
Randomised Algorithms
Lecture 1: Introduction

Thomas Sauerwald (tms41@cam.ac.uk)

Lent 2022

Outline

Introduction

Topics and Syllabus

A (Very) Brief Reminder of Probability Theory and Examples

Introduction © Thomas Sauerwald Introduction 2

Randomised Algorithms

What? Randomised Algorithms utilise random bits to compute their output.

Why? Randomised Algorithms often provide an efficient (and elegant!)
solution or approximation to a problem that is costly (or impossible) to solve
deterministically.

But sometimes: simple algorithm at the cost of a complicated analysis!
“... If somebody would ask me, what in the last 10
years, what was the most important change in the
study of algorithms I would have to say that people
getting really familiar with randomised algorithms had
to be the winner.”
- Donald E. Knuth (in Randomization and Religion)

How? This course aims to strengthen your knowledge of probability theory
and apply this to analyse examples of randomised algorithms.

What if I (initially) don’t care about randomised algorithms?
Many of the techniques in this course (Markov Chains, Concentration of
Measure, Spectral Theory) are very relevant to other popular areas of
research and employment such as Data Science and Machine Learning.

Introduction © Thomas Sauerwald Introduction 3

Randomised Algorithms

What? Randomised Algorithms utilise random bits to compute their output.

Why? Randomised Algorithms often provide an efficient (and elegant!)
solution or approximation to a problem that is costly (or impossible) to solve
deterministically.

But sometimes: simple algorithm at the cost of a complicated analysis!
“... If somebody would ask me, what in the last 10
years, what was the most important change in the
study of algorithms I would have to say that people
getting really familiar with randomised algorithms had
to be the winner.”
- Donald E. Knuth (in Randomization and Religion)

How? This course aims to strengthen your knowledge of probability theory
and apply this to analyse examples of randomised algorithms.

What if I (initially) don’t care about randomised algorithms?
Many of the techniques in this course (Markov Chains, Concentration of
Measure, Spectral Theory) are very relevant to other popular areas of
research and employment such as Data Science and Machine Learning.

Introduction © Thomas Sauerwald Introduction 3

Randomised Algorithms

What? Randomised Algorithms utilise random bits to compute their output.

Why? Randomised Algorithms often provide an efficient (and elegant!)
solution or approximation to a problem that is costly (or impossible) to solve
deterministically.

But sometimes: simple algorithm at the cost of a complicated analysis!

“... If somebody would ask me, what in the last 10
years, what was the most important change in the
study of algorithms I would have to say that people
getting really familiar with randomised algorithms had
to be the winner.”
- Donald E. Knuth (in Randomization and Religion)

How? This course aims to strengthen your knowledge of probability theory
and apply this to analyse examples of randomised algorithms.

What if I (initially) don’t care about randomised algorithms?
Many of the techniques in this course (Markov Chains, Concentration of
Measure, Spectral Theory) are very relevant to other popular areas of
research and employment such as Data Science and Machine Learning.

Introduction © Thomas Sauerwald Introduction 3

Randomised Algorithms

What? Randomised Algorithms utilise random bits to compute their output.

Why? Randomised Algorithms often provide an efficient (and elegant!)
solution or approximation to a problem that is costly (or impossible) to solve
deterministically.

But sometimes: simple algorithm at the cost of a complicated analysis!

“... If somebody would ask me, what in the last 10
years, what was the most important change in the
study of algorithms I would have to say that people
getting really familiar with randomised algorithms had
to be the winner.”
- Donald E. Knuth (in Randomization and Religion)

How? This course aims to strengthen your knowledge of probability theory
and apply this to analyse examples of randomised algorithms.

What if I (initially) don’t care about randomised algorithms?
Many of the techniques in this course (Markov Chains, Concentration of
Measure, Spectral Theory) are very relevant to other popular areas of
research and employment such as Data Science and Machine Learning.

Introduction © Thomas Sauerwald Introduction 3

Randomised Algorithms

What? Randomised Algorithms utilise random bits to compute their output.

Why? Randomised Algorithms often provide an efficient (and elegant!)
solution or approximation to a problem that is costly (or impossible) to solve
deterministically.

But sometimes: simple algorithm at the cost of a complicated analysis!

“... If somebody would ask me, what in the last 10
years, what was the most important change in the
study of algorithms I would have to say that people
getting really familiar with randomised algorithms had
to be the winner.”
- Donald E. Knuth (in Randomization and Religion)

How? This course aims to strengthen your knowledge of probability theory
and apply this to analyse examples of randomised algorithms.

What if I (initially) don’t care about randomised algorithms?
Many of the techniques in this course (Markov Chains, Concentration of
Measure, Spectral Theory) are very relevant to other popular areas of
research and employment such as Data Science and Machine Learning.

Introduction © Thomas Sauerwald Introduction 3

Randomised Algorithms

What? Randomised Algorithms utilise random bits to compute their output.

Why? Randomised Algorithms often provide an efficient (and elegant!)
solution or approximation to a problem that is costly (or impossible) to solve
deterministically.

But sometimes: simple algorithm at the cost of a complicated analysis!

“... If somebody would ask me, what in the last 10
years, what was the most important change in the
study of algorithms I would have to say that people
getting really familiar with randomised algorithms had
to be the winner.”
- Donald E. Knuth (in Randomization and Religion)

How? This course aims to strengthen your knowledge of probability theory
and apply this to analyse examples of randomised algorithms.

What if I (initially) don’t care about randomised algorithms?
Many of the techniques in this course (Markov Chains, Concentration of
Measure, Spectral Theory) are very relevant to other popular areas of
research and employment such as Data Science and Machine Learning.

Introduction © Thomas Sauerwald Introduction 3

Some stuff you should know...

In this course we will assume some basic knowledge of probability:

random variable

computing expectations and variances

notions of independence

“general” idea of how to compute probabilities (manipulating, counting
and estimating)

You should also be familiar with basic computer science, mathematics
knowledge such as:

graphs

basic algorithms (sorting, graph algorithms etc.)

matrices, norms and vectors

Introduction © Thomas Sauerwald Introduction 4

Some stuff you should know...

In this course we will assume some basic knowledge of probability:

random variable

computing expectations and variances

notions of independence

“general” idea of how to compute probabilities (manipulating, counting
and estimating)

You should also be familiar with basic computer science, mathematics
knowledge such as:

graphs

basic algorithms (sorting, graph algorithms etc.)

matrices, norms and vectors

Introduction © Thomas Sauerwald Introduction 4

Outline

Introduction

Topics and Syllabus

A (Very) Brief Reminder of Probability Theory and Examples

Introduction © Thomas Sauerwald Topics and Syllabus 5

1 Introduction (Lecture)
Intro to Randomised Algorithms; Logistics(?); Recap of Probability; Examples.

Lectures 2-5 focus on probabilistic tools and techniques.

2–3 Concentration (Lectures)
Concept of Concentration; Recap of Markov and Chebyshev; Chernoff Bounds and
Applications; Extensions: Hoeffding’s Inequality and Method of Bounded Differences;
Applications.

4 Markov Chains and Mixing Times (Lecture)
Recap; Stopping and Hitting Times; Properties of Markov Chains; Convergence to
Stationary Distribution; Variation Distance and Mixing Time

5 Hitting Times and Application to 2-SAT (Lecture)
Reversible Markov Chains and Random Walks on Graphs; Cover Times and Hitting
Times on Graphs (Example: Paths and Grids); A Randomised Algorithm for 2-SAT
Algorithm

Lectures 6-8 introduce linear programming, a (mostly) deterministic but
very powerful technique to solve various optimisation problems.

6–7 Linear Programming (Lectures)
Introduction to Linear Programming, Applications, Standard and Slack Forms, Simplex
Algorithm, Finding an Initial Solution, Fundamental Theorem of Linear Programming

8 Travelling Salesman Problem (Interactive Demo)
Hardness of the general TSP problem, Formulating TSP as an integer program; Classical
TSP instance from 1954; Branch & Bound Technique to solve integer programs using
linear programs

Introduction © Thomas Sauerwald Topics and Syllabus 6

1 Introduction (Lecture)
Intro to Randomised Algorithms; Logistics(?); Recap of Probability; Examples.

Lectures 2-5 focus on probabilistic tools and techniques.

