Randomised Algorithms

Lecture 14: Online Learning with Experts

Thomas Sauerwald (tms41@cam.ac.uk)

Outline

Introduction

Deterministic Weighted Majority

Randomised Weighted Majority

Extensions and Conclusions

Landscape of Machine Learning Algorithms

Online Algorithm/Reinforcement Learning Framework

Agent

Environment

Online Algorithm/Reinforcement Learning Framework

Iteration: 1

Online Algorithm/Reinforcement Learning Framework

Iteration: 1

Online Algorithm/Reinforcement Learning Framework

Iteration: 2

Online Algorithm/Reinforcement Learning Framework

Iteration: 2

Online Algorithm/Reinforcement Learning Framework

Iteration: 3

Online Algorithm/Reinforcement Learning Framework

Iteration: 3

Online Algorithm/Reinforcement Learning Framework

Iteration: 4

Online Algorithm/Reinforcement Learning Framework

Iteration: 4

Online Algorithm/Reinforcement Learning Framework

Iteration: 5

Online Algorithm/Reinforcement Learning Framework

Iteration: 5

Online Algorithm/Reinforcement Learning Framework

In each iteration, agent receives more information \Rightarrow agent's state is updated
provides reward/ more data

Iteration: 5

Apple Inc. (AAPL) 气
NasdaqGS - NasdaqGS Real Time Price. Currency in USD
$163.17-3.06$ (-1.84%) $\quad 162.98-0.19$ (-0.12%)
At close: March 4 04:00PM EST After hours: 07:59PM EST

Source: Yahoo Finance, 5 March 2022

Source: Yahoo Finance, 5 March 2022
Disclaimer: This is only given as a high-level motivation for the algorithm. It is not suggested to use any of the following ideas in practice at this or any other point.

Apple Inc
 (NASDA:AAPL)

Stock Price Forecast

The 37 analysts offering 12-month price forecasts for Apple Inc have a median target of 192.00 , with a high. estimate of 215.00 and a low estimate of 154.00. The median estimate represents a $+17.64 \%$ increase from the last price of 163.21

Analyst Recommendations

The current consensus among 43 polled investment analysts is to buy stock in Apple Inc. This rating has held steady since February, when it was unchanged from a buy rating.

Move your mouse over past months for detail

Source: CNN Money, 5 March 2022

Stock Price Forecast

The 37 analysts offering 12-month price forecasts for Apple Inc have median target of 192.00 , with a high estimate of 215.00 and a low estimate of 154.00 . The median estimate represents a $+17.64 \%$ increase from the last price of 163.21

Analyst Recommendations

The current consensus among 43 polled investment analysts is to buy stock in Apple Inc. This rating has held steady since February, when it was unchanged from a buy rating.

Move your mouse over past
months for detail

Source: CNN Money, 5 March 2022

Other Applications: Spam Filtering, Weather Prediction, ...

Outline

Introduction

Deterministic Weighted Majority

Randomised Weighted Majority

Extensions and Conclusions

Online Learning using Expert Advice

Basic Setup

- Assume there is a single stock, and daily price movement is a sequence of binary events (up $=1$ /down $=0$)
- The stock movements can be arbitrary (i.e., adversarial)
- We are allowed to watch n experts (these might be arbitrarily bad and correlated)

Online Learning using Expert Advice

Basic Setup

- Assume there is a single stock, and daily price movement is a sequence of binary events (up = $1 /$ down $=0$)
- The stock movements can be arbitrary (i.e., adversarial)
- We are allowed to watch n experts (these might be arbitrarily bad and correlated)

Weighted Majority Algorithm

Initialization: Fix $\delta \leq 1 / 2$. For every $i \in[n]$, let $w_{i}^{(1)}:=1$
Update: For $t=1,2, \ldots, T$:

- Make prediction which is the weighted majority of the experts' predictions
- For every expert i who predicts wrongly, decrease his weight by a factor of $(1-\delta)$:

$$
w_{i}^{(t+1)}=(1-\delta) w_{i}^{(t)}
$$

Online Learning using Expert Advice

Basic Setup

- Assume there is a single stock, and daily price movement is a sequence of binary events (up $=1 /$ down $=0$)
- The stock movements can be arbitrary (i.e., adversarial)
- We are allowed to watch n experts (these might be arbitrarily bad and correlated)

Weighted Majority Algorithm

Initialization: Fix $\delta \leq 1 / 2$. For every $i \in[n]$, let $w_{i}^{(1)}:=1$
Update: For $t=1,2, \ldots, T$:

- Make prediction which is the weighted majority of the experts' predictions
- For every expert i who predicts wrongly, decrease his weight by a factor of $(1-\delta)$:

$$
w_{i}^{(t+1)}=(1-\delta) w_{i}^{(t)}
$$

Example of an ensemble method, combining advice from several other "algorithms".

Weighted Majority Algorithm: Example
Let $\delta=1 / 2, n=3$

Weighted Majority Algorithm: Example

Let $\delta=1 / 2, n=3$

t	Expert Weights	Expert Predictions	Our Pred.	Result	Our Errors
1	$1,1,1$	$1,1,0$	$1 \checkmark$	1	0

Weighted Majority Algorithm: Example

Let $\delta=1 / 2, n=3$

t	Expert Weights	Expert Predictions	Our Pred.	Result	Our Errors
1	$1,1,1$	$1,1,0$	$1 \checkmark$	1	0
2	$1,1,1 / 2$				

Weighted Majority Algorithm: Example

Let $\delta=1 / 2, n=3$

t	Expert Weights	Expert Predictions	Our Pred.	Result	Our Errors
1	$1,1,1$	$1,1,0$	$1 \checkmark$	1	0
2	$1,1,1 / 2$	$0,1,0$	$0 x$	1	1

Weighted Majority Algorithm: Example

Let $\delta=1 / 2, n=3$

t	Expert Weights	Expert Predictions	Our Pred.	Result	Our Errors
1	$1,1,1$	$1,1,0$	$1 \checkmark$	1	0
2	$1,1,1 / 2$	$0,1,0$	$0 x$	1	1
3	$1 / 2,1,1 / 4$	$1,0,1$			

Weighted Majority Algorithm: Example

Let $\delta=1 / 2, n=3$

t	Expert Weights	Expert Predictions	Our Pred.	Result	Our Errors
1	$1,1,1$	$1,1,0$	$1 \checkmark$	1	0
2	$1,1,1 / 2$	$0,1,0$	$0 x$	1	1
3	$1 / 2,1,1 / 4$	$1,0,1$	$0 \checkmark$	0	1

Weighted Majority Algorithm: Example

Let $\delta=1 / 2, n=3$

t	Expert Weights	Expert Predictions	Our Pred.	Result	Our Errors
1	$1,1,1$	$1,1,0$	$1 \checkmark$	1	0
2	$1,1,1 / 2$	$0,1,0$	$0 x$	1	1
3	$1 / 2,1,1 / 4$	$1,0,1$	$0 \checkmark$	0	1
4	$1 / 4,1,1 / 8$	$0,1,1$			

Weighted Majority Algorithm: Example

Let $\delta=1 / 2, n=3$

t	Expert Weights	Expert Predictions	Our Pred.	Result	Our Errors
1	$1,1,1$	$1,1,0$	$1 \checkmark$	1	0
2	$1,1,1 / 2$	$0,1,0$	$0 x$	1	1
3	$1 / 2,1,1 / 4$	$1,0,1$	$0 \checkmark$	0	1
4	$1 / 4,1,1 / 8$	$0,1,1$	$1 x$	0	2

Weighted Majority Algorithm: Example

Let $\delta=1 / 2, n=3$

t	Expert Weights	Expert Predictions	Our Pred.	Result	Our Errors
1	$1,1,1$	$1,1,0$	$1 \checkmark$	1	0
2	$1,1,1 / 2$	$0,1,0$	$0 x$	1	1
3	$1 / 2,1,1 / 4$	$1,0,1$	$0 \checkmark$	0	1
4	$1 / 4,1,1 / 8$	$0,1,1$	$1 x$	0	2
5	$1 / 4,1 / 2,1 / 16$	$1,1,0$			

Weighted Majority Algorithm: Example

Let $\delta=1 / 2, n=3$

t	Expert Weights	Expert Predictions	Our Pred.	Result	Our Errors
1	$1,1,1$	$1,1,0$	$1 \checkmark$	1	0
2	$1,1,1 / 2$	$0,1,0$	$0 x$	1	1
3	$1 / 2,1,1 / 4$	$1,0,1$	$0 \checkmark$	0	1
4	$1 / 4,1,1 / 8$	$0,1,1$	$1 x$	0	2
5	$1 / 4,1 / 2,1 / 16$	$1,1,0$	$1 \checkmark$	1	2

Weighted Majority Algorithm: Example

Let $\delta=1 / 2, n=3$

t	Expert Weights	Expert Predictions	Our Pred.	Result	Our Errors
1	$1,1,1$	$1,1,0$	$1 \checkmark$	1	0
2	$1,1,1 / 2$	$0,1,0$	$0 x$	1	1
3	$1 / 2,1,1 / 4$	$1,0,1$	$0 \checkmark$	0	1
4	$1 / 4,1,1 / 8$	$0,1,1$	$1 x$	0	2
5	$1 / 4,1 / 2,1 / 16$	$1,1,0$	$1 \checkmark$	1	2
6	$1 / 4,1 / 2,1 / 32$	$0,1,1$			

Weighted Majority Algorithm: Example

Let $\delta=1 / 2, n=3$

t	Expert Weights	Expert Predictions	Our Pred.	Result	Our Errors
1	$1,1,1$	$1,1,0$	$1 \checkmark$	1	0
2	$1,1,1 / 2$	$0,1,0$	$0 x$	1	1
3	$1 / 2,1,1 / 4$	$1,0,1$	$0 \checkmark$	0	1
4	$1 / 4,1,1 / 8$	$0,1,1$	$1 x$	0	2
5	$1 / 4,1 / 2,1 / 16$	$1,1,0$	$1 \checkmark$	1	2
6	$1 / 4,1 / 2,1 / 32$	$0,1,1$	$1 \checkmark$	1	2

Weighted Majority Algorithm: Example

Let $\delta=1 / 2, n=3$

t	Expert Weights	Expert Predictions	Our Pred.	Result	Our Errors
1	$1,1,1$	$1,1,0$	$1 \checkmark$	1	0
2	$1,1,1 / 2$	$0,1,0$	$0 x$	1	1
3	$1 / 2,1,1 / 4$	$1,0,1$	$0 \checkmark$	0	1
4	$1 / 4,1,1 / 8$	$0,1,1$	$1 x$	0	2
5	$1 / 4,1 / 2,1 / 16$	$1,1,0$	$1 \checkmark$	1	2
6	$1 / 4,1 / 2,1 / 32$	$0,1,1$	$1 \checkmark$	1	2
7	$1 / 8,1 / 2,1 / 32$	$0,1,0$			

Weighted Majority Algorithm: Example

Let $\delta=1 / 2, n=3$

t	Expert Weights	Expert Predictions	Our Pred.	Result	Our Errors
1	$1,1,1$	$1,1,0$	$1 \checkmark$	1	0
2	$1,1,1 / 2$	$0,1,0$	$0 x$	1	1
3	$1 / 2,1,1 / 4$	$1,0,1$	$0 \checkmark$	0	1
4	$1 / 4,1,1 / 8$	$0,1,1$	$1 x$	0	2
5	$1 / 4,1 / 2,1 / 16$	$1,1,0$	$1 \checkmark$	1	2
6	$1 / 4,1 / 2,1 / 32$	$0,1,1$	$1 \checkmark$	1	2
7	$1 / 8,1 / 2,1 / 32$	$0,1,0$	$1 x$	0	3

Weighted Majority Algorithm: Example

Let $\delta=1 / 2, n=3$

t	Expert Weights	Expert Predictions	Our Pred.	Result	Our Errors
1	$1,1,1$	$1,1,0$	$1 \checkmark$	1	0
2	$1,1,1 / 2$	$0,1,0$	$0 x$	1	1
3	$1 / 2,1,1 / 4$	$1,0,1$	$0 \checkmark$	0	1
4	$1 / 4,1,1 / 8$	$0,1,1$	$1 x$	0	2
5	$1 / 4,1 / 2,1 / 16$	$1,1,0$	$1 \checkmark$	1	2
6	$1 / 4,1 / 2,1 / 32$	$0,1,1$	$1 \checkmark$	1	2
7	$1 / 8,1 / 2,1 / 32$	$0,1,0$	$1 x$	0	3
8	$1 / 8,1 / 4,1 / 32$	$1,0,1$			

