoulli random variables with
parameter pi. Let X = Xi +...+ Xpand u = E[X] = Y7, p;. Then, for
any ¢ > 0 it holds that

e’ w
P[X>(1+du]l< [W} . (%)

This implies that for any t > u,
t

P[X>t]<e" (if)

N

\

While (%) is one of the easiest (and most generic) Chernoff
bounds to derive, the bound is complicated and hard to apply...

Concentration © Thomas Sauerwald Introduction to Chernoff Bounds



Example: Coin Flips (1/3)

= Consider throwing a fair coin n times and count the total number of heads
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Example: Coin Flips (1/3)

= Consider throwing a fair coin n times and count the total number of heads
= X, e{0,1}, X=>", XandE[X]=n-1/2=n/2

Concentration © Thomas Sauerwald Introduction to Chernoff Bounds



Example: Coin Flips (1/3)

= Consider throwing a fair coin n times and count the total number of heads
= X, e{0,1}, X=>", XandE[X]=n-1/2=n/2

= The Chernoff Bound gives for any § > 0,

e(g ]n/2

P[X>(1+6)(n/2)] < {W
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Example: Coin Flips (1/3)

= Consider throwing a fair coin n times and count the total number of heads
= X, e{0,1}, X=>", XandE[X]=n-1/2=n/2

= The Chernoff Bound gives for any § > 0,

e(g :|n/2

P[X>(1+6)(n/2)] < {m

= The above expression equals 1 only for 6 = 0, and then it gives a value
strictly less than 1 (check this!)

Concentration © Thomas Sauerwald Introduction to Chernoff Bounds



Example: Coin Flips (1/3)

= Consider throwing a fair coin n times and count the total number of heads
= X, e{0,1}, X=>", XandE[X]=n-1/2=n/2

= The Chernoff Bound gives for any § > 0,

e(g :|n/2

P[X>(1+6)(n/2)] < {m

= The above expression equals 1 only for 6 = 0, and then it gives a value
strictly less than 1 (check this!)

= The inequality is exponential in n, (for fixed ¢) which is much better than
Chebyshev’s inequality.
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Example: Coin Flips (1/3)

= Consider throwing a fair coin n times and count the total number of heads
= X, e{0,1}, X=>", XandE[X]=n-1/2=n/2
= The Chernoff Bound gives for any § > 0,

e§ :|n/2

P[X>(1+6)(n/2)] < {m

= The above expression equals 1 only for 6 = 0, and then it gives a value
strictly less than 1 (check this!)
= The inequality is exponential in n, (for fixed ¢) which is much better than
Chebyshev’s inequality.
N
[What about a concrete value of n, say n = 100? ]
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Example: Coin Flips (2/3)

Consider 100 independent coin flips. We wish to find an upper bound on the
probability that the number of heads is greater or equal than 75.
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Example: Coin Flips (2/3)

Consider 100 independent coin flips. We wish to find an upper bound on the
probability that the number of heads is greater or equal than 75.

= Markov’s inequality: E[ X] = 100/2 = 50.
P[X>3/2-E[X]] <2/3 = 0.666.
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Example: Coin Flips (2/3)

Consider 100 independent coin flips. We wish to find an upper bound on the
probability that the number of heads is greater or equal than 75.

= Markov’s inequality: E[ X] = 100/2 = 50.
P[X >3/2-E[X]] <2/3 =0.666.
» Chebyshev’s inequality: V[ X] = 3219 V[ X;] = 100 - (1/2)? = 25.

PIX —ul > 1] < VLXT,

and plugging in t = 25 gives an upper bound of 25/252 = 1/25 = 0.04,
much better than what we obtained by Markov’s inequality.
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Example: Coin Flips (2/3)

Consider 100 independent coin flips. We wish to find an upper bound on the
probability that the number of heads is greater or equal than 75.

= Markov’s inequality: E[ X] = 100/2 = 50.
P[X >3/2-E[X]] <2/3 =0.666.
» Chebyshev’s inequality: V[ X] = 3219 V[ X;] = 100 - (1/2)? = 25.

PIX —ul > 1] < VLXT,

and plugging in t = 25 gives an upper bound of 25/252 = 1/25 = 0.04,
much better than what we obtained by Markov’s inequality.

= The Chernoff bound: with = 1/2 gives:

1/2 50

/
e ) — 0.004472.

PIX=3/2 EIXI1 < (g7
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Example: Coin Flips (2/3)

Consider 100 independent coin flips. We wish to find an upper bound on the
probability that the number of heads is greater or equal than 75.

= Markov’s inequality: E[ X] = 100/2 = 50.
P[X >3/2-E[X]] <2/3 =0.666.
» Chebyshev’s inequality: V[ X] = 3219 V[ X;] = 100 - (1/2)? = 25.

PIX —ul > 1] < VLXT,

and plugging in t = 25 gives an upper bound of 25/252 = 1/25 = 0.04,
much better than what we obtained by Markov’s inequality.

= The Chernoff bound: with = 1/2 gives:
el/2 50

= Remark: The exact probability is 0.00000028 . ..

P[xz3/2~E[xns(
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Example: Coin Flips (2/3)

Consider 100 independent coin flips. We wish to find an upper bound on the
probability that the number of heads is greater or equal than 75.

= Markov’s inequality: E[ X] = 100/2 = 50.
P[X >3/2-E[X]] <2/3 =0.666.
» Chebyshev’s inequality: V[ X] = 3219 V[ X;] = 100 - (1/2)? = 25.
V[X
PIX —ul > 1] < VLXT,

and plugging in t = 25 gives an upper bound of 25/252 = 1/25 = 0.04,
much better than what we obtained by Markov’s inequality.

= The Chernoff bound: with § = 1/2 gives:
el/2 50

= Remark: The exact probability is 0.00000028 . ..

P[xz3/2~E[xns(

(Chernoff bound yields a much better result (but needs independence!) ]
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Example: Coin Flips (3/3)

P[Bin(100,1/2) = x]

0.10 +

0.08

0.06

0.00 - ‘ ‘

80

90

100
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Outline

How to Derive Chernoff Bounds
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General Recipe for Deriving Chernoff Bounds

Recipe

The three main steps in deriving Chernoff bounds for sums of independ-
ent random variables X = X; 4+ --- + X, are:
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General Recipe for Deriving Chernoff Bounds

Recipe
The three main steps in deriving Chernoff bounds for sums of independ-
ent random variables X = X; 4+ --- + X, are:

1. Instead of working with X, we switch to the moment generating
function e**, X > 0 and apply Markov's inequality ~ E [ e** ]
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General Recipe for Deriving Chernoff Bounds

Recipe

The three main steps in deriving Chernoff bounds for sums of independ-
ent random variables X = X; 4+ --- + X, are:

1. Instead of working with X, we switch to the moment generating
function e**, X > 0 and apply Markov's inequality ~ E [ e** ]

2. Compute an upper bound for E [eAX] (using independence)
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General Recipe for Deriving Chernoff Bounds

Recipe

The three main steps in deriving Chernoff bounds for sums of independ-
ent random variables X = X; 4+ --- + X, are:

1. Instead of working with X, we switch to the moment generating
function e**, X > 0 and apply Markov's inequality ~ E [ e** ]

2. Compute an upper bound for E [eAX] (using independence)
3. Optimise value of \ to obtain best tail bound
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Chernoff Bound: Proof

Chernoff Bound (General Form, Upper Tail)
Suppose Xi, ..., X, are independent Bernoulli random variables with
parameter pi. Let X = Xi +...+ Xpand u = E[X] = >, pi. Then, for
any ¢ > 0 it holds that

5 n
PIX>(1+0)u] < {m] .

Proof:
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Chernoff Bound: Proof

any ¢ > 0 it holds that

Chernoff Bound (General Form, Upper Tail)

Suppose Xi, ..., X, are independent Bernoulli random variables with
parameter pi. Let X = Xi +...+ Xpand u = E[X] = >, pi. Then, for

PIX>(1+d)u]< {

eé 1
U+MMJ'

Proof:
1. For A > 0,

PIX>(1+0u] <

e\X is incr

P [eAX

> eA(1+6),u} <

Markov

e MI+OLE [ exx]
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Chernoff Bound: Proof

Chernoff Bound (General Form, Upper Tail)

Suppose Xi, ..., X, are independent Bernoulli random variables with
parameter pi. Let X = Xi +...+ Xpand u = E[X] = >, pi. Then, for
any ¢ > 0 it holds that

5 n
PIX>(1+0)u] < {ﬁ] .

