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Landscape of Machine Learning Algorithms

Supervised Learning
Classification, regression: logistic regr.,
SVM, decision tree, neural networks, naive
Bayes, Perceptron, kNN, Boosting

Training Set
provided initially

Predict
unseen data

Online and Reinforcement Learning
Feedback Expert Learning: Weighted-Majority, Maximise
after Decisions Multiplicative-Update, Markov Decision Reward
Processes: Multi-Armed Bandits, Q-Learning

Unsupervised Learning
Clustering: spectral, hierarchical, k-means;

No Training Set Dimensionality Reduction, PCA, SVD Extract

Knowledge
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Online Algorithm/Reinforcement Learning Framework

In each iteration, agent
receives more information /
= agent’s state is updated /

\

provides reward/

takes action
more data

Environment

lteration: 8
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Disclaimer: This is only given as a high-level motivation for the algorithm. It is not
suggested to use any of the following ideas in practice at this or any other point.
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[Other Applications: Spam Filtering, Weather Prediction, . . .
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Deterministic Weighted Majority
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Online Learning using Expert Advice

Basic Setup
= Assume there is a single stock, and daily price movement is a sequence
of binary events (up = 1 /down = 0)
= The stock movements can be arbitrary (i.e., adversarial)
= We are allowed to watch n experts (these might be arbitrarily bad and
correlated)

Weighted Majority Algorithm
Initialization: Fix § < 1/2 For every i € [n], let W =1
Update: Fort=1,2,..., T:
= Make prediction which is the weighted majority of the
experts’ predictions
= For every expert i who predicts wrongly, decrease his
weight by a factor of (1 — 4):

W' = (1= oyw?

1\

[Example of an ensemble method, combining advice from several other “algorithms".]
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Weighted Majority Algorithm: Example

Leto =1/2,n=3

t | Expert Weights | Expert Predictions | Our Pred. | Result | Our Errors
1 1,1,1 1,1,0 1V 1 0
2 1,1,1/2 0,1,0 0x 1 1
3 1/2,1,1/4 1,0,1 0v 0 1
4 1/4,1,1/8 0,1,1 1X 0 2
5 1/4,1/2,1/16 1,1,0 1V 1 2
6 1/4,1/2,1/32 0,1,1 1V 1 2
7 1/8,1/2,1/32 0,1,0 1X 0 3
8 1/8,1/4,1/32 1,0,1 0x 1 4
9 1/8,1/8,1/32 0,0,0 0v 0 4
10 | 1/8,1/8,1/32 1,0,1 1X 0 5
11 | 1/16,1/8,1/64 - - - -

= We made 5 mistakes, while the best expert made only 3 mistakes.
This looks quite bad, but the example is too small to draw conclusions!
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Analysis of the Weighted Majority Algorithm

Notation: Let m ) be the number of mistakes of expert i after t steps.
Analysis

The number of mistakes of our algorithm M(7) satisfies

M <2.(4 +5) mlnm()+2|nn.
ieln] 1)

LThis bound holds for any input, any T and any 6!)

Proof Outline:
= Define ) = -7 w!" as the sum of weights

= Update Rule: If we make many mistakes, then ¢ becomes small

= For ) to be small, all weights must be smalll
(= even the best expert must make many mistakes)
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Analysis of the Weighted Majority Algorithm

Notation: Let m ) be the number of mistakes of expert i after t steps.

Analysis

The number of mistakes of our algorithm M(7) satisfies

M <2.(4 +5) mlnm()+2|nn.
ieln] 1)

Proof:

LThis bound holds for any input, any T and any 6!)

= Define a potential function 0 = 7, w" so that () = n

()
By induction, W(t+1 =(1- 5)’";’ (see example!)

= Case 1: Each time we are wrong, the weighted majority of experts is wrong
= at least half the total weight decreases by 1 — §:
1 1
(t+1) o. (. — (1= — oM. (1
O <ol (2142 (1-9)) =00 (1 -6/2).

= Case 2: Each time we are correct, i1 < ¢!,
;

By induction, ®(T+1) < n. (1 — /)M but also &(T+1) > W,.(T“) =1 -8,
Taking logs:

mM n(1 = 8) < MM In(1 = 5/2) + In(n).

Using now that —& > In(1 — §) > —§ — 62 completes the proof. [
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Simulation of the (Deterministic) WMA (1/2)

= Probabilistic Setting: Each expert i predicts wrongly with some probability
pi € [0, 1], independently across rounds and experts

= Question: Which learning rate works best?