2–3 Concentration (Lectures)
Concept of Concentration; Recap of Markov and Chebyshev; Chernoff Bounds and
Applications; Extensions: Hoeffding’s Inequality and Method of Bounded Differences;
Applications.

4 Markov Chains and Mixing Times (Lecture)
Recap; Stopping and Hitting Times; Properties of Markov Chains; Convergence to
Stationary Distribution; Variation Distance and Mixing Time

5 Hitting Times and Application to 2-SAT (Lecture)
Reversible Markov Chains and Random Walks on Graphs; Cover Times and Hitting
Times on Graphs (Example: Paths and Grids); A Randomised Algorithm for 2-SAT
Algorithm

Lectures 6-8 introduce linear programming, a (mostly) deterministic but
very powerful technique to solve various optimisation problems.

6–7 Linear Programming (Lectures)
Introduction to Linear Programming, Applications, Standard and Slack Forms, Simplex
Algorithm, Finding an Initial Solution, Fundamental Theorem of Linear Programming

8 Travelling Salesman Problem (Interactive Demo)
Hardness of the general TSP problem, Formulating TSP as an integer program; Classical
TSP instance from 1954; Branch & Bound Technique to solve integer programs using
linear programs

Introduction © Thomas Sauerwald Topics and Syllabus 6

1 Introduction (Lecture)
Intro to Randomised Algorithms; Logistics(?); Recap of Probability; Examples.

Lectures 2-5 focus on probabilistic tools and techniques.

2–3 Concentration (Lectures)
Concept of Concentration; Recap of Markov and Chebyshev; Chernoff Bounds and
Applications; Extensions: Hoeffding’s Inequality and Method of Bounded Differences;
Applications.

4 Markov Chains and Mixing Times (Lecture)
Recap; Stopping and Hitting Times; Properties of Markov Chains; Convergence to
Stationary Distribution; Variation Distance and Mixing Time

5 Hitting Times and Application to 2-SAT (Lecture)
Reversible Markov Chains and Random Walks on Graphs; Cover Times and Hitting
Times on Graphs (Example: Paths and Grids); A Randomised Algorithm for 2-SAT
Algorithm

Lectures 6-8 introduce linear programming, a (mostly) deterministic but
very powerful technique to solve various optimisation problems.

6–7 Linear Programming (Lectures)
Introduction to Linear Programming, Applications, Standard and Slack Forms, Simplex
Algorithm, Finding an Initial Solution, Fundamental Theorem of Linear Programming

8 Travelling Salesman Problem (Interactive Demo)
Hardness of the general TSP problem, Formulating TSP as an integer program; Classical
TSP instance from 1954; Branch & Bound Technique to solve integer programs using
linear programs

Introduction © Thomas Sauerwald Topics and Syllabus 6

We then see how we can efficiently combine linear programming with
randomised techniques, in particular, rounding:

9–10 Randomised Approximation Algorithms (Lectures)
MAX-3-CNF and Guessing, Vertex-Cover and Deterministic Rounding of Linear Program,
Set-Cover and Randomised Rounding, Concluding Example: MAX-CNF and Hybrid
Algorithm

Lectures 11-16 cover more advanced topics with a ML flavour:

11–12 Spectral Graph Theory and Spectral Clustering (Lectures)
Eigenvalues, Eigenvectors and Spectrum; Visualising Graphs; Expansion; Cheeger’s
Inequality; Clustering and Examples; Analysing Mixing Times

13 Streaming Algorithms (Lecture)
Motivation and Concepts of Algorithms for Data Streams; Approximate Counting and
Morris Algorithm; Hash Functions; Approximating Frequency Moments

14 Online Learning with Experts (Lecture)
Online and Reinforcement Learning Framework; Weighted Majority Algorithm and
Analysis; Randomised Weighted Majority Algorithm; Learning Rate

15–16 Algorithms for Multi-Armed Bandits (Lectures)
Definition and Types of Bandit Problems; Regret in Stochastic Bandits; Algorithms:
Greedy, Epsilon-Greedy and UCB; A Special Instance with Two Bandits; Adversarial
Bandits: EXP3 and Connection to Weighted Majority.

Introduction © Thomas Sauerwald Topics and Syllabus 7

We then see how we can efficiently combine linear programming with
randomised techniques, in particular, rounding:

9–10 Randomised Approximation Algorithms (Lectures)
MAX-3-CNF and Guessing, Vertex-Cover and Deterministic Rounding of Linear Program,
Set-Cover and Randomised Rounding, Concluding Example: MAX-CNF and Hybrid
Algorithm

Lectures 11-16 cover more advanced topics with a ML flavour:

11–12 Spectral Graph Theory and Spectral Clustering (Lectures)
Eigenvalues, Eigenvectors and Spectrum; Visualising Graphs; Expansion; Cheeger’s
Inequality; Clustering and Examples; Analysing Mixing Times

13 Streaming Algorithms (Lecture)
Motivation and Concepts of Algorithms for Data Streams; Approximate Counting and
Morris Algorithm; Hash Functions; Approximating Frequency Moments

14 Online Learning with Experts (Lecture)
Online and Reinforcement Learning Framework; Weighted Majority Algorithm and
Analysis; Randomised Weighted Majority Algorithm; Learning Rate

15–16 Algorithms for Multi-Armed Bandits (Lectures)
Definition and Types of Bandit Problems; Regret in Stochastic Bandits; Algorithms:
Greedy, Epsilon-Greedy and UCB; A Special Instance with Two Bandits; Adversarial
Bandits: EXP3 and Connection to Weighted Majority.

Introduction © Thomas Sauerwald Topics and Syllabus 7

Outline

Introduction

Topics and Syllabus

A (Very) Brief Reminder of Probability Theory and Examples

Introduction © Thomas Sauerwald A (Very) Brief Reminder of Probability Theory and Examples 8

Recap: Probability Space

In probability theory we wish to evaluate the likelihood of certain results from
an experiment. The setting of this is the probability space (Ω,Σ,P).

The Sample Space Ω contains all the possible outcomes ω1, ω2, . . .
of the experiment.

The Event Space Σ is the power-set of Ω containing events, which
are combinations of outcomes (subsets of Ω including ∅ and Ω).
The Probability Measure P is a function from Σ to R satisfying

(i) 0 ≤ P [E] ≤ 1, for all E ∈ Σ
(ii) P [Ω] = 1
(iii) If E1, E2, . . . ∈ Σ are pairwise disjoint (Ei ∩ Ej = ∅ for all i 6= j) then

P

[∞⋃
i=1

Ei

]
=
∞∑
i=1

P [Ei] .

Components of the Probability Space (Ω,Σ,P)

Introduction © Thomas Sauerwald A (Very) Brief Reminder of Probability Theory and Examples 9

Recap: Random Variables

A random variable X on (Ω,Σ,P) is a function X : Ω→ R mapping each
sample “outcome” to a real number.

Intuitively, random variables are the “observables” in our experiment.

The number of heads in three coin flips X1,X2,X3 ∈ {0, 1} is:

X1 + X2 + X3

The indicator random variable 1E of an event E ∈ Σ given by

1E(ω) =

{
1 if ω ∈ E
0 otherwise.

For the indicator random variable 1E we have E [1E] = P [E].

The number of sixes of two dice throws X1,X2 ∈ {1, 2, . . . , 6} is

1X1=6 + 1X2=6

Examples of random variables

Introduction © Thomas Sauerwald A (Very) Brief Reminder of Probability Theory and Examples 10

Recap: Random Variables

A random variable X on (Ω,Σ,P) is a function X : Ω→ R mapping each
sample “outcome” to a real number.

Intuitively, random variables are the “observables” in our experiment.

