
Randomised Algorithms
Lecture 14: Online Learning with Experts

Thomas Sauerwald (tms41@cam.ac.uk)

Lent 2022



Outline

Introduction

Deterministic Weighted Majority

Randomised Weighted Majority

Extensions and Conclusions

Learning with Experts © Thomas Sauerwald Introduction 2



Landscape of Machine Learning Algorithms

No Training Set

Training Set
provided initially

Feedback
after Decisions

Extract
Knowledge

Predict
unseen data

Maximise
Reward

Supervised Learning
Classification, regression: logistic regr.,

SVM, decision tree, neural networks, naive
Bayes, Perceptron, kNN, Boosting

Unsupervised Learning
Clustering: spectral, hierarchical, k-means;

Dimensionality Reduction, PCA, SVD

Online and Reinforcement Learning
Expert Learning: Weighted-Majority,

Multiplicative-Update, Markov Decision
Processes: Multi-Armed Bandits, Q-Learning

Learning with Experts © Thomas Sauerwald Introduction 3



Online Algorithm/Reinforcement Learning Framework

Agent

Environment

takes actionprovides reward/
more data

Iteration:

In each iteration, agent
receives more information
⇒ agent’s state is updated

Learning with Experts © Thomas Sauerwald Introduction 4



Online Algorithm/Reinforcement Learning Framework

Agent

Environment

takes action

provides reward/
more data

Iteration: 1

In each iteration, agent
receives more information
⇒ agent’s state is updated

Learning with Experts © Thomas Sauerwald Introduction 4



Online Algorithm/Reinforcement Learning Framework

Agent

Environment

takes actionprovides reward/
more data

Iteration: 1

In each iteration, agent
receives more information
⇒ agent’s state is updated

Learning with Experts © Thomas Sauerwald Introduction 4



Online Algorithm/Reinforcement Learning Framework

Agent

Environment

takes actionprovides reward/
more data

Iteration: 2

In each iteration, agent
receives more information
⇒ agent’s state is updated

Learning with Experts © Thomas Sauerwald Introduction 4



Online Algorithm/Reinforcement Learning Framework

Agent

Environment

takes actionprovides reward/
more data

Iteration: 2

In each iteration, agent
receives more information
⇒ agent’s state is updated

Learning with Experts © Thomas Sauerwald Introduction 4



Online Algorithm/Reinforcement Learning Framework

Agent

Environment

takes actionprovides reward/
more data

Iteration: 3

In each iteration, agent
receives more information
⇒ agent’s state is updated

Learning with Experts © Thomas Sauerwald Introduction 4



Online Algorithm/Reinforcement Learning Framework

Agent

Environment

takes actionprovides reward/
more data

Iteration: 3

In each iteration, agent
receives more information
⇒ agent’s state is updated

Learning with Experts © Thomas Sauerwald Introduction 4



Online Algorithm/Reinforcement Learning Framework

Agent

Environment

takes actionprovides reward/
more data

Iteration: 4

In each iteration, agent
receives more information
⇒ agent’s state is updated

Learning with Experts © Thomas Sauerwald Introduction 4



Online Algorithm/Reinforcement Learning Framework

Agent

Environment

takes actionprovides reward/
more data

Iteration: 4

In each iteration, agent
receives more information
⇒ agent’s state is updated

Learning with Experts © Thomas Sauerwald Introduction 4



Online Algorithm/Reinforcement Learning Framework

Agent

Environment

takes actionprovides reward/
more data

Iteration: 5

In each iteration, agent
receives more information
⇒ agent’s state is updated

Learning with Experts © Thomas Sauerwald Introduction 4



Online Algorithm/Reinforcement Learning Framework

Agent

Environment

takes actionprovides reward/
more data

Iteration: 5

In each iteration, agent
receives more information
⇒ agent’s state is updated

Learning with Experts © Thomas Sauerwald Introduction 4



Online Algorithm/Reinforcement Learning Framework

Agent

Environment

takes actionprovides reward/
more data

Iteration: 5

In each iteration, agent
receives more information
⇒ agent’s state is updated

Learning with Experts © Thomas Sauerwald Introduction 4



Source: Yahoo Finance, 5 March 2022

Disclaimer: This is only given as a high-level motivation for the algorithm. It is not
suggested to use any of the following ideas in practice at this or any other point.

Learning with Experts © Thomas Sauerwald Introduction 5



Source: Yahoo Finance, 5 March 2022

Disclaimer: This is only given as a high-level motivation for the algorithm. It is not
suggested to use any of the following ideas in practice at this or any other point.

Learning with Experts © Thomas Sauerwald Introduction 5



Source: CNN Money, 5 March 2022

Other Applications: Spam Filtering, Weather Prediction, . . .

Learning with Experts © Thomas Sauerwald Introduction 6



Source: CNN Money, 5 March 2022

Other Applications: Spam Filtering, Weather Prediction, . . .

Learning with Experts © Thomas Sauerwald Introduction 6



Outline

Introduction

Deterministic Weighted Majority

Randomised Weighted Majority

Extensions and Conclusions

Learning with Experts © Thomas Sauerwald Deterministic Weighted Majority 7



Online Learning using Expert Advice

Basic Setup

Assume there is a single stock, and daily price movement is a sequence
of binary events (up = 1 /down = 0)

The stock movements can be arbitrary (i.e., adversarial)

We are allowed to watch n experts (these might be arbitrarily bad and
correlated)

Weighted Majority Algorithm
Initialization: Fix δ ≤ 1/2. For every i ∈ [n], let w (1)

i := 1
Update: For t = 1, 2, . . . ,T :

Make prediction which is the weighted majority of the
experts’ predictions

For every expert i who predicts wrongly, decrease his
weight by a factor of (1− δ):

w (t+1)
i = (1− δ)w (t)

i

Example of an ensemble method, combining advice from several other “algorithms”.

Learning with Experts © Thomas Sauerwald Deterministic Weighted Majority 8



Online Learning using Expert Advice

Basic Setup

Assume there is a single stock, and daily price movement is a sequence
of binary events (up = 1 /down = 0)

The stock movements can be arbitrary (i.e., adversarial)

We are allowed to watch n experts (these might be arbitrarily bad and
correlated)

Weighted Majority Algorithm
Initialization: Fix δ ≤ 1/2. For every i ∈ [n], let w (1)

i := 1
Update: For t = 1, 2, . . . ,T :

Make prediction which is the weighted majority of the
experts’ predictions

For every expert i who predicts wrongly, decrease his
weight by a factor of (1− δ):

w (t+1)
i = (1− δ)w (t)

i

Example of an ensemble method, combining advice from several other “algorithms”.

Learning with Experts © Thomas Sauerwald Deterministic Weighted Majority 8



Online Learning using Expert Advice

Basic Setup

Assume there is a single stock, and daily price movement is a sequence
of binary events (up = 1 /down = 0)

The stock movements can be arbitrary (i.e., adversarial)

We are allowed to watch n experts (these might be arbitrarily bad and
correlated)

Weighted Majority Algorithm
Initialization: Fix δ ≤ 1/2. For every i ∈ [n], let w (1)

i := 1
Update: For t = 1, 2, . . . ,T :

Make prediction which is the weighted majority of the
experts’ predictions

For every expert i who predicts wrongly, decrease his
weight by a factor of (1− δ):

w (t+1)
i = (1− δ)w (t)

i

Example of an ensemble method, combining advice from several other “algorithms”.