Weighted Majority Algorithm: Example

Let $\delta=1 / 2, n=3$

t	Expert Weights	Expert Predictions	Our Pred.	Result	Our Errors
1	$1,1,1$	$1,1,0$	$1 \checkmark$	1	0
2	$1,1,1 / 2$	$0,1,0$	$0 x$	1	1
3	$1 / 2,1,1 / 4$	$1,0,1$	$0 \checkmark$	0	1
4	$1 / 4,1,1 / 8$	$0,1,1$	$1 x$	0	2
5	$1 / 4,1 / 2,1 / 16$	$1,1,0$	$1 \checkmark$	1	2
6	$1 / 4,1 / 2,1 / 32$	$0,1,1$	$1 \checkmark$	1	2
7	$1 / 8,1 / 2,1 / 32$	$0,1,0$	$1 x$	0	3
8	$1 / 8,1 / 4,1 / 32$	$1,0,1$	$0 x$	1	4

Weighted Majority Algorithm: Example

Let $\delta=1 / 2, n=3$

t	Expert Weights	Expert Predictions	Our Pred.	Result	Our Errors
1	$1,1,1$	$1,1,0$	$1 \checkmark$	1	0
2	$1,1,1 / 2$	$0,1,0$	$0 x$	1	1
3	$1 / 2,1,1 / 4$	$1,0,1$	$0 \checkmark$	0	1
4	$1 / 4,1,1 / 8$	$0,1,1$	$1 x$	0	2
5	$1 / 4,1 / 2,1 / 16$	$1,1,0$	$1 \checkmark$	1	2
6	$1 / 4,1 / 2,1 / 32$	$0,1,1$	$1 \checkmark$	1	2
7	$1 / 8,1 / 2,1 / 32$	$0,1,0$	$1 x$	0	3
8	$1 / 8,1 / 4,1 / 32$	$1,0,1$	$0 x$	1	4
9	$1 / 8,1 / 8,1 / 32$	$0,0,0$			

Weighted Majority Algorithm: Example

Let $\delta=1 / 2, n=3$

t	Expert Weights	Expert Predictions	Our Pred.	Result	Our Errors
1	$1,1,1$	$1,1,0$	$1 \checkmark$	1	0
2	$1,1,1 / 2$	$0,1,0$	$0 x$	1	1
3	$1 / 2,1,1 / 4$	$1,0,1$	$0 \checkmark$	0	1
4	$1 / 4,1,1 / 8$	$0,1,1$	$1 x$	0	2
5	$1 / 4,1 / 2,1 / 16$	$1,1,0$	$1 \checkmark$	1	2
6	$1 / 4,1 / 2,1 / 32$	$0,1,1$	$1 \checkmark$	1	2
7	$1 / 8,1 / 2,1 / 32$	$0,1,0$	$1 x$	0	3
8	$1 / 8,1 / 4,1 / 32$	$1,0,1$	$0 x$	1	4
9	$1 / 8,1 / 8,1 / 32$	$0,0,0$	$0 \checkmark$	0	4

Weighted Majority Algorithm: Example

Let $\delta=1 / 2, n=3$

t	Expert Weights	Expert Predictions	Our Pred.	Result	Our Errors
1	$1,1,1$	$1,1,0$	$1 \checkmark$	1	0
2	$1,1,1 / 2$	$0,1,0$	$0 x$	1	1
3	$1 / 2,1,1 / 4$	$1,0,1$	$0 \checkmark$	0	1
4	$1 / 4,1,1 / 8$	$0,1,1$	$1 x$	0	2
5	$1 / 4,1 / 2,1 / 16$	$1,1,0$	$1 \checkmark$	1	2
6	$1 / 4,1 / 2,1 / 32$	$0,1,1$	$1 \checkmark$	1	2
7	$1 / 8,1 / 2,1 / 32$	$0,1,0$	$1 x$	0	3
8	$1 / 8,1 / 4,1 / 32$	$1,0,1$	$0 x$	1	4
9	$1 / 8,1 / 8,1 / 32$	$0,0,0$	$0 \checkmark$	0	4
10	$1 / 8,1 / 8,1 / 32$	$1,0,1$			

Weighted Majority Algorithm: Example

Let $\delta=1 / 2, n=3$

t	Expert Weights	Expert Predictions	Our Pred.	Result	Our Errors
1	$1,1,1$	$1,1,0$	$1 \checkmark$	1	0
2	$1,1,1 / 2$	$0,1,0$	$0 x$	1	1
3	$1 / 2,1,1 / 4$	$1,0,1$	$0 \checkmark$	0	1
4	$1 / 4,1,1 / 8$	$0,1,1$	$1 x$	0	2
5	$1 / 4,1 / 2,1 / 16$	$1,1,0$	$1 \checkmark$	1	2
6	$1 / 4,1 / 2,1 / 32$	$0,1,1$	$1 \checkmark$	1	2
7	$1 / 8,1 / 2,1 / 32$	$0,1,0$	$1 x$	0	3
8	$1 / 8,1 / 4,1 / 32$	$1,0,1$	$0 x$	1	4
9	$1 / 8,1 / 8,1 / 32$	$0,0,0$	$0 \checkmark$	0	4
10	$1 / 8,1 / 8,1 / 32$	$1,0,1$	$1 x$	0	5

Weighted Majority Algorithm: Example

Let $\delta=1 / 2, n=3$

t	Expert Weights	Expert Predictions	Our Pred.	Result	Our Errors
1	$1,1,1$	$1,1,0$	$1 \checkmark$	1	0
2	$1,1,1 / 2$	$0,1,0$	$0 x$	1	1
3	$1 / 2,1,1 / 4$	$1,0,1$	$0 \checkmark$	0	1
4	$1 / 4,1,1 / 8$	$0,1,1$	$1 x$	0	2
5	$1 / 4,1 / 2,1 / 16$	$1,1,0$	$1 \checkmark$	1	2
6	$1 / 4,1 / 2,1 / 32$	$0,1,1$	$1 \checkmark$	1	2
7	$1 / 8,1 / 2,1 / 32$	$0,1,0$	$1 x$	0	3
8	$1 / 8,1 / 4,1 / 32$	$1,0,1$	$0 x$	1	4
9	$1 / 8,1 / 8,1 / 32$	$0,0,0$	$0 \checkmark$	0	4
10	$1 / 8,1 / 8,1 / 32$	$1,0,1$	$1 x$	0	5
11	$1 / 16,1 / 8,1 / 64$	-	-	-	-

Weighted Majority Algorithm: Example

Let $\delta=1 / 2, n=3$

t	Expert Weights	Expert Predictions	Our Pred.	Result	Our Errors
1	$1,1,1$	$1,1,0$	$1 \checkmark$	1	0
2	$1,1,1 / 2$	$0,1,0$	$0 x$	1	1
3	$1 / 2,1,1 / 4$	$1,0,1$	$0 \checkmark$	0	1
4	$1 / 4,1,1 / 8$	$0,1,1$	$1 x$	0	2
5	$1 / 4,1 / 2,1 / 16$	$1,1,0$	$1 \checkmark$	1	2
6	$1 / 4,1 / 2,1 / 32$	$0,1,1$	$1 \checkmark$	1	2
7	$1 / 8,1 / 2,1 / 32$	$0,1,0$	$1 x$	0	3
8	$1 / 8,1 / 4,1 / 32$	$1,0,1$	$0 x$	1	4
9	$1 / 8,1 / 8,1 / 32$	$0,0,0$	$0 \checkmark$	0	4
10	$1 / 8,1 / 8,1 / 32$	$1,0,1$	$1 x$	0	5
11	$1 / 16,1 / 8,1 / 64$	-	-	-	-

\Rightarrow We made 5 mistakes, while the best expert made only 3 mistakes. This looks quite bad, but the example is too small to draw conclusions!

Analysis of the Weighted Majority Algorithm

Notation: Let $m_{i}^{(t)}$ be the number of mistakes of expert i after t steps.

Analysis of the Weighted Majority Algorithm

Notation: Let $m_{i}^{(t)}$ be the number of mistakes of expert i after t steps.
Analysis
The number of mistakes of our algorithm $M^{(T)}$ satisfies

$$
M^{(T)} \leq 2 \cdot(1+\delta) \cdot \min _{i \in[n]} m_{i}^{(T)}+\frac{2 \ln n}{\delta} .
$$

This bound holds for any input, any T and any δ !

Analysis of the Weighted Majority Algorithm

Notation: Let $m_{i}^{(t)}$ be the number of mistakes of expert i after t steps.
Analysis
The number of mistakes of our algorithm $M^{(T)}$ satisfies

$$
M^{(T)} \leq 2 \cdot(1+\delta) \cdot \min _{i \in[n]} m_{i}^{(T)}+\frac{2 \ln n}{\delta} .
$$

Proof Outline:

- Define $\Phi^{(t)}=\sum_{i=1}^{n} w_{i}^{(t)}$ as the sum of weights

Analysis of the Weighted Majority Algorithm

Notation: Let $m_{i}^{(t)}$ be the number of mistakes of expert i after t steps.
Analysis
The number of mistakes of our algorithm $M^{(T)}$ satisfies

$$
M^{(T)} \leq 2 \cdot(1+\delta) \cdot \min _{i \in[n]} m_{i}^{(T)}+\frac{2 \ln n}{\delta}
$$

Proof Outline:

- Define $\Phi^{(t)}=\sum_{i=1}^{n} w_{i}^{(t)}$ as the sum of weights
- Update Rule: If we make many mistakes, then $\Phi^{(t)}$ becomes small

Analysis of the Weighted Majority Algorithm

Notation: Let $m_{i}^{(t)}$ be the number of mistakes of expert i after t steps.
Analysis
The number of mistakes of our algorithm $M^{(T)}$ satisfies

$$
M^{(T)} \leq 2 \cdot(1+\delta) \cdot \min _{i \in[n]} m_{i}^{(T)}+\frac{2 \ln n}{\delta}
$$

Proof Outline:

- Define $\Phi^{(t)}=\sum_{i=1}^{n} w_{i}^{(t)}$ as the sum of weights
- Update Rule: If we make many mistakes, then $\Phi^{(t)}$ becomes small
- For $\Phi^{(t)}$ to be small, all weights must be small (\Rightarrow even the best expert must make many mistakes)

Analysis of the Weighted Majority Algorithm

Notation: Let $m_{i}^{(t)}$ be the number of mistakes of expert i after t steps.
Analysis
The number of mistakes of our algorithm $M^{(T)}$ satisfies

$$
M^{(T)} \leq 2 \cdot(1+\delta) \cdot \min _{i \in[n]} m_{i}^{(T)}+\frac{2 \ln n}{\delta} .
$$

Analysis of the Weighted Majority Algorithm

Notation: Let $m_{i}^{(t)}$ be the number of mistakes of expert i after t steps.
Analysis
The number of mistakes of our algorithm $M^{(T)}$ satisfies

$$
M^{(T)} \leq 2 \cdot(1+\delta) \cdot \min _{i \in[n]} m_{i}^{(T)}+\frac{2 \ln n}{\delta}
$$

Proof:

Analysis of the Weighted Majority Algorithm

Notation: Let $m_{i}^{(t)}$ be the number of mistakes of expert i after t steps.
Analysis
The number of mistakes of our algorithm $M^{(T)}$ satisfies

$$
M^{(T)} \leq 2 \cdot(1+\delta) \cdot \min _{i \in[n]} m_{i}^{(T)}+\frac{2 \ln n}{\delta}
$$

Proof:

- Define a potential function $\Phi^{(t)}=\sum_{i=1}^{n} w_{i}^{(t)}$, so that $\Phi^{(1)}=n$.