The number of heads in three coin flips X1,X2,X3 ∈ {0, 1} is:

X1 + X2 + X3

The indicator random variable 1E of an event E ∈ Σ given by

1E(ω) =

{
1 if ω ∈ E
0 otherwise.

For the indicator random variable 1E we have E [1E] = P [E].

The number of sixes of two dice throws X1,X2 ∈ {1, 2, . . . , 6} is

1X1=6 + 1X2=6

Examples of random variables

Introduction © Thomas Sauerwald A (Very) Brief Reminder of Probability Theory and Examples 10

Recap: Random Variables

A random variable X on (Ω,Σ,P) is a function X : Ω→ R mapping each
sample “outcome” to a real number.

Intuitively, random variables are the “observables” in our experiment.

The number of heads in three coin flips X1,X2,X3 ∈ {0, 1} is:

X1 + X2 + X3

The indicator random variable 1E of an event E ∈ Σ given by

1E(ω) =

{
1 if ω ∈ E
0 otherwise.

For the indicator random variable 1E we have E [1E] = P [E].

The number of sixes of two dice throws X1,X2 ∈ {1, 2, . . . , 6} is

1X1=6 + 1X2=6

Examples of random variables

Introduction © Thomas Sauerwald A (Very) Brief Reminder of Probability Theory and Examples 10

Recap: Random Variables

A random variable X on (Ω,Σ,P) is a function X : Ω→ R mapping each
sample “outcome” to a real number.

Intuitively, random variables are the “observables” in our experiment.

The number of heads in three coin flips X1,X2,X3 ∈ {0, 1} is:

X1 + X2 + X3

The indicator random variable 1E of an event E ∈ Σ given by

1E(ω) =

{
1 if ω ∈ E
0 otherwise.

For the indicator random variable 1E we have E [1E] = P [E].

The number of sixes of two dice throws X1,X2 ∈ {1, 2, . . . , 6} is

1X1=6 + 1X2=6

Examples of random variables

Introduction © Thomas Sauerwald A (Very) Brief Reminder of Probability Theory and Examples 10

Recap: Random Variables

A random variable X on (Ω,Σ,P) is a function X : Ω→ R mapping each
sample “outcome” to a real number.

Intuitively, random variables are the “observables” in our experiment.

The number of heads in three coin flips X1,X2,X3 ∈ {0, 1} is:

X1 + X2 + X3

The indicator random variable 1E of an event E ∈ Σ given by

1E(ω) =

{
1 if ω ∈ E
0 otherwise.

For the indicator random variable 1E we have E [1E] = P [E].

The number of sixes of two dice throws X1,X2 ∈ {1, 2, . . . , 6} is

1X1=6 + 1X2=6

Examples of random variables

Introduction © Thomas Sauerwald A (Very) Brief Reminder of Probability Theory and Examples 10

A Randomised Algorithm for MAX-CUT (1/2)

E (A,B): set of edges with one endpoint in A ⊆ V and the other in B ⊆ V .

Given: Undirected graph G = (V ,E)

Goal: Find S ⊆ V such that e(S,Sc) := |E (S,V \ S) | is maximised.

MAX-CUT Problem

Applications:

network design, VLSI design

clustering, statistical physics

Comments:

This example will appear again in the course

MAX-CUT is NP-hard

It is different from the clustering problem, where we
want to find a sparse cut

Note that the MIN-CUT problem is solvable in
polynomial time!

a
b

c

d e
f

a

e

b

S = {a, b, e}
e(S,Sc) = 6

Introduction © Thomas Sauerwald A (Very) Brief Reminder of Probability Theory and Examples 11

A Randomised Algorithm for MAX-CUT (1/2)

E (A,B): set of edges with one endpoint in A ⊆ V and the other in B ⊆ V .

Given: Undirected graph G = (V ,E)

Goal: Find S ⊆ V such that e(S,Sc) := |E (S,V \ S) | is maximised.

MAX-CUT Problem

Applications:

network design, VLSI design

clustering, statistical physics

Comments:

This example will appear again in the course

MAX-CUT is NP-hard

It is different from the clustering problem, where we
want to find a sparse cut

Note that the MIN-CUT problem is solvable in
polynomial time!

a
b

c

d e
f

a

e

b

S = {a, b, e}
e(S,Sc) = 6

Introduction © Thomas Sauerwald A (Very) Brief Reminder of Probability Theory and Examples 11

A Randomised Algorithm for MAX-CUT (1/2)

E (A,B): set of edges with one endpoint in A ⊆ V and the other in B ⊆ V .

Given: Undirected graph G = (V ,E)

Goal: Find S ⊆ V such that e(S,Sc) := |E (S,V \ S) | is maximised.

MAX-CUT Problem

Applications:

network design, VLSI design

clustering, statistical physics

Comments:

This example will appear again in the course

MAX-CUT is NP-hard

It is different from the clustering problem, where we
want to find a sparse cut

Note that the MIN-CUT problem is solvable in
polynomial time!

a
b

c

d e
f

a

e

b

S = {a, b, e}
e(S,Sc) = 6

Introduction © Thomas Sauerwald A (Very) Brief Reminder of Probability Theory and Examples 11

A Randomised Algorithm for MAX-CUT (1/2)

E (A,B): set of edges with one endpoint in A ⊆ V and the other in B ⊆ V .

Given: Undirected graph G = (V ,E)

Goal: Find S ⊆ V such that e(S,Sc) := |E (S,V \ S) | is maximised.

MAX-CUT Problem

Applications:

network design, VLSI design

clustering, statistical physics

Comments:

This example will appear again in the course

MAX-CUT is NP-hard

It is different from the clustering problem, where we
want to find a sparse cut

Note that the MIN-CUT problem is solvable in
polynomial time!

a
b

c

d e
f

a

e

b

S = {a, b, e}
e(S,Sc) = 6

Introduction © Thomas Sauerwald A (Very) Brief Reminder of Probability Theory and Examples 11

A Randomised Algorithm for MAX-CUT (1/2)

E (A,B): set of edges with one endpoint in A ⊆ V and the other in B ⊆ V .

Given: Undirected graph G = (V ,E)

Goal: Find S ⊆ V such that e(S,Sc) := |E (S,V \ S) | is maximised.

MAX-CUT Problem

Applications:

network design, VLSI design

clustering, statistical physics

Comments:

This example will appear again in the course

MAX-CUT is NP-hard

It is different from the clustering problem, where we
want to find a sparse cut

Note that the MIN-CUT problem is solvable in
polynomial time!

a
b

c

d e
f

a

e

b

S = {a, b, e}
e(S,Sc) = 6

Introduction © Thomas Sauerwald A (Very) Brief Reminder of Probability Theory and Examples 11

A Randomised Algorithm for MAX-CUT (1/2)

E (A,B): set of edges with one endpoint in A ⊆ V and the other in B ⊆ V .

Given: Undirected graph G = (V ,E)

Goal: Find S ⊆ V such that e(S,Sc) := |E (S,V \ S) | is maximised.

MAX-CUT Problem

Applications:

network design, VLSI design

clustering, statistical physics

Comments:

This example will appear again in the course

MAX-CUT is NP-hard

It is different from the clustering problem, where we
want to find a sparse cut

Note that the MIN-CUT problem is solvable in
polynomial time!

a
b

c

d e
f

a

e

b

S = {a, b, e}
e(S,Sc) = 6

Introduction © Thomas Sauerwald A (Very) Brief Reminder of Probability Theory and Examples 11

A Randomised Algorithm for MAX-CUT (1/2)

E (A,B): set of edges with one endpoint in A ⊆ V and the other in B ⊆ V .

Given: Undirected graph G = (V ,E)

Goal: Find S ⊆ V such that e(S,Sc) := |E (S,V \ S) | is maximised.

MAX-CUT Problem

Applications:

network design, VLSI design

clustering, statistical physics

Comments:

This example will appear again in the course

MAX-CUT is NP-hard

It is different from the clustering problem, where we
want to find a sparse cut

Note that the MIN-CUT problem is solvable in
polynomial time!

a
b

c

d e
f

a

e

b

S = {a, b, e}
e(S,Sc) = 6

Introduction © Thomas Sauerwald A (Very) Brief Reminder of Probability Theory and Examples 11

A Randomised Algorithm for MAX-CUT (1/2)

E (A,B): set of edges with one endpoint in A ⊆ V and the other in B ⊆ V .