Learning with Experts © Thomas Sauerwald Deterministic Weighted Majority 8



Weighted Majority Algorithm: Example

Let δ = 1/2, n = 3

t Expert Weights Expert Predictions Our Pred. Result Our Errors

1 1, 1, 1 1, 1, 0 1 X 1 0

2 1, 1, 1/2 0, 1, 0 0 7 1 1

3 1/2, 1, 1/4 1, 0, 1 0 X 0 1

4 1/4, 1, 1/8 0, 1, 1 1 7 0 2

5 1/4, 1/2, 1/16 1, 1, 0 1 X 1 2

6 1/4, 1/2, 1/32 0, 1, 1 1 X 1 2

7 1/8, 1/2, 1/32 0, 1, 0 1 7 0 3

8 1/8, 1/4, 1/32 1, 0, 1 0 7 1 4

9 1/8, 1/8, 1/32 0, 0, 0 0 X 0 4

10 1/8, 1/8, 1/32 1, 0, 1 1 7 0 5

11 1/16, 1/8, 1/64 – – – –

⇒ We made 5 mistakes, while the best expert made only 3 mistakes.
This looks quite bad, but the example is too small to draw conclusions!

Learning with Experts © Thomas Sauerwald Deterministic Weighted Majority 9



Weighted Majority Algorithm: Example

Let δ = 1/2, n = 3

t Expert Weights Expert Predictions Our Pred. Result Our Errors

1 1, 1, 1 1, 1, 0 1 X 1 0

2 1, 1, 1/2 0, 1, 0 0 7 1 1

3 1/2, 1, 1/4 1, 0, 1 0 X 0 1

4 1/4, 1, 1/8 0, 1, 1 1 7 0 2

5 1/4, 1/2, 1/16 1, 1, 0 1 X 1 2

6 1/4, 1/2, 1/32 0, 1, 1 1 X 1 2

7 1/8, 1/2, 1/32 0, 1, 0 1 7 0 3

8 1/8, 1/4, 1/32 1, 0, 1 0 7 1 4

9 1/8, 1/8, 1/32 0, 0, 0 0 X 0 4

10 1/8, 1/8, 1/32 1, 0, 1 1 7 0 5

11 1/16, 1/8, 1/64 – – – –

⇒ We made 5 mistakes, while the best expert made only 3 mistakes.
This looks quite bad, but the example is too small to draw conclusions!

Learning with Experts © Thomas Sauerwald Deterministic Weighted Majority 9



Weighted Majority Algorithm: Example

Let δ = 1/2, n = 3

t Expert Weights Expert Predictions Our Pred. Result Our Errors

1 1, 1, 1 1, 1, 0 1 X 1 0

2 1, 1, 1/2

0, 1, 0 0 7 1 1

3 1/2, 1, 1/4 1, 0, 1 0 X 0 1

4 1/4, 1, 1/8 0, 1, 1 1 7 0 2

5 1/4, 1/2, 1/16 1, 1, 0 1 X 1 2

6 1/4, 1/2, 1/32 0, 1, 1 1 X 1 2

7 1/8, 1/2, 1/32 0, 1, 0 1 7 0 3

8 1/8, 1/4, 1/32 1, 0, 1 0 7 1 4

9 1/8, 1/8, 1/32 0, 0, 0 0 X 0 4

10 1/8, 1/8, 1/32 1, 0, 1 1 7 0 5

11 1/16, 1/8, 1/64 – – – –

⇒ We made 5 mistakes, while the best expert made only 3 mistakes.
This looks quite bad, but the example is too small to draw conclusions!

Learning with Experts © Thomas Sauerwald Deterministic Weighted Majority 9



Weighted Majority Algorithm: Example

Let δ = 1/2, n = 3

t Expert Weights Expert Predictions Our Pred. Result Our Errors

1 1, 1, 1 1, 1, 0 1 X 1 0

2 1, 1, 1/2 0, 1, 0 0 7 1 1

3 1/2, 1, 1/4 1, 0, 1 0 X 0 1

4 1/4, 1, 1/8 0, 1, 1 1 7 0 2

5 1/4, 1/2, 1/16 1, 1, 0 1 X 1 2

6 1/4, 1/2, 1/32 0, 1, 1 1 X 1 2

7 1/8, 1/2, 1/32 0, 1, 0 1 7 0 3

8 1/8, 1/4, 1/32 1, 0, 1 0 7 1 4

9 1/8, 1/8, 1/32 0, 0, 0 0 X 0 4

10 1/8, 1/8, 1/32 1, 0, 1 1 7 0 5

11 1/16, 1/8, 1/64 – – – –

⇒ We made 5 mistakes, while the best expert made only 3 mistakes.
This looks quite bad, but the example is too small to draw conclusions!

Learning with Experts © Thomas Sauerwald Deterministic Weighted Majority 9



Weighted Majority Algorithm: Example

Let δ = 1/2, n = 3

t Expert Weights Expert Predictions Our Pred. Result Our Errors

1 1, 1, 1 1, 1, 0 1 X 1 0

2 1, 1, 1/2 0, 1, 0 0 7 1 1

3 1/2, 1, 1/4 1, 0, 1

0 X 0 1

4 1/4, 1, 1/8 0, 1, 1 1 7 0 2

5 1/4, 1/2, 1/16 1, 1, 0 1 X 1 2

6 1/4, 1/2, 1/32 0, 1, 1 1 X 1 2

7 1/8, 1/2, 1/32 0, 1, 0 1 7 0 3

8 1/8, 1/4, 1/32 1, 0, 1 0 7 1 4

9 1/8, 1/8, 1/32 0, 0, 0 0 X 0 4

10 1/8, 1/8, 1/32 1, 0, 1 1 7 0 5

11 1/16, 1/8, 1/64 – – – –

⇒ We made 5 mistakes, while the best expert made only 3 mistakes.
This looks quite bad, but the example is too small to draw conclusions!

Learning with Experts © Thomas Sauerwald Deterministic Weighted Majority 9



Weighted Majority Algorithm: Example

Let δ = 1/2, n = 3

t Expert Weights Expert Predictions Our Pred. Result Our Errors

1 1, 1, 1 1, 1, 0 1 X 1 0

2 1, 1, 1/2 0, 1, 0 0 7 1 1

3 1/2, 1, 1/4 1, 0, 1 0 X 0 1

4 1/4, 1, 1/8 0, 1, 1 1 7 0 2

5 1/4, 1/2, 1/16 1, 1, 0 1 X 1 2

6 1/4, 1/2, 1/32 0, 1, 1 1 X 1 2

7 1/8, 1/2, 1/32 0, 1, 0 1 7 0 3

8 1/8, 1/4, 1/32 1, 0, 1 0 7 1 4

9 1/8, 1/8, 1/32 0, 0, 0 0 X 0 4

10 1/8, 1/8, 1/32 1, 0, 1 1 7 0 5

11 1/16, 1/8, 1/64 – – – –

⇒ We made 5 mistakes, while the best expert made only 3 mistakes.
This looks quite bad, but the example is too small to draw conclusions!

Learning with Experts © Thomas Sauerwald Deterministic Weighted Majority 9



Weighted Majority Algorithm: Example

Let δ = 1/2, n = 3

t Expert Weights Expert Predictions Our Pred. Result Our Errors

1 1, 1, 1 1, 1, 0 1 X 1 0

2 1, 1, 1/2 0, 1, 0 0 7 1 1

3 1/2, 1, 1/4 1, 0, 1 0 X 0 1

4 1/4, 1, 1/8 0, 1, 1

1 7 0 2

5 1/4, 1/2, 1/16 1, 1, 0 1 X 1 2

6 1/4, 1/2, 1/32 0, 1, 1 1 X 1 2

7 1/8, 1/2, 1/32 0, 1, 0 1 7 0 3

8 1/8, 1/4, 1/32 1, 0, 1 0 7 1 4

9 1/8, 1/8, 1/32 0, 0, 0 0 X 0 4

10 1/8, 1/8, 1/32 1, 0, 1 1 7 0 5

11 1/16, 1/8, 1/64 – – – –

⇒ We made 5 mistakes, while the best expert made only 3 mistakes.
This looks quite bad, but the example is too small to draw conclusions!