Analysis of the Weighted Majority Algorithm

Notation: Let $m_{i}^{(t)}$ be the number of mistakes of expert i after t steps.
Analysis
The number of mistakes of our algorithm $M^{(T)}$ satisfies

$$
M^{(T)} \leq 2 \cdot(1+\delta) \cdot \min _{i \in[n]} m_{i}^{(T)}+\frac{2 \ln n}{\delta}
$$

Proof:

- Define a potential function $\Phi^{(t)}=\sum_{i=1}^{n} w_{i}^{(t)}$, so that $\Phi^{(1)}=n$.
- By induction, $w_{i}^{(t+1)}=(1-\delta)^{m_{i}^{(t)}}$ (see example!)

Analysis of the Weighted Majority Algorithm

Notation: Let $m_{i}^{(t)}$ be the number of mistakes of expert i after t steps.
Analysis
The number of mistakes of our algorithm $M^{(T)}$ satisfies

$$
M^{(T)} \leq 2 \cdot(1+\delta) \cdot \min _{i \in[n]} m_{i}^{(T)}+\frac{2 \ln n}{\delta}
$$

Proof:

- Define a potential function $\Phi^{(t)}=\sum_{i=1}^{n} w_{i}^{(t)}$, so that $\Phi^{(1)}=n$.
- By induction, $w_{i}^{(t+1)}=(1-\delta)^{m_{i}^{(t)}}$ (see example!)
- Case 1: Each time we are wrong, the weighted majority of experts is wrong

Analysis of the Weighted Majority Algorithm

Notation: Let $m_{i}^{(t)}$ be the number of mistakes of expert i after t steps.
Analysis
The number of mistakes of our algorithm $M^{(T)}$ satisfies

$$
M^{(T)} \leq 2 \cdot(1+\delta) \cdot \min _{i \in[n]} m_{i}^{(T)}+\frac{2 \ln n}{\delta}
$$

Proof:

- Define a potential function $\Phi^{(t)}=\sum_{i=1}^{n} w_{i}^{(t)}$, so that $\Phi^{(1)}=n$.
- By induction, $w_{i}^{(t+1)}=(1-\delta)^{m_{i}^{(t)}}$ (see example!)
- Case 1: Each time we are wrong, the weighted majority of experts is wrong \Rightarrow at least half the total weight decreases by $1-\delta$:

Analysis of the Weighted Majority Algorithm

Notation: Let $m_{i}^{(t)}$ be the number of mistakes of expert i after t steps.

Analysis

The number of mistakes of our algorithm $M^{(T)}$ satisfies

$$
M^{(T)} \leq 2 \cdot(1+\delta) \cdot \min _{i \in[n]} m_{i}^{(T)}+\frac{2 \ln n}{\delta}
$$

Proof:

- Define a potential function $\Phi^{(t)}=\sum_{i=1}^{n} w_{i}^{(t)}$, so that $\Phi^{(1)}=n$.
- By induction, $w_{i}^{(t+1)}=(1-\delta)^{m_{i}^{(t)}}$ (see example!)
- Case 1: Each time we are wrong, the weighted majority of experts is wrong \Rightarrow at least half the total weight decreases by $1-\delta$:

$$
\Phi^{(t+1)} \leq \Phi^{(t)} \cdot\left(\frac{1}{2} \cdot 1+\frac{1}{2} \cdot(1-\delta)\right)
$$

Analysis of the Weighted Majority Algorithm

Notation: Let $m_{i}^{(t)}$ be the number of mistakes of expert i after t steps.

Analysis

The number of mistakes of our algorithm $M^{(T)}$ satisfies

$$
M^{(T)} \leq 2 \cdot(1+\delta) \cdot \min _{i \in[n]} m_{i}^{(T)}+\frac{2 \ln n}{\delta}
$$

Proof:

- Define a potential function $\Phi^{(t)}=\sum_{i=1}^{n} w_{i}^{(t)}$, so that $\Phi^{(1)}=n$.
- By induction, $w_{i}^{(t+1)}=(1-\delta)^{m_{i}^{(t)}}$ (see example!)
- Case 1: Each time we are wrong, the weighted majority of experts is wrong \Rightarrow at least half the total weight decreases by $1-\delta$:

$$
\Phi^{(t+1)} \leq \Phi^{(t)} \cdot\left(\frac{1}{2} \cdot 1+\frac{1}{2} \cdot(1-\delta)\right)=\Phi^{(t)} \cdot(1-\delta / 2) .
$$

Analysis of the Weighted Majority Algorithm

Notation: Let $m_{i}^{(t)}$ be the number of mistakes of expert i after t steps.
Analysis
The number of mistakes of our algorithm $M^{(T)}$ satisfies

$$
M^{(T)} \leq 2 \cdot(1+\delta) \cdot \min _{i \in[n]} m_{i}^{(T)}+\frac{2 \ln n}{\delta}
$$

Proof:

- Define a potential function $\Phi^{(t)}=\sum_{i=1}^{n} w_{i}^{(t)}$, so that $\Phi^{(1)}=n$.
- By induction, $w_{i}^{(t+1)}=(1-\delta)^{m_{i}^{(t)}}$ (see example!)
- Case 1: Each time we are wrong, the weighted majority of experts is wrong \Rightarrow at least half the total weight decreases by $1-\delta$:

$$
\Phi^{(t+1)} \leq \Phi^{(t)} \cdot\left(\frac{1}{2} \cdot 1+\frac{1}{2} \cdot(1-\delta)\right)=\Phi^{(t)} \cdot(1-\delta / 2) .
$$

- Case 2: Each time we are correct, $\Phi^{t+1} \leq \Phi^{t}$.

Analysis of the Weighted Majority Algorithm

Notation: Let $m_{i}^{(t)}$ be the number of mistakes of expert i after t steps.
Analysis
The number of mistakes of our algorithm $M^{(T)}$ satisfies

$$
M^{(T)} \leq 2 \cdot(1+\delta) \cdot \min _{i \in[n]} m_{i}^{(T)}+\frac{2 \ln n}{\delta}
$$

Proof:

- Define a potential function $\Phi^{(t)}=\sum_{i=1}^{n} w_{i}^{(t)}$, so that $\Phi^{(1)}=n$.
- By induction, $w_{i}^{(t+1)}=(1-\delta)^{m_{i}^{(t)}}$ (see example!)
- Case 1: Each time we are wrong, the weighted majority of experts is wrong \Rightarrow at least half the total weight decreases by $1-\delta$:

$$
\Phi^{(t+1)} \leq \Phi^{(t)} \cdot\left(\frac{1}{2} \cdot 1+\frac{1}{2} \cdot(1-\delta)\right)=\Phi^{(t)} \cdot(1-\delta / 2) .
$$

- Case 2: Each time we are correct, $\Phi^{t+1} \leq \Phi^{t}$.
- By induction, $\Phi^{(T+1)} \leq n \cdot(1-\delta / 2)^{M^{(T)}}$, but also $\Phi^{(T+1)} \geq w_{i}^{(T+1)}=(1-\delta)^{m_{i}^{T}}$.

Analysis of the Weighted Majority Algorithm

Notation: Let $m_{i}^{(t)}$ be the number of mistakes of expert i after t steps.
Analysis
The number of mistakes of our algorithm $M^{(T)}$ satisfies

$$
M^{(T)} \leq 2 \cdot(1+\delta) \cdot \min _{i \in[n]} m_{i}^{(T)}+\frac{2 \ln n}{\delta}
$$

Proof:

- Define a potential function $\Phi^{(t)}=\sum_{i=1}^{n} w_{i}^{(t)}$, so that $\Phi^{(1)}=n$.
- By induction, $w_{i}^{(t+1)}=(1-\delta)^{m_{i}^{(t)}}$ (see example!)
- Case 1: Each time we are wrong, the weighted majority of experts is wrong \Rightarrow at least half the total weight decreases by $1-\delta$:

$$
\Phi^{(t+1)} \leq \Phi^{(t)} \cdot\left(\frac{1}{2} \cdot 1+\frac{1}{2} \cdot(1-\delta)\right)=\Phi^{(t)} \cdot(1-\delta / 2) .
$$

- Case 2: Each time we are correct, $\Phi^{t+1} \leq \Phi^{t}$.
- By induction, $\Phi^{(T+1)} \leq n \cdot(1-\delta / 2)^{M^{(T)}}$, but also $\Phi^{(T+1)} \geq w_{i}^{(T+1)}=(1-\delta)^{m_{i}^{T}}$.
- Taking logs:

$$
m_{i}^{(T)} \ln (1-\delta) \leq M^{(T)} \ln (1-\delta / 2)+\ln (n) .
$$

Analysis of the Weighted Majority Algorithm

Notation: Let $m_{i}^{(t)}$ be the number of mistakes of expert i after t steps.
Analysis
The number of mistakes of our algorithm $M^{(T)}$ satisfies

$$
M^{(T)} \leq 2 \cdot(1+\delta) \cdot \min _{i \in[n]} m_{i}^{(T)}+\frac{2 \ln n}{\delta}
$$

Proof:

- Define a potential function $\Phi^{(t)}=\sum_{i=1}^{n} w_{i}^{(t)}$, so that $\Phi^{(1)}=n$.
- By induction, $w_{i}^{(t+1)}=(1-\delta)^{m_{i}^{(t)}}$ (see example!)
- Case 1: Each time we are wrong, the weighted majority of experts is wrong \Rightarrow at least half the total weight decreases by $1-\delta$:

$$
\Phi^{(t+1)} \leq \Phi^{(t)} \cdot\left(\frac{1}{2} \cdot 1+\frac{1}{2} \cdot(1-\delta)\right)=\Phi^{(t)} \cdot(1-\delta / 2) .
$$

- Case 2: Each time we are correct, $\Phi^{t+1} \leq \Phi^{t}$.
- By induction, $\Phi^{(T+1)} \leq n \cdot(1-\delta / 2)^{M^{(T)}}$, but also $\Phi^{(T+1)} \geq w_{i}^{(T+1)}=(1-\delta)^{m_{i}^{T}}$.
- Taking logs:

$$
m_{i}^{(T)} \ln (1-\delta) \leq M^{(T)} \ln (1-\delta / 2)+\ln (n) .
$$

- Using now that $-\delta \geq \ln (1-\delta) \geq-\delta-\delta^{2}$ completes the proof.

Simulation of the (Deterministic) WMA (1/2)

- Probabilistic Setting: Each expert i predicts wrongly with some probability $p_{i} \in[0,1]$, independently across rounds and experts
- Question: Which learning rate works best?

Simulation of the (Deterministic) WMA (1/2)

- Probabilistic Setting: Each expert i predicts wrongly with some probability $p_{i} \in[0,1]$, independently across rounds and experts
- Question: Which learning rate works best?

Simulation of the (Deterministic) WMA (2/2)

Simulation of the (Deterministic) WMA (2/2)

Observations from these Experiments

- Depending on data set, a high or small learning rate may work best
- But: for such a random environment, other Machine Learning techniques (e.g., Naive Bayes or Neural Networks) work much better

Simulation of the (Deterministic) WMA (2/2)

Observations from these Experiments

- Depending on data set, a high or small learning rate may work best
- But: for such a random environment, other Machine Learning techniques (e.g., Naive Bayes or Neural Networks) work much better

The point of WMA is a strong worst-case guarantee!

Improving the Weighted Majority Algorithm?

Analysis
The number of mistakes of our algorithm $M^{(T)}$ satisfies

$$
M^{(T)} \leq 2 \cdot(1+\delta) \cdot \min _{i \in[n]} m_{i}^{(T)}+\frac{2 \ln n}{\delta}
$$

Question: Is there a way to avoid the factor of 2 ?

Improving the Weighted Majority Algorithm?

Analysis
The number of mistakes of our algorithm $M^{(T)}$ satisfies

$$
M^{(T)} \leq 2 \cdot(1+\delta) \cdot \min _{i \in[n]} m_{i}^{(T)}+\frac{2 \ln n}{\delta}
$$

Question: Is there a way to avoid the factor of 2 ?

Exercise: For any deterministic algorithm, the factor of 2 cannot be avoided!

Improving the Weighted Majority Algorithm?

Analysis
The number of mistakes of our algorithm $M^{(T)}$ satisfies

$$
M^{(T)} \leq 2 \cdot(1+\delta) \cdot \min _{i \in[n]} m_{i}^{(T)}+\frac{2 \ln n}{\delta}
$$

Question: Is there a way to avoid the factor of 2 ?

