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Multi-Armed Bandits

Source: Bibblio

Multi-Armed Bandits: make a sequence of decisions under uncertainty.

How can we maximise
the sum of rewards?

At each step, we can choose
from k different actions.

After deciding on an action,
we receive some reward.

We repeat process for T steps.
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Bandit Model versus Expert Model

In the Online Learning using Expert setting:

We have n experts and at each round each expert makes a prediction,
which may be correct or wrong

Our goal is to make a prediction at each round and perform (almost) as
good as the best expert.

Multiplicative-Weight-Update: Each expert suggests a decision which
yields to a reward/penalty in [−1, 1] (which is known to us!)

Key Difference: In the Multi-Armed Bandit model, we only observe the
cost/reward of the chosen action but not of the other actions!

⇒ Multi-Armed Bandit model is more challenging (and perhaps more realistic?)

There is a rich interplay between the two models (see EXP3 algorithm later)!
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Applications of Multi-Armed Bandits (1/2)

1. News/Ad Selection: When a user visits a news site, a header is presented
and the user will click on it or not.
Goal: maximise the number of clicks.

2. Dynamic Pricing: A store is selling a digital good, e.g., an app or a song.
When a new customer arrives, the store chooses a price offered to this
customer. The customer buys (or not) and leaves forever.
Goal: maximise the total profit.

3. Medical Trials: A doctor tries to find an effective treatment against a new
virus. Patients arrive one by one, and for each patient the doctor can
prescribe one of several possible treatments.
Goal: cure the maximum number of patients.
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Applications of Multi-Armed Bandits (2/2)

Source: Survey by Slivkins

Medicine Web Ads E-Commerce

Recommender Systems

Robotics

Communication

Traffic
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Types of Multi-Armed Bandits Environments

1. Stochastic (Stationary) Bandits: Environment generates random
reward to each action that is specific to that action and independent of the
previous actions and rewards.

2. Bayesian Bandits: Use a prior probability measure on the reward
distribution that reflects our initial belief. With every action, the learner can
update the prior by a new posterior distribution.

3. Adversarial Bandits: No assumption on how rewards are generated,
apart from that rewards are determined without knowing the learner’s
action.

4. Contextual Bandits: We have access to additional information that may
help predicting the quality of the actions at each time (e.g., demographical
information or preferences of users).
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Applications of Contextual Bandits
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Online Algorithm/Reinforcement Learning Framework

Agent

Environment

takes actionprovides reward/
more data

Iteration: 12345

In each iteration, agent
receives more information
⇒ agent’s state is updated

Exploration vs. Exploitation
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The Language of Bandits

Agent

Environment

takes action sequence (policy)
a1, a2, a3, a4, a5

receives rewards
r1, r2, r3, r4, r5

Iteration: 1, 2, 3, 4, 5

Let at be the action and rt be the (unknown) reward at step t
Let µ(a) := E [ rt | at = a ] be the mean reward given action a, and
µ∗ = maxa µ(a) be the maximal mean reward and a∗ = argmaxa µ(a).
The (cumulative) regret of a policy π = (a1, a2, . . .) is

RT (π) = T · µ∗ −
T∑

t=1

µ(at ).

This sum depends on the policy π
and horizon T , but it is deterministic.

Comparing against the mean-optimal
strategy (“best-arm benchmark”)

time

reward
µ∗ policy
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Stochastic (Bernoulli) Bandits

Consider the time-horizon 1, 2, . . . ,T

We have k different actions (arms) at each step

Every reward is a binary random variable with unknown probability

This is also known as Bernoulli Bandits
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Regret in Bernoulli Bandits: Example

Let k = 3

t Available Actions Reward Total (Realised) Reward

1 1, 2, 3 0 0

2 1, 2, 3 1 1

3 1, 2, 3 1 2

4 1, 2, 3 0 2

5 1, 2, 3 1 3

6 1, 2, 3 0 3

7 1, 2, 3 1 4

8 1, 2, 3 0 4

9 1, 2, 3 1 5

10 1, 2, 3 1 6

Exercise: Assume µ(1) = 0.4, µ(2) = 0.5, µ(3) = 0.7. What is
the regret?

1. Compute maximal mean reward T · µ∗

2. Compute mean reward of used policy (1, 2, 2, 2, 3, 3, 2, 2, 3, 3)
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Regret in Bernoulli Bandits: Example

Let k = 3

t Available Actions Reward Total (Realised) Reward

1 1, 2, 3 0 0

2 1, 2, 3 1 1

3 1, 2, 3 1 2

4 1, 2, 3 0 2

5 1, 2, 3 1 3

6 1, 2, 3 0 3

7 1, 2, 3 1 4

8 1, 2, 3 0 4

9 1, 2, 3 1 5

10 1, 2, 3 1 6

1. Maximal mean reward is T · µ∗ = 10 · 0.7 = 7

2. Mean reward of our policy is 1 · 0.4 + 5 · 0.5 + 4 · 0.7 = 5.7

⇒ Cumulative Regret is 7− 5.7 = 1.3
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Question: Why does regret involve mean rewards and not realised rewards?