8 Experts with Mistake Rates [1, 0.6, 0.4, 0.3, 0.25, 0.22, 0.15, 0.12] and 2000 steps

Number of Mistakes

0.0 01 0.2 03 0.4 05
Learning Rate
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Simulation of the (Deterministic) WMA (2/2)

8 Experts with Mistake Rates [1, 0.8, 0.7, 0.6, 0.55, 0.5, 0.15, 0.15] and 2000 steps

1200

1000

g

Number of Mistakes

2
8

Learning Rate

———— Observations from these Experiments
= Depending on data set, a high or small learning rate may work best

= But: for such a random environment, other Machine Learning

techniques (e.g., Naive Bayes or Neural Networks) work much better
N

LThe point of WMA is a strong worst-case guarantee!J
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Improving the Weighted Majority Algorithm?

Analysis

The number of mistakes of our algorithm M) satisfies

M <2.(146) mnm" + 2Inn
ie[n] 1)

Question: Is there a way to avoid the factor of 2?

AN

[Exercise: For any deterministic algorithm, the factor of 2 cannot be avoided!]

OSSB8M0
BUODEEE

Idea: Employ a randomised strategy which selects an
expert with probability proportional to its success!
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Randomised Weighted Majority

Randomised Weighted Majority Algorithm
Initialization: Fix 6 < 1/2 For every i € [n], let W
Update: Fort=1,2,..., T:

follow that prediction

weight by a factor of (1 — 4):

W' = (1= oyw?

= Pick expert i with probablllty proportional to w; and

— 1

= For every expert i who predicts wrongly, decrease his

N

[Note that the number of mistakes we are making is now a random variable!]
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Example: Deterministic vs. Randomised Weighted Majority (1/2)

Consider the following run of the Deterministic Weighted Majority Algorithm:

t | Weights | Predictions | Our Prediction | Actual Result | Our Errors
1 1,1 1,0 1 0 1
2 1/2,1 1,0 0 1 2
3| 1/2,1/2 0,1 0 1 3
4 | 1/41/2 1,0 0 1 4
5| 1/41/4 - - - _

Consider now the Randomised Weighted Majority Algorithm and let us
compute the expected number of mistakes, E [M(“)}
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Example: Deterministic vs. Randomised Weighted Majority (2/2)

Gy ),
0

N

= Let x\¥ be a 0/1 random variable, indicating if our t-th prediction is wrong.

= Then:

o]0 jorded
- Similarly, E [ x® ] = 2,E [x<3>] and E [x¥] = 2.
= Hence,

Much better than the ]

4| — 1) (2 (3) (4) deterministic algorithm!
E|M E|x" +x4+x"+x S

e [x0] +E[x®] +E[x0] +E[x9] =
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Analysis of Randomised Weighted Majority (non-examinable)

Analysis
The expected number of mistakes of our algorithm M(7) satisfies

E[M”)] <1-(146) - minmD + 1
) ie[n] 1)

This was a factor of 2 before!)

Proof:
= Define a potential function ® = -7 . w" | so that & = n.

" The probability of picking expert i in round t is p(t) =wl /o W = Wl fe0.
" Let >\ be 1 iff expert i is wrong at time t (and 0 otherwise)

Then the expected number of mistakes by our algorithm is E[M(T] = 27, A0 . p.
The new potentlal (WhICh is deterministic!) can be upper bounded by:

U+ Z W) = Z — a0y Wt = o0 (1 _ 5)\(t>p(t)) < o . exp (_5/\(0 ‘p<r))
i=1

Thus the final potential satisfies

o7+ < oM. exp(f(;i)\“) -pm) =n- exp(75 -E [M(T)]),
t=1

-
o+ > wi(r+1) _ H (1 7(”\51)) —d 75)m57)[ In(1 —§) > —6 — &2 ]

= (8 + 82)
=  nn—6-EMT > -5)-m" = EMT< — -mT 4 < O
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Optimising the Learning Rate

Analysis

The expected number of mistakes of our algorithm M(7) satisfies

E[M(T)] <1-(1+6) -mnm? 4+ 20

Interpretation:
= Suppose that T is known in advance

= Pick learning rate 6 = +/In(n)/T

(assuming T is large enough so that § < 1/2!)