Exercise: For any deterministic algorithm, the factor of 2 cannot be avoided!

Idea: Employ a randomised strategy which selects an expert with probability proportional to its success!

Outline

Introduction

Deterministic Weighted Majority

Randomised Weighted Majority

Extensions and Conclusions

Randomised Weighted Majority

Randomised Weighted Majority Algorithm

Initialization: Fix $\delta \leq 1 / 2$. For every $i \in[n]$, let $w_{i}^{(1)}:=1$ Update: For $t=1,2, \ldots, T$:

- Pick expert i with probability proportional to w_{i} and follow that prediction
- For every expert i who predicts wrongly, decrease his weight by a factor of $(1-\delta)$:

$$
w_{i}^{(t+1)}=(1-\delta) w_{i}^{(t)}
$$

Randomised Weighted Majority

Randomised Weighted Majority Algorithm

Initialization: Fix $\delta \leq 1 / 2$. For every $i \in[n]$, let $w_{i}^{(1)}:=1$
Update: For $t=1,2, \ldots, T$:

- Pick expert i with probability proportional to w_{i} and follow that prediction
- For every expert i who predicts wrongly, decrease his weight by a factor of $(1-\delta)$:

$$
w_{i}^{(t+1)}=(1-\delta) w_{i}^{(t)}
$$

Note that the number of mistakes we are making is now a random variable!

Example: Deterministic vs. Randomised Weighted Majority (1/2)

Consider the following run of the Deterministic Weighted Majority Algorithm:

t	Weights	Predictions	Our Prediction	Actual Result	Our Errors
1	1,1	1,0	1	0	1
2	$1 / 2,1$	1,0	0	1	2
3	$1 / 2,1 / 2$	0,1	0	1	3
4	$1 / 4,1 / 2$	1,0	0	1	4
5	$1 / 4,1 / 4$	-	-	-	-

Consider now the Randomised Weighted Majority Algorithm and let us compute the expected number of mistakes, $\mathbf{E}\left[M^{(4)}\right]$

Example: Deterministic vs. Randomised Weighted Majority (2/2)

Example: Deterministic vs. Randomised Weighted Majority (2/2)

- Let $x^{(t)}$ be a $0 / 1$ random variable, indicating if our t-th prediction is wrong.

Example: Deterministic vs. Randomised Weighted Majority (2/2)

- Let $x^{(t)}$ be a $0 / 1$ random variable, indicating if our t-th prediction is wrong.
- Then:

$$
\mathbf{E}\left[x^{(1)}\right]=
$$

Example: Deterministic vs. Randomised Weighted Majority (2/2)

- Let $x^{(t)}$ be a $0 / 1$ random variable, indicating if our t-th prediction is wrong.
- Then:

$$
E\left[x^{(1)}\right]=0 \cdot \frac{1}{2}+1 \cdot \frac{1}{2}=\frac{1}{2} .
$$

Example: Deterministic vs. Randomised Weighted Majority (2/2)

- Let $x^{(t)}$ be a $0 / 1$ random variable, indicating if our t-th prediction is wrong.
- Then:

$$
\mathbf{E}\left[x^{(1)}\right]=0 \cdot \frac{1}{2}+1 \cdot \frac{1}{2}=\frac{1}{2} .
$$

- Similarly, $\mathbf{E}\left[x^{(2)}\right]=\frac{2}{3}, \mathbf{E}\left[x^{(3)}\right]=\frac{1}{2}$ and $\mathbf{E}\left[x^{(4)}\right]=\frac{2}{3}$.

Example: Deterministic vs. Randomised Weighted Majority (2/2)

- Let $x^{(t)}$ be a $0 / 1$ random variable, indicating if our t-th prediction is wrong.
- Then:

$$
\mathbf{E}\left[x^{(1)}\right]=0 \cdot \frac{1}{2}+1 \cdot \frac{1}{2}=\frac{1}{2} .
$$

- Similarly, $\mathbf{E}\left[x^{(2)}\right]=\frac{2}{3}, \mathbf{E}\left[x^{(3)}\right]=\frac{1}{2}$ and $\mathbf{E}\left[x^{(4)}\right]=\frac{2}{3}$.
- Hence,

$$
\mathbf{E}\left[M^{(4)}\right]=
$$

Example: Deterministic vs. Randomised Weighted Majority (2/2)

- Let $x^{(t)}$ be a $0 / 1$ random variable, indicating if our t-th prediction is wrong.
- Then:

$$
\mathbf{E}\left[x^{(1)}\right]=0 \cdot \frac{1}{2}+1 \cdot \frac{1}{2}=\frac{1}{2} .
$$

- Similarly, $\mathbf{E}\left[x^{(2)}\right]=\frac{2}{3}, \mathbf{E}\left[x^{(3)}\right]=\frac{1}{2}$ and $\mathbf{E}\left[x^{(4)}\right]=\frac{2}{3}$.
- Hence,

$$
\mathbf{E}\left[M^{(4)}\right]=\mathbf{E}\left[x^{(1)}+x^{(2)}+x^{(3)}+x^{(4)}\right]
$$

Example: Deterministic vs. Randomised Weighted Majority (2/2)

- Let $x^{(t)}$ be a $0 / 1$ random variable, indicating if our t-th prediction is wrong.
- Then:

$$
\mathbf{E}\left[x^{(1)}\right]=0 \cdot \frac{1}{2}+1 \cdot \frac{1}{2}=\frac{1}{2} .
$$

- Similarly, $\mathbf{E}\left[x^{(2)}\right]=\frac{2}{3}, \mathbf{E}\left[x^{(3)}\right]=\frac{1}{2}$ and $\mathbf{E}\left[x^{(4)}\right]=\frac{2}{3}$.
- Hence,

$$
\begin{aligned}
\mathbf{E}\left[M^{(4)}\right] & =\mathbf{E}\left[x^{(1)}+x^{(2)}+x^{(3)}+x^{(4)}\right] \\
& =\mathbf{E}\left[x^{(1)}\right]+\mathbf{E}\left[x^{(2)}\right]+\mathbf{E}\left[x^{(3)}\right]+\mathbf{E}\left[x^{(4)}\right]
\end{aligned}
$$

Example: Deterministic vs. Randomised Weighted Majority (2/2)

- Let $x^{(t)}$ be a $0 / 1$ random variable, indicating if our t-th prediction is wrong.
- Then:

$$
\mathbf{E}\left[x^{(1)}\right]=0 \cdot \frac{1}{2}+1 \cdot \frac{1}{2}=\frac{1}{2} .
$$

- Similarly, $\mathbf{E}\left[x^{(2)}\right]=\frac{2}{3}, \mathbf{E}\left[x^{(3)}\right]=\frac{1}{2}$ and $\mathbf{E}\left[x^{(4)}\right]=\frac{2}{3}$.
- Hence,

$$
\begin{aligned}
\mathbf{E}\left[M^{(4)}\right] & =\mathbf{E}\left[x^{(1)}+x^{(2)}+x^{(3)}+x^{(4)}\right] \\
& =\mathbf{E}\left[x^{(1)}\right]+\mathbf{E}\left[x^{(2)}\right]+\mathbf{E}\left[x^{(3)}\right]+\mathbf{E}\left[x^{(4)}\right]=\frac{7}{3}
\end{aligned}
$$

Example: Deterministic vs. Randomised Weighted Majority (2/2)

- Let $x^{(t)}$ be a $0 / 1$ random variable, indicating if our t-th prediction is wrong.
- Then:

$$
\mathbf{E}\left[x^{(1)}\right]=0 \cdot \frac{1}{2}+1 \cdot \frac{1}{2}=\frac{1}{2} .
$$

- Similarly, $\mathbf{E}\left[x^{(2)}\right]=\frac{2}{3}, \mathbf{E}\left[x^{(3)}\right]=\frac{1}{2}$ and $\mathbf{E}\left[x^{(4)}\right]=\frac{2}{3}$.
- Hence,

$$
\begin{aligned}
\mathbf{E}\left[M^{(4)}\right] & =\mathbf{E}\left[x^{(1)}+x^{(2)}+x^{(3)}+x^{(4)}\right] \underbrace{\text { deterministic algo }} \\
& =\mathbf{E}\left[x^{(1)}\right]+\mathbf{E}\left[x^{(2)}\right]+\mathbf{E}\left[x^{(3)}\right]+\mathbf{E}\left[x^{(4)}\right]=\frac{7}{3}
\end{aligned}
$$

Analysis of Randomised Weighted Majority (non-examinable)

Analysis
The expected number of mistakes of our algorithm $M^{(T)}$ satisfies

$$
\mathbf{E}\left[M^{(T)}\right] \leq 1 \cdot(1+\delta) \cdot \min _{i \in[n]} m_{i}^{(T)}+\frac{\ln n}{\delta} .
$$

Analysis of Randomised Weighted Majority (non-examinable)

Analysis
The expected number of mistakes of our algorithm $M^{(T)}$ satisfies

$$
\underbrace{\mathbf{E}\left[M^{(T)}\right] \leq 1 \cdot(1+\delta) \cdot \min _{i \in[n]} m_{i}^{(T)}+\frac{\ln n}{\delta} .}_{\text {This was a factor of } 2 \text { before! }}
$$

Analysis of Randomised Weighted Majority (non-examinable)

Analysis
The expected number of mistakes of our algorithm $M^{(T)}$ satisfies

$$
\overbrace{\text { This was a factor of } 2 \text { before! })}^{\mathbf{E}\left[M^{(T)}\right] \leq 1 \cdot(1+\delta) \cdot \min _{i \in[n]} m_{i}^{(T)}+\frac{\ln n}{\delta} .}
$$

Proof:

Analysis of Randomised Weighted Majority (non-examinable)

Analysis
The expected number of mistakes of our algorithm $M^{(T)}$ satisfies

$$
\underbrace{\mathbf{E}\left[M^{(T)}\right] \leq 1 \cdot(1+\delta) \cdot \min _{i \in[n]} m_{i}^{(T)}+\frac{\ln n}{\delta} .}_{\text {This was a factor of } 2 \text { before! }}
$$

Proof:

- Define a potential function $\Phi^{(t)}=\sum_{i=1}^{n} w_{i}^{(t)}$, so that $\Phi^{(1)}=n$.

Analysis of Randomised Weighted Majority (non-examinable)

Analysis

The expected number of mistakes of our algorithm $M^{(T)}$ satisfies

$$
\underbrace{\mathbf{E}\left[M^{(T)}\right] \leq 1 \cdot(1+\delta) \cdot \min _{i \in[n]} m_{i}^{(T)}+\frac{\ln n}{\delta} .}_{\text {This was a factor of } 2 \text { before! }}
$$

Proof:

- Define a potential function $\Phi^{(t)}=\sum_{i=1}^{n} w_{i}^{(t)}$, so that $\Phi^{(1)}=n$.
- The probability of picking expert i in round t is $p_{i}^{(t)}:=w_{i}^{(t)} / \sum_{j=1}^{n} w_{j}^{(t)}=w_{i}^{(t)} / \Phi^{(t)}$.

Analysis of Randomised Weighted Majority (non-examinable)

Analysis

The expected number of mistakes of our algorithm $M^{(T)}$ satisfies

$$
\overbrace{\text { This was a factor of } 2 \text { before! }}^{\mathbf{E}\left[M^{(T)}\right] \leq 1 \cdot(1+\delta) \cdot \min _{i \in[n]} m_{i}^{(T)}+\frac{\ln n}{\delta} .}
$$

Proof:

- Define a potential function $\Phi^{(t)}=\sum_{i=1}^{n} w_{i}^{(t)}$, so that $\Phi^{(1)}=n$.
- The probability of picking expert i in round t is $p_{i}^{(t)}:=w_{i}^{(t)} / \sum_{j=1}^{n} w_{j}^{(t)}=w_{i}^{(t)} / \Phi^{(t)}$.
- Let $\lambda_{i}^{(t)}$ be 1 iff expert i is wrong at time t (and 0 otherwise)

Analysis of Randomised Weighted Majority (non-examinable)

Analysis

The expected number of mistakes of our algorithm $M^{(T)}$ satisfies

$$
\underbrace{\mathbf{E}\left[M^{(T)}\right] \leq 1 \cdot(1+\delta) \cdot \min _{i \in[n]} m_{i}^{(T)}+\frac{\ln n}{\delta} .}_{\text {This was a factor of } 2 \text { before! }}
$$

Proof:

- Define a potential function $\Phi^{(t)}=\sum_{i=1}^{n} w_{i}^{(t)}$, so that $\Phi^{(1)}=n$.
- The probability of picking expert i in round t is $p_{i}^{(t)}:=w_{i}^{(t)} / \sum_{j=1}^{n} w_{j}^{(t)}=w_{i}^{(t)} / \Phi^{(t)}$.
- Let $\lambda_{i}^{(t)}$ be 1 iff expert i is wrong at time t (and 0 otherwise)
- Then the expected number of mistakes by our algorithm is $\mathbf{E}\left[M^{(T)}\right]=\sum_{t=1}^{T} \lambda^{(t)} \cdot p^{(t)}$.