Given: Undirected graph G = (V ,E)

Goal: Find S ⊆ V such that e(S,Sc) := |E (S,V \ S) | is maximised.

MAX-CUT Problem

Applications:

network design, VLSI design

clustering, statistical physics

Comments:

This example will appear again in the course

MAX-CUT is NP-hard

It is different from the clustering problem, where we
want to find a sparse cut

Note that the MIN-CUT problem is solvable in
polynomial time!

a
b

c

d e
f

a

e

b

S = {a, b, e}
e(S,Sc) = 6

Introduction © Thomas Sauerwald A (Very) Brief Reminder of Probability Theory and Examples 11

A Randomised Algorithm for MAX-CUT (1/2)

E (A,B): set of edges with one endpoint in A ⊆ V and the other in B ⊆ V .

Given: Undirected graph G = (V ,E)

Goal: Find S ⊆ V such that e(S,Sc) := |E (S,V \ S) | is maximised.

MAX-CUT Problem

Applications:

network design, VLSI design

clustering, statistical physics

Comments:

This example will appear again in the course

MAX-CUT is NP-hard

It is different from the clustering problem, where we
want to find a sparse cut

Note that the MIN-CUT problem is solvable in
polynomial time!

a
b

c

d e
f

a

e

b

S = {a, b, e}
e(S,Sc) = 6

Introduction © Thomas Sauerwald A (Very) Brief Reminder of Probability Theory and Examples 11

A Randomised Algorithm for MAX-CUT (1/2)

E (A,B): set of edges with one endpoint in A ⊆ V and the other in B ⊆ V .

Given: Undirected graph G = (V ,E)

Goal: Find S ⊆ V such that e(S,Sc) := |E (S,V \ S) | is maximised.

MAX-CUT Problem

Applications:

network design, VLSI design

clustering, statistical physics

Comments:

This example will appear again in the course

MAX-CUT is NP-hard

It is different from the clustering problem, where we
want to find a sparse cut

Note that the MIN-CUT problem is solvable in
polynomial time!

a
b

c

d e
f

a

e

b

S = {a, b, e}
e(S,Sc) = 6

Introduction © Thomas Sauerwald A (Very) Brief Reminder of Probability Theory and Examples 11

A Randomised Algorithm for MAX-CUT (1/2)

E (A,B): set of edges with one endpoint in A ⊆ V and the other in B ⊆ V .

Given: Undirected graph G = (V ,E)

Goal: Find S ⊆ V such that e(S,Sc) := |E (S,V \ S) | is maximised.

MAX-CUT Problem

Applications:

network design, VLSI design

clustering, statistical physics

Comments:

This example will appear again in the course

MAX-CUT is NP-hard

It is different from the clustering problem, where we
want to find a sparse cut

Note that the MIN-CUT problem is solvable in
polynomial time!

a
b

c

d e
f

a

e

b

S = {a, b, e}
e(S,Sc) = 6

Introduction © Thomas Sauerwald A (Very) Brief Reminder of Probability Theory and Examples 11

A Randomised Algorithm for MAX-CUT (1/2)

E (A,B): set of edges with one endpoint in A ⊆ V and the other in B ⊆ V .

Given: Undirected graph G = (V ,E)

Goal: Find S ⊆ V such that e(S,Sc) := |E (S,V \ S) | is maximised.

MAX-CUT Problem

Applications:

network design, VLSI design

clustering, statistical physics

Comments:

This example will appear again in the course

MAX-CUT is NP-hard

It is different from the clustering problem, where we
want to find a sparse cut

Note that the MIN-CUT problem is solvable in
polynomial time!

a
b

c

d e
f

a

e

b

S = {a, b, e}
e(S,Sc) = 6

Introduction © Thomas Sauerwald A (Very) Brief Reminder of Probability Theory and Examples 11

A Randomised Algorithm for MAX-CUT (1/2)

E (A,B): set of edges with one endpoint in A ⊆ V and the other in B ⊆ V .

Given: Undirected graph G = (V ,E)

Goal: Find S ⊆ V such that e(S,Sc) := |E (S,V \ S) | is maximised.

MAX-CUT Problem

Applications:

network design, VLSI design

clustering, statistical physics

Comments:

This example will appear again in the course

MAX-CUT is NP-hard

It is different from the clustering problem, where we
want to find a sparse cut

Note that the MIN-CUT problem is solvable in
polynomial time!

a
b

c

d e
f

a

e

b

S = {a, b, e}
e(S,Sc) = 6

Introduction © Thomas Sauerwald A (Very) Brief Reminder of Probability Theory and Examples 11

A Randomised Algorithm for MAX-CUT (1/2)

E (A,B): set of edges with one endpoint in A ⊆ V and the other in B ⊆ V .

Given: Undirected graph G = (V ,E)

Goal: Find S ⊆ V such that e(S,Sc) := |E (S,V \ S) | is maximised.

MAX-CUT Problem

Applications:

network design, VLSI design

clustering, statistical physics

Comments:

This example will appear again in the course

MAX-CUT is NP-hard

It is different from the clustering problem, where we
want to find a sparse cut

Note that the MIN-CUT problem is solvable in
polynomial time!

a
b

c

d e
f

a

e

b

S = {a, b, e}
e(S,Sc) = 6

Introduction © Thomas Sauerwald A (Very) Brief Reminder of Probability Theory and Examples 11

A Randomised Algorithm for MAX-CUT (2/2)

RANDMAXCUT (Input G = (V ,E))
1: Start with S ← ∅
2: For each v ∈ V , add v to S with probability 1/2
3: Return S

RandMaxCut gives a 2-approximation using time O(n).
Proposition More details on approximation algorithms from Lecture 9 onwards!

This kind of “random guessing” will appear a few times in this course!

Later: learn stronger tools that imply concentration around the expectation!
Proof:

We need to analyse the expectation of e (S,Sc):

E
[

e
(
S,Sc)]

= E

 ∑
{u,v}∈E

1{u∈S,v∈Sc}∪{u∈Sc ,v∈S}

=

∑
{u,v}∈E

E
[

1{u∈S,v∈Sc}∪{u∈Sc ,v∈S}
]

=
∑
{u,v}∈E

P
[
{u ∈ S, v ∈ Sc} ∪ {u ∈ Sc , v ∈ S}

]
= 2

∑
{u,v}∈E

P
[

u ∈ S, v ∈ Sc] = 2
∑
{u,v}∈E

P [u ∈ S] · P
[

v ∈ Sc] = |E |/2.

Since for any S ⊆ V , we have e (S,Sc) ≤ |E |, concluding the proof.

Introduction © Thomas Sauerwald A (Very) Brief Reminder of Probability Theory and Examples 12

A Randomised Algorithm for MAX-CUT (2/2)

RANDMAXCUT (Input G = (V ,E))
1: Start with S ← ∅
2: For each v ∈ V , add v to S with probability 1/2
3: Return S

RandMaxCut gives a 2-approximation using time O(n).
Proposition

More details on approximation algorithms from Lecture 9 onwards!

This kind of “random guessing” will appear a few times in this course!

Later: learn stronger tools that imply concentration around the expectation!
Proof:

We need to analyse the expectation of e (S,Sc):

E
[

e
(
S,Sc)]

= E

 ∑
{u,v}∈E

1{u∈S,v∈Sc}∪{u∈Sc ,v∈S}

=

∑
{u,v}∈E

E
[

1{u∈S,v∈Sc}∪{u∈Sc ,v∈S}
]

=
∑
{u,v}∈E

P
[
{u ∈ S, v ∈ Sc} ∪ {u ∈ Sc , v ∈ S}

]
= 2

∑
{u,v}∈E

P
[

u ∈ S, v ∈ Sc] = 2
∑
{u,v}∈E

P [u ∈ S] · P
[

v ∈ Sc] = |E |/2.