Learning with Experts © Thomas Sauerwald Deterministic Weighted Majority 9



Weighted Majority Algorithm: Example

Let δ = 1/2, n = 3

t Expert Weights Expert Predictions Our Pred. Result Our Errors

1 1, 1, 1 1, 1, 0 1 X 1 0

2 1, 1, 1/2 0, 1, 0 0 7 1 1

3 1/2, 1, 1/4 1, 0, 1 0 X 0 1

4 1/4, 1, 1/8 0, 1, 1 1 7 0 2

5 1/4, 1/2, 1/16 1, 1, 0 1 X 1 2

6 1/4, 1/2, 1/32 0, 1, 1 1 X 1 2

7 1/8, 1/2, 1/32 0, 1, 0 1 7 0 3

8 1/8, 1/4, 1/32 1, 0, 1 0 7 1 4

9 1/8, 1/8, 1/32 0, 0, 0 0 X 0 4

10 1/8, 1/8, 1/32 1, 0, 1 1 7 0 5

11 1/16, 1/8, 1/64 – – – –

⇒ We made 5 mistakes, while the best expert made only 3 mistakes.
This looks quite bad, but the example is too small to draw conclusions!

Learning with Experts © Thomas Sauerwald Deterministic Weighted Majority 9



Weighted Majority Algorithm: Example

Let δ = 1/2, n = 3

t Expert Weights Expert Predictions Our Pred. Result Our Errors

1 1, 1, 1 1, 1, 0 1 X 1 0

2 1, 1, 1/2 0, 1, 0 0 7 1 1

3 1/2, 1, 1/4 1, 0, 1 0 X 0 1

4 1/4, 1, 1/8 0, 1, 1 1 7 0 2

5 1/4, 1/2, 1/16 1, 1, 0

1 X 1 2

6 1/4, 1/2, 1/32 0, 1, 1 1 X 1 2

7 1/8, 1/2, 1/32 0, 1, 0 1 7 0 3

8 1/8, 1/4, 1/32 1, 0, 1 0 7 1 4

9 1/8, 1/8, 1/32 0, 0, 0 0 X 0 4

10 1/8, 1/8, 1/32 1, 0, 1 1 7 0 5

11 1/16, 1/8, 1/64 – – – –

⇒ We made 5 mistakes, while the best expert made only 3 mistakes.
This looks quite bad, but the example is too small to draw conclusions!

Learning with Experts © Thomas Sauerwald Deterministic Weighted Majority 9



Weighted Majority Algorithm: Example

Let δ = 1/2, n = 3

t Expert Weights Expert Predictions Our Pred. Result Our Errors

1 1, 1, 1 1, 1, 0 1 X 1 0

2 1, 1, 1/2 0, 1, 0 0 7 1 1

3 1/2, 1, 1/4 1, 0, 1 0 X 0 1

4 1/4, 1, 1/8 0, 1, 1 1 7 0 2

5 1/4, 1/2, 1/16 1, 1, 0 1 X 1 2

6 1/4, 1/2, 1/32 0, 1, 1 1 X 1 2

7 1/8, 1/2, 1/32 0, 1, 0 1 7 0 3

8 1/8, 1/4, 1/32 1, 0, 1 0 7 1 4

9 1/8, 1/8, 1/32 0, 0, 0 0 X 0 4

10 1/8, 1/8, 1/32 1, 0, 1 1 7 0 5

11 1/16, 1/8, 1/64 – – – –

⇒ We made 5 mistakes, while the best expert made only 3 mistakes.
This looks quite bad, but the example is too small to draw conclusions!

Learning with Experts © Thomas Sauerwald Deterministic Weighted Majority 9



Weighted Majority Algorithm: Example

Let δ = 1/2, n = 3

t Expert Weights Expert Predictions Our Pred. Result Our Errors

1 1, 1, 1 1, 1, 0 1 X 1 0

2 1, 1, 1/2 0, 1, 0 0 7 1 1

3 1/2, 1, 1/4 1, 0, 1 0 X 0 1

4 1/4, 1, 1/8 0, 1, 1 1 7 0 2

5 1/4, 1/2, 1/16 1, 1, 0 1 X 1 2

6 1/4, 1/2, 1/32 0, 1, 1

1 X 1 2

7 1/8, 1/2, 1/32 0, 1, 0 1 7 0 3

8 1/8, 1/4, 1/32 1, 0, 1 0 7 1 4

9 1/8, 1/8, 1/32 0, 0, 0 0 X 0 4

10 1/8, 1/8, 1/32 1, 0, 1 1 7 0 5

11 1/16, 1/8, 1/64 – – – –

⇒ We made 5 mistakes, while the best expert made only 3 mistakes.
This looks quite bad, but the example is too small to draw conclusions!

Learning with Experts © Thomas Sauerwald Deterministic Weighted Majority 9



Weighted Majority Algorithm: Example

Let δ = 1/2, n = 3

t Expert Weights Expert Predictions Our Pred. Result Our Errors

1 1, 1, 1 1, 1, 0 1 X 1 0

2 1, 1, 1/2 0, 1, 0 0 7 1 1

3 1/2, 1, 1/4 1, 0, 1 0 X 0 1

4 1/4, 1, 1/8 0, 1, 1 1 7 0 2

5 1/4, 1/2, 1/16 1, 1, 0 1 X 1 2

6 1/4, 1/2, 1/32 0, 1, 1 1 X 1 2

7 1/8, 1/2, 1/32 0, 1, 0 1 7 0 3

8 1/8, 1/4, 1/32 1, 0, 1 0 7 1 4

9 1/8, 1/8, 1/32 0, 0, 0 0 X 0 4

10 1/8, 1/8, 1/32 1, 0, 1 1 7 0 5

11 1/16, 1/8, 1/64 – – – –

⇒ We made 5 mistakes, while the best expert made only 3 mistakes.
This looks quite bad, but the example is too small to draw conclusions!

Learning with Experts © Thomas Sauerwald Deterministic Weighted Majority 9



Weighted Majority Algorithm: Example

Let δ = 1/2, n = 3

t Expert Weights Expert Predictions Our Pred. Result Our Errors

1 1, 1, 1 1, 1, 0 1 X 1 0

2 1, 1, 1/2 0, 1, 0 0 7 1 1

3 1/2, 1, 1/4 1, 0, 1 0 X 0 1

4 1/4, 1, 1/8 0, 1, 1 1 7 0 2

5 1/4, 1/2, 1/16 1, 1, 0 1 X 1 2

6 1/4, 1/2, 1/32 0, 1, 1 1 X 1 2

7 1/8, 1/2, 1/32 0, 1, 0

1 7 0 3

8 1/8, 1/4, 1/32 1, 0, 1 0 7 1 4

9 1/8, 1/8, 1/32 0, 0, 0 0 X 0 4

10 1/8, 1/8, 1/32 1, 0, 1 1 7 0 5

11 1/16, 1/8, 1/64 – – – –

⇒ We made 5 mistakes, while the best expert made only 3 mistakes.
This looks quite bad, but the example is too small to draw conclusions!