Analysis of Randomised Weighted Majority (non-examinable)

Analysis

The expected number of mistakes of our algorithm $M^{(T)}$ satisfies

$$
\underbrace{\mathbf{E}\left[M^{(T)}\right] \leq 1 \cdot(1+\delta) \cdot \min _{i \in[n]} m_{i}^{(T)}+\frac{\ln n}{\delta} .}_{\text {This was a factor of } 2 \text { before! }}
$$

Proof:

- Define a potential function $\Phi^{(t)}=\sum_{i=1}^{n} w_{i}^{(t)}$, so that $\Phi^{(1)}=n$.
- The probability of picking expert i in round t is $p_{i}^{(t)}:=w_{i}^{(t)} / \sum_{j=1}^{n} w_{j}^{(t)}=w_{i}^{(t)} / \Phi^{(t)}$.
- Let $\lambda_{i}^{(t)}$ be 1 iff expert i is wrong at time t (and 0 otherwise)
- Then the expected number of mistakes by our algorithm is $\mathbf{E}\left[M^{(T)}\right]=\sum_{t=1}^{T} \lambda^{(t)} \cdot p^{(t)}$.
- The new potential (which is deterministic!) can be upper bounded by:

$$
\Phi^{(t+1)}=\sum_{i=1}^{n} w_{i}^{(t+1)}
$$

Analysis of Randomised Weighted Majority (non-examinable)

Analysis

The expected number of mistakes of our algorithm $M^{(T)}$ satisfies

$$
\underbrace{\mathbf{E}\left[M^{(T)}\right] \leq 1 \cdot(1+\delta) \cdot \min _{i \in[n]} m_{i}^{(T)}+\frac{\ln n}{\delta} .}_{\text {This was a factor of } 2 \text { before! }}
$$

Proof:

- Define a potential function $\Phi^{(t)}=\sum_{i=1}^{n} w_{i}^{(t)}$, so that $\Phi^{(1)}=n$.
- The probability of picking expert i in round t is $p_{i}^{(t)}:=w_{i}^{(t)} / \sum_{j=1}^{n} w_{j}^{(t)}=w_{i}^{(t)} / \Phi^{(t)}$.
- Let $\lambda_{i}^{(t)}$ be 1 iff expert i is wrong at time t (and 0 otherwise)
- Then the expected number of mistakes by our algorithm is $\mathbf{E}\left[M^{(T)}\right]=\sum_{t=1}^{T} \lambda^{(t)} \cdot p^{(t)}$.
- The new potential (which is deterministic!) can be upper bounded by:

$$
\Phi^{(t+1)}=\sum_{i=1}^{n} w_{i}^{(t+1)}=\sum_{i=1}^{n}\left(1-\delta \lambda_{i}^{(t)}\right) \cdot w_{i}^{(t+1)}
$$

Analysis of Randomised Weighted Majority (non-examinable)

Analysis

The expected number of mistakes of our algorithm $M^{(T)}$ satisfies

$$
\underbrace{\mathbf{E}\left[M^{(T)}\right] \leq 1 \cdot(1+\delta) \cdot \min _{i \in[n]} m_{i}^{(T)}+\frac{\ln n}{\delta} .}_{\text {This was a factor of } 2 \text { before! }}
$$

Proof:

- Define a potential function $\Phi^{(t)}=\sum_{i=1}^{n} w_{i}^{(t)}$, so that $\Phi^{(1)}=n$.
- The probability of picking expert i in round t is $p_{i}^{(t)}:=w_{i}^{(t)} / \sum_{j=1}^{n} w_{j}^{(t)}=w_{i}^{(t)} / \Phi^{(t)}$.
- Let $\lambda_{i}^{(t)}$ be 1 iff expert i is wrong at time t (and 0 otherwise)
- Then the expected number of mistakes by our algorithm is $\mathbf{E}\left[M^{(T)}\right]=\sum_{t=1}^{T} \lambda^{(t)} \cdot p^{(t)}$.
- The new potential (which is deterministic!) can be upper bounded by:

$$
\Phi^{(t+1)}=\sum_{i=1}^{n} w_{i}^{(t+1)}=\sum_{i=1}^{n}\left(1-\delta \lambda_{i}^{(t)}\right) \cdot w_{i}^{(t+1)}=\Phi^{(t)} \cdot\left(1-\delta \lambda^{(t)} p^{(t)}\right)
$$

Analysis of Randomised Weighted Majority (non-examinable)

Analysis

The expected number of mistakes of our algorithm $M^{(T)}$ satisfies

$$
\overbrace{\text { This was a factor of } 2 \text { before! }}^{\mathbf{E}\left[M^{(T)}\right] \leq 1 \cdot(1+\delta) \cdot \min _{i \in[n]} m_{i}^{(T)}+\frac{\ln n}{\delta} .}
$$

Proof:

- Define a potential function $\Phi^{(t)}=\sum_{i=1}^{n} w_{i}^{(t)}$, so that $\Phi^{(1)}=n$.
- The probability of picking expert i in round t is $p_{i}^{(t)}:=w_{i}^{(t)} / \sum_{j=1}^{n} w_{j}^{(t)}=w_{i}^{(t)} / \Phi^{(t)}$.
- Let $\lambda_{i}^{(t)}$ be 1 iff expert i is wrong at time t (and 0 otherwise)
- Then the expected number of mistakes by our algorithm is $\mathbf{E}\left[M^{(T)}\right]=\sum_{t=1}^{T} \lambda^{(t)} \cdot p^{(t)}$.
- The new potential (which is deterministic!) can be upper bounded by:

$$
\Phi^{(t+1)}=\sum_{i=1}^{n} w_{i}^{(t+1)}=\sum_{i=1}^{n}\left(1-\delta \lambda_{i}^{(t)}\right) \cdot w_{i}^{(t+1)}=\Phi^{(t)} \cdot\left(1-\delta \lambda^{(t)} p^{(t)}\right) \leq \Phi^{(t)} \cdot \exp \left(-\delta \lambda^{(t)} \cdot p^{(t)}\right)
$$

Analysis of Randomised Weighted Majority (non-examinable)

Analysis

The expected number of mistakes of our algorithm $M^{(T)}$ satisfies

$$
\overbrace{\text { This was a factor of } 2 \text { before! }}^{\mathbf{E}\left[M^{(T)}\right] \leq 1 \cdot(1+\delta) \cdot \min _{i \in[n]} m_{i}^{(T)}+\frac{\ln n}{\delta} .}
$$

Proof:

- Define a potential function $\Phi^{(t)}=\sum_{i=1}^{n} w_{i}^{(t)}$, so that $\Phi^{(1)}=n$.
- The probability of picking expert i in round t is $p_{i}^{(t)}:=w_{i}^{(t)} / \sum_{j=1}^{n} w_{j}^{(t)}=w_{i}^{(t)} / \Phi^{(t)}$.
- Let $\lambda_{i}^{(t)}$ be 1 iff expert i is wrong at time t (and 0 otherwise)
- Then the expected number of mistakes by our algorithm is $\mathbf{E}\left[M^{(T)}\right]=\sum_{t=1}^{T} \lambda^{(t)} \cdot p^{(t)}$.
- The new potential (which is deterministic!) can be upper bounded by:

$$
\Phi^{(t+1)}=\sum_{i=1}^{n} w_{i}^{(t+1)}=\sum_{i=1}^{n}\left(1-\delta \lambda_{i}^{(t)}\right) \cdot w_{i}^{(t+1)}=\Phi^{(t)} \cdot\left(1-\delta \lambda^{(t)} p^{(t)}\right) \leq \Phi^{(t)} \cdot \exp \left(-\delta \lambda^{(t)} \cdot p^{(t)}\right)
$$

- Thus the final potential satisfies

$$
\Phi^{(T+1)} \leq \Phi^{(1)} \cdot \exp \left(-\delta \sum_{t=1}^{T} \lambda^{(t)} \cdot p^{(t)}\right)
$$

Analysis of Randomised Weighted Majority (non-examinable)

Analysis

The expected number of mistakes of our algorithm $M^{(T)}$ satisfies

$$
\overbrace{\text { This was a factor of } 2 \text { before! }}^{\mathbf{E}\left[M^{(T)}\right] \leq 1 \cdot(1+\delta) \cdot \min _{i \in[n]} m_{i}^{(T)}+\frac{\ln n}{\delta} .}
$$

Proof:

- Define a potential function $\Phi^{(t)}=\sum_{i=1}^{n} w_{i}^{(t)}$, so that $\Phi^{(1)}=n$.
- The probability of picking expert i in round t is $p_{i}^{(t)}:=w_{i}^{(t)} / \sum_{j=1}^{n} w_{j}^{(t)}=w_{i}^{(t)} / \Phi^{(t)}$.
- Let $\lambda_{i}^{(t)}$ be 1 iff expert i is wrong at time t (and 0 otherwise)
- Then the expected number of mistakes by our algorithm is $\mathbf{E}\left[M^{(T)}\right]=\sum_{t=1}^{T} \lambda^{(t)} \cdot p^{(t)}$.
- The new potential (which is deterministic!) can be upper bounded by:

$$
\Phi^{(t+1)}=\sum_{i=1}^{n} w_{i}^{(t+1)}=\sum_{i=1}^{n}\left(1-\delta \lambda_{i}^{(t)}\right) \cdot w_{i}^{(t+1)}=\Phi^{(t)} \cdot\left(1-\delta \lambda^{(t)} p^{(t)}\right) \leq \Phi^{(t)} \cdot \exp \left(-\delta \lambda^{(t)} \cdot p^{(t)}\right)
$$

- Thus the final potential satisfies

$$
\Phi^{(T+1)} \leq \Phi^{(1)} \cdot \exp \left(-\delta \sum_{t=1}^{T} \lambda^{(t)} \cdot p^{(t)}\right)=n \cdot \exp \left(-\delta \cdot \mathbf{E}\left[M^{(T)}\right]\right)
$$

Analysis of Randomised Weighted Majority (non-examinable)

Analysis
The expected number of mistakes of our algorithm $M^{(T)}$ satisfies

Proof:

- Define a potential function $\Phi^{(t)}=\sum_{i=1}^{n} w_{i}^{(t)}$, so that $\Phi^{(1)}=n$.
- The probability of picking expert i in round t is $p_{i}^{(t)}:=w_{i}^{(t)} / \sum_{j=1}^{n} w_{j}^{(t)}=w_{i}^{(t)} / \Phi^{(t)}$.
- Let $\lambda_{i}^{(t)}$ be 1 iff expert i is wrong at time t (and 0 otherwise)
- Then the expected number of mistakes by our algorithm is $\mathbf{E}\left[M^{(T)}\right]=\sum_{t=1}^{T} \lambda^{(t)} \cdot p^{(t)}$.
- The new potential (which is deterministic!) can be upper bounded by:

$$
\Phi^{(t+1)}=\sum_{i=1}^{n} w_{i}^{(t+1)}=\sum_{i=1}^{n}\left(1-\delta \lambda_{i}^{(t)}\right) \cdot w_{i}^{(t+1)}=\Phi^{(t)} \cdot\left(1-\delta \lambda^{(t)} p^{(t)}\right) \leq \Phi^{(t)} \cdot \exp \left(-\delta \lambda^{(t)} \cdot p^{(t)}\right)
$$