Proof:
1. For A > 0,

PIX>(1+8u] < P [eAX > eA(1+6)u} < e Mg [exx]

e\X is incr Markov

2. E[e] :E[e*z'n:‘x"] = I E[e™]

indep
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Chernoff Bound: Proof

Chernoff Bound (General Form, Upper Tail)

Suppose Xi, ..., X, are independent Bernoulli random variables with
parameter pi. Let X = Xi +...+ Xpand u = E[X] = >, pi. Then, for
any ¢ > 0 it holds that

5 n
PIX>(1+0)u] < {ﬁ] .

Proof:
1. For A > 0,

PIX>(1+8u] < P [eAX > eA(1+6)u} < e Mg [exx]

e\X is incr Markov

- H7:1 E [e”ﬂ

2. B[] =E[e X -
indep

3.
E [e*xf} —p+(1-p)=1+pe -1 < &

14+x<eX
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Chernoff Bound: Proof
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Chernoff Bound: Proof

1. ForA >0,

P[X>(1+d8)u] = P [exx > ex(1+5)u} < e Mg [exx]

e\X is incr Markov
2 E[¥] =E[e* X% ]

3.

- H?:1E[e)\xf}

indep

E [eAXf] —e'p+(1-p)=1+pe -1 <

14x<eX
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Chernoff Bound: Proof

1. For A > 0,
PIX>(1+o)u] = P [eAX > e>\(1+5)u} < e +OnE [eAX]
e isincr Markov
2. E[eM] =E [eAZ'n:‘ X"] e [T E[e*]

3,
E[e¥]=ep+(1-p)=1+p(e—1) < &

14x<eX

4. Putting all together

n
PIX > (14 6)u] < e T (e 1) = g A1 omgule -

i=1
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Chernoff Bound: Proof

1. For A > 0,
PIX>(1+o)u] = P [eAX > e>\(1+5)u} < e +OnE [eAX]
e isincr Markov
2. E[eM] =E [eAZ'n:‘ X"] e [T E[e*]

3,
E[e¥]=ep+(1-p)=1+p(e—1) < &

14x<eX

4. Putting all together

n
PIX > (14 6)u] < e T (e 1) = g A1 omgule -

i=1

5. Choose A = log(1 + d) > 0 to get the result.
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Chernoff Bounds: Lower Tails

We can also use Chernoff Bounds to show a random variable is not too
small compared to its mean:

Chernoff Bounds (General Form, Lower Tail)

Suppose Xi, ..., X, are independent Bernoulli random variables with
parameter p;. Let X = Xj + ...+ Xy, and p = E[X] = > pi. Then,
for any ¢ > 0 it holds that

PIX < (1—d)u] < {#}

and thus, by substitution, for any t < u,

PIX<t]<e™ (eT{‘)’

Exercise on Supervision Sheet
Hint: multiply both sides by —1 and repeat the proof of the Chernoff Bound
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Nicer Chernoff Bounds
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Nicer Chernoff Bounds

“Nicer” Chernoff Bounds

Suppose Xi, ..., X, are independent Bernoulli random variables with
parameter p;. Let X = X; +...+ Xpand p = E[X] = >, pi. Then,
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Nicer Chernoff Bounds

“Nicer” Chernoff Bounds

Suppose Xi, ..., X, are independent Bernoulli random variables with
parameter p;. Let X = X; +...+ Xpand p = E[X] = >, pi. Then,

= Forall t >0,
2
PIX>E[X]+t]<e®/"

PIX <E[X]—t]<e 2/
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Nicer Chernoff Bounds

“Nicer” Chernoff Bounds

Suppose Xi, ..., X, are independent Bernoulli random variables with
parameter p;. Let X = X; +...+ Xpand p = E[X] = >, pi. Then,

= Forall t >0,
2
PIX>E[X]+t]<e®/"
PIX<E[X]-t]<e?/m
"For0<d< 1,

SPE[X]
3

P[X>(1+0)E[X]]<exp <—

PLX < (1 - DELX]] < (-1
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Nicer Chernoff Bounds

“Nicer” Chernoff Bounds

Suppose Xi, ..., X, are independent Bernoulli random variables with
parameter p;. Let X = X; +...+ Xpand p = E[X] = >, pi. Then,
= Forall t > 0,

PIX>E[X]+t]<e 2/
PIX<E[X]-t]<e?/m
"For0<d< 1,

SPE[X]
3

P[X>(1+E[X]] <exp (—

PIX < (1-OEIX)] < e (51X

N

\

All upper tail bounds hold even under a relaxed independence assumption:

Forall1 <i<nand xi,%,...,X_1 € {0,1},

P[Xi=1]|Xi=xi,.... X1 =Xxi—1] < pi.
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Application 1: Balls into Bins
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Balls into Bins

L JslglLL

You have m balls and n bins. Each ball is allocated in a bin picked inde-
pendently and uniformly at random.
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Balls into Bins

sl

You have m balls and n bins. Each ball is allocated in a bin picked inde-
pendently and uniformly at random.

= A very natural but also rich mathematical model
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Balls into Bins

sl

You have m balls and n bins. Each ball is allocated in a bin picked inde-
pendently and uniformly at random.

= A very natural but also rich mathematical model
= In computer science, there are several interpretations:
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Balls into Bins

sl

You have m balls and n bins. Each ball is allocated in a bin picked inde-
pendently and uniformly at random.

= A very natural but also rich mathematical model

= In computer science, there are several interpretations:
1. Bins are a hash table, balls are items
2. Bins are processors and balls are jobs
3. Bins are data servers and balls are queries
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Balls into Bins

sl

You have m balls and n bins. Each ball is allocated in a bin picked inde-
pendently and uniformly at random.

= A very natural but also rich mathematical model

= In computer science, there are several interpretations:

1. Bins are a hash table, balls are items
2. Bins are processors and balls are jobs
3. Bins are data servers and balls are queries

Exercise: Think about the relation between the Balls into Bins
Model and the Coupon Collector Problem.
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Balls into Bins: Bounding the Maximum Load (1/4)

o st

You have m balls and n bins. Each ball is allocated in a bin picked inde-
pendently and uniformly at random.
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Balls into Bins: Bounding the Maximum Load (1/4)

o st

You have m balls and n bins. Each ball is allocated in a bin picked inde-
pendently and uniformly at random.

Question 1: How large is the maximum load if m = 2nlog n?
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Balls into Bins: Bounding the Maximum Load (1/4)

o st

You have m balls and n bins. Each ball is allocated in a bin picked inde-
pendently and uniformly at random.

Question 1: How large is the maximum load if m = 2nlog n?

= Focus on an arbitrary single bin. Let X; the indicator variable which is 1 iff
ball i is assigned to this bin. Note that p; =P [Xi=1] =1/n.
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Balls into Bins: Bounding the Maximum Load (1/4)

o st

You have m balls and n bins. Each ball is allocated in a bin picked inde-
pendently and uniformly at random.

Question 1: How large is the maximum load if m = 2nlog n?

= Focus on an arbitrary single bin. Let X; the indicator variable which is 1 iff
ball i is assigned to this bin. Note that p; =P [Xi=1] =1/n.

= The total balls in the bin is given by X := 37, Xi.
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Balls into Bins: Bounding the Maximum Load (1/4)

o st

You have m balls and n bins. Each ball is allocated in a bin picked inde-
pendently and uniformly at random.

Question 1: How large is the maximum load if m = 2nlog n?

= Focus on an arbitrary single bin. Let X; the indicator variable which is 1 iff
ball i is assigned to this bin. Note that p; =P [Xi=1] =1/n.

= The total balls in the bin is given by X := 37, Xi.

= Since m=2nlogn, then u =E[X] =2logn
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Balls into Bins: Bounding the Maximum Load (1/4)

B BB

You have m balls and n bins. Each ball is allocated in a bin picked inde-
pendently and uniformly at random.

Question 1: How large is the maximum load if m = 2nlog n?

= Focus on an arbitrary single bin. Let X; the indicator variable which is 1 iff
ball i is assigned to this bin. Note that p; =P [X;=1] = 1/n.

The total balls in the bin is given by X := "7 | Xi.
= Since m=2nlogn, then u =E[X] =2logn

P[X >t] < e *(eu/t) ]
By the Chernoff Bound,

6logn
P[X > 6Blogn] < e 2" (2esn) " < g2hen — 2
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Balls into Bins: Bounding the Maximum Load (1/4)

B BB

You have m balls and n bins. Each ball is allocated in a bin picked inde-
pendently and uniformly at random.

Question 1: How large is the maximum load if m = 2nlog n?