Since for any S ⊆ V , we have e (S,Sc) ≤ |E |, concluding the proof.

Introduction © Thomas Sauerwald A (Very) Brief Reminder of Probability Theory and Examples 12

A Randomised Algorithm for MAX-CUT (2/2)

RANDMAXCUT (Input G = (V ,E))
1: Start with S ← ∅
2: For each v ∈ V , add v to S with probability 1/2
3: Return S

RandMaxCut gives a 2-approximation using time O(n).
Proposition

More details on approximation algorithms from Lecture 9 onwards!

This kind of “random guessing” will appear a few times in this course!

Later: learn stronger tools that imply concentration around the expectation!

Exercise: What is the sample space Ω and event space Σ here?
Which random variable do we need to analyse?

Proof:

We need to analyse the expectation of e (S,Sc):

E
[

e
(
S,Sc)]

= E

 ∑
{u,v}∈E

1{u∈S,v∈Sc}∪{u∈Sc ,v∈S}

=

∑
{u,v}∈E

E
[

1{u∈S,v∈Sc}∪{u∈Sc ,v∈S}
]

=
∑
{u,v}∈E

P
[
{u ∈ S, v ∈ Sc} ∪ {u ∈ Sc , v ∈ S}

]
= 2

∑
{u,v}∈E

P
[

u ∈ S, v ∈ Sc] = 2
∑
{u,v}∈E

P [u ∈ S] · P
[

v ∈ Sc] = |E |/2.

Since for any S ⊆ V , we have e (S,Sc) ≤ |E |, concluding the proof.

Introduction © Thomas Sauerwald A (Very) Brief Reminder of Probability Theory and Examples 12

A Randomised Algorithm for MAX-CUT (2/2)

RANDMAXCUT (Input G = (V ,E))
1: Start with S ← ∅
2: For each v ∈ V , add v to S with probability 1/2
3: Return S

RandMaxCut gives a 2-approximation using time O(n).
Proposition

More details on approximation algorithms from Lecture 9 onwards!

This kind of “random guessing” will appear a few times in this course!

Later: learn stronger tools that imply concentration around the expectation!

Proof:

We need to analyse the expectation of e (S,Sc):

E
[

e
(
S,Sc)]

= E

 ∑
{u,v}∈E

1{u∈S,v∈Sc}∪{u∈Sc ,v∈S}

=

∑
{u,v}∈E

E
[

1{u∈S,v∈Sc}∪{u∈Sc ,v∈S}
]

=
∑
{u,v}∈E

P
[
{u ∈ S, v ∈ Sc} ∪ {u ∈ Sc , v ∈ S}

]
= 2

∑
{u,v}∈E

P
[

u ∈ S, v ∈ Sc] = 2
∑
{u,v}∈E

P [u ∈ S] · P
[

v ∈ Sc] = |E |/2.

Since for any S ⊆ V , we have e (S,Sc) ≤ |E |, concluding the proof.

Introduction © Thomas Sauerwald A (Very) Brief Reminder of Probability Theory and Examples 12

A Randomised Algorithm for MAX-CUT (2/2)

RANDMAXCUT (Input G = (V ,E))
1: Start with S ← ∅
2: For each v ∈ V , add v to S with probability 1/2
3: Return S

RandMaxCut gives a 2-approximation using time O(n).
Proposition

More details on approximation algorithms from Lecture 9 onwards!

This kind of “random guessing” will appear a few times in this course!

Later: learn stronger tools that imply concentration around the expectation!

Proof:
We need to analyse the expectation of e (S,Sc):

E
[

e
(
S,Sc)]

= E

 ∑
{u,v}∈E

1{u∈S,v∈Sc}∪{u∈Sc ,v∈S}

=

∑
{u,v}∈E

E
[

1{u∈S,v∈Sc}∪{u∈Sc ,v∈S}
]

=
∑
{u,v}∈E

P
[
{u ∈ S, v ∈ Sc} ∪ {u ∈ Sc , v ∈ S}

]
= 2

∑
{u,v}∈E

P
[

u ∈ S, v ∈ Sc] = 2
∑
{u,v}∈E

P [u ∈ S] · P
[

v ∈ Sc] = |E |/2.

Since for any S ⊆ V , we have e (S,Sc) ≤ |E |, concluding the proof.

Introduction © Thomas Sauerwald A (Very) Brief Reminder of Probability Theory and Examples 12

A Randomised Algorithm for MAX-CUT (2/2)

RANDMAXCUT (Input G = (V ,E))
1: Start with S ← ∅
2: For each v ∈ V , add v to S with probability 1/2
3: Return S

RandMaxCut gives a 2-approximation using time O(n).
Proposition

More details on approximation algorithms from Lecture 9 onwards!

This kind of “random guessing” will appear a few times in this course!

Later: learn stronger tools that imply concentration around the expectation!

Proof:
We need to analyse the expectation of e (S,Sc):

E
[

e
(
S,Sc)] = E

 ∑
{u,v}∈E

1{u∈S,v∈Sc}∪{u∈Sc ,v∈S}

=
∑
{u,v}∈E

E
[

1{u∈S,v∈Sc}∪{u∈Sc ,v∈S}
]

=
∑
{u,v}∈E

P
[
{u ∈ S, v ∈ Sc} ∪ {u ∈ Sc , v ∈ S}

]
= 2

∑
{u,v}∈E

P
[

u ∈ S, v ∈ Sc] = 2
∑
{u,v}∈E

P [u ∈ S] · P
[

v ∈ Sc] = |E |/2.

Since for any S ⊆ V , we have e (S,Sc) ≤ |E |, concluding the proof.

Introduction © Thomas Sauerwald A (Very) Brief Reminder of Probability Theory and Examples 12

A Randomised Algorithm for MAX-CUT (2/2)

RANDMAXCUT (Input G = (V ,E))
1: Start with S ← ∅
2: For each v ∈ V , add v to S with probability 1/2
3: Return S

RandMaxCut gives a 2-approximation using time O(n).
Proposition

More details on approximation algorithms from Lecture 9 onwards!

This kind of “random guessing” will appear a few times in this course!

Later: learn stronger tools that imply concentration around the expectation!

Proof:
We need to analyse the expectation of e (S,Sc):

E
[

e
(
S,Sc)] = E

 ∑
{u,v}∈E

1{u∈S,v∈Sc}∪{u∈Sc ,v∈S}

=

∑
{u,v}∈E

E
[

1{u∈S,v∈Sc}∪{u∈Sc ,v∈S}
]

=
∑
{u,v}∈E

P
[
{u ∈ S, v ∈ Sc} ∪ {u ∈ Sc , v ∈ S}

]
= 2

∑
{u,v}∈E

P
[

u ∈ S, v ∈ Sc] = 2
∑
{u,v}∈E

P [u ∈ S] · P
[

v ∈ Sc] = |E |/2.

Since for any S ⊆ V , we have e (S,Sc) ≤ |E |, concluding the proof.

Introduction © Thomas Sauerwald A (Very) Brief Reminder of Probability Theory and Examples 12

A Randomised Algorithm for MAX-CUT (2/2)

RANDMAXCUT (Input G = (V ,E))
1: Start with S ← ∅
2: For each v ∈ V , add v to S with probability 1/2
3: Return S

RandMaxCut gives a 2-approximation using time O(n).
Proposition

More details on approximation algorithms from Lecture 9 onwards!

This kind of “random guessing” will appear a few times in this course!

Later: learn stronger tools that imply concentration around the expectation!

Proof:
We need to analyse the expectation of e (S,Sc):

E
[

e
(
S,Sc)] = E

 ∑
{u,v}∈E

1{u∈S,v∈Sc}∪{u∈Sc ,v∈S}

=

∑
{u,v}∈E

E
[

1{u∈S,v∈Sc}∪{u∈Sc ,v∈S}
]

=
∑
{u,v}∈E

P
[
{u ∈ S, v ∈ Sc} ∪ {u ∈ Sc , v ∈ S}

]

= 2
∑
{u,v}∈E

P
[

u ∈ S, v ∈ Sc] = 2
∑
{u,v}∈E

P [u ∈ S] · P
[

v ∈ Sc] = |E |/2.