- Thus the final potential satisfies

$$
\begin{aligned}
& \Phi^{(T+1)} \leq \Phi^{(1)} \cdot \exp \left(-\delta \sum_{t=1}^{T} \lambda^{(t)} \cdot p^{(t)}\right)=n \cdot \exp \left(-\delta \cdot \mathbf{E}\left[M^{(T)}\right]\right) \\
& \Phi^{(T+1)} \geq w_{i}^{(T+1)}=\prod_{t=1}^{T}\left(1-\delta \lambda_{i}^{(t)}\right)
\end{aligned}
$$

Analysis of Randomised Weighted Majority (non-examinable)

Analysis

The expected number of mistakes of our algorithm $M^{(T)}$ satisfies

$$
\overbrace{\text { This was a factor of } 2 \text { before! }}^{\mathbf{E}\left[M^{(T)}\right] \leq 1 \cdot(1+\delta) \cdot \min _{i \in[n]} m_{i}^{(T)}+\frac{\ln n}{\delta} .}
$$

Proof:

- Define a potential function $\Phi^{(t)}=\sum_{i=1}^{n} w_{i}^{(t)}$, so that $\Phi^{(1)}=n$.
- The probability of picking expert i in round t is $p_{i}^{(t)}:=w_{i}^{(t)} / \sum_{j=1}^{n} w_{j}^{(t)}=w_{i}^{(t)} / \Phi^{(t)}$.
- Let $\lambda_{i}^{(t)}$ be 1 iff expert i is wrong at time t (and 0 otherwise)
- Then the expected number of mistakes by our algorithm is $\mathbf{E}\left[M^{(T)}\right]=\sum_{t=1}^{T} \lambda^{(t)} \cdot p^{(t)}$.
- The new potential (which is deterministic!) can be upper bounded by:

$$
\Phi^{(t+1)}=\sum_{i=1}^{n} w_{i}^{(t+1)}=\sum_{i=1}^{n}\left(1-\delta \lambda_{i}^{(t)}\right) \cdot w_{i}^{(t+1)}=\Phi^{(t)} \cdot\left(1-\delta \lambda^{(t)} p^{(t)}\right) \leq \Phi^{(t)} \cdot \exp \left(-\delta \lambda^{(t)} \cdot p^{(t)}\right)
$$

- Thus the final potential satisfies

$$
\begin{aligned}
& \Phi^{(T+1)} \leq \Phi^{(1)} \cdot \exp \left(-\delta \sum_{t=1}^{T} \lambda^{(t)} \cdot p^{(t)}\right)=n \cdot \exp \left(-\delta \cdot \mathbf{E}\left[M^{(T)}\right]\right) \\
& \Phi^{(T+1)} \geq w_{i}^{(T+1)}=\prod_{t=1}^{T}\left(1-\delta \lambda_{i}^{(t)}\right)=(1-\delta)^{m_{i}^{(T)}}
\end{aligned}
$$

Analysis of Randomised Weighted Majority (non-examinable)

Analysis

The expected number of mistakes of our algorithm $M^{(T)}$ satisfies

$$
\underbrace{\mathbf{E}\left[M^{(T)}\right] \leq 1 \cdot(1+\delta) \cdot \min _{i \in[n]} m_{i}^{(T)}+\frac{\ln n}{\delta} .}_{\text {This was a factor of } 2 \text { before! }}
$$

Proof:

- Define a potential function $\Phi^{(t)}=\sum_{i=1}^{n} w_{i}^{(t)}$, so that $\Phi^{(1)}=n$.
- The probability of picking expert i in round t is $p_{i}^{(t)}:=w_{i}^{(t)} / \sum_{j=1}^{n} w_{j}^{(t)}=w_{i}^{(t)} / \Phi^{(t)}$.
- Let $\lambda_{i}^{(t)}$ be 1 iff expert i is wrong at time t (and 0 otherwise)
- Then the expected number of mistakes by our algorithm is $\mathbf{E}\left[M^{(T)}\right]=\sum_{t=1}^{T} \lambda^{(t)} \cdot p^{(t)}$.
- The new potential (which is deterministic!) can be upper bounded by:

$$
\Phi^{(t+1)}=\sum_{i=1}^{n} w_{i}^{(t+1)}=\sum_{i=1}^{n}\left(1-\delta \lambda_{i}^{(t)}\right) \cdot w_{i}^{(t+1)}=\Phi^{(t)} \cdot\left(1-\delta \lambda^{(t)} p^{(t)}\right) \leq \Phi^{(t)} \cdot \exp \left(-\delta \lambda^{(t)} \cdot p^{(t)}\right)
$$

- Thus the final potential satisfies

$$
\begin{aligned}
& \phi^{(T+1)} \leq \Phi^{(1)} \cdot \exp \left(-\delta \sum_{t=1}^{T} \lambda^{(t)} \cdot p^{(t)}\right)=n \cdot \exp \left(-\delta \cdot \mathbf{E}\left[M^{(T)}\right]\right) \\
& \phi^{(T+1)} \geq w_{i}^{(T+1)}=\prod_{t=1}^{T}\left(1-\delta \lambda_{i}^{(t)}\right)=(1-\delta)^{m_{i}^{(T)}} \\
& \Rightarrow \quad \ln n-\delta \cdot \mathbf{E}\left[M^{(T)}\right] \geq \ln (1-\delta) \cdot m_{i}^{(T)}
\end{aligned}
$$

Analysis of Randomised Weighted Majority (non-examinable)

Analysis

The expected number of mistakes of our algorithm $M^{(T)}$ satisfies

$$
\text { This was a factor of } 2 \text { before! })
$$

Proof:

- Define a potential function $\Phi^{(t)}=\sum_{i=1}^{n} w_{i}^{(t)}$, so that $\Phi^{(1)}=n$.
- The probability of picking expert i in round t is $p_{i}^{(t)}:=w_{i}^{(t)} / \sum_{j=1}^{n} w_{j}^{(t)}=w_{i}^{(t)} / \Phi^{(t)}$.
- Let $\lambda_{i}^{(t)}$ be 1 iff expert i is wrong at time t (and 0 otherwise)
- Then the expected number of mistakes by our algorithm is $\mathbf{E}\left[M^{(T)}\right]=\sum_{t=1}^{T} \lambda^{(t)} \cdot p^{(t)}$.
- The new potential (which is deterministic!) can be upper bounded by:

$$
\Phi^{(t+1)}=\sum_{i=1}^{n} w_{i}^{(t+1)}=\sum_{i=1}^{n}\left(1-\delta \lambda_{i}^{(t)}\right) \cdot w_{i}^{(t+1)}=\Phi^{(t)} \cdot\left(1-\delta \lambda^{(t)} p^{(t)}\right) \leq \Phi^{(t)} \cdot \exp \left(-\delta \lambda^{(t)} \cdot p^{(t)}\right)
$$

- Thus the final potential satisfies

$$
\begin{aligned}
& \Phi^{(T+1)} \leq \Phi^{(1)} \cdot \exp \left(-\delta \sum_{t=1}^{T} \lambda^{(t)} \cdot p^{(t)}\right)=n \cdot \exp \left(-\delta \cdot \mathbf{E}\left[M^{(T)}\right]\right) \\
& \Phi^{(T+1)} \geq w_{i}^{(T+1)}=\prod_{t=1}^{T}\left(1-\delta \lambda_{i}^{(t)}\right)=(1-\delta)^{m_{i}^{(T)}} \\
& \Rightarrow \quad \ln n-\delta \cdot \mathbf{E}\left[M^{(T)}\right] \geq \ln (1-\delta) \cdot m_{i}^{(T)} \quad \Rightarrow \quad \mathbf{E}\left[M^{(T)}\right] \leq \frac{\left(\delta+\delta^{2}\right)}{\delta} \cdot m_{i}^{(T)}+\frac{\ln n}{\delta}
\end{aligned}
$$

Analysis of Randomised Weighted Majority (non-examinable)

Analysis

The expected number of mistakes of our algorithm $M^{(T)}$ satisfies

$$
\underbrace{\mathbf{E}\left[M^{(T)}\right] \leq 1 \cdot(1+\delta) \cdot \min _{i \in[n]} m_{i}^{(T)}+\frac{\ln n}{\delta} .}_{\text {This was a factor of } 2 \text { before! }}
$$

Proof:

- Define a potential function $\Phi^{(t)}=\sum_{i=1}^{n} w_{i}^{(t)}$, so that $\Phi^{(1)}=n$.
- The probability of picking expert i in round t is $p_{i}^{(t)}:=w_{i}^{(t)} / \sum_{j=1}^{n} w_{j}^{(t)}=w_{i}^{(t)} / \Phi^{(t)}$.
- Let $\lambda_{i}^{(t)}$ be 1 iff expert i is wrong at time t (and 0 otherwise)
- Then the expected number of mistakes by our algorithm is $\mathbf{E}\left[M^{(T)}\right]=\sum_{t=1}^{T} \lambda^{(t)} \cdot p^{(t)}$.
- The new potential (which is deterministic!) can be upper bounded by:

$$
\Phi^{(t+1)}=\sum_{i=1}^{n} w_{i}^{(t+1)}=\sum_{i=1}^{n}\left(1-\delta \lambda_{i}^{(t)}\right) \cdot w_{i}^{(t+1)}=\Phi^{(t)} \cdot\left(1-\delta \lambda^{(t)} p^{(t)}\right) \leq \Phi^{(t)} \cdot \exp \left(-\delta \lambda^{(t)} \cdot p^{(t)}\right)
$$

- Thus the final potential satisfies

$$
\begin{aligned}
& \Phi^{(T+1)} \leq \Phi^{(1)} \cdot \exp \left(-\delta \sum_{t=1}^{T} \lambda^{(t)} \cdot p^{(t)}\right)=n \cdot \exp \left(-\delta \cdot \mathbf{E}\left[M^{(T)}\right]\right) \\
& \Phi^{(T+1)} \geq w_{i}^{(T+1)}=\prod_{t=1}^{T}\left(1-\delta \lambda_{i}^{(t)}\right)=(1-\delta)^{m_{i}^{(T)}} \ln (1-\delta) \geq-\delta-\delta^{2} \\
& \Rightarrow \quad \ln n-\delta \cdot \mathbf{E}\left[M^{(T)}\right] \geq \ln (1-\delta) \cdot m_{i}^{(T)} \Rightarrow \mathbf{E}\left[M^{(T)}\right] \leq \frac{\left(\delta+\delta^{2}\right)}{\delta} \cdot m_{i}^{(T)}+\frac{\ln n}{\delta}
\end{aligned}
$$

Analysis of Randomised Weighted Majority (non-examinable)

Analysis

The expected number of mistakes of our algorithm $M^{(T)}$ satisfies

$$
\underbrace{\mathbf{E}\left[M^{(T)}\right] \leq 1 \cdot(1+\delta) \cdot \min _{i \in[n]} m_{i}^{(T)}+\frac{\ln n}{\delta} .}_{\text {This was a factor of } 2 \text { before! }}
$$

Proof:

- Define a potential function $\Phi^{(t)}=\sum_{i=1}^{n} w_{i}^{(t)}$, so that $\Phi^{(1)}=n$.
- The probability of picking expert i in round t is $p_{i}^{(t)}:=w_{i}^{(t)} / \sum_{j=1}^{n} w_{j}^{(t)}=w_{i}^{(t)} / \Phi^{(t)}$.
- Let $\lambda_{i}^{(t)}$ be 1 iff expert i is wrong at time t (and 0 otherwise)
- Then the expected number of mistakes by our algorithm is $\mathbf{E}\left[M^{(T)}\right]=\sum_{t=1}^{T} \lambda^{(t)} \cdot p^{(t)}$.
- The new potential (which is deterministic!) can be upper bounded by:

$$
\Phi^{(t+1)}=\sum_{i=1}^{n} w_{i}^{(t+1)}=\sum_{i=1}^{n}\left(1-\delta \lambda_{i}^{(t)}\right) \cdot w_{i}^{(t+1)}=\Phi^{(t)} \cdot\left(1-\delta \lambda^{(t)} p^{(t)}\right) \leq \Phi^{(t)} \cdot \exp \left(-\delta \lambda^{(t)} \cdot p^{(t)}\right)
$$