= Focus on an arbitrary single bin. Let X; the indicator variable which is 1 iff
ball i is assigned to this bin. Note that p; =P [X;=1] = 1/n.
The total balls in the bin is given by X := Y7, Xi. ([ here we could have used
= Since m=2nlogn, then u =E[X] =2logn the “nicer” bounds as well!

P[X >t] < e *(eu/t)
By the Chernoff Bound,

6logn
P[X > 6Blogn] < e 2" (2esn) " < g2hen — 2
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Balls into Bins: Bounding the Maximum Load (2/4)

= Let & := {X(j) > 6log n}, that is, bin j receives at least 6 log n balls.
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= Let & := {X(j) > 6log n}, that is, bin j receives at least 6 log n balls.

= We are interested in the probability that at least one bin receives at least
6 log n balls = this is the event |, &
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= Let & := {X(j) > 6log n}, that is, bin j receives at least 6 log n balls.

= We are interested in the probability that at least one bin receives at least
6 log n balls = this is the event |, &

= By the Union Bound,

n n
P [UE,I SZP[&] <n-n?=n"
j=1 j=1
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Balls into Bins: Bounding the Maximum Load (2/4)

Let & := {X(j) > 6log n}, that is, bin j receives at least 6 log n balls.

= We are interested in the probability that at least one bin receives at least
6 log n balls = this is the event |, &

= By the Union Bound,

n n
P [UE,] SZP[&] <n-n?=n"
j=1 =1

Therefore whp, no bin receives at least 6 log n balls

whp stands for with high probability:
An event &€ (that implicitly depends on an input parameter n) occurs whp if
P[] —1asn— oo.
This is a very standard notation in randomised algorithms
but it may vary from author to author. Be careful!
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Balls into Bins: Bounding the Maximum Load (2/4)

Let & := {X(j) > 6log n}, that is, bin j receives at least 6 log n balls.

= We are interested in the probability that at least one bin receives at least
6 log n balls = this is the event |, &

= By the Union Bound,

n n
P [UE,] SZP[&] <n-n?=n"
j=1 =1

Therefore whp, no bin receives at least 6 log n balls

= By pigeonhole principle, the max loaded bin receives at least 2 log n balls.
Hence our bound is pretty sharp.

whp stands for with high probability:
An event &€ (that implicitly depends on an input parameter n) occurs whp if
P[] —1asn— oo.
This is a very standard notation in randomised algorithms
but it may vary from author to author. Be careful!
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Balls into Bins: Bounding the Maximum Load (3/4)

Question 2: How large is the maximum load if m = n?
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Balls into Bins: Bounding the Maximum Load (3/4)

Question 2: How large is the maximum load if m = n?

= Using the Chernoff Bound: [ P[X >t] < e *(eu/t) ]

Pixz0<e (§) < (§)
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Balls into Bins: Bounding the Maximum Load (3/4)

Question 2: How large is the maximum load if m = n?

= Using the Chernoff Bound: [ P[X >t] < e *(eu/t) ]

P[XZt];?‘(?)'s (?)t

= By setting t = 4log n/ log log n, we claim to obtain P[ X > t] < n™=.

2
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Balls into Bins: Bounding the Maximum Load (3/4)

Question 2: How large is the maximum load if m = n?

= Using the Chernoff Bound: [ P[X >t] < e *(eu/t) ]

P[Xzﬂg,?‘(?)'s (?)t

= By setting t = 4 log n/ log log n, we claim to obtain P[ X > t] < n~2.

= |Indeed:

elog log ) *'°e "/ lgleen o 4logn o eloglogn
4logn - P log log n & 4logn
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Balls into Bins: Bounding the Maximum Load (3/4)

Question 2: How large is the maximum load if m = n?

Using the Chernoff Bound: [ P[X >t] < e *(eu/t) ]

P[Xzﬂg,?‘(?)'s (?)t

By setting t = 4 log n/ log log n, we claim to obtain P[ X > t] < n
Indeed:

elog log ) *'°e "/ lgleen . 4logn eloglogn
4logn - log log n 4logn

The term inside the exponential is

4logn
loglogn

-(log(4/e) + log log log n — log log n)

—2

))
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Balls into Bins: Bounding the Maximum Load (3/4)

Question 2: How large is the maximum load if m = n?

Using the Chernoff Bound: [ P[X >t] < e *(eu/t) ]

P[Xzﬂg,?‘(?)'s (?)t

By setting t = 4 log n/ log log n, we claim to obtain P[ X > t] < n™2,

= |Indeed:

eloglogn 4'°g"/l°g'°g"7ex 4logn o eloglogn
4logn - P log log n & 4logn

= The term inside the exponential is

4logn
loglogn

-(log(4/e) + logloglog n — log log n) < Alogn (1 loglogn ),
{g logn 2

This inequality only
works for large enough n.
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Balls into Bins: Bounding the Maximum Load (3/4)

Question 2: How large is the maximum load if m = n?

Using the Chernoff Bound: [ P[X >t] < e *(eu/t) ]

P[Xzﬂg,?‘(?)'s (?)t
2

By setting t = 4 log n/ log log n, we claim to obtain P[ X > t] < n™=.
= Indeed:

eloglogn 4'°g"/l°g'°g"7ex 4logn o eloglogn
4logn - P log log n & 4logn

= The term inside the exponential is

4logn
loglogn

. - <
(log(4/€) + logloglog n — loglog n) < log log
ANG

4log n (—15 log log n) ,

obtaining that P[ X > t] < n=*/2 = n~2. This inequality only
works for large enough n.
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Balls into Bins: Bounding the Maximum Load (4/4)

We just proved that

P[X > 4logn/loglogn] < n"2,

thus by the Union Bound, no bin receives more than €2 (log n/ log log n) balls
with probability at least 1 — 1/n. O
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Simulations

= We plot the load configuration for m € {n, nlog n, N’}
= We consider n € {300, 1000, 100000}

= In plots, we take the normalised load, that is, actual bin load minus
average load

Acknowledgements: experiments and plots created by Dimitris Los
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Balls-into-Bins Plot (1/3)

Load

Load vector

0 50 100 150 200 250 300

Bin index
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Balls-into-Bins Plot (2/3)

Load vector
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Bin index
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Balls-into-Bins Plot (3/3) (only m € {n, nlog n})

Load

Load vector

20
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Conclusions

= If the number of balls is 2 log n times n (the number of bins), then to
distribute balls at random is a good algorithm
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Conclusions

= If the number of balls is 2 log n times n (the number of bins), then to
distribute balls at random is a good algorithm
= This is because the worst case maximum load is whp. 6 log n, while the
average load is 2log n
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distribute balls at random is a good algorithm

= This is because the worst case maximum load is whp. 6 log n, while the
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= For the case m = n, the algorithm is not good, since the maximum load is
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Conclusions

= If the number of balls is 2 log n times n (the number of bins), then to
distribute balls at random is a good algorithm

= This is because the worst case maximum load is whp. 6 log n, while the
average load is 2log n
= For the case m = n, the algorithm is not good, since the maximum load is
whp. ©(log n/ log log n), while the average load is 1.

A Better Load Balancing Approach

Forany m > n, we can improve the balls into bin process by sampling two
bins in each step, then assigning the ball into the bin with lesser load.
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= If the number of balls is 2 log n times n (the number of bins), then to
distribute balls at random is a good algorithm

= This is because the worst case maximum load is whp. 6 log n, while the
average load is 2log n
= For the case m = n, the algorithm is not good, since the maximum load is
whp. ©(log n/ log log n), while the average load is 1.

A Better Load Balancing Approach
Forany m > n, we can improve the balls into bin process by sampling two
bins in each step, then assigning the ball into the bin with lesser load.
= gives a (normalised) maximum load ©(loglogn) w.p.1—1/n.
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Conclusions

= If the number of balls is 2 log n times n (the number of bins), then to
distribute balls at random is a good algorithm
= This is because the worst case maximum load is whp. 6 log n, while the
average load is 2log n
= For the case m = n, the algorithm is not good, since the maximum load is
whp. ©(log n/ log log n), while the average load is 1.

A Better Load Balancing Approach
Forany m > n, we can improve the balls into bin process by sampling two
bins in each step, then assigning the ball into the bin with lesser load.
= gives a (normalised) maximum load ©(loglogn) w.p.1—1/n.