Since for any S ⊆ V , we have e (S,Sc) ≤ |E |, concluding the proof.

Introduction © Thomas Sauerwald A (Very) Brief Reminder of Probability Theory and Examples 12

A Randomised Algorithm for MAX-CUT (2/2)

RANDMAXCUT (Input G = (V ,E))
1: Start with S ← ∅
2: For each v ∈ V , add v to S with probability 1/2
3: Return S

RandMaxCut gives a 2-approximation using time O(n).
Proposition

More details on approximation algorithms from Lecture 9 onwards!

This kind of “random guessing” will appear a few times in this course!

Later: learn stronger tools that imply concentration around the expectation!

Proof:
We need to analyse the expectation of e (S,Sc):

E
[

e
(
S,Sc)] = E

 ∑
{u,v}∈E

1{u∈S,v∈Sc}∪{u∈Sc ,v∈S}

=

∑
{u,v}∈E

E
[

1{u∈S,v∈Sc}∪{u∈Sc ,v∈S}
]

=
∑
{u,v}∈E

P
[
{u ∈ S, v ∈ Sc} ∪ {u ∈ Sc , v ∈ S}

]
= 2

∑
{u,v}∈E

P
[

u ∈ S, v ∈ Sc]

= 2
∑
{u,v}∈E

P [u ∈ S] · P
[

v ∈ Sc] = |E |/2.

Since for any S ⊆ V , we have e (S,Sc) ≤ |E |, concluding the proof.

Introduction © Thomas Sauerwald A (Very) Brief Reminder of Probability Theory and Examples 12

A Randomised Algorithm for MAX-CUT (2/2)

RANDMAXCUT (Input G = (V ,E))
1: Start with S ← ∅
2: For each v ∈ V , add v to S with probability 1/2
3: Return S

RandMaxCut gives a 2-approximation using time O(n).
Proposition

More details on approximation algorithms from Lecture 9 onwards!

This kind of “random guessing” will appear a few times in this course!

Later: learn stronger tools that imply concentration around the expectation!

Proof:
We need to analyse the expectation of e (S,Sc):

E
[

e
(
S,Sc)] = E

 ∑
{u,v}∈E

1{u∈S,v∈Sc}∪{u∈Sc ,v∈S}

=

∑
{u,v}∈E

E
[

1{u∈S,v∈Sc}∪{u∈Sc ,v∈S}
]

=
∑
{u,v}∈E

P
[
{u ∈ S, v ∈ Sc} ∪ {u ∈ Sc , v ∈ S}

]
= 2

∑
{u,v}∈E

P
[

u ∈ S, v ∈ Sc] = 2
∑
{u,v}∈E

P [u ∈ S] · P
[

v ∈ Sc]

= |E |/2.

Since for any S ⊆ V , we have e (S,Sc) ≤ |E |, concluding the proof.

Introduction © Thomas Sauerwald A (Very) Brief Reminder of Probability Theory and Examples 12

A Randomised Algorithm for MAX-CUT (2/2)

RANDMAXCUT (Input G = (V ,E))
1: Start with S ← ∅
2: For each v ∈ V , add v to S with probability 1/2
3: Return S

RandMaxCut gives a 2-approximation using time O(n).
Proposition

More details on approximation algorithms from Lecture 9 onwards!

This kind of “random guessing” will appear a few times in this course!

Later: learn stronger tools that imply concentration around the expectation!

Proof:
We need to analyse the expectation of e (S,Sc):

E
[

e
(
S,Sc)] = E

 ∑
{u,v}∈E

1{u∈S,v∈Sc}∪{u∈Sc ,v∈S}

=

∑
{u,v}∈E

E
[

1{u∈S,v∈Sc}∪{u∈Sc ,v∈S}
]

=
∑
{u,v}∈E

P
[
{u ∈ S, v ∈ Sc} ∪ {u ∈ Sc , v ∈ S}

]
= 2

∑
{u,v}∈E

P
[

u ∈ S, v ∈ Sc] = 2
∑
{u,v}∈E

P [u ∈ S] · P
[

v ∈ Sc] = |E |/2.

Since for any S ⊆ V , we have e (S,Sc) ≤ |E |, concluding the proof.

Introduction © Thomas Sauerwald A (Very) Brief Reminder of Probability Theory and Examples 12

A Randomised Algorithm for MAX-CUT (2/2)

RANDMAXCUT (Input G = (V ,E))
1: Start with S ← ∅
2: For each v ∈ V , add v to S with probability 1/2
3: Return S

RandMaxCut gives a 2-approximation using time O(n).
Proposition

More details on approximation algorithms from Lecture 9 onwards!

This kind of “random guessing” will appear a few times in this course!

Later: learn stronger tools that imply concentration around the expectation!

Proof:
We need to analyse the expectation of e (S,Sc):

E
[

e
(
S,Sc)] = E

 ∑
{u,v}∈E

1{u∈S,v∈Sc}∪{u∈Sc ,v∈S}

=

∑
{u,v}∈E

E
[

1{u∈S,v∈Sc}∪{u∈Sc ,v∈S}
]

=
∑
{u,v}∈E

P
[
{u ∈ S, v ∈ Sc} ∪ {u ∈ Sc , v ∈ S}

]
= 2

∑
{u,v}∈E

P
[

u ∈ S, v ∈ Sc] = 2
∑
{u,v}∈E

P [u ∈ S] · P
[

v ∈ Sc] = |E |/2.

Since for any S ⊆ V , we have e (S,Sc) ≤ |E |, concluding the proof.

Introduction © Thomas Sauerwald A (Very) Brief Reminder of Probability Theory and Examples 12

A Randomised Algorithm for MAX-CUT (2/2)

RANDMAXCUT (Input G = (V ,E))
1: Start with S ← ∅
2: For each v ∈ V , add v to S with probability 1/2
3: Return S

RandMaxCut gives a 2-approximation using time O(n).
Proposition

More details on approximation algorithms from Lecture 9 onwards!

This kind of “random guessing” will appear a few times in this course!

Later: learn stronger tools that imply concentration around the expectation!

Proof:
We need to analyse the expectation of e (S,Sc):

E
[

e
(
S,Sc)] = E

 ∑
{u,v}∈E

1{u∈S,v∈Sc}∪{u∈Sc ,v∈S}

=

∑
{u,v}∈E

E
[

1{u∈S,v∈Sc}∪{u∈Sc ,v∈S}
]

=
∑
{u,v}∈E

P
[
{u ∈ S, v ∈ Sc} ∪ {u ∈ Sc , v ∈ S}

]
= 2

∑
{u,v}∈E

P
[

u ∈ S, v ∈ Sc] = 2
∑
{u,v}∈E

P [u ∈ S] · P
[

v ∈ Sc] = |E |/2.

Since for any S ⊆ V , we have e (S,Sc) ≤ |E |, concluding the proof.

Introduction © Thomas Sauerwald A (Very) Brief Reminder of Probability Theory and Examples 12

A Randomised Algorithm for MAX-CUT (2/2)

RANDMAXCUT (Input G = (V ,E))
1: Start with S ← ∅
2: For each v ∈ V , add v to S with probability 1/2
3: Return S

RandMaxCut gives a 2-approximation using time O(n).
Proposition

More details on approximation algorithms from Lecture 9 onwards!

This kind of “random guessing” will appear a few times in this course!

Later: learn stronger tools that imply concentration around the expectation!
Proof:

We need to analyse the expectation of e (S,Sc):

E
[

e
(
S,Sc)] = E

 ∑
{u,v}∈E

1{u∈S,v∈Sc}∪{u∈Sc ,v∈S}

=

∑
{u,v}∈E

E
[

1{u∈S,v∈Sc}∪{u∈Sc ,v∈S}
]

=
∑
{u,v}∈E

P
[
{u ∈ S, v ∈ Sc} ∪ {u ∈ Sc , v ∈ S}

]
= 2

∑
{u,v}∈E

P
[

u ∈ S, v ∈ Sc] = 2
∑
{u,v}∈E

P [u ∈ S] · P
[

v ∈ Sc] = |E |/2.