- Thus the final potential satisfies

$$
\begin{aligned}
& \Phi^{(T+1)} \leq \Phi^{(1)} \cdot \exp \left(-\delta \sum_{t=1}^{T} \lambda^{(t)} \cdot p^{(t)}\right)=n \cdot \exp \left(-\delta \cdot \mathbf{E}\left[M^{(T)}\right]\right) \\
& \Phi^{(T+1)} \geq w_{i}^{(T+1)}=\prod_{t=1}^{T}\left(1-\delta \lambda_{i}^{(t)}\right)=(1-\delta)^{m_{i}^{(T)}} \ln (1-\delta) \geq-\delta-\delta^{2} \\
& \Rightarrow \quad \ln n-\delta \cdot \mathbf{E}\left[M^{(T)}\right] \geq \ln (1-\delta) \cdot m_{i}^{(T)} \Rightarrow \mathbf{E}\left[M^{(T)}\right] \leq \frac{\left(\delta+\delta^{2}\right)}{\delta} \cdot m_{i}^{(T)}+\frac{\ln n}{\delta}
\end{aligned}
$$

Optimising the Learning Rate

Analysis
The expected number of mistakes of our algorithm $M^{(T)}$ satisfies

$$
\mathbf{E}\left[M^{(T)}\right] \leq 1 \cdot(1+\delta) \cdot \min _{i \in[n]} m_{i}^{(T)}+\frac{\ln n}{\delta}
$$

Optimising the Learning Rate

Analysis
The expected number of mistakes of our algorithm $M^{(T)}$ satisfies

$$
\mathbf{E}\left[M^{(T)}\right] \leq 1 \cdot(1+\delta) \cdot \min _{i \in[n]} m_{i}^{(T)}+\frac{\ln n}{\delta}
$$

Interpretation:

Optimising the Learning Rate

Analysis
The expected number of mistakes of our algorithm $M^{(T)}$ satisfies

$$
\mathbf{E}\left[M^{(T)}\right] \leq 1 \cdot(1+\delta) \cdot \min _{i \in[n]} m_{i}^{(T)}+\frac{\ln n}{\delta}
$$

Interpretation:

- Suppose that T is known in advance

Optimising the Learning Rate

Analysis
The expected number of mistakes of our algorithm $M^{(T)}$ satisfies

$$
\mathbf{E}\left[M^{(T)}\right] \leq 1 \cdot(1+\delta) \cdot \min _{i \in[n]} m_{i}^{(T)}+\frac{\ln n}{\delta}
$$

Interpretation:

- Suppose that T is known in advance
- Pick learning rate $\delta=\sqrt{\ln (n) / T}$ (assuming T is large enough so that $\delta \leq 1 / 2$!)

Optimising the Learning Rate

Analysis
The expected number of mistakes of our algorithm $M^{(T)}$ satisfies

$$
\mathbf{E}\left[M^{(T)}\right] \leq 1 \cdot(1+\delta) \cdot \min _{i \in[n]} m_{i}^{(T)}+\frac{\ln n}{\delta}
$$

Interpretation:

- Suppose that T is known in advance
- Pick learning rate $\delta=\sqrt{\ln (n) / T}$ (assuming T is large enough so that $\delta \leq 1 / 2$!)

$$
\mathbf{E}\left[M^{(T)}\right] \leq \min _{i \in[n]} m_{i}^{(T)}+\sqrt{\ln (n) / T} \cdot T+\sqrt{\ln (n) \cdot T}
$$

Optimising the Learning Rate

Analysis
The expected number of mistakes of our algorithm $M^{(T)}$ satisfies

$$
\mathbf{E}\left[M^{(T)}\right] \leq 1 \cdot(1+\delta) \cdot \min _{i \in[n]} m_{i}^{(T)}+\frac{\ln n}{\delta}
$$

Interpretation:

- Suppose that T is known in advance
- Pick learning rate $\delta=\sqrt{\ln (n) / T}$ (assuming T is large enough so that $\delta \leq 1 / 2$!)

$$
\begin{aligned}
\mathbf{E}\left[M^{(T)}\right] & \leq \min _{i \in[n]} m_{i}^{(T)}+\sqrt{\ln (n) / T} \cdot T+\sqrt{\ln (n) \cdot T} \\
& =\min _{i \in[n]} m_{i}^{(T)}+2 \cdot \sqrt{T \ln (n)}
\end{aligned}
$$

Optimising the Learning Rate

Analysis
The expected number of mistakes of our algorithm $M^{(T)}$ satisfies

$$
\mathbf{E}\left[M^{(T)}\right] \leq 1 \cdot(1+\delta) \cdot \min _{i \in[n]} m_{i}^{(T)}+\frac{\ln n}{\delta}
$$

Interpretation:

- Suppose that T is known in advance
- Pick learning rate $\delta=\sqrt{\ln (n) / T}$ (assuming T is large enough so that $\delta \leq 1 / 2$!)

$$
\begin{aligned}
\mathbf{E}\left[M^{(T)}\right] & \leq \min _{i \in[n]} m_{i}^{(T)}+\sqrt{\ln (n) / T} \cdot T+\sqrt{\ln (n) \cdot T} \\
& =\min _{i \in[n]} m_{i}^{(T)}+2 \cdot \sqrt{T \ln (n)}
\end{aligned}
$$

Additive error ("regret") negligible in most cases compared to $\min _{i \in[n]} m_{i}^{(T)}$!

Optimising the Learning Rate

Analysis
The expected number of mistakes of our algorithm $M^{(T)}$ satisfies

$$
\mathbf{E}\left[M^{(T)}\right] \leq 1 \cdot(1+\delta) \cdot \min _{i \in[n]} m_{i}^{(T)}+\frac{\ln n}{\delta}
$$

Interpretation:

- Suppose that T is known in advance
- Pick learning rate $\delta=\sqrt{\ln (n) / T}$ (assuming T is large enough so that $\delta \leq 1 / 2$!)

$$
\begin{aligned}
\mathbf{E}\left[M^{(T)}\right] & \leq \min _{i \in[n]} m_{i}^{(T)}+\sqrt{\ln (n) / T} \cdot T+\sqrt{\ln (n) \cdot T} \\
& =\min _{i \in[n]} m_{i}^{(T)}+2 \cdot \sqrt{T \ln (n)}
\end{aligned}
$$

Additive error ("regret") negligible in most cases compared to $\min _{i \in[n]} m_{i}^{(T)}$!
Can we do better than that?

A Tight Lower Bound

Corollary
For $\delta=\sqrt{\ln (n) / T}$, the expected number of our mistakes $M^{(T)}$ satisfies

$$
\mathbf{E}\left[M^{(T)}\right] \leq \min _{i \in[n]} m_{i}^{(T)}+2 \cdot \sqrt{T \ln (n)}
$$

A Tight Lower Bound

Corollary
For $\delta=\sqrt{\ln (n) / T}$, the expected number of our mistakes $M^{(T)}$ satisfies

$$
\mathbf{E}\left[M^{(T)}\right] \leq \min _{i \in[n]} m_{i}^{(T)}+2 \cdot \sqrt{T \ln (n)}
$$

- Suppose every expert $i=1,2, \ldots, n$ flips an unbiased coin, and the result is also an unbiased coin flip (independent of the experts' predictions)

A Tight Lower Bound

Corollary
For $\delta=\sqrt{\ln (n) / T}$, the expected number of our mistakes $M^{(T)}$ satisfies

$$
\mathbf{E}\left[M^{(T)}\right] \leq \min _{i \in[n]} m_{i}^{(T)}+2 \cdot \sqrt{T \ln (n)}
$$

- Suppose every expert $i=1,2, \ldots, n$ flips an unbiased coin, and the result is also an unbiased coin flip (independent of the experts' predictions)
- \Rightarrow Regardless of our algorithm, the number of our mistakes satisfies

A Tight Lower Bound

Corollary
For $\delta=\sqrt{\ln (n) / T}$, the expected number of our mistakes $M^{(T)}$ satisfies

$$
\mathbf{E}\left[M^{(T)}\right] \leq \min _{i \in[n]} m_{i}^{(T)}+2 \cdot \sqrt{T \ln (n)}
$$

- Suppose every expert $i=1,2, \ldots, n$ flips an unbiased coin, and the result is also an unbiased coin flip (independent of the experts' predictions)
- \Rightarrow Regardless of our algorithm, the number of our mistakes satisfies

$$
\mathbf{E}\left[M^{(T)}\right]=T \cdot \frac{1}{2}
$$

A Tight Lower Bound

Corollary
For $\delta=\sqrt{\ln (n) / T}$, the expected number of our mistakes $M^{(T)}$ satisfies

$$
\mathbf{E}\left[M^{(T)}\right] \leq \min _{i \in[n]} m_{i}^{(T)}+2 \cdot \sqrt{T \ln (n)}
$$

- Suppose every expert $i=1,2, \ldots, n$ flips an unbiased coin, and the result is also an unbiased coin flip (independent of the experts' predictions)
- \Rightarrow Regardless of our algorithm, the number of our mistakes satisfies

$$
\mathbf{E}\left[M^{(T)}\right]=T \cdot \frac{1}{2}
$$

- How good is the best expert?

A Tight Lower Bound

Corollary

For $\delta=\sqrt{\ln (n) / T}$, the expected number of our mistakes $M^{(T)}$ satisfies

$$
\mathbf{E}\left[M^{(T)}\right] \leq \min _{i \in[n]} m_{i}^{(T)}+2 \cdot \sqrt{T \ln (n)}
$$

- Suppose every expert $i=1,2, \ldots, n$ flips an unbiased coin, and the result is also an unbiased coin flip (independent of the experts' predictions)
- \Rightarrow Regardless of our algorithm, the number of our mistakes satisfies

$$
\mathbf{E}\left[M^{(T)}\right]=T \cdot \frac{1}{2}
$$

- How good is the best expert?
- Every expert $i \in[n]$ will make $T / 2 \pm \Theta(\sqrt{T})$ many mistakes

A Tight Lower Bound

Corollary

For $\delta=\sqrt{\ln (n) / T}$, the expected number of our mistakes $M^{(T)}$ satisfies

$$
\mathbf{E}\left[M^{(T)}\right] \leq \min _{i \in[n]} m_{i}^{(T)}+2 \cdot \sqrt{T \ln (n)}
$$

- Suppose every expert $i=1,2, \ldots, n$ flips an unbiased coin, and the result is also an unbiased coin flip (independent of the experts' predictions)
- \Rightarrow Regardless of our algorithm, the number of our mistakes satisfies

$$
\mathbf{E}\left[M^{(T)}\right]=T \cdot \frac{1}{2}
$$

- How good is the best expert?
- Every expert $i \in[n]$ will make $T / 2 \pm \Theta(\sqrt{T})$ many mistakes
- Best expert will make $T / 2-\Theta(\sqrt{T \ln (n)})$ many mistakes (proof omitted, is based on central limit theorem)

A Tight Lower Bound

Corollary

For $\delta=\sqrt{\ln (n) / T}$, the expected number of our mistakes $M^{(T)}$ satisfies

$$
\mathbf{E}\left[M^{(T)}\right] \leq \min _{i \in[n]} m_{i}^{(T)}+2 \cdot \sqrt{T \ln (n)}
$$

- Suppose every expert $i=1,2, \ldots, n$ flips an unbiased coin, and the result is also an unbiased coin flip (independent of the experts' predictions)
- \Rightarrow Regardless of our algorithm, the number of our mistakes satisfies

$$
\mathbf{E}\left[M^{(T)}\right]=T \cdot \frac{1}{2}
$$

- How good is the best expert?
- Every expert $i \in[n]$ will make $T / 2 \pm \Theta(\sqrt{T})$ many mistakes
- Best expert will make $T / 2-\Theta(\sqrt{T \ln (n)})$ many mistakes (proof omitted, is based on central limit theorem)

A Tight Lower Bound

Corollary

For $\delta=\sqrt{\ln (n) / T}$, the expected number of our mistakes $M^{(T)}$ satisfies

$$
\mathbf{E}\left[M^{(T)}\right] \leq \min _{i \in[n]} m_{i}^{(T)}+2 \cdot \sqrt{T \ln (n)}
$$

- Suppose every expert $i=1,2, \ldots, n$ flips an unbiased coin, and the result is also an unbiased coin flip (independent of the experts' predictions)
- \Rightarrow Regardless of our algorithm, the number of our mistakes satisfies

$$
\mathbf{E}\left[M^{(T)}\right]=T \cdot \frac{1}{2}
$$

- How good is the best expert?
- Every expert $i \in[n]$ will make $T / 2 \pm \Theta(\sqrt{T})$ many mistakes
- Best expert will make $T / 2-\Theta(\sqrt{T \ln (n)})$ many mistakes (proof omitted, is based on central limit theorem)
- This demonstrates tightness of the error term

A Tight Lower Bound

Corollary

For $\delta=\sqrt{\ln (n) / T}$, the expected number of our mistakes $M^{(T)}$ satisfies

$$
\mathbf{E}\left[M^{(T)}\right] \leq \min _{i \in[n]} m_{i}^{(T)}+2 \cdot \sqrt{T \ln (n)}
$$

- Suppose every expert $i=1,2, \ldots, n$ flips an unbiased coin, and the result is also an unbiased coin flip (independent of the experts' predictions)
- \Rightarrow Regardless of our algorithm, the number of our mistakes satisfies

$$
\mathbf{E}\left[M^{(T)}\right]=T \cdot \frac{1}{2}
$$

- How good is the best expert?
- Every expert $i \in[n]$ will make $T / 2 \pm \Theta(\sqrt{T})$ many mistakes
- Best expert will make $T / 2-\Theta(\sqrt{T \ln (n)})$ many mistakes (proof omitted, is based on central limit theorem)
- This demonstrates tightness of the error term
- Best expert will be good just by chance!