/1

This is called the power of two choices: It is a common tech-
nique to improve the performance of randomised algorithms.
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Outline

Application 2: Randomised QuickSort
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QuickSort

QUICKSORT (Input A[1], A[2], ..., A[n])

1: Pick an element from the array, the so-called pivot

2: If |JA] =0 or |A] =1 then

3: return A

4: else

5 Create two subarrays A; and A, (without the pivot) such that:
6: A contains the elements that are smaller than the pivot
7: Ao contains the elements that are greater (or equal) than the pivot
8: QUICKSORT(A1)

o: QUICKSORT(A2)
10: return A
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QuickSort

QUICKSORT (Input A[1], A[2], ..., A[n])

: Pick an element from the array, the so-called pivot

: If |A|=0or|Al = 1then

return A

. else

Create two subarrays A and Az (without the pivot) such that:
Ay contains the elements that are smaller than the pivot
Ao contains the elements that are greater (or equal) than the pivot

QUICKSORT(A1)

QUICKSORT(A2)

return A

© e NOaR N

-
Q

« Example: Let A= (2,8,9,1,7,5,6,3,4) with A[7] = 6 as pivot.
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QuickSort

QUICKSORT (Input A[1], A[2], ..., A[n])

1: Pick an element from the array, the so-called pivot

2: If |JA] =0 or |A] =1 then

3: return A

4: else

5 Create two subarrays A; and A, (without the pivot) such that:
6: A contains the elements that are smaller than the pivot
7: Ao contains the elements that are greater (or equal) than the pivot
8 QUICKSORT(A1)

9 QUICKSORT(A2)
10: return A

= Example: Let A= (2,8,9,1,7,5,6,3,4) with A[7] = 6 as pivot.
= A1 =(2,1,5,3,4)and A> = (8,9,7)
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QuickSort

QUICKSORT (Input A[1], A[2], ..., A[n])

: Pick an element from the array, the so-called pivot

: If |A|=0or|Al = 1then

return A

. else

Create two subarrays A and Az (without the pivot) such that:
Ay contains the elements that are smaller than the pivot
Ao contains the elements that are greater (or equal) than the pivot

QUICKSORT(A1)

QUICKSORT(A2)

10: return A

© e NOaR N

= Example: Let A= (2,8,9,1,7,5,6,3,4) with A[7] = 6 as pivot.
= A1 =(2,1,5,3,4)and A> = (8,9,7)

= Worst-Case Complexity (number of comparisons) is ©(n?),
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QuickSort

QUICKSORT (Input A[1], A[2], ..., A[n])

: Pick an element from the array, the so-called pivot
: If |A|=0or|Al = 1then

return A
. else

Create two subarrays A and Az (without the pivot) such that:
Ay contains the elements that are smaller than the pivot
Ao contains the elements that are greater (or equal) than the pivot
QUICKSORT(A1)
QUICKSORT(A2)
return A

QO NOA RN

—_

Example: Let A= (2,8,9,1,7,5,6,3,4) with A[7] = 6 as pivot.
= A1 =(2,1,5,3,4)and A> = (8,9,7)

= Worst-Case Complexity (number of comparisons) is ©(n?),
while Average-Case Complexity is O(nlog n).
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QuickSort

QUICKSORT (Input A[1], A[2], ..., A[n])

: Pick an element from the array, the so-called pivot
: If |A|=0or|Al = 1then

return A
. else

Create two subarrays A and Az (without the pivot) such that:
Ay contains the elements that are smaller than the pivot
Ao contains the elements that are greater (or equal) than the pivot
QUICKSORT(A1)
QUICKSORT(A2)
return A

QO NOA RN

—_

= Example: Let A=(2,8,9,1,7,5,6,3,4) with A[7] = 6 as pivot.
= A1 =(2,1,5,3,4)and A> = (8,9,7)
= Worst-Case Complexity (number of comparisons) is ©(n?),
while Average-Case Complexity is O(nlog n).
2.

[We will now give a proof of this “well-known” result! ]
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QuickSort: How to Count Comparisons

2,8,9,1,7,5,6,3,4

2,1,5,3,4
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QuickSort: How to Count Comparisons

2,8,9,1,7,5,6,3,4

21,534 8,9,7

(89)
® ®

[What is the number of comparisons? ]
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QuickSort: How to Count Comparisons

2,8,9,1,7,5,6,3,4

2,1,5,3,4 8,9,7

(89)
® ®

What is the number of comparisons? ]

/)

Note that the number of comparison by QUICKSORT is equivalent to
the sum of the height of all nodes in the tree (why?).
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QuickSort: How to Count Comparisons

2,8,9,1,7,5,6,3,4

2,1,5,3,4 8,9,7

(89)
® ®

What is the number of comparisons? ]

/)

Note that the number of comparison by QUICKSORT is equivalent to
the sum of the height of all nodes in the tree (why?). In this case:

O+1+14+24+2+3+3+3+4=19.
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Randomised QuickSort: Analysis (1/4)

How to pick a good pivot? We don't, just pick one at random.
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How to pick a good pivot? We don't, just pick one at random.

[This should be your standard answer in this course @j
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How to pick a good pivot? We don't, just pick one at random.

[This should be your standard answer in this course @j

Let us analyse QUICKSORT with random pivots.
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Randomised QuickSort: Analysis (1/4)

How to pick a good pivot? We don't, just pick one at random.

[This should be your standard answer in this course @j

Let us analyse QUICKSORT with random pivots.
1. Assume A consists of n different numbers, w.l.o.g., {1,2,...,n}
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Randomised QuickSort: Analysis (1/4)

How to pick a good pivot? We don't, just pick one at random.

[This should be your standard answer in this course @j

Let us analyse QUICKSORT with random pivots.
1. Assume A consists of n different numbers, w.l.o.g., {1,2,...,n}

2. Let H; be the deepest level where element i appears in the tree.
Then the number of comparisonis H = >, H;
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Randomised QuickSort: Analysis (1/4)

How to pick a good pivot? We don't, just pick one at random.

[This should be your standard answer in this course @j

Let us analyse QUICKSORT with random pivots.
1. Assume A consists of n different numbers, w.l.o.g., {1,2,...,n}

2. Let H; be the deepest level where element i appears in the tree.
Then the number of comparisonis H = >, H;

3. We will prove that exists C > 0 such that

P[H < Cnlogn]>1—n"".
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Randomised QuickSort: Analysis (1/4)

How to pick a good pivot? We don't, just pick one at random.

(This should be your standard answer in this course @)

Let us analyse QUICKSORT with random pivots.
1. Assume A consists of n different numbers, w.l.o.g., {1,2,...,n}

2. Let H; be the deepest level where element i appears in the tree.
Then the number of comparisonis H = >, H;

3. We will prove that exists C > 0 such that
P[H < Cnlogn]>1—n"".

4. Actually, we will prove sth slightly stronger:

P

n
({H: < Clogn}] >1—-n".

i=1
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Randomised QuickSort: Analysis (2/4)

= Let P be a path from the root to the deepest level of some element
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Randomised QuickSort: Analysis (2/4)

= Let P be a path from the root to the deepest level of some element

2,8,9,1,7,5,6,3,4
2,1,5,3,4
2,5,3,4

8,9,7
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= Let P be a path from the root to the deepest level of some element
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Randomised QuickSort: Analysis (2/4)

= Let P be a path from the root to the deepest level of some element

= A node in P is called if the corresponding pivot partitions the array into
two subarrays each of size at most 2/3 of the previous one
= otherwise, the node is bad
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Randomised QuickSort: Analysis (2/4)

= Let P be a path from the root to the deepest level of some element

= A node in P is called if the corresponding pivot partitions the array into
two subarrays each of size at most 2/3 of the previous one
= otherwise, the node is bad

= Further let s; be the size of the array at level tin P.
2,8,9,1,7,5,6,3,4

bad
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2,5,3,4

8,9,7

= Element 2: (2,8,9,1,7,5,6,3,4) — (2,1,5,3,4) — (2,5,3,4) — (2,3) — (2)
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= Let P be a path from the root to the deepest level of some element

= A node in P is called if the corresponding pivot partitions the array into
two subarrays each of size at most 2/3 of the previous one
= otherwise, the node is bad

= Further let s; be the size of the array at level tin P.
21859319715161334 So = 9
bad
2,1,53,4
2,5,3,4

8,9,7

= Element 2: (2,8,9,1,7,5,6,3,4) — (2,1,5,3,4) — (2,5,3,4) — (2,3) — (2)

Concentration © Thomas Sauerwald Application 2: Randomised QuickSort

32



Randomised QuickSort: Analysis (2/4)

= Let P be a path from the root to the deepest level of some element
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= Further let s; be the size of the array at level tin P.
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Randomised QuickSort: Analysis (2/4)

= Let P be a path from the root to the deepest level of some element

= A node in P is called if the corresponding pivot partitions the array into
two subarrays each of size at most 2/3 of the previous one
= otherwise, the node is bad

= Further let s; be the size of the array at level tin P.