Since for any S ⊆ V , we have e (S,Sc) ≤ |E |, concluding the proof.

Introduction © Thomas Sauerwald A (Very) Brief Reminder of Probability Theory and Examples 12

A Randomised Algorithm for MAX-CUT (2/2)

RANDMAXCUT (Input G = (V ,E))
1: Start with S ← ∅
2: For each v ∈ V , add v to S with probability 1/2
3: Return S

RandMaxCut gives a 2-approximation using time O(n).
Proposition More details on approximation algorithms from Lecture 9 onwards!

This kind of “random guessing” will appear a few times in this course!

Later: learn stronger tools that imply concentration around the expectation!
Proof:

We need to analyse the expectation of e (S,Sc):

E
[

e
(
S,Sc)] = E

 ∑
{u,v}∈E

1{u∈S,v∈Sc}∪{u∈Sc ,v∈S}

=

∑
{u,v}∈E

E
[

1{u∈S,v∈Sc}∪{u∈Sc ,v∈S}
]

=
∑
{u,v}∈E

P
[
{u ∈ S, v ∈ Sc} ∪ {u ∈ Sc , v ∈ S}

]
= 2

∑
{u,v}∈E

P
[

u ∈ S, v ∈ Sc] = 2
∑
{u,v}∈E

P [u ∈ S] · P
[

v ∈ Sc] = |E |/2.

Since for any S ⊆ V , we have e (S,Sc) ≤ |E |, concluding the proof.

Introduction © Thomas Sauerwald A (Very) Brief Reminder of Probability Theory and Examples 12

Boole’s Inequality (Union Bound)

Let E1, . . . , En be a collection of events in Σ. Then

P

[
n⋃

i=1

Ei

]
≤

n∑
i=1

P [Ei] .

Union Bound

Union Bound is one of the most basic probability
inequalities, yet it is extremely useful and easy to apply!

A Proof using Indicator Random Variables:

1. Let 1Ei be the random variable that takes value 1 if Ei holds, 0 otherwise

2. E [1Ei] = P [Ei] (Check this)

3. It is clear that 1⋃n
i=1 Ei

≤
∑n

i=1 1Ei (Check this)

4. Taking expectation completes the proof.

Introduction © Thomas Sauerwald A (Very) Brief Reminder of Probability Theory and Examples 13

Boole’s Inequality (Union Bound)

Let E1, . . . , En be a collection of events in Σ. Then

P

[
n⋃

i=1

Ei

]
≤

n∑
i=1

P [Ei] .

Union Bound

Union Bound is one of the most basic probability
inequalities, yet it is extremely useful and easy to apply!

A Proof using Indicator Random Variables:

1. Let 1Ei be the random variable that takes value 1 if Ei holds, 0 otherwise

2. E [1Ei] = P [Ei] (Check this)

3. It is clear that 1⋃n
i=1 Ei

≤
∑n

i=1 1Ei (Check this)

4. Taking expectation completes the proof.

Introduction © Thomas Sauerwald A (Very) Brief Reminder of Probability Theory and Examples 13

Boole’s Inequality (Union Bound)

Let E1, . . . , En be a collection of events in Σ. Then

P

[
n⋃

i=1

Ei

]
≤

n∑
i=1

P [Ei] .

Union Bound

Union Bound is one of the most basic probability
inequalities, yet it is extremely useful and easy to apply!

A Proof using Indicator Random Variables:

1. Let 1Ei be the random variable that takes value 1 if Ei holds, 0 otherwise

2. E [1Ei] = P [Ei] (Check this)

3. It is clear that 1⋃n
i=1 Ei

≤
∑n

i=1 1Ei (Check this)

4. Taking expectation completes the proof.

Introduction © Thomas Sauerwald A (Very) Brief Reminder of Probability Theory and Examples 13

Boole’s Inequality (Union Bound)

Let E1, . . . , En be a collection of events in Σ. Then

P

[
n⋃

i=1

Ei

]
≤

n∑
i=1

P [Ei] .

Union Bound

Union Bound is one of the most basic probability
inequalities, yet it is extremely useful and easy to apply!

A Proof using Indicator Random Variables:

1. Let 1Ei be the random variable that takes value 1 if Ei holds, 0 otherwise

2. E [1Ei] = P [Ei] (Check this)

3. It is clear that 1⋃n
i=1 Ei

≤
∑n

i=1 1Ei (Check this)

4. Taking expectation completes the proof.

Introduction © Thomas Sauerwald A (Very) Brief Reminder of Probability Theory and Examples 13

Boole’s Inequality (Union Bound)

Let E1, . . . , En be a collection of events in Σ. Then

P

[
n⋃

i=1

Ei

]
≤

n∑
i=1

P [Ei] .

Union Bound

Union Bound is one of the most basic probability
inequalities, yet it is extremely useful and easy to apply!

A Proof using Indicator Random Variables:

1. Let 1Ei be the random variable that takes value 1 if Ei holds, 0 otherwise

2. E [1Ei] = P [Ei] (Check this)

3. It is clear that 1⋃n
i=1 Ei

≤
∑n

i=1 1Ei (Check this)

4. Taking expectation completes the proof.

Introduction © Thomas Sauerwald A (Very) Brief Reminder of Probability Theory and Examples 13

Boole’s Inequality (Union Bound)

Let E1, . . . , En be a collection of events in Σ. Then

P

[
n⋃

i=1

Ei

]
≤

n∑
i=1

P [Ei] .

Union Bound

Union Bound is one of the most basic probability
inequalities, yet it is extremely useful and easy to apply!

A Proof using Indicator Random Variables:

1. Let 1Ei be the random variable that takes value 1 if Ei holds, 0 otherwise

2. E [1Ei] = P [Ei] (Check this)

3. It is clear that 1⋃n
i=1 Ei

≤
∑n

i=1 1Ei (Check this)

4. Taking expectation completes the proof.

Introduction © Thomas Sauerwald A (Very) Brief Reminder of Probability Theory and Examples 13

Boole’s Inequality (Union Bound)

Let E1, . . . , En be a collection of events in Σ. Then

P

[
n⋃

i=1

Ei

]
≤

n∑
i=1

P [Ei] .

Union Bound

Union Bound is one of the most basic probability
inequalities, yet it is extremely useful and easy to apply!

A Proof using Indicator Random Variables:

1. Let 1Ei be the random variable that takes value 1 if Ei holds, 0 otherwise

2. E [1Ei] = P [Ei] (Check this)

3. It is clear that 1⋃n
i=1 Ei

≤
∑n

i=1 1Ei (Check this)

4. Taking expectation completes the proof.

Introduction © Thomas Sauerwald A (Very) Brief Reminder of Probability Theory and Examples 13

Example: Coupon Collector

Source: https://www.express.co.uk/life-style/life/567954/Discount-codes-money-saving-vouchers-coupons-mum

Suppose that there are n coupons to be collected from the cereal box.
Every morning you open a new cereal box and get one coupon. We
assume that each coupon appears with the same probability in the box.

Coupon Collector Problem

This is a very important example in the design and analysis of randomised algorithms.

Example Sequence for n = 8: 7, 6, 3, 3, 3, 2, 5, 4, 2, 4, 1, 4, 2, 1, 4, 3, 1, 4, 8 X

Exercise (Supervision)

1. Prove it takes n
∑n

k=1
1
k ≈ n log n expected boxes to collect all coupons

2. Use Union Bound to prove that the probability it takes more than
n log n + cn boxes to collect all n coupons is ≤ e−c .