Learning with Experts © Thomas Sauerwald Deterministic Weighted Majority 9



Weighted Majority Algorithm: Example

Let δ = 1/2, n = 3

t Expert Weights Expert Predictions Our Pred. Result Our Errors

1 1, 1, 1 1, 1, 0 1 X 1 0

2 1, 1, 1/2 0, 1, 0 0 7 1 1

3 1/2, 1, 1/4 1, 0, 1 0 X 0 1

4 1/4, 1, 1/8 0, 1, 1 1 7 0 2

5 1/4, 1/2, 1/16 1, 1, 0 1 X 1 2

6 1/4, 1/2, 1/32 0, 1, 1 1 X 1 2

7 1/8, 1/2, 1/32 0, 1, 0 1 7 0 3

8 1/8, 1/4, 1/32 1, 0, 1 0 7 1 4

9 1/8, 1/8, 1/32 0, 0, 0 0 X 0 4

10 1/8, 1/8, 1/32 1, 0, 1 1 7 0 5

11 1/16, 1/8, 1/64 – – – –

⇒ We made 5 mistakes, while the best expert made only 3 mistakes.
This looks quite bad, but the example is too small to draw conclusions!

Learning with Experts © Thomas Sauerwald Deterministic Weighted Majority 9



Weighted Majority Algorithm: Example

Let δ = 1/2, n = 3

t Expert Weights Expert Predictions Our Pred. Result Our Errors

1 1, 1, 1 1, 1, 0 1 X 1 0

2 1, 1, 1/2 0, 1, 0 0 7 1 1

3 1/2, 1, 1/4 1, 0, 1 0 X 0 1

4 1/4, 1, 1/8 0, 1, 1 1 7 0 2

5 1/4, 1/2, 1/16 1, 1, 0 1 X 1 2

6 1/4, 1/2, 1/32 0, 1, 1 1 X 1 2

7 1/8, 1/2, 1/32 0, 1, 0 1 7 0 3

8 1/8, 1/4, 1/32 1, 0, 1

0 7 1 4

9 1/8, 1/8, 1/32 0, 0, 0 0 X 0 4

10 1/8, 1/8, 1/32 1, 0, 1 1 7 0 5

11 1/16, 1/8, 1/64 – – – –

⇒ We made 5 mistakes, while the best expert made only 3 mistakes.
This looks quite bad, but the example is too small to draw conclusions!

Learning with Experts © Thomas Sauerwald Deterministic Weighted Majority 9



Weighted Majority Algorithm: Example

Let δ = 1/2, n = 3

t Expert Weights Expert Predictions Our Pred. Result Our Errors

1 1, 1, 1 1, 1, 0 1 X 1 0

2 1, 1, 1/2 0, 1, 0 0 7 1 1

3 1/2, 1, 1/4 1, 0, 1 0 X 0 1

4 1/4, 1, 1/8 0, 1, 1 1 7 0 2

5 1/4, 1/2, 1/16 1, 1, 0 1 X 1 2

6 1/4, 1/2, 1/32 0, 1, 1 1 X 1 2

7 1/8, 1/2, 1/32 0, 1, 0 1 7 0 3

8 1/8, 1/4, 1/32 1, 0, 1 0 7 1 4

9 1/8, 1/8, 1/32 0, 0, 0 0 X 0 4

10 1/8, 1/8, 1/32 1, 0, 1 1 7 0 5

11 1/16, 1/8, 1/64 – – – –

⇒ We made 5 mistakes, while the best expert made only 3 mistakes.
This looks quite bad, but the example is too small to draw conclusions!

Learning with Experts © Thomas Sauerwald Deterministic Weighted Majority 9



Weighted Majority Algorithm: Example

Let δ = 1/2, n = 3

t Expert Weights Expert Predictions Our Pred. Result Our Errors

1 1, 1, 1 1, 1, 0 1 X 1 0

2 1, 1, 1/2 0, 1, 0 0 7 1 1

3 1/2, 1, 1/4 1, 0, 1 0 X 0 1

4 1/4, 1, 1/8 0, 1, 1 1 7 0 2

5 1/4, 1/2, 1/16 1, 1, 0 1 X 1 2

6 1/4, 1/2, 1/32 0, 1, 1 1 X 1 2

7 1/8, 1/2, 1/32 0, 1, 0 1 7 0 3

8 1/8, 1/4, 1/32 1, 0, 1 0 7 1 4

9 1/8, 1/8, 1/32 0, 0, 0

0 X 0 4

10 1/8, 1/8, 1/32 1, 0, 1 1 7 0 5

11 1/16, 1/8, 1/64 – – – –

⇒ We made 5 mistakes, while the best expert made only 3 mistakes.
This looks quite bad, but the example is too small to draw conclusions!

Learning with Experts © Thomas Sauerwald Deterministic Weighted Majority 9



Weighted Majority Algorithm: Example

Let δ = 1/2, n = 3

t Expert Weights Expert Predictions Our Pred. Result Our Errors

1 1, 1, 1 1, 1, 0 1 X 1 0

2 1, 1, 1/2 0, 1, 0 0 7 1 1

3 1/2, 1, 1/4 1, 0, 1 0 X 0 1

4 1/4, 1, 1/8 0, 1, 1 1 7 0 2

5 1/4, 1/2, 1/16 1, 1, 0 1 X 1 2

6 1/4, 1/2, 1/32 0, 1, 1 1 X 1 2

7 1/8, 1/2, 1/32 0, 1, 0 1 7 0 3

8 1/8, 1/4, 1/32 1, 0, 1 0 7 1 4

9 1/8, 1/8, 1/32 0, 0, 0 0 X 0 4

10 1/8, 1/8, 1/32 1, 0, 1 1 7 0 5

11 1/16, 1/8, 1/64 – – – –

⇒ We made 5 mistakes, while the best expert made only 3 mistakes.
This looks quite bad, but the example is too small to draw conclusions!

Learning with Experts © Thomas Sauerwald Deterministic Weighted Majority 9



Weighted Majority Algorithm: Example

Let δ = 1/2, n = 3

t Expert Weights Expert Predictions Our Pred. Result Our Errors

1 1, 1, 1 1, 1, 0 1 X 1 0

2 1, 1, 1/2 0, 1, 0 0 7 1 1

3 1/2, 1, 1/4 1, 0, 1 0 X 0 1

4 1/4, 1, 1/8 0, 1, 1 1 7 0 2

5 1/4, 1/2, 1/16 1, 1, 0 1 X 1 2

6 1/4, 1/2, 1/32 0, 1, 1 1 X 1 2

7 1/8, 1/2, 1/32 0, 1, 0 1 7 0 3

8 1/8, 1/4, 1/32 1, 0, 1 0 7 1 4

9 1/8, 1/8, 1/32 0, 0, 0 0 X 0 4

10 1/8, 1/8, 1/32 1, 0, 1

1 7 0 5

11 1/16, 1/8, 1/64 – – – –

⇒ We made 5 mistakes, while the best expert made only 3 mistakes.
This looks quite bad, but the example is too small to draw conclusions!

Learning with Experts © Thomas Sauerwald Deterministic Weighted Majority 9



Weighted Majority Algorithm: Example

Let δ = 1/2, n = 3

t Expert Weights Expert Predictions Our Pred. Result Our Errors

1 1, 1, 1 1, 1, 0 1 X 1 0

2 1, 1, 1/2 0, 1, 0 0 7 1 1

3 1/2, 1, 1/4 1, 0, 1 0 X 0 1

4 1/4, 1, 1/8 0, 1, 1 1 7 0 2

5 1/4, 1/2, 1/16 1, 1, 0 1 X 1 2

6 1/4, 1/2, 1/32 0, 1, 1 1 X 1 2

7 1/8, 1/2, 1/32 0, 1, 0 1 7 0 3

8 1/8, 1/4, 1/32 1, 0, 1 0 7 1 4

9 1/8, 1/8, 1/32 0, 0, 0 0 X 0 4

10 1/8, 1/8, 1/32 1, 0, 1 1 7 0 5

11 1/16, 1/8, 1/64 – – – –

⇒ We made 5 mistakes, while the best expert made only 3 mistakes.
This looks quite bad, but the example is too small to draw conclusions!