Consider two Bernoulli bandits with probabilities 0.4 and 0.7
Our policy is: start with first arm and switch to second (and stay with it) as
soon as we don’t get a reward from first arm
Consider t = 3 and the realised reward
Expected realised reward is the (weighted) average over the rewards of
the 8 leafs

1??? 0

12?? 0 11?? 1

122? 0 122? 1 112? 1 111? 2

1222 0 1222 1 1222 1 1222 2 1122 1 1122 2 1112 2 1111 3

0.6 0.4

0.3 0.7 0.6 0.4

0.3 0.7 0.3 0.7 0.3 0.7 0.6 0.4

Expected Reward is: 0.6 · 0.3 · 0.3 · 0 + 0.6 · 0.3 · 0.7 · 1 + . . .
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1??? 0

12?? 0 11?? 1

122? 0 122? 1 112? 1 111? 2

1222 0 1222 1 1222 1 1222 2 1122 1 1122 2 1112 2 1111 3

0.6 0.4

0.3 0.7 0.6 0.4

0.3 0.7 0.3 0.7 0.3 0.7 0.6 0.4

Let us change the reward calculation to mean reward!

The expected reward is now easier to compute:
0.6 · 1.8 + 0.4 · 0.6 · 1.5 + 0.4 · 0.4 · 1.2 = 1.632

Using mean reward
reduces the sampling error!

1??? 0

12?? 0.4 11?? 0.4

122? 1.1 122? 1.1 112? 0.8 111? 0.8

1222 1.8 1222 1.8 1222 1.8 1222 1.8 1122 1.5 1122 1.5 1112 1.2 1111 1.2

0.6 0.4

0.3 0.7 0.6 0.4

0.3 0.7 0.3 0.7 0.3 0.7 0.6 0.4
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A Simple Heuristic

Idea: Choose the arm with the highest average realised reward so
far

1. That is, for every action a and step t , we compute

Qt (a) =
sum of rewards when a taken until time t

number of times a taken until time t
=

∑t−1
i=1 1ai =a · ri∑t−1

i=1 1ai =a

2. Then choose the action at = argmaxa Qt (a)

Algorithm 1: Greedy

This is a general method called
action-value method: guide decisions

by estimating values of actions

Exercise: Do you think this is a good strategy?
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Regret in Bernoulli Bandits: Greedy on Earlier Example

Let k = 3 and µ(1) = 0.4, µ(2) = 0.5, µ(3) = 0.7.

t Available Actions Reward Realised Reward Mean Reward

1 1, 2, 3 0 0 0.4

2 1, 2, 3 1 1 0.9

3 1, 2, 3 1 2 1.4

4 1, 2, 3 0 2 1.9

5 1, 2, 3 1 3 2.4

6 1, 2, 3 0 3 2.9

7 1, 2, 3 0 3 3.4

8 1, 2, 3 0 3 3.9

9 1, 2, 3 1 4 4.4

10 1, 2, 3 0 4 4.9

1. Greedy will in the long run achieve reward of T · 0.5
2. Greedy will never try action 3, which is better! Not enough exploration!
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Improving Greedy

Idea: With probability ε ∈ (0, 1) pick an action uniformly at random,
otherwise perform Greedy

⇒ Since every action is sampled infinitely often, we have

lim
t→∞

Qt (a) = lim
t→∞

sum of rewards when a taken until time t
number of times a taken until time t

= µ(a).

Algorithm 2: ε-Greedy

Hence the algorithm will eventually “learn”
optimal policy and the regret is small.

How should we choose ε in order to minimise the regret?
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Regret in Bernoulli Bandits: Example of ε-Greedy

k = 3, ε = 1/2 and µ(1) = 0.4, µ(2) = 0.5, µ(3) = 0.7

t Available Actions Reward Realised Reward Mean Reward

1 1, 2, 3 0 0 0.4

2 1, 2, 3 1 1 0.9

3 1, 2, 3 0 1 1.3

4 1, 2, 3 0 1 1.8

5 1, 2, 3 0 1 2.5

6 1, 2, 3 0 1 3

7 1, 2, 3 0 1 3.5

8 1, 2, 3 0 1 3.9

9 1, 2, 3 1 2 4.6

10 1, 2, 3 1 3 5.3

1. ε-Greedy may take a lot of sub-optimal actions at the beginning

2. However, it explores all actions often enough!
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Experimental Results: Greedy and ε-Greedy (1/2)

Source: Sutton and Barto
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Experimental Results: Greedy and ε-Greedy (2/2)

Source: Sutton and Barto
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Intuition: How to Pick ε

1. If εt = ε is any constant ∈ (0, 1), then:

P [ at 6= a∗ ] ≈ ε.