Hint: It is useful to remember that 1− x ≤ e−x for all x

In this course: log n = ln n

Introduction © Thomas Sauerwald A (Very) Brief Reminder of Probability Theory and Examples 14

https://www.express.co.uk/life-style/life/567954/Discount-codes-money-saving-vouchers-coupons-mum

Example: Coupon Collector

Source: https://www.express.co.uk/life-style/life/567954/Discount-codes-money-saving-vouchers-coupons-mum

Suppose that there are n coupons to be collected from the cereal box.
Every morning you open a new cereal box and get one coupon. We
assume that each coupon appears with the same probability in the box.

Coupon Collector Problem

This is a very important example in the design and analysis of randomised algorithms.

Example Sequence for n = 8: 7, 6, 3, 3, 3, 2, 5, 4, 2, 4, 1, 4, 2, 1, 4, 3, 1, 4, 8 X

Exercise (Supervision)

1. Prove it takes n
∑n

k=1
1
k ≈ n log n expected boxes to collect all coupons

2. Use Union Bound to prove that the probability it takes more than
n log n + cn boxes to collect all n coupons is ≤ e−c .

Hint: It is useful to remember that 1− x ≤ e−x for all x

In this course: log n = ln n

Introduction © Thomas Sauerwald A (Very) Brief Reminder of Probability Theory and Examples 14

https://www.express.co.uk/life-style/life/567954/Discount-codes-money-saving-vouchers-coupons-mum

Example: Coupon Collector

Source: https://www.express.co.uk/life-style/life/567954/Discount-codes-money-saving-vouchers-coupons-mum

Suppose that there are n coupons to be collected from the cereal box.
Every morning you open a new cereal box and get one coupon. We
assume that each coupon appears with the same probability in the box.

Coupon Collector Problem

This is a very important example in the design and analysis of randomised algorithms.

Example Sequence for n = 8: 7, 6, 3, 3, 3, 2, 5, 4, 2, 4, 1, 4, 2, 1, 4, 3, 1, 4, 8 X

Exercise (Supervision)

1. Prove it takes n
∑n

k=1
1
k ≈ n log n expected boxes to collect all coupons

2. Use Union Bound to prove that the probability it takes more than
n log n + cn boxes to collect all n coupons is ≤ e−c .

Hint: It is useful to remember that 1− x ≤ e−x for all x

In this course: log n = ln n

Introduction © Thomas Sauerwald A (Very) Brief Reminder of Probability Theory and Examples 14

https://www.express.co.uk/life-style/life/567954/Discount-codes-money-saving-vouchers-coupons-mum

Example: Coupon Collector

Source: https://www.express.co.uk/life-style/life/567954/Discount-codes-money-saving-vouchers-coupons-mum

Suppose that there are n coupons to be collected from the cereal box.
Every morning you open a new cereal box and get one coupon. We
assume that each coupon appears with the same probability in the box.

Coupon Collector Problem

This is a very important example in the design and analysis of randomised algorithms.

Example Sequence for n = 8: 7, 6, 3, 3, 3, 2, 5, 4, 2, 4, 1, 4, 2, 1, 4, 3, 1, 4, 8 X

Exercise (Supervision)

1. Prove it takes n
∑n

k=1
1
k ≈ n log n expected boxes to collect all coupons

2. Use Union Bound to prove that the probability it takes more than
n log n + cn boxes to collect all n coupons is ≤ e−c .

Hint: It is useful to remember that 1− x ≤ e−x for all x

In this course: log n = ln n

Introduction © Thomas Sauerwald A (Very) Brief Reminder of Probability Theory and Examples 14

https://www.express.co.uk/life-style/life/567954/Discount-codes-money-saving-vouchers-coupons-mum

Example: Coupon Collector

Source: https://www.express.co.uk/life-style/life/567954/Discount-codes-money-saving-vouchers-coupons-mum

Suppose that there are n coupons to be collected from the cereal box.
Every morning you open a new cereal box and get one coupon. We
assume that each coupon appears with the same probability in the box.

Coupon Collector Problem

This is a very important example in the design and analysis of randomised algorithms.

Example Sequence for n = 8: 7, 6, 3, 3, 3, 2, 5, 4, 2, 4, 1, 4, 2, 1, 4, 3, 1, 4, 8 X

Exercise (Supervision)
1. Prove it takes n

∑n
k=1

1
k ≈ n log n expected boxes to collect all coupons

2. Use Union Bound to prove that the probability it takes more than
n log n + cn boxes to collect all n coupons is ≤ e−c .

Hint: It is useful to remember that 1− x ≤ e−x for all x

In this course: log n = ln n

Introduction © Thomas Sauerwald A (Very) Brief Reminder of Probability Theory and Examples 14

https://www.express.co.uk/life-style/life/567954/Discount-codes-money-saving-vouchers-coupons-mum

Example: Coupon Collector

Source: https://www.express.co.uk/life-style/life/567954/Discount-codes-money-saving-vouchers-coupons-mum

Suppose that there are n coupons to be collected from the cereal box.
Every morning you open a new cereal box and get one coupon. We
assume that each coupon appears with the same probability in the box.

Coupon Collector Problem

This is a very important example in the design and analysis of randomised algorithms.

Example Sequence for n = 8: 7, 6, 3, 3, 3, 2, 5, 4, 2, 4, 1, 4, 2, 1, 4, 3, 1, 4, 8 X

Exercise (Supervision)
1. Prove it takes n

∑n
k=1

1
k ≈ n log n expected boxes to collect all coupons

2. Use Union Bound to prove that the probability it takes more than
n log n + cn boxes to collect all n coupons is ≤ e−c .

Hint: It is useful to remember that 1− x ≤ e−x for all x

In this course: log n = ln n

Introduction © Thomas Sauerwald A (Very) Brief Reminder of Probability Theory and Examples 14

https://www.express.co.uk/life-style/life/567954/Discount-codes-money-saving-vouchers-coupons-mum

Example: Coupon Collector

Source: https://www.express.co.uk/life-style/life/567954/Discount-codes-money-saving-vouchers-coupons-mum

Suppose that there are n coupons to be collected from the cereal box.
Every morning you open a new cereal box and get one coupon. We
assume that each coupon appears with the same probability in the box.

Coupon Collector Problem

This is a very important example in the design and analysis of randomised algorithms.

Example Sequence for n = 8: 7, 6, 3, 3, 3, 2, 5, 4, 2, 4, 1, 4, 2, 1, 4, 3, 1, 4, 8 X

Exercise (Supervision)
1. Prove it takes n

∑n
k=1

1
k ≈ n log n expected boxes to collect all coupons

2. Use Union Bound to prove that the probability it takes more than
n log n + cn boxes to collect all n coupons is ≤ e−c .

Hint: It is useful to remember that 1− x ≤ e−x for all x

In this course: log n = ln n

Introduction © Thomas Sauerwald A (Very) Brief Reminder of Probability Theory and Examples 14

https://www.express.co.uk/life-style/life/567954/Discount-codes-money-saving-vouchers-coupons-mum

Example: Coupon Collector

Source: https://www.express.co.uk/life-style/life/567954/Discount-codes-money-saving-vouchers-coupons-mum

Suppose that there are n coupons to be collected from the cereal box.
Every morning you open a new cereal box and get one coupon. We
assume that each coupon appears with the same probability in the box.

Coupon Collector Problem

This is a very important example in the design and analysis of randomised algorithms.

Example Sequence for n = 8: 7, 6, 3, 3, 3, 2, 5, 4, 2, 4, 1, 4, 2, 1, 4, 3, 1, 4, 8 X

Exercise (Supervision)
1. Prove it takes n

∑n
k=1

1
k ≈ n log n expected boxes to collect all coupons

2. Use Union Bound to prove that the probability it takes more than
n log n + cn boxes to collect all n coupons is ≤ e−c .

Hint: It is useful to remember that 1− x ≤ e−x for all x

In this course: log n = ln n

Introduction © Thomas Sauerwald A (Very) Brief Reminder of Probability Theory and Examples 14

https://www.express.co.uk/life-style/life/567954/Discount-codes-money-saving-vouchers-coupons-mum

	Introduction
	Topics and Syllabus
	A (Very) Brief Reminder of Probability Theory and Examples