Learning with Experts © Thomas Sauerwald Deterministic Weighted Majority 9



Weighted Majority Algorithm: Example

Let δ = 1/2, n = 3

t Expert Weights Expert Predictions Our Pred. Result Our Errors

1 1, 1, 1 1, 1, 0 1 X 1 0

2 1, 1, 1/2 0, 1, 0 0 7 1 1

3 1/2, 1, 1/4 1, 0, 1 0 X 0 1

4 1/4, 1, 1/8 0, 1, 1 1 7 0 2

5 1/4, 1/2, 1/16 1, 1, 0 1 X 1 2

6 1/4, 1/2, 1/32 0, 1, 1 1 X 1 2

7 1/8, 1/2, 1/32 0, 1, 0 1 7 0 3

8 1/8, 1/4, 1/32 1, 0, 1 0 7 1 4

9 1/8, 1/8, 1/32 0, 0, 0 0 X 0 4

10 1/8, 1/8, 1/32 1, 0, 1 1 7 0 5

11 1/16, 1/8, 1/64 – – – –

⇒ We made 5 mistakes, while the best expert made only 3 mistakes.
This looks quite bad, but the example is too small to draw conclusions!

Learning with Experts © Thomas Sauerwald Deterministic Weighted Majority 9



Weighted Majority Algorithm: Example

Let δ = 1/2, n = 3

t Expert Weights Expert Predictions Our Pred. Result Our Errors

1 1, 1, 1 1, 1, 0 1 X 1 0

2 1, 1, 1/2 0, 1, 0 0 7 1 1

3 1/2, 1, 1/4 1, 0, 1 0 X 0 1

4 1/4, 1, 1/8 0, 1, 1 1 7 0 2

5 1/4, 1/2, 1/16 1, 1, 0 1 X 1 2

6 1/4, 1/2, 1/32 0, 1, 1 1 X 1 2

7 1/8, 1/2, 1/32 0, 1, 0 1 7 0 3

8 1/8, 1/4, 1/32 1, 0, 1 0 7 1 4

9 1/8, 1/8, 1/32 0, 0, 0 0 X 0 4

10 1/8, 1/8, 1/32 1, 0, 1 1 7 0 5

11 1/16, 1/8, 1/64 – – – –

⇒ We made 5 mistakes, while the best expert made only 3 mistakes.
This looks quite bad, but the example is too small to draw conclusions!

Learning with Experts © Thomas Sauerwald Deterministic Weighted Majority 9



Analysis of the Weighted Majority Algorithm

Notation: Let m(t)
i be the number of mistakes of expert i after t steps.

The number of mistakes of our algorithm M(T ) satisfies

M(T ) ≤ 2 · (1 + δ) ·min
i∈[n]

m(T )
i +

2 ln n
δ

.

Analysis

This bound holds for any input, any T and any δ!

Learning with Experts © Thomas Sauerwald Deterministic Weighted Majority 10



Analysis of the Weighted Majority Algorithm

Notation: Let m(t)
i be the number of mistakes of expert i after t steps.

The number of mistakes of our algorithm M(T ) satisfies

M(T ) ≤ 2 · (1 + δ) ·min
i∈[n]

m(T )
i +

2 ln n
δ

.

Analysis

This bound holds for any input, any T and any δ!

Learning with Experts © Thomas Sauerwald Deterministic Weighted Majority 10



Analysis of the Weighted Majority Algorithm

Notation: Let m(t)
i be the number of mistakes of expert i after t steps.

The number of mistakes of our algorithm M(T ) satisfies

M(T ) ≤ 2 · (1 + δ) ·min
i∈[n]

m(T )
i +

2 ln n
δ

.

Analysis

This bound holds for any input, any T and any δ!

Proof Outline:

Define Φ(t) =
∑n

i=1 w (t)
i as the sum of weights

Update Rule: If we make many mistakes, then Φ(t) becomes small

For Φ(t) to be small, all weights must be small
(⇒ even the best expert must make many mistakes)

Learning with Experts © Thomas Sauerwald Deterministic Weighted Majority 10



Analysis of the Weighted Majority Algorithm

Notation: Let m(t)
i be the number of mistakes of expert i after t steps.

The number of mistakes of our algorithm M(T ) satisfies

M(T ) ≤ 2 · (1 + δ) ·min
i∈[n]

m(T )
i +

2 ln n
δ

.

Analysis

This bound holds for any input, any T and any δ!

Proof Outline:

Define Φ(t) =
∑n

i=1 w (t)
i as the sum of weights

Update Rule: If we make many mistakes, then Φ(t) becomes small

For Φ(t) to be small, all weights must be small
(⇒ even the best expert must make many mistakes)

Learning with Experts © Thomas Sauerwald Deterministic Weighted Majority 10



Analysis of the Weighted Majority Algorithm

Notation: Let m(t)
i be the number of mistakes of expert i after t steps.

The number of mistakes of our algorithm M(T ) satisfies

M(T ) ≤ 2 · (1 + δ) ·min
i∈[n]

m(T )
i +

2 ln n
δ

.

Analysis

This bound holds for any input, any T and any δ!

Proof Outline:

Define Φ(t) =
∑n

i=1 w (t)
i as the sum of weights

Update Rule: If we make many mistakes, then Φ(t) becomes small

For Φ(t) to be small, all weights must be small
(⇒ even the best expert must make many mistakes)

Learning with Experts © Thomas Sauerwald Deterministic Weighted Majority 10



Analysis of the Weighted Majority Algorithm

Notation: Let m(t)
i be the number of mistakes of expert i after t steps.

The number of mistakes of our algorithm M(T ) satisfies

M(T ) ≤ 2 · (1 + δ) ·min
i∈[n]

m(T )
i +

2 ln n
δ

.

Analysis

This bound holds for any input, any T and any δ!Proof:

Define a potential function Φ(t) =
∑n

i=1 w (t)
i , so that Φ(1) = n.

By induction, w (t+1)
i = (1− δ)m(t)

i (see example!)

Case 1: Each time we are wrong, the weighted majority of experts is wrong

⇒ at least half the total weight decreases by 1− δ:

Φ(t+1) ≤ Φ(t) ·
(1

2
· 1 +

1
2
· (1− δ)

)

= Φ(t) · (1− δ/2) .

Case 2: Each time we are correct, Φt+1 ≤ Φt .

By induction, Φ(T +1) ≤ n · (1− δ/2)M(T )
, but also Φ(T +1) ≥ w (T +1)

i = (1− δ)mT
i .

Taking logs:
m(T )

i ln(1− δ) ≤ M(T ) ln(1− δ/2) + ln(n).

Using now that −δ ≥ ln(1− δ) ≥ −δ − δ2 completes the proof.

Learning with Experts © Thomas Sauerwald Deterministic Weighted Majority 10



Analysis of the Weighted Majority Algorithm

Notation: Let m(t)
i be the number of mistakes of expert i after t steps.

The number of mistakes of our algorithm M(T ) satisfies

M(T ) ≤ 2 · (1 + δ) ·min
i∈[n]

m(T )
i +

2 ln n
δ

.

Analysis

This bound holds for any input, any T and any δ!

Proof:

Define a potential function Φ(t) =
∑n

i=1 w (t)
i , so that Φ(1) = n.

By induction, w (t+1)
i = (1− δ)m(t)

i (see example!)

Case 1: Each time we are wrong, the weighted majority of experts is wrong

⇒ at least half the total weight decreases by 1− δ:

Φ(t+1) ≤ Φ(t) ·
(1

2
· 1 +

1
2
· (1− δ)

)

= Φ(t) · (1− δ/2) .

Case 2: Each time we are correct, Φt+1 ≤ Φt .