(289,1,7.5634)% 9
bad
(21534)s =5
(2534)s =4 (89)
232 ® ®
2)

= Element 2: (2,8,9,1,7,5,6,3,4) — (2,1,5,3,4) — (2,5,3,4) — (2,3) — (2)

8,9,7
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Randomised QuickSort: Analysis (2/4)

= Let P be a path from the root to the deepest level of some element

= A node in P is called if the corresponding pivot partitions the array into
two subarrays each of size at most 2/3 of the previous one
= otherwise, the node is bad

= Further let s; be the size of the array at level tin P.

bad

9
232 ® ®
S4:1

= Element 2: (2,8,9,1,7,5,6,3,4) — (2,1,5,3,4) — (2,5,3,4) — (2,3) — (2)

8,9,7
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Randomised QuickSort: Analysis (3/4)

= Consider now any element i € {1,2,..., n} and construct the path
P = P(i) one level by one

Concentration © Thomas Sauerwald Application 2: Randomised QuickSort

33



Randomised QuickSort: Analysis (3/4)

= Consider now any element i € {1,2,..., n} and construct the path
P = P(i) one level by one

= For P to proceed from level k to k + 1, the condition s, > 1 is necessary
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= Consider now any element i € {1,2,..., n} and construct the path
P = P(i) one level by one

= For P to proceed from level k to k + 1, the condition s, > 1 is necessary

How far could such a path P possibly run until we have s, = 1?
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Randomised QuickSort: Analysis (3/4)

= Consider now any element i € {1,2,..., n} and construct the path
P = P(i) one level by one

= For P to proceed from level k to k + 1, the condition s, > 1 is necessary

How far could such a path P possibly run until we have s, = 1?

= We start with s = n

First Case, node: si. 1 < 7 - Sk,
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Randomised QuickSort: Analysis (3/4)

= Consider now any element i € {1,2,..., n} and construct the path
P = P(i) one level by one

= For P to proceed from level k to k + 1, the condition s, > 1 is necessary

How far could such a path P possibly run until we have s, = 1?

= We start with s = n
= First Case, node: si. 1 < 7 - Sk,
= Second Case, bad node: s,. i < s.
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Randomised QuickSort: Analysis (3/4)

= Consider now any element i € {1,2,..., n} and construct the path
P = P(i) one level by one

= For P to proceed from level k to k + 1, the condition s, > 1 is necessary

How far could such a path P possibly run until we have s, = 1?

= We start with s = n

First Case, node: si. 1 < 7 - Sk,
= Second Case, bad node: s,. i < s.

= There are at most T = %67 < 3log n many nodes on any path P.

log(3/2)
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= Consider now any element i € {1,2,..., n} and construct the path
P = P(i) one level by one

= For P to proceed from level k to k + 1, the condition s, > 1 is necessary

How far could such a path P possibly run until we have s, = 1?

= We start with s = n

* First Case, node: Sc+1 < 5 - Sk- [~ This even holds always,
= Second Case, bad node: s, < sg. i.e., deterministically!
= Thereareatmost T = IOI';E% < 3log n many nodes on any path P.
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= Consider now any element i € {1,2,..., n} and construct the path
P = P(i) one level by one

= For P to proceed from level k to k + 1, the condition s, > 1 is necessary

How far could such a path P possibly run until we have s, = 1?

= We start with s = n

* First Case, node: Sc+1 < 5 - Sk- [~ This even holds always,
= Second Case, bad node: s, < sg. i.e., deterministically!
= Thereareatmost T = IOI';E% < 3log n many nodes on any path P.

= Assume |P| > Clognfor C := 24
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Randomised QuickSort: Analysis (3/4)

= Consider now any element i € {1,2,..., n} and construct the path
P = P(i) one level by one

= For P to proceed from level k to k + 1, the condition s, > 1 is necessary

How far could such a path P possibly run until we have s, = 1?

= We start with s = n

First Case, node: s 1 < % - Sk.

= Second Case, bad node: s,. i < s.

This even holds always,
i.e., deterministically!

= There are at most T = %67 < 3log n many nodes on any path P.

08(3/2)
= Assume |P| > Clognfor C := 24

= number of bad vertices in the first 24 log n levels is more than 21 log n.
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Randomised QuickSort: Analysis (3/4)

= Consider now any element i € {1,2,..., n} and construct the path
P = P(i) one level by one

= For P to proceed from level k to k + 1, the condition s, > 1 is necessary

How far could such a path P possibly run until we have s, = 1?

= We start with s = n

» First Case, node: si.1 < £ - Sk. [ This even holds always,
= Second Case, bad node: s, < sk. i.e., deterministically!
= Thereareatmost T = mﬁ% < 3log n many nodes on any path P.

= Assume |P| > Clognfor C := 24

= number of bad vertices in the first 24 log n levels is more than 21 log n.
N
[Let us now upper bound the probability that this “bad event” happens!]
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Randomised QuickSort: Analysis (4/4)

= Consider the first 24 log n vertices of P to the deepest level of element i.
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= Consider the first 24 log n vertices of P to the deepest level of element i.
= Forany level j € {0,1,...,24log n— 1}, define an indicator variable X;:
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= Consider the first 24 log n vertices of P to the deepest level of element i.

= Forany level j € {0,1,...,24log n— 1}, define an indicator variable X;:

= X; = 1if the node at level j is bad
= Xj = 0 if the node at level j is
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= Consider the first 24 log n vertices of P to the deepest level of element i.

= Forany level j € {0,1,...,24log n— 1}, define an indicator variable X;:

= X; = 1if the node at level j is bad
= Xj = 0 if the node at level j is

SPIX =1 | Xo= X0 Xt = X1] < 2
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Randomised QuickSort: Analysis (4/4)

= Consider the first 24 log n vertices of P to the deepest level of element i.
= Forany level j € {0,1,...,24log n— 1}, define an indicator variable X;:

= X; = 1if the node at level j is bad
= X; = 0if the node at level j is

SPIX =1 | Xo= X0 Xt = X1] < 2

I

[ f | > pivot
1 ¢/3  2¢/3

Concentration © Thomas Sauerwald Application 2: Randomised QuickSort 34



Randomised QuickSort: Analysis (4/4)

= Consider the first 24 log n vertices of P to the deepest level of element i.

= Forany level j € {0,1,...,24log n— 1}, define an indicator variable X;:
= X; = 1if the node at level j is bad bad bad
= X; = 0if the node at level j is ‘

[ f | > pivot
, 1 (/3 203
.P[)(f:1‘XO:XO)"'7)(1‘71:)([71]§§
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Randomised QuickSort: Analysis (4/4)

= Consider the first 24 log n vertices of P to the deepest level of element i.
= Forany level j € {0,1,...,24log n— 1}, define an indicator variable X;:
= Xj = 1ifthe node at level  is bad _ bad | , bad
= Xj = 0 if the node at level j is , ‘i E/S 25/3
- P[)(j:1 ‘ X():Xo,...,)(j,1 :Xj,1]§ 3

- X = Zf;‘(')"g "1 X; satisfies relaxed independence assumption (slide 16)

> pivot
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Randomised QuickSort: Analysis (4/4)

= Consider the first 24 log n vertices of P to the deepest level of element i.
= Forany level j € {0,1,...,24log n— 1}, define an indicator variable X;:
= Xj = 1ifthe node at level  is bad _ bad | , bad
= X; = 0if the node at level j is , ‘i E/S 25/3
" P[)(/:1 ‘ X0:X07...,)(j,1 :Xj,1]§ 3

= X =Y 7 e X; satisfies relaxed independence assumption (slide 16)

> pivot

[Question: But what if the path P does not reach level j?]
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Randomised QuickSort: Analysis (4/4)

= Consider the first 24 log n vertices of P to the deepest level of element i.
= Forany level j € {0,1,...,24log n— 1}, define an indicator variable X;:

= X; = 1if the node at level j is bad . bad bad
= X; = 0if the node at level j is

1 (/3 203
CPIX =1 | Xo= 0, X1 = 1] <2

= X =Y 7 e X; satisfies relaxed independence assumption (slide 16)

> pivot

(Question: But what if the path P does not reach level j?)