⇒ Even if we have learned optimal action, regret may grow linear in T :

RT (µ) = T · µ∗ −
T∑

t=1

µ(at ) ≈
T∑

t=1

ε = Ω(T ).

2. If εt = 1/t , then:
P [ at 6= a∗ ] ≈ εt = 1/t .

⇒ Hence we may hope regret grows logarithmic in T , i.e.,

RT (µ) ≈
T∑

t=1

εt = O(log T ).

Exercise: What happens if εt = 1/t2?
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Summary so far...

Source: Sutton and Barto

For εt = Θ(1/t), ε-Greedy achieves a regret of O(log T ).

This can be shown formally (under some mild technical assumptions)
[Auer, Cesa-Binchi and Fischer; “Finite-Time Analysis of the Multiarmed Bandit Problem”, 2002]

Downside: ε-Greedy algorithm does not adjust its strategy based on
the experienced reward (it may take arms with no reward too often)

Ideas for Improvements:

In an exploration step, sample non-uniformly

Blend exploration and exploitation by maintaining for each arm an
upper confidence bound for the mean reward
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Towards the UCB Algorithm

Question: How close are Qt (a) (the empirical estimate) and µ(a)?

1. Suppose for every action a, there is a bound ∆t (a) ≥ 0 such that:

|Qt (a)− µ(a)| ≤ ∆t (a) ⇒ µ(a) ≤ Qt (a) + ∆t (a).

2. Now pick “greedily” the arm with largest µ̃t (a) := Qt (a) + ∆t (a)

Idea of the Upper Confidence Bound Algortihm

This makes only sense if ∆t (a) becomes small, but
as t → ∞, we get more data and indeed ∆t (a) → 0.

Principle of Optimism in the Face of Uncertainty:
For each action, construct an optimistic guess for the expected reward

At each step, we pick the action with the largest guess

If that action turned out to be “too optimistic”, then next guess will be lower

⇒ generally prefer arms with high empirical reward and/or high uncertainty
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Chernoff Bounds

Question: How close are Qt (a) (the empirical estimate) and µ(a)?

Want Confidence-Bound like P [ |Qt (a)− µ(a)| ≤ ∆t (a) ] ≥ 1− δ

Make sure Confidence Bound
always holds: δ = 2t−2.

λ(a) =
√

nt (a) · log(t) ∆t (a) =
√

log(t)
nt (a)

µ − λµ + λ µ

Let X1, . . . ,Xn be n independent Bernoulli random variables. Let X :=∑n
i=1 Xi and µ = E [ X ]. Then, for any λ ≥ 0,

P [ |X − µ| ≥ λ ] ≤ 2 · exp

(
−2λ2

n

)
.

Chernoff Bound (“Nicer Version”, Lecture 2/3 slide 16)

In our application, n = nt (a) :=
∑t

i=1 1ai =a, X = Qt (a) ·n.
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The UCB Algorithm

Initialisation: Let n1(a) = 0 and Q1(a) = 0 for all actions a
Execute: For t = 1, 2, . . . ,T :

Take a that maximises µ̃(a) = Qt (a) +
√

log(t)
nt (a)

and receive reward rt

Update:

nt+1(a)← nt (a) + 1

Qt+1(a)← nt (a)Qt (a) + rt

nt (a) + 1

Algorithm 3: UCB Algorithm

No parameters needed (like learning rate)!

Smart Update – no extra
memory or computations needed!

Recall our high-confidence upper bound:

|Qt (a)− µ(a)| ≤ ∆t (a) =
√

log(t)
nt (a)

.

⇒ To allow us to identify the optimal arm a∗, we need nt (a) ≈ log(t)

⇒ Hence any sub-optimal arm a 6= a∗ will be only taken log(T ) times.

UCB-Algo takes sub-optimal actions only at a logarithmic rate!
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Example 1: Illustration of UCB (simplified)

0

∞

µ(1)
µ(2)

µ(3) µ(4) Step: 1Step: 2Step: 3Step: 4Step: 5Step: 6Step: 7Step: 8Step: 9Step: 10
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Intuition: How UCB avoids sub-optimal arms

Reward
0 1µ(a∗)̃

µ(a∗)

µ(a)

≥ ∆

Qt (a) µ̃(a) <

< ∆/2 ≤ ∆/2

Let a be a sub-optimal action with µ(a) ≤ µ(a∗)−∆

Optimism: For any action, in particular a∗, we have with probability 1− δt ,

µ̃(a∗) = Qt (a∗) + ∆t (a∗) ≥ (µ(a∗)−∆t (a∗)) + ∆t (a∗) = µ(a∗).