By induction, Φ(T +1) ≤ n · (1− δ/2)M(T )
, but also Φ(T +1) ≥ w (T +1)

i = (1− δ)mT
i .

Taking logs:
m(T )

i ln(1− δ) ≤ M(T ) ln(1− δ/2) + ln(n).

Using now that −δ ≥ ln(1− δ) ≥ −δ − δ2 completes the proof.

Learning with Experts © Thomas Sauerwald Deterministic Weighted Majority 10



Analysis of the Weighted Majority Algorithm

Notation: Let m(t)
i be the number of mistakes of expert i after t steps.

The number of mistakes of our algorithm M(T ) satisfies

M(T ) ≤ 2 · (1 + δ) ·min
i∈[n]

m(T )
i +

2 ln n
δ

.

Analysis

This bound holds for any input, any T and any δ!

Proof:
Define a potential function Φ(t) =

∑n
i=1 w (t)

i , so that Φ(1) = n.

By induction, w (t+1)
i = (1− δ)m(t)

i (see example!)

Case 1: Each time we are wrong, the weighted majority of experts is wrong

⇒ at least half the total weight decreases by 1− δ:

Φ(t+1) ≤ Φ(t) ·
(1

2
· 1 +

1
2
· (1− δ)

)

= Φ(t) · (1− δ/2) .

Case 2: Each time we are correct, Φt+1 ≤ Φt .

By induction, Φ(T +1) ≤ n · (1− δ/2)M(T )
, but also Φ(T +1) ≥ w (T +1)

i = (1− δ)mT
i .

Taking logs:
m(T )

i ln(1− δ) ≤ M(T ) ln(1− δ/2) + ln(n).

Using now that −δ ≥ ln(1− δ) ≥ −δ − δ2 completes the proof.

Learning with Experts © Thomas Sauerwald Deterministic Weighted Majority 10



Analysis of the Weighted Majority Algorithm

Notation: Let m(t)
i be the number of mistakes of expert i after t steps.

The number of mistakes of our algorithm M(T ) satisfies

M(T ) ≤ 2 · (1 + δ) ·min
i∈[n]

m(T )
i +

2 ln n
δ

.

Analysis

This bound holds for any input, any T and any δ!

Proof:
Define a potential function Φ(t) =

∑n
i=1 w (t)

i , so that Φ(1) = n.

By induction, w (t+1)
i = (1− δ)m(t)

i (see example!)

Case 1: Each time we are wrong, the weighted majority of experts is wrong

⇒ at least half the total weight decreases by 1− δ:

Φ(t+1) ≤ Φ(t) ·
(1

2
· 1 +

1
2
· (1− δ)

)

= Φ(t) · (1− δ/2) .

Case 2: Each time we are correct, Φt+1 ≤ Φt .

By induction, Φ(T +1) ≤ n · (1− δ/2)M(T )
, but also Φ(T +1) ≥ w (T +1)

i = (1− δ)mT
i .

Taking logs:
m(T )

i ln(1− δ) ≤ M(T ) ln(1− δ/2) + ln(n).

Using now that −δ ≥ ln(1− δ) ≥ −δ − δ2 completes the proof.

Learning with Experts © Thomas Sauerwald Deterministic Weighted Majority 10



Analysis of the Weighted Majority Algorithm

Notation: Let m(t)
i be the number of mistakes of expert i after t steps.

The number of mistakes of our algorithm M(T ) satisfies

M(T ) ≤ 2 · (1 + δ) ·min
i∈[n]

m(T )
i +

2 ln n
δ

.

Analysis

This bound holds for any input, any T and any δ!

Proof:
Define a potential function Φ(t) =

∑n
i=1 w (t)

i , so that Φ(1) = n.

By induction, w (t+1)
i = (1− δ)m(t)

i (see example!)
Case 1: Each time we are wrong, the weighted majority of experts is wrong

⇒ at least half the total weight decreases by 1− δ:

Φ(t+1) ≤ Φ(t) ·
(1

2
· 1 +

1
2
· (1− δ)

)

= Φ(t) · (1− δ/2) .

Case 2: Each time we are correct, Φt+1 ≤ Φt .

By induction, Φ(T +1) ≤ n · (1− δ/2)M(T )
, but also Φ(T +1) ≥ w (T +1)

i = (1− δ)mT
i .

Taking logs:
m(T )

i ln(1− δ) ≤ M(T ) ln(1− δ/2) + ln(n).

Using now that −δ ≥ ln(1− δ) ≥ −δ − δ2 completes the proof.

Learning with Experts © Thomas Sauerwald Deterministic Weighted Majority 10



Analysis of the Weighted Majority Algorithm

Notation: Let m(t)
i be the number of mistakes of expert i after t steps.

The number of mistakes of our algorithm M(T ) satisfies

M(T ) ≤ 2 · (1 + δ) ·min
i∈[n]

m(T )
i +

2 ln n
δ

.

Analysis

This bound holds for any input, any T and any δ!

Proof:
Define a potential function Φ(t) =

∑n
i=1 w (t)

i , so that Φ(1) = n.

By induction, w (t+1)
i = (1− δ)m(t)

i (see example!)
Case 1: Each time we are wrong, the weighted majority of experts is wrong
⇒ at least half the total weight decreases by 1− δ:

Φ(t+1) ≤ Φ(t) ·
(1

2
· 1 +

1
2
· (1− δ)

)

= Φ(t) · (1− δ/2) .

Case 2: Each time we are correct, Φt+1 ≤ Φt .

By induction, Φ(T +1) ≤ n · (1− δ/2)M(T )
, but also Φ(T +1) ≥ w (T +1)

i = (1− δ)mT
i .

Taking logs:
m(T )

i ln(1− δ) ≤ M(T ) ln(1− δ/2) + ln(n).

Using now that −δ ≥ ln(1− δ) ≥ −δ − δ2 completes the proof.

Learning with Experts © Thomas Sauerwald Deterministic Weighted Majority 10



Analysis of the Weighted Majority Algorithm

Notation: Let m(t)
i be the number of mistakes of expert i after t steps.

The number of mistakes of our algorithm M(T ) satisfies

M(T ) ≤ 2 · (1 + δ) ·min
i∈[n]

m(T )
i +

2 ln n
δ

.

Analysis

This bound holds for any input, any T and any δ!

Proof:
Define a potential function Φ(t) =

∑n
i=1 w (t)

i , so that Φ(1) = n.

By induction, w (t+1)
i = (1− δ)m(t)

i (see example!)
Case 1: Each time we are wrong, the weighted majority of experts is wrong
⇒ at least half the total weight decreases by 1− δ:

Φ(t+1) ≤ Φ(t) ·
(1

2
· 1 +

1
2
· (1− δ)

)

= Φ(t) · (1− δ/2) .

Case 2: Each time we are correct, Φt+1 ≤ Φt .

By induction, Φ(T +1) ≤ n · (1− δ/2)M(T )
, but also Φ(T +1) ≥ w (T +1)

i = (1− δ)mT
i .

Taking logs:
m(T )

i ln(1− δ) ≤ M(T ) ln(1− δ/2) + ln(n).

Using now that −δ ≥ ln(1− δ) ≥ −δ − δ2 completes the proof.

Learning with Experts © Thomas Sauerwald Deterministic Weighted Majority 10



Analysis of the Weighted Majority Algorithm

Notation: Let m(t)
i be the number of mistakes of expert i after t steps.

The number of mistakes of our algorithm M(T ) satisfies

M(T ) ≤ 2 · (1 + δ) ·min
i∈[n]

m(T )
i +

2 ln n
δ

.

Analysis

This bound holds for any input, any T and any δ!

Proof:
Define a potential function Φ(t) =

∑n
i=1 w (t)

i , so that Φ(1) = n.