/L
Answer: We can then simply define X; as the result
of an independent coin flip with probability 2/3.
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= Consider the first 24 log n vertices of P to the deepest level of element i.
= Forany level j € {0,1,...,24log n— 1}, define an indicator variable X;:
= Xj = 1ifthe node at level  is bad _ bad | , bad
= Xj = 0 if the node at level j is , ‘i E/S 25/3
- P[)(j:1 ‘ X():Xo,...,)(j,1 :Xj,1]§ 3

- X = Zf;‘(')"g "1 X; satisfies relaxed independence assumption (slide 16)

> pivot
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Randomised QuickSort: Analysis (4/4)

= Consider the first 24 log n vertices of P to the deepest level of element i.
= Forany level j € {0,1,...,24log n— 1}, define an indicator variable X;:
= Xj = 1ifthe node at level  is bad _ bad | , bad
= Xj = 0 if the node at level j is , ‘i E/S 2€*/3
" P[)(/:1 ‘ X():Xo,...,)(j,1 :Xj,1]S 3

- X = Zf;‘(')"g "1 X; satisfies relaxed independence assumption (slide 16)

> pivot

We can now apply the “nicer” Chernoff Bound!
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= Consider the first 24 log n vertices of P to the deepest level of element i.

= Forany level j € {0,1,...,24log n— 1}, define an indicator variable X;:
= Xj = 1ifthe node at level  is bad _ bad | , bad
= Xj = 0 if the node at level j is , ‘i Z/S 2€*/3

P[Xi=1]|Xo=xX,....,X1=x-1]<3%

- X = Zf;‘(')"g "1 X; satisfies relaxed independence assumption (slide 16)

> pivot

We can now apply the “nicer” Chernoff Bound!

We have E[X] < (2/3) - 24logn = 161logn
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= Consider the first 24 log n vertices of P to the deepest level of element i.

= Forany level j € {0,1,...,24log n— 1}, define an indicator variable X;:
= Xj = 1ifthe node at level  is bad _ bad | , bad
= Xj = 0 if the node at level j is , ‘i Z/S 2€*/3

P[Xi=1]|Xo=xX,....,X1=x-1]<3%

- X = Zf;‘(')"g "1 X; satisfies relaxed independence assumption (slide 16)

> pivot

We can now apply the “nicer” Chernoff Bound!

We have E[X] < (2/3) - 24logn = 161logn
Then, by the “nicer” Chernoff Bounds
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Randomised QuickSort: Analysis (4/4)

= Consider the first 24 log n vertices of P to the deepest level of element i.

= Forany level j € {0,1,...,24log n— 1}, define an indicator variable X;:
= Xj = 1ifthe node at level  is bad _ bad | , bad
= Xj = 0 if the node at level j is , ‘i E/S 2E73

P[Xi=1]|Xo=xX,....,X1=x-1]<3%

- X = Zf;‘(')"g "1 X; satisfies relaxed independence assumption (slide 16)

> pivot

We can now apply the “nicer” Chernoff Bound!

We have E[X] < (2/3) - 24logn = 161logn
Then, by the “nicer” Chernoff Bounds {P [X > E[X]+t] < e~2°/m ]
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= Consider the first 24 log n vertices of P to the deepest level of element i.

= Forany level j € {0,1,...,24log n— 1}, define an indicator variable X;:
= Xj = 1ifthe node at level  is bad _ bad | , bad
= Xj = 0 if the node at level j is , ‘i E/S 2£*/3

P[Xi=1]|Xo=xX,....,X1=x-1]<3%

- X = Zf;‘(')"g "1 X; satisfies relaxed independence assumption (slide 16)

> pivot

We can now apply the “nicer” Chernoff Bound!

We have E[X] < (2/3) - 24logn = 161logn
Then, by the “nicer” Chernoff Bounds {P [X > E[X]+t] < e~2°/m ]
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= Consider the first 24 log n vertices of P to the deepest level of element i.

= Forany level j € {0,1,...,24log n— 1}, define an indicator variable X;:
= Xj = 1ifthe node at level  is bad _ bad | , bad
= Xj = 0 if the node at level j is , ‘i E/S 2£*/3

P[Xi=1]|Xo=xX,....,X1=x-1]<3%

- X = Zf;‘(')"g "1 X; satisfies relaxed independence assumption (slide 16)

> pivot

We can now apply the “nicer” Chernoff Bound!

We have E[X] < (2/3) - 24logn = 161logn
Then, by the “nicer” Chernoff Bounds {P [X > E[X]+t] < e~2°/m ]

P[X >21logn] <P[X > E[X]+5logn] < e 28"sn*/(4iogn)
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Randomised QuickSort: Analysis (4/4)

= Consider the first 24 log n vertices of P to the deepest level of element i.

= Forany level j € {0,1,...,24log n— 1}, define an indicator variable X;:
= Xj = 1ifthe node at level  is bad _ bad | , bad
= Xj = 0 if the node at level j is , ‘i E/S 2£*/3

P[Xi=1]|Xo=xX,....,X1=x-1]<3%

- X = Zf;‘(')"g "1 X; satisfies relaxed independence assumption (slide 16)

> pivot

We can now apply the “nicer” Chernoff Bound!

We have E[X] < (2/3) - 24logn = 161logn
Then, by the “nicer” Chernoff Bounds {P [X > E[X]+t] < e~2°/m ]

P[X >21logn] <P[X >E[X]+5logn] < e 25en*/(41sn)
—(50/24) log n

=e

Concentration © Thomas Sauerwald Application 2: Randomised QuickSort 34



Randomised QuickSort: Analysis (4/4)

= Consider the first 24 log n vertices of P to the deepest level of element i.

= Forany level j € {0,1,...,24log n— 1}, define an indicator variable X;:
= Xj = 1ifthe node at level  is bad _ bad | , bad
= Xj = 0 if the node at level j is , ‘i E/S 2£*/3

P[Xi=1]|Xo=xX,....,X1=x-1]<3%

- X = Zf;‘(')"g "1 X; satisfies relaxed independence assumption (slide 16)

> pivot

We can now apply the “nicer” Chernoff Bound!

We have E[X] < (2/3) - 24logn = 161logn
Then, by the “nicer” Chernoff Bounds {P [X > E[X]+t] < e~2°/m ]

P[X >21logn] <P[X >E[X]+5logn] < e 25en*/(41sn)
—(50/24) log n

=e <n2
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Randomised QuickSort: Analysis (4/4)

= Consider the first 24 log n vertices of P to the deepest level of element i.
= Forany level j € {0,1,...,24log n— 1}, define an indicator variable X;:
= Xj = 1ifthe node at level  is bad _ bad | , bad
= Xj = 0 if the node at level j is , ‘i E/S 2£*/3
P[Xi=1]|Xo=xX,....,X1=x-1]<3%

- X = Zf;‘(')"g "1 X; satisfies relaxed independence assumption (slide 16)

> pivot

We can now apply the “nicer” Chernoff Bound!

We have E[X] < (2/3) - 24logn = 161logn
Then, by the “nicer” Chernoff Bounds {P [X > E[X]+t] < e~2°/m ]

P[X >21logn] <P[X >E[X]+5logn] < e 25en*/(41sn)
—(50/24) log n

=e <n2

= Hence P has more than 24 log n nodes with probability at most n=2.
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Randomised QuickSort: Analysis (4/4)

= Consider the first 24 log n vertices of P to the deepest level of element i.

= Forany level j € {0,1,...,24log n— 1}, define an indicator variable X;:
= Xj = 1ifthe node at level  is bad _ bad | , bad
= Xj = 0 if the node at level j is , ‘i E/S 25/3

P[Xi=1]|Xo=xX,....,X1=x-1]<3%

- X = Zf;‘(')"g "1 X; satisfies relaxed independence assumption (slide 16)

> pivot

We can now apply the “nicer” Chernoff Bound!

We have E[X] < (2/3) - 24logn = 161logn

{P[X >E[X]+1] < efzrz/n]

P[X >21logn] <P[X >E[X]+5logn] < e 25en*/(41sn)
—(50/24) log n

Then, by the “nicer” Chernoff Bounds

=e <n2

= Hence P has more than 24 log n nodes with probability at most n=2.

= As there are in total n paths, by the union bound, the probability that at

least one of them has more than 24 log n nodes is at most n~'.
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Randomised QuickSort: Analysis (4/4)

= Consider the first 24 log n vertices of P to the deepest level of element i.

= Forany level j € {0,1,...,24log n— 1}, define an indicator variable X;:
= Xj = 1ifthe node at level  is bad _ bad | , bad
= Xj = 0 if the node at level j is , ‘i E/S 25/3

P[Xi=1]|Xo=xX,....,X1=x-1]<3%

- X = Zf;‘(')"g "1 X; satisfies relaxed independence assumption (slide 16)

> pivot

We can now apply the “nicer” Chernoff Bound!

We have E[X] < (2/3) - 24logn = 161logn

{P[X >E[X]+1] < efzrz/n]

P[X >21logn] <P[X >E[X]+5logn] < e 25en*/(41sn)
—(50/24) log n

Then, by the “nicer” Chernoff Bounds

=e <n2

= Hence P has more than 24 log n nodes with probability at most n=2.