Outline

Introduction

Deterministic Weighted Majority

Randomised Weighted Majority

Extensions and Conclusions

Choosing the Learning Rate Dynamically (1/2)

Question: How to adjust learning rate if T is not known in advance?

Choosing the Learning Rate Dynamically (1/2)

Question: How to adjust learning rate if T is not known in advance?

Approach 1: "The Doubling Trick"

- Algorithm:

1. For $m=1,2, \ldots$
2. Run a new instance of algorithm on the 2^{m} rounds $t=2^{m}, \ldots, 2^{m+1}-1$ with "optimal" learning rate (for an algorithm that runs for 2^{m} steps)

- Analysis before shows that in phase m, number of additional mistakes compared to best expert (regret) is at most $\alpha \cdot \sqrt{2^{m}}$
\Rightarrow total regret after T steps is at most

$$
\frac{\sqrt{2}}{\sqrt{2}-1} \alpha \sqrt{T}
$$

where $\alpha=2 \cdot \sqrt{\ln (n)}$.

Choosing the Learning Rate Dynamically (2/2)

Approach 2

- Algorithm:

1. Run the randomised WMA with learning rate $\delta_{t} \approx 1 / \sqrt{t}$ in round t

- A modification of our analysis proves for any time-interval $[T / 2, T]$:

$$
\begin{aligned}
& \sum_{t=T / 2}^{T} \delta_{t} \cdot \lambda^{(t)} \cdot p^{(t)} \leq \log \left(\Phi^{(T / 2)}\right)+\left(1-\delta_{T}\right)^{m_{i}^{[T / 2, T]}} \\
\Rightarrow & \quad \mathbf{E}\left[M^{[T / 2, T]}\right] \leq \frac{m_{i}^{[T / 2, T]} \cdot \log \left(1-\delta_{T}\right)}{\delta_{T / 2}}+\frac{\log \left(\Phi^{(T / 2)}\right)}{\delta_{T / 2}}
\end{aligned}
$$

Choosing the Learning Rate Dynamically (2/2)

Approach 2

- Algorithm:

1. Run the randomised WMA with learning rate $\delta_{t} \approx 1 / \sqrt{t}$ in round t

- A modification of our analysis proves for any time-interval $[T / 2, T]$:

$$
\begin{aligned}
& \sum_{t=T / 2}^{T} \delta_{t} \cdot \lambda^{(t)} \cdot p^{(t)} \leq \log \left(\Phi^{(T / 2)}\right)+\left(1-\delta_{T}\right)^{m_{i}^{[T / 2, T]}} \\
\Rightarrow & \quad \mathbf{E}\left[M^{[T / 2, T]}\right] \leq \frac{m_{i}^{[T / 2, T]} \cdot \log \left(1-\delta_{T}\right)}{\delta_{T / 2}}+\frac{\log \left(\Phi^{(T / 2)}\right)}{\delta_{T / 2}}
\end{aligned}
$$

Approach 3: "Self-Confident Algorithm"

- Algorithm:

1. Run the randomised WMA with learning rate $\delta_{t} \approx 1 / \sqrt{\min _{i \in[n]} m_{i}^{(t)}}$ (or $1 / \sqrt{M^{(t)}}$) in round t

A More General Setting

New Setup

- At each step, we pick one expert i randomly out of n experts
- That expert i and our algorithm incur a cost $m_{i}^{(t)}$, but we also observe the costs of all experts (a vector $\left(m_{j}^{(t)}\right)_{i=1}^{n}$)
- costs $m_{j}^{(t)}$ can be arbitrary in the range $[-1,1]$

A More General Setting

New Setup

- At each step, we pick one expert i randomly out of n experts
- That expert i and our algorithm incur a cost $m_{i}^{(t)}$, but we also observe the costs of all experts (a vector $\left(m_{j}^{(t)}\right)_{i=1}^{n}$)
- costs $m_{j}^{(t)}$ can be arbitrary in the range $[-1,1]$

Coming back to our example of stock prediction:

A More General Setting

New Setup

- At each step, we pick one expert i randomly out of n experts
- That expert i and our algorithm incur a cost $m_{i}^{(t)}$, but we also observe the costs of all experts (a vector $\left(m_{j}^{(t)}\right)_{i=1}^{n}$)
- costs $m_{j}^{(t)}$ can be arbitrary in the range $[-1,1]$
Ω
Coming back to our example of stock prediction:
- could define cost $m_{j}^{(t)}=0$ if expert j is neutral (HOLD)

A More General Setting

New Setup

- At each step, we pick one expert i randomly out of n experts
- That expert i and our algorithm incur a cost $m_{i}^{(t)}$, but we also observe the costs of all experts (a vector $\left(m_{j}^{(t)}\right)_{i=1}^{n}$)
- costs $m_{j}^{(t)}$ can be arbitrary in the range $[-1,1]$

Coming back to our example of stock prediction:

- could define cost $m_{j}^{(t)}=0$ if expert j is neutral (HOLD)
- cost $m_{j}^{(t)}>0$ if expert j makes the wrong prediction (closer to 1 the stronger prediction and stronger the price change)

A More General Setting

New Setup

- At each step, we pick one expert i randomly out of n experts
- That expert i and our algorithm incur a cost $m_{i}^{(t)}$, but we also observe the costs of all experts (a vector $\left(m_{j}^{(t)}\right)_{i=1}^{n}$)
- costs $m_{j}^{(t)}$ can be arbitrary in the range $[-1,1]$

Coming back to our example of stock prediction:

- could define cost $m_{j}^{(t)}=0$ if expert j is neutral (HOLD)
- cost $m_{j}^{(t)}>0$ if expert j makes the wrong prediction (closer to 1 the stronger prediction and stronger the price change)
- cost $m_{j}^{(t)}<0$ if expert j makes the correct prediction

A More General Setting

New Setup

- At each step, we pick one expert i randomly out of n experts
- That expert i and our algorithm incur a cost $m_{i}^{(t)}$, but we also observe the costs of all experts (a vector $\left(m_{j}^{(t)}\right)_{i=1}^{n}$)
- costs $m_{j}^{(t)}$ can be arbitrary in the range $[-1,1]$

Coming back to our example of stock prediction:

- could define cost $m_{j}^{(t)}=0$ if expert j is neutral (HOLD)
- cost $m_{j}^{(t)}>0$ if expert j makes the wrong prediction (closer to 1 the stronger prediction and stronger the price change)
- cost $m_{j}^{(t)}<0$ if expert j makes the correct prediction

Idea of the "Multiplicative Weights-Algorithm"

- In the first iteration, simply pick an expert uniformly at random
- Every expert will be penalised or rewarded through a multiplicative weight-update

The Multiplicative Weights Algorithm

The Multiplicative Weights Algorithm

Initialization: Fix $\delta \leq 1 / 2$. For every $i \in[n]$, let $w_{i}^{(1)}:=1$
Update: For $t=1,2, \ldots, T$:

- Choose expert i with prop. proportional to $w_{i}^{(t)}$.
- Observe the costs of all n experts in round $t, m^{(t)}$
- For every expert i, update its weight by:

$$
w_{i}^{(t+1)}=\left(1-\delta m_{i}^{(t)}\right) w_{i}^{(t)}
$$

The Multiplicative Weights Algorithm

The Multiplicative Weights Algorithm

Initialization: Fix $\delta \leq 1 / 2$. For every $i \in[n]$, let $w_{i}^{(1)}:=1$
Update: For $t=1,2, \ldots, T$:

- Choose expert i with prop. proportional to $w_{i}^{(t)}$.
- Observe the costs of all n experts in round $t, m^{(t)}$
- For every expert i, update its weight by:

$$
w_{i}^{(t+1)}=\left(1-\delta m_{i}^{(t)}\right) w_{i}^{(t)}
$$

Analysis
For any expert i, the expected cost of this algorithm is at most

$$
\sum_{t=1}^{T} m_{i}^{(t)}+\delta \cdot \sum_{t=1}^{T}\left|m_{i}^{(t)}\right|+\frac{\log n}{\delta}
$$

The Multiplicative Weights Algorithm

The Multiplicative Weights Algorithm

Initialization: Fix $\delta \leq 1 / 2$. For every $i \in[n]$, let $w_{i}^{(1)}:=1$
Update: For $t=1,2, \ldots, T$:

- Choose expert i with prop. proportional to $w_{i}^{(t)}$.
- Observe the costs of all n experts in round $t, m^{(t)}$
- For every expert i, update its weight by:

$$
w_{i}^{(t+1)}=\left(1-\delta m_{i}^{(t)}\right) w_{i}^{(t)}
$$

Analysis

For any expert i, the expected cost of this algorithm is at most

$$
\sum_{t=1}^{T} m_{i}^{(t)}+\delta \cdot \sum_{t=1}^{T}\left|m_{i}^{(t)}\right|+\frac{\log n}{\delta}
$$

Derivation is very similar to the ones shown before.

Conclusions

Summary

- Weighted Majority Algorithm
- natural, simple (and deterministic) algorithm
- good performance, but could be a factor of 2 worse than the best expert
- Randomised Weighted Majority Algorithm
- Randomised extension
- almost optimal performance thanks to randomisation which guards against tailored worst-case instances (cmp. Quick-Sort!)
- impact of the learning rate: small learning rate gives very good performance guarantees. However, actual performance may depend on the specific data set at hand (cf. simulations!)
- Multiplicative Weight-Update Algorithm
- further generalisation of the (randomised) weighted majority algorithm

Conclusions

Summary

- Weighted Majority Algorithm
- natural, simple (and deterministic) algorithm
- good performance, but could be a factor of 2 worse than the best expert
- Randomised Weighted Majority Algorithm
- Randomised extension
- almost optimal performance thanks to randomisation which guards against tailored worst-case instances (cmp. Quick-Sort!)
- impact of the learning rate: small learning rate gives very good performance guarantees. However, actual performance may depend on the specific data set at hand (cf. simulations!)
- Multiplicative Weight-Update Algorithm
- further generalisation of the (randomised) weighted majority algorithm

Outlook

- These algorithms are examples of the Ensemble-Method:

Framework combining weak predictions into a strong learner

- A closely related algorithmic approach: Follow the Perturbed Leader
- Similar update schemes are Perceptron and AdaBoost

References

S. Arora, E. Hazan and S. Kale

The Multiplicative Weights Update Method: A Meta-Algorithm and Applications
Theory of Computing, Volume 8 (2012).
國 N. Littlestone and M.K. Warmuth The Weighted Majority Algorithm Information and Computation, Volume 108, Issue 2, 1994.
囯 S. Shalev-Shwartz and S. Ben-David Understanding Machine Learning: From Theory to Algorithms Cambridge University Press, 2014.

```
https://www.cs.huji.ac.il/~}shais/UnderstandingMachineLearning/ 
```

understanding-machine-learning-theory-algorithms.pdf