By induction, w (t+1)
i = (1− δ)m(t)

i (see example!)
Case 1: Each time we are wrong, the weighted majority of experts is wrong
⇒ at least half the total weight decreases by 1− δ:

Φ(t+1) ≤ Φ(t) ·
(1

2
· 1 +

1
2
· (1− δ)

)
= Φ(t) · (1− δ/2) .

Case 2: Each time we are correct, Φt+1 ≤ Φt .

By induction, Φ(T +1) ≤ n · (1− δ/2)M(T )
, but also Φ(T +1) ≥ w (T +1)

i = (1− δ)mT
i .

Taking logs:
m(T )

i ln(1− δ) ≤ M(T ) ln(1− δ/2) + ln(n).

Using now that −δ ≥ ln(1− δ) ≥ −δ − δ2 completes the proof.

Learning with Experts © Thomas Sauerwald Deterministic Weighted Majority 10



Analysis of the Weighted Majority Algorithm

Notation: Let m(t)
i be the number of mistakes of expert i after t steps.

The number of mistakes of our algorithm M(T ) satisfies

M(T ) ≤ 2 · (1 + δ) ·min
i∈[n]

m(T )
i +

2 ln n
δ

.

Analysis

This bound holds for any input, any T and any δ!

Proof:
Define a potential function Φ(t) =

∑n
i=1 w (t)

i , so that Φ(1) = n.

By induction, w (t+1)
i = (1− δ)m(t)

i (see example!)
Case 1: Each time we are wrong, the weighted majority of experts is wrong
⇒ at least half the total weight decreases by 1− δ:

Φ(t+1) ≤ Φ(t) ·
(1

2
· 1 +

1
2
· (1− δ)

)
= Φ(t) · (1− δ/2) .

Case 2: Each time we are correct, Φt+1 ≤ Φt .

By induction, Φ(T +1) ≤ n · (1− δ/2)M(T )
, but also Φ(T +1) ≥ w (T +1)

i = (1− δ)mT
i .

Taking logs:
m(T )

i ln(1− δ) ≤ M(T ) ln(1− δ/2) + ln(n).

Using now that −δ ≥ ln(1− δ) ≥ −δ − δ2 completes the proof.

Learning with Experts © Thomas Sauerwald Deterministic Weighted Majority 10



Analysis of the Weighted Majority Algorithm

Notation: Let m(t)
i be the number of mistakes of expert i after t steps.

The number of mistakes of our algorithm M(T ) satisfies

M(T ) ≤ 2 · (1 + δ) ·min
i∈[n]

m(T )
i +

2 ln n
δ

.

Analysis

This bound holds for any input, any T and any δ!

Proof:
Define a potential function Φ(t) =

∑n
i=1 w (t)

i , so that Φ(1) = n.

By induction, w (t+1)
i = (1− δ)m(t)

i (see example!)
Case 1: Each time we are wrong, the weighted majority of experts is wrong
⇒ at least half the total weight decreases by 1− δ:

Φ(t+1) ≤ Φ(t) ·
(1

2
· 1 +

1
2
· (1− δ)

)
= Φ(t) · (1− δ/2) .

Case 2: Each time we are correct, Φt+1 ≤ Φt .

By induction, Φ(T +1) ≤ n · (1− δ/2)M(T )
, but also Φ(T +1) ≥ w (T +1)

i = (1− δ)mT
i .

Taking logs:
m(T )

i ln(1− δ) ≤ M(T ) ln(1− δ/2) + ln(n).

Using now that −δ ≥ ln(1− δ) ≥ −δ − δ2 completes the proof.

Learning with Experts © Thomas Sauerwald Deterministic Weighted Majority 10



Analysis of the Weighted Majority Algorithm

Notation: Let m(t)
i be the number of mistakes of expert i after t steps.

The number of mistakes of our algorithm M(T ) satisfies

M(T ) ≤ 2 · (1 + δ) ·min
i∈[n]

m(T )
i +

2 ln n
δ

.

Analysis

This bound holds for any input, any T and any δ!

Proof:
Define a potential function Φ(t) =

∑n
i=1 w (t)

i , so that Φ(1) = n.

By induction, w (t+1)
i = (1− δ)m(t)

i (see example!)
Case 1: Each time we are wrong, the weighted majority of experts is wrong
⇒ at least half the total weight decreases by 1− δ:

Φ(t+1) ≤ Φ(t) ·
(1

2
· 1 +

1
2
· (1− δ)

)
= Φ(t) · (1− δ/2) .

Case 2: Each time we are correct, Φt+1 ≤ Φt .

By induction, Φ(T +1) ≤ n · (1− δ/2)M(T )
, but also Φ(T +1) ≥ w (T +1)

i = (1− δ)mT
i .

Taking logs:
m(T )

i ln(1− δ) ≤ M(T ) ln(1− δ/2) + ln(n).

Using now that −δ ≥ ln(1− δ) ≥ −δ − δ2 completes the proof.

Learning with Experts © Thomas Sauerwald Deterministic Weighted Majority 10



Analysis of the Weighted Majority Algorithm

Notation: Let m(t)
i be the number of mistakes of expert i after t steps.

The number of mistakes of our algorithm M(T ) satisfies

M(T ) ≤ 2 · (1 + δ) ·min
i∈[n]

m(T )
i +

2 ln n
δ

.

Analysis

This bound holds for any input, any T and any δ!

Proof:
Define a potential function Φ(t) =

∑n
i=1 w (t)

i , so that Φ(1) = n.

By induction, w (t+1)
i = (1− δ)m(t)

i (see example!)
Case 1: Each time we are wrong, the weighted majority of experts is wrong
⇒ at least half the total weight decreases by 1− δ:

Φ(t+1) ≤ Φ(t) ·
(1

2
· 1 +

1
2
· (1− δ)

)
= Φ(t) · (1− δ/2) .

Case 2: Each time we are correct, Φt+1 ≤ Φt .

By induction, Φ(T +1) ≤ n · (1− δ/2)M(T )
, but also Φ(T +1) ≥ w (T +1)

i = (1− δ)mT
i .

Taking logs:
m(T )

i ln(1− δ) ≤ M(T ) ln(1− δ/2) + ln(n).

Using now that −δ ≥ ln(1− δ) ≥ −δ − δ2 completes the proof.

Learning with Experts © Thomas Sauerwald Deterministic Weighted Majority 10



Simulation of the (Deterministic) WMA (1/2)

Probabilistic Setting: Each expert i predicts wrongly with some probability
pi ∈ [0, 1], independently across rounds and experts

Question: Which learning rate works best?

Learning with Experts © Thomas Sauerwald Deterministic Weighted Majority 11



Simulation of the (Deterministic) WMA (1/2)

Probabilistic Setting: Each expert i predicts wrongly with some probability
pi ∈ [0, 1], independently across rounds and experts

Question: Which learning rate works best?

Learning with Experts © Thomas Sauerwald Deterministic Weighted Majority 11



Simulation of the (Deterministic) WMA (2/2)

Depending on data set, a high or small learning rate may work best

But: for such a random environment, other Machine Learning
techniques (e.g., Naive Bayes or Neural Networks) work much better

Observations from these Experiments

The point of WMA is a strong worst-case guarantee!

Learning with Experts © Thomas Sauerwald Deterministic Weighted Majority 12



Simulation of the (Deterministic) WMA (2/2)

Depending on data set, a high or small learning rate may work best

But: for such a random environment, other Machine Learning
techniques (e.g., Naive Bayes or Neural Networks) work much better

Observations from these Experiments

The point of WMA is a strong worst-case guarantee!

Learning with Experts © Thomas Sauerwald Deterministic Weighted Majority 12



Simulation of the (Deterministic) WMA (2/2)

Depending on data set, a high or small learning rate may work best

But: for such a random environment, other Machine Learning
techniques (e.g., Naive Bayes or Neural Networks) work much better

Observations from these Experiments

The point of WMA is a strong worst-case guarantee!