= As there are in total n paths, by the union bound, the probability that at
least one of them has more than 24 log n nodes is at most n=!. O
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Randomised QuickSort: Final Remarks

= Well-known: any comparison-based sorting algorithm needs Q(nlog n)
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Randomised QuickSort: Final Remarks

= Well-known: any comparison-based sorting algorithm needs Q(nlog n)

= A classical result: expected number of comparison of randomised
QUICKSORT is 2nlog n+ O(n) (see, e.g., book by Mitzenmacher & Upfal)
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Randomised QuickSort: Final Remarks

= Well-known: any comparison-based sorting algorithm needs Q(nlog n)

= A classical result: expected number of comparison of randomised
QUICKSORT is 2nlog n+ O(n) (see, e.g., book by Mitzenmacher & Upfal)
N
[Supervision Exercise: Our upper bound of O(nlog n) whp also immediately

implies a O(nlog n) bound on the expected number of comparisons!
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Randomised QuickSort: Final Remarks

= Well-known: any comparison-based sorting algorithm needs Q(nlog n)

= A classical result: expected number of comparison of randomised
QUICKSORT is 2nlog n+ O(n) (see, e.g., book by Mitzenmacher & Upfal)
N
[Supervision Exercise: Our upper bound of O(nlog n) whp also immediately

implies a O(nlog n) bound on the expected number of comparisons!

= It is possible to deterministically find the best pivot element that divides
the array into two subarrays of the same size.

= The latter requires to compute the median of the array in linear time,
which is not easy...

= The presented randomised algorithm for QUICKSORT is much easier to
implement!
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Extensions of Chernoff Bounds
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Hoeffding’s Extension

= Besides sums of independent bernoulli random variables, sums of
independent and bounded random variables are very frequent in
applications.
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Hoeffding’s Extension

= Besides sums of independent bernoulli random variables, sums of
independent and bounded random variables are very frequent in
applications.

= Unfortunately the distribution of the X; may be unknown or hard to
compute, thus it will be hard to compute the moment-generating function.
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compute, thus it will be hard to compute the moment-generating function.

= Hoeffding’s Lemma helps us here:
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Hoeffding’s Extension

= Besides sums of independent bernoulli random variables, sums of
independent and bounded random variables are very frequent in
applications.

= Unfortunately the distribution of the X; may be unknown or hard to
compute, thus it will be hard to compute the moment-generating function.

= Hoeffding’s Lemma helps us here:

Hoeffding’s Extension Lemma
Let X be a random variable with mean 0 such that a < X < b. Then for

all A e R,
AX (b—a)®?
E [e } < exp (T
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= Besides sums of independent bernoulli random variables, sums of
independent and bounded random variables are very frequent in
applications.

= Unfortunately the distribution of the X; may be unknown or hard to
compute, thus it will be hard to com ing function.

= Hoeffding’s Lemma helps us here: | You can always consider
X = X - E[X]

Hoeffding’s Extension Lemma &
Let X be a random variable with mean 0 such that a < X < b. Then for

all A e R,
AX (b—a)®?
E [e } < exp (T
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Hoeffding’s Extension

= Besides sums of independent bernoulli random variables, sums of
independent and bounded random variables are very frequent in
applications.

= Unfortunately the distribution of the X; may be unknown or hard to
compute, thus it will be hard to com ing function.

= Hoeffding’s Lemma helps us here: | You can always consider
X = X - E[X]

Hoeffding’s Extension Lemma &
Let X be a random variable with mean 0 such that a < X < b. Then for

all A e R,
AX (b—a)®?
E [e } < exp (T

We omit the proof of this lemmal
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Hoeffding Bounds

Hoeffding’s Inequality
Let Xi,..., X, be independent random variable with mean p; such that
a<Xi<b.letX=Xi+...+ Xy, andlet u = E[X]= >, pi. Then
forany t >0

212
P[X>p+t] <exp ST (b —a)R)’
i=1\Mi !

and

2
P[X<pu—t]<exp (‘ﬁ)

i=1
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Hoeffding Bounds

Hoeffding’s Inequality
Let Xi,..., X, be independent random variable with mean p; such that
a<Xi<b.letX=Xi+...+ Xy, andlet u = E[X]= >, pi. Then
forany t >0

2
P[X>p+t]<exp <—ﬁ>y

i=1\Mi =

and
P[X<p—t]<ex (—271‘2>
S B = exp Zn (bi*ai)z .

i=1

Proof Outline (skipped):
sletX =X —piand X' = X{+ ...+ X, thenP[ X > u+t]=P[X > t]
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Hoeffding Bounds

Hoeffding’s Inequality
Let Xi,..., X, be independent random variable with mean p; such that
a<Xi<b.letX=Xi+...+ Xy, andlet u = E[X]= >, pi. Then
forany t >0

2
P[X>p+t]<exp <—ﬁ>y

i=1\Mi =

and
P[X<p—t]<ex (—271‘2>
S B = exp Zn (bi*ai)z .

i=1

Proof Outline (skipped):
sletX =X —piand X' = X{+ ...+ X, thenP[ X > u+t]=P[X > t]

«P[X >t]<e M[[,E [eAX/] < exp [—,\t+ XS (bi— a,-)ﬂ
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Hoeffding Bounds

Hoeffding’s Inequality
Let Xi,..., X, be independent random variable with mean p; such that
a<Xi<b.letX=Xi+...+ Xy, andlet u = E[X]= >, pi. Then
forany t >0

P[X>p+t]<exp (—271‘2>

B B Sa(bi—a)2)’

and
P[X<p—t]<ex (—271‘2>
S B = exp Zn (b,-fa,-)z .

i=1

Proof Outline (skipped):
sletX =X —piand X' = X{+ ...+ X, thenP[ X > u+t]=P[X > t]
«P[X >t]<e M[[,E [eAX/] < exp [—,\t+ XS (bi— a,-)ﬂ

= Choose \ = to get the result.

I S
> (bi—a)?
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Hoeffding Bounds

Hoeffding’s Inequality
Let Xi,..., X, be independent random variable with mean p; such that
a<Xi<b.letX=Xi+...+ Xy, andlet u = E[X]= >, pi. Then
forany t >0

212
PIX>p+t]<exp ST (b —a)R)’
i=1\Mi !

and

2

Proof Outline (skipped):
sletX =X —pwand X' = X{+...+ X, thenP[X > p+t]=P[X' > {]
«P[X >t]<e M[[,E [eAX/] < exp [—,\t+ XS (bi— a,-)ﬂ

= Choose \ = to get the result.

I S
n o (bi—a)?

(This is not magic! you just need to optimise A! j
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Method of Bounded Differences

Framework

Suppose, we have independent random variables Xi,
to study the random variable:

f(X,. .. Xn)

..., Xn. We want
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Method of Bounded Differences

Framework

Suppose, we have independent random variables Xi,
to study the random variable:

f(X,. .. Xn)

..., Xn. We want

Some examples:

1. X=Xi+...+ Xy
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Method of Bounded Differences

Framework

Suppose, we have independent random variables Xi, ..., X,. We want
to study the random variable:

(X, .., Xn)

Some examples:

1.X=Xi+...+ X,

2. In balls into bins, X; indicates where ball i is allocated, and f( X, ..., Xm)
is the number of empty bins
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Method of Bounded Differences

Framework

to study the random variable:

f(X,. .. Xn)

Suppose, we have independent random variables Xi, ..., X,. We want

Some examples:

1. X=Xi+...+ X,

2. In balls into bins, X; indicates where ball i is allocated, and f(Xi, ...

is the number of empty bins

3. X indicates if the i-th edge is present in a graph, and f( X, ..

represents the number of connected components of G

.,Xm)

7Xm)
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Method of Bounded Differences

Framework

to study the random variable:

(X, .., Xn)

Suppose, we have independent random variables Xi, ..., X,. We want

Some examples:

1. X=Xi+...+X»

2. In balls into bins, X; indicates where ball i is allocated, and f(Xi, ...

is the number of empty bins

3. X indicates if the i-th edge is present in a graph, and f( X, ..
represents the number of connected components of G

., Xm)

In all those cases (and more) we can easily prove
concentration of f(Xi,..., X,) around its mean by
the so-called Method of Bounded Differences.