E[M()]<m|nm ++/In(N)/T-T++/In
—mmm +2«/T|n

i€[n)

[Additive error (“regret”) negligible in most cases compared to min;c; m(" !J
N
1\
(Can we do better than that?)
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A Tight Lower Bound

Corollary
For § = 1/In(n)/T, the expected number of our mistakes M(7) satisfies

E [M‘T)} < m[ir}m,m +2.y/Tn(n).
e (n]

= Suppose every expert i = 1,2,..., nflips an unbiased coin, and the result
is also an unbiased coin flip (independent of the experts’ predictions)

= = Regardless of our algorithm, the number of our mistakes satisfies
1
Mml_7.2
E[MP] =75

= How good is the best expert?

= Every expert i € [n] will make T/2 + ©(+/T) many mistakes

= Best expert will make T/2 — ©(4/ T In(n)) many mistakes (proof omitted, is
based on central limit theorem) N

[ = This demonstrates tightness of the error term J

= Best expert will be good just by chance!
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Choosing the Learning Rate Dynamically (1/2)

Question: How to adjust learning rate if T is not known in advance?

——— Approach 1: “The Doubling Trick”

= Algorithm:
1. Form=1,2,...
2. Run a new instance of algorithm on the 27 rounds t = 2™, ..., 2mM+1 _1

with “optimal” learning rate (for an algorithm that runs for 2™ steps)

= Analysis before shows that in phase m, number of additional
mistakes compared to best expert (regret) is at most o - vV2™

= total regret after T steps is at most

where a = 2-4/In(n).
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Choosing the Learning Rate Dynamically (2/2)

——— Approach 2

= Algorithm:
1. Run the randomised WMA with learning rate §; ~ 1/+/t in round t
= A modification of our analysis proves for any time-interval [T /2, T]:

[7/2,7]
S 60200 < 10g(@772) 1 (1 — 57"
t=T/2
T/2
~ E[M7AD) < m"% 7 - log(1— d7) _log(7/2)
d1/2 dr/2

— Approach 3: “Self-Confident Algorithm”
= Algorithm:

1. Run the randomised WMA with learning rate §; ~ 1/4/minjc(y ml(') (or

1/vVM®)inround t
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A More General Setting

New Setup
= At each step, we pick one expert i randomly out of n experts

= That expert i and our algorithm incur a cost mf’), but we also observe the
costs of all experts (a vector (mj(.’)),'.’:1)
= costs m/(-‘) can be arbitrary in the range [—1, 1]
( /] A
Coming back to our example of stock prediction:
= could define cost mj(.t) = 0 if expert j is neutral (HOLD)

= cost m® > 0 if expert j makes the wrong prediction
(closer to 1 the stronger prediction and stronger the price change)

= cost m}” < 0 if expert j makes the correct prediction

&

Idea of the “Multiplicative Weights-Algorithm”
= In the first iteration, simply pick an expert uniformly at random

= Every expert will be penalised or rewarded through a multiplicative
weight-update
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The Multiplicative Weights Algorithm

The Multiplicative Weights Algorithm
Initialization: Fix § < 1/2. For every i € [n], let W,.(') =1
Update: Fort=1,2,..., T:

= Choose expert i with prop. proportional to w,.(’).
= Observe the costs of all n experts in round t, m®
= For every expert i, update its weight by:

Wi(t+1) _ (1 _ 6m’(r))wi(t)

Analysis
For any expert i, the expected cost of this algorithm is at most

T T
(1) 0] , log
Zmi +6';)mi‘+ 5

t=1
/)

/ L

[Derivation is very similar to the ones shown before.]
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Conclusions

Summary

= Weighted Majority Algorithm
= natural, simple (and deterministic) algorithm
= good performance, but could be a factor of 2 worse than the best expert
= Randomised Weighted Majority Algorithm
= Randomised extension
= almost optimal performance thanks to randomisation which guards
against tailored worst-case instances (cmp. Quick-Sort!)
= impact of the learning rate: small learning rate gives very good
performance guarantees. However, actual performance may depend on
the specific data set at hand (cf. simulations!)

= Multiplicative Weight-Update Algorithm
= further generalisation of the (randomised) weighted majority algorithm

Outlook

= These algorithms are examples of the Ensemble-Method:
Framework combining weak predictions into a strong learner

= A closely related algorithmic approach: Follow the Perturbed Leader
= Similar update schemes are Perceptron and AdaBoost
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