Let’s upper bound µ̃(a), with probability 1− δt :

µ̃(a) = Qt (a) + ∆t (a) ≤ (µ(a) + ∆t (a)) + ∆t (a)

= µ(a) + 2 ·

√
log(t)
nt (a)

.

If nt (a) > 4log(t)
∆

, then µ̃(a) < µ(a) + 2 ·∆/2 = µ(a) + ∆

⇒ µ̃(a) < µ̃(a∗), meaning UCB will not take action a (w.p. 1− δt )
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Intuition: How UCB avoids sub-optimal arms

Reward
0 1µ(a∗)̃

µ(a∗)

µ(a)

≥ ∆

Qt (a) µ̃(a) <

< ∆/2 ≤ ∆/2

⇒ µ̃(a) < µ̃(a∗), meaning UCB will not take action a (w.p. 1− δt )

Using RT =
∑

a : µ(a)<µ(a∗) nT (a) · (µ(a∗)− µ(a)) one can derive:

For any T ≥ 1, the regret satisfies:

RT ≤
∑

a : µ(a)<µ(a∗)

(
4 log(T )

µ(a∗)− µ(a)
+ 8(µ(a∗)− µ(a))

)
≈ O(log(T )).

Performance of UCB

contribution from rounds where nt (a) is small and... ...rounds where nt (a) is large.

One can also prove a lower bound
of Ω(log(T )) for any algorithm!
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Experimental Results: ε-Greedy and UCB

Source: Sutton and Barto

Notes:

This is the same bandit setting as on slides 20–21

The UCB algorithm above uses ∆t (a) = 2
√

log(t)
nt (a)
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Thank you and Best Wishes for the Exam!

If you have any questions, comments or feedback, please send an email to
tms41@cam.ac.uk
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Why Adversarial Bandits?

Rewards of each arm are i.i.d. samples in [0, 1]

distribution is specific to each arm but is time-invariant (stationarity)

Stochastic Bandits

Nice model, but assumptions a bit questionable in real-world applications!

rewards are in the interval [0, 1]

all rewards must be determined before action is taken

Adversarial Bandits

Very weak assumptions ; powerful model!

Multi-Armed Bandits © Thomas Sauerwald Outlook: Adversarial Bandits (non-examinable) 32



Bandits with Full Information: Online Learning using Experts

The Multiplicative Weights Algorithm (MWA)
Initialization: Fix δ ≤ 1/2. For every i ∈ [n], let w (1)

i := 1
Update: For t = 1, 2, . . . ,T :

Choose expert i with prop. proportional to w (t)
i .

Observe the costs of all n experts in round t , r (t) ∈ [−1, 1]

For every expert i , update its weight by:

w (t+1)
i = (1− δr (t)

i )w (t)
i ≈ exp

(
−δr (t)

i

)
w (t)

i

Hence w (t+1)
i = exp

(
−δ
∑t

i=1 r (t)
i

)
.

MWA samples with a proportional that is exponential in the performance
of each expert

We would like to apply the same idea to the Bandit setting

Problem: In the bandit-setting, we only observe the cost (reward) of the
taken action
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The EXP3-Algorithm

EXP3 = Exponential-weight algorithm for Exploration and Exploitation

The EXP3-Algorithm
Initialization: Fix γ ∈ (0, 1). Let w1(a) := 1 for each of the k actions
For t = 1, 2, . . . ,T :

Define:
pt (a) :=

wt (a)∑
a′ wt (a′)

,

and choose action i with probability pt (a).

Observe the reward rt (a) ∈ [0, 1]

Update weights:

wt+1(a) = wt (a) · exp

(
γ

k
· rt (a)

pt (a)

)
wt+1(a′) = wt (a) · exp (0) for all a 6= a′.

action is sampled proportional to weights!

The expected change in the exponent is:

pt (a) ·
γ

k
·

rt (a)

pt (a)
+ (1 − pt (a)) · 0 =

γ

k
· rt (a).

EXP3-algorithm tries to emulate
the full information (expert) setting!
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Analysis of EXP3-Algorithm

For any T ≥ 1, the expected regret of EXP3 with γ =
√

log(k)
kT satisfies

RT ≤ 2
√

T · k log(k).

Performance of EXP3-Algorithm (Auer, Cesa-Bianchi, Freund, Shapire 2002)

In the full-information (expert setting), we could achieve RT = O(
√

T log(k))!

There is a nearly matching lower bound for any k ,T :

RT = Ω
(√

T · k
)
.

Remarks:
Recall: regret-bound compares against the best-arm benchmark

The analysis is similar to MWA, but more complicated.

Regret-bound is still sub-linear in T (which is impessive!),
but it is much higher than in case of stochastic bandits or expert setting
(recall we are making no assumption on how rewards are determined!)
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