7Xm)
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Method of Bounded Differences

A function f is called Lipschitz with parameters ¢ = (¢, ..., ¢c,) if for all
i=1,2,...,n,
‘f(X1,X2,...,X,'_17X,'7X,'+17...,Xn) — f(X1,X27...,X,'_17y,',X/+1,...,Xn)| < ¢,

where x; and y; are in the domain of the i-th coordinate.
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Method of Bounded Differences

A function f is called Lipschitz with parameters ¢ = (¢y, ..., ¢,) if for all
i=1,2,....n,

[f(X1, Xy o ooy Xiety Xiy Xitty - -y Xn) — F(X1, X2y ooy Xiz1, Viy Xit1, - -+, Xn)| < Ci,

where x; and y; are in the domain of the i-th coordinate.

McDiarmid’s inequality
Let Xi,..., X, be independent random variables. Let f be Lipschitz with
parameters ¢ = (C1,...,Cn). Let X = f(Xi,..., Xy). Then for any t > 0,

2t?
P[X>p+t]<exp —W ,
i=1~i

and
212
P[X<pu—t]<exp o)

i=1
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Method of Bounded Differences

A function f is called Lipschitz with parameters ¢ = (¢y, ..., ¢,) if for all
i=1,2,....n,

‘f(X1,X2,...,X,'_17X,'7X,'+17...,Xn)— f(X1,X2,...,X,'_1,y,',X/+1,...,Xn)| < ¢,

where x; and y; are in the domain of the i-th coordinate.

McDiarmid’s inequality
Let Xi,..., X, be independent random variables. Let f be Lipschitz with
parameters ¢ = (C1,...,Cn). Let X = f(Xi,..., Xy). Then for any t > 0,

21
PIXZ>p+t]<exp S o2 )
i=1 i

and
2

i=1

= Notice the similarity with Hoeffding’s inequality!
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Method of Bounded Differences

A function f is called Lipschitz with parameters ¢ = (¢y, ..., ¢,) if for all
i=1,2,....n,

‘f(X1,X2,...,X,'_17X,'7X,'+17...,Xn)— f(X1,X2,...,X,'_1,y,',X/+1,...,Xn)| < ¢,

where x; and y; are in the domain of the i-th coordinate.

McDiarmid’s inequality
Let Xi,..., X, be independent random variables. Let f be Lipschitz with
parameters ¢ = (C1,...,Cn). Let X = f(Xi,..., Xy). Then for any t > 0,

21
PIXZ>p+t]<exp S o2 )
i=1 i

and
2

i=1

= Notice the similarity with Hoeffding’s inequality!
= The proof is omitted here (it requires the concept of martingales).
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Outline

Applications of Method of Bounded Differences
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Application 3: Balls into Bins (again...)

JLJslglL L

= Consider again m balls assigned uniformly at random into n bins.
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Application 3: Balls into Bins (again...)

JLJslglL L

= Consider again m balls assigned uniformly at random into n bins.
= Enumerate the balls from 1 to m. Ball j is assigned to a random bin X;
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Application 3: Balls into Bins (again...)

sl UL

= Consider again m balls assigned uniformly at random into n bins.
= Enumerate the balls from 1 to m. Ball i is assigned to a random bin X;
= Let Z be the number of empty bins (after assigning the m balls)
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Application 3: Balls into Bins (again...)

sl UL

= Consider again m balls assigned uniformly at random into n bins.
= Enumerate the balls from 1 to m. Ball j is assigned to a random bin X;

Let Z be the number of empty bins (after assigning the m balls)
Z=2Z(Xi,...,Xm)and Zis Lipschitzwithe = (1,...,1)
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Application 3: Balls into Bins (again...)

sl UL

= Consider again m balls assigned uniformly at random into n bins.
= Enumerate the balls from 1 to m. Ball j is assigned to a random bin X;

= Let Z be the number of empty bins (after assigning the m balls)
= Z=2Z(Xi,...,Xn)and Zis Lipschitz withe = (1,...,1)
(If we move one ball to another bin, number of empty bins changes by < 1.)
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Application 3: Balls into Bins (again...)

sl UL

= Consider again m balls assigned uniformly at random into n bins.
= Enumerate the balls from 1 to m. Ball j is assigned to a random bin X;

= Let Z be the number of empty bins (after assigning the m balls)
= Z=2Z(Xi,...,Xn)and Zis Lipschitz withe = (1,...,1)
(If we move one ball to another bin, number of empty bins changes by < 1.)

= By McDiarmid’s inequality, for any t > 0,

P[|IZ-E[Z]]|>t]<2 &2/

Concentration © Thomas Sauerwald Applications of Method of Bounded Differences 42



Application 3: Balls into Bins (again...)

sl UL

= Consider again m balls assigned uniformly at random into n bins.
= Enumerate the balls from 1 to m. Ball j is assigned to a random bin X;

= Let Z be the number of empty bins (after assigning the m balls)
= Z=2Z(Xi,...,Xn)and Zis Lipschitz withe = (1,...,1)
(If we move one ball to another bin, number of empty bins changes by < 1.)

= By McDiarmid’s inequality, for any t > 0,

P[|IZ-E[Z]]|>t]<2 &2/
)

This is a decent bound, but for some values of m it is far from
tight and stronger bounds are possible through a refined analysis.
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Application 4: Bin Packing

,,,,,, e e e e Ll 1

0.85

(o2]

= We are given n items of sizes in the unit interval [0, 1]
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Application 4: Bin Packing

0.85

(o2]

= We are given n items of sizes in the unit interval [0, 1]
= We want to pack those items into the fewest number of unit-capacity bins
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Application 4: Bin Packing

0.85

(o2]

= We are given n items of sizes in the unit interval [0, 1]
= We want to pack those items into the fewest number of unit-capacity bins
= Suppose the item sizes X; are independent random variables in [0, 1]
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Application 4: Bin Packing

0.85

(o2]

= We are given n items of sizes in the unit interval [0, 1]
We want to pack those items into the fewest number of unit-capacity bins
Suppose the item sizes X; are independent random variables in [0, 1]

Let B = B(Xi, ..., Xn) be the optimal number of bins
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Application 4: Bin Packing

0.85

= We are given n items of sizes in the unit interval [0, 1]
We want to pack those items into the fewest number of unit-capacity bins
Suppose the item sizes X; are independent random variables in [0, 1]

Let B = B(Xi, ..., Xn) be the optimal number of bins
= The Lipschitz conditions holds with ¢ = (1,...,1). Why?
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Application 4: Bin Packing

0.85

= We are given n items of sizes in the unit interval [0, 1]
We want to pack those items into the fewest number of unit-capacity bins
Suppose the item sizes X; are independent random variables in [0, 1]

Let B = B(Xi, ..., Xn) be the optimal number of bins
= The Lipschitz conditions holds with ¢ = (1,...,1). Why?

= Therefore .
P[IB-E[B]|>t]<2-e2/"
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Application 4: Bin Packing

0.85

= We are given n items of sizes in the unit interval [0, 1]
We want to pack those items into the fewest number of unit-capacity bins
Suppose the item sizes X; are independent random variables in [0, 1]

Let B = B(Xi, ..., Xn) be the optimal number of bins
= The Lipschitz conditions holds with ¢ = (1,...,1). Why?

= Therefore .
P[IB-E[B]|>t]<2-e®/"
=z

This is a typical example where proving concentration is
much easier than calculating (or estimating) the expectation!
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Appendix
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Moment Generating Functions

My (1)

Moment-Generating Function

The moment-generating function of a random variable X is

:E[e’x], where t € R.
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Moment Generating Functions

Moment-Generating Function

The moment-generating function of a random variable X is

Mx(t) = E [etx] ., whereteR.

L

[

Using power series of e and differentiating shows
that Mx(t) encapsulates all moments of X.
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Moment Generating Functions

Moment-Generating Function

The moment-generating function of a random variable X is

Mx(t) = E [etx] ., whereteR.

L

[

Using power series of e and differentiating shows
that Mx(t) encapsulates all moments of X.

Lemma

1. If X and Y are two r.vs with Mx(t) = My(t) for all t € (-4, +9) for
some § > 0, then the distributions X and Y are identical.

2. If X and Y are independent random variables, then

Moy (1) = Mx(t) - My(t).
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Moment Generating Functions

Moment-Generating Function

The moment-generating function of a random variable X is

Mx(t) = E [etx] ., whereteR.

L

[ Using power series of e and differentiating shows ]

that Mx(t) encapsulates all moments of X.

Lemma

1. If X and Y are two r.vs with Mx(t) = My(t) for all t € (-4, +9) for
some § > 0, then the distributions X and Y are identical.

2. If X and Y are independent random variables, then

Moy (1) = Mx(t) - My(t).

Proof of 2:
My.y(t) = E [e’“‘”)] =E [e’X : e’Y] OE [ef"] E [e”] = Mx()My(t) O
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