Learning with Experts © Thomas Sauerwald Deterministic Weighted Majority 12



Improving the Weighted Majority Algorithm?

The number of mistakes of our algorithm M(T ) satisfies

M(T ) ≤ 2 · (1 + δ) ·min
i∈[n]

m(T )
i +

2 ln n
δ

.

Analysis

Question: Is there a way to avoid the factor of 2?

Exercise: For any deterministic algorithm, the factor of 2 cannot be avoided!

Idea: Employ a randomised strategy which selects an
expert with probability proportional to its success!

Learning with Experts © Thomas Sauerwald Deterministic Weighted Majority 13



Improving the Weighted Majority Algorithm?

The number of mistakes of our algorithm M(T ) satisfies

M(T ) ≤ 2 · (1 + δ) ·min
i∈[n]

m(T )
i +

2 ln n
δ

.

Analysis

Question: Is there a way to avoid the factor of 2?

Exercise: For any deterministic algorithm, the factor of 2 cannot be avoided!

Idea: Employ a randomised strategy which selects an
expert with probability proportional to its success!

Learning with Experts © Thomas Sauerwald Deterministic Weighted Majority 13



Improving the Weighted Majority Algorithm?

The number of mistakes of our algorithm M(T ) satisfies

M(T ) ≤ 2 · (1 + δ) ·min
i∈[n]

m(T )
i +

2 ln n
δ

.

Analysis

Question: Is there a way to avoid the factor of 2?

Exercise: For any deterministic algorithm, the factor of 2 cannot be avoided!

Idea: Employ a randomised strategy which selects an
expert with probability proportional to its success!

Learning with Experts © Thomas Sauerwald Deterministic Weighted Majority 13



Outline

Introduction

Deterministic Weighted Majority

Randomised Weighted Majority

Extensions and Conclusions

Learning with Experts © Thomas Sauerwald Randomised Weighted Majority 14



Randomised Weighted Majority

Randomised Weighted Majority Algorithm
Initialization: Fix δ ≤ 1/2. For every i ∈ [n], let w (1)

i := 1
Update: For t = 1, 2, . . . ,T :

Pick expert i with probability proportional to wi and
follow that prediction

For every expert i who predicts wrongly, decrease his
weight by a factor of (1− δ):

w (t+1)
i = (1− δ)w (t)

i

Note that the number of mistakes we are making is now a random variable!

Learning with Experts © Thomas Sauerwald Randomised Weighted Majority 15



Randomised Weighted Majority

Randomised Weighted Majority Algorithm
Initialization: Fix δ ≤ 1/2. For every i ∈ [n], let w (1)

i := 1
Update: For t = 1, 2, . . . ,T :

Pick expert i with probability proportional to wi and
follow that prediction

For every expert i who predicts wrongly, decrease his
weight by a factor of (1− δ):

w (t+1)
i = (1− δ)w (t)

i

Note that the number of mistakes we are making is now a random variable!

Learning with Experts © Thomas Sauerwald Randomised Weighted Majority 15



Example: Deterministic vs. Randomised Weighted Majority (1/2)

Consider the following run of the Deterministic Weighted Majority Algorithm:

t Weights Predictions Our Prediction Actual Result Our Errors
1 1,1 1,0 1 0 1
2 1/2,1 1,0 0 1 2
3 1/2,1/2 0,1 0 1 3
4 1/4,1/2 1,0 0 1 4
5 1/4,1/4 – – – –

Consider now the Randomised Weighted Majority Algorithm and let us
compute the expected number of mistakes, E

[
M(4)

]

Learning with Experts © Thomas Sauerwald Randomised Weighted Majority 16



Example: Deterministic vs. Randomised Weighted Majority (2/2)
????

0??? 0 1??? 1

00?? 1 01?? 0 10?? 2 11?? 1

000? 2 001? 1 010? 1 011? 0 100? 3 101? 2 110? 2 111? 1

0000

3
0001

2
0010

2
0011

1
0100

2
0101

1
0110

1
0111

0
1000

4
1001

3
1010

3
1011

2
1100

3
1101

2
1110

2
1111

1

0 1

0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Let x (t) be a 0/1 random variable, indicating if our t-th prediction is wrong.
Then:

E
[

x (1)
]

=

0 · 1
2

+ 1 · 1
2

=
1
2
.

Similarly, E
[

x (2)
]

= 2
3 , E

[
x (3)

]
= 1

2 and E
[

x (4)
]

= 2
3 .

Hence,

E
[

M(4)
]

=

E
[

x (1) + x (2) + x (3) + x (4)
]

= E
[

x (1)
]

+ E
[

x (2)
]

+ E
[

x (3)
]

+ E
[

x (4)
]

=
7
3

Much better than the
deterministic algorithm!

Learning with Experts © Thomas Sauerwald Randomised Weighted Majority 17



Example: Deterministic vs. Randomised Weighted Majority (2/2)
????

0??? 0 1??? 1

00?? 1 01?? 0 10?? 2 11?? 1

000? 2 001? 1 010? 1 011? 0 100? 3 101? 2 110? 2 111? 1

0000

3
0001

2
0010

2
0011

1
0100

2
0101

1
0110

1
0111

0
1000

4
1001

3
1010

3
1011

2
1100

3
1101

2
1110

2
1111

1

0 1

0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Let x (t) be a 0/1 random variable, indicating if our t-th prediction is wrong.

Then:
E
[

x (1)
]

=

0 · 1
2

+ 1 · 1
2

=
1
2
.

Similarly, E
[

x (2)
]

= 2
3 , E

[
x (3)

]
= 1

2 and E
[

x (4)
]

= 2
3 .

Hence,

E
[

M(4)
]

=

E
[

x (1) + x (2) + x (3) + x (4)
]

= E
[

x (1)
]

+ E
[

x (2)
]

+ E
[

x (3)
]

+ E
[

x (4)
]

=
7
3

Much better than the
deterministic algorithm!

Learning with Experts © Thomas Sauerwald Randomised Weighted Majority 17



Example: Deterministic vs. Randomised Weighted Majority (2/2)
????

0??? 0 1??? 1

00?? 1 01?? 0 10?? 2 11?? 1

000? 2 001? 1 010? 1 011? 0 100? 3 101? 2 110? 2 111? 1

0000

3
0001

2
0010

2
0011

1
0100

2
0101

1
0110

1
0111

0
1000

4
1001

3
1010

3
1011

2
1100

3
1101

2
1110

2
1111

1

0 1

0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Let x (t) be a 0/1 random variable, indicating if our t-th prediction is wrong.
Then:

E
[

x (1)
]

=

0 · 1
2

+ 1 · 1
2

=
1
2
.

Similarly, E
[

x (2)
]

= 2
3 , E

[
x (3)

]
= 1

2 and E
[

x (4)
]

= 2
3 .

Hence,

E
[

M(4)
]

=

E
[

x (1) + x (2) + x (3) + x (4)
]

= E
[

x (1)
]

+ E
[

x (2)
]

+ E
[

x (3)
]

+ E
[

x (4)
]

=
7
3

Much better than the
deterministic algorithm!

Learning with Experts © Thomas Sauerwald Randomised Weighted Majority 17



Example: Deterministic vs. Randomised Weighted Majority (2/2)
????

0??? 0 1??? 1

00?? 1 01?? 0 10?? 2 11?? 1

000? 2 001? 1 010? 1 011? 0 100? 3 101? 2 110? 2 111? 1

0000

3
0001

2
0010

2
0011

1
0100

2
0101

1
0110

1
0111

0
1000

4
1001

3
1010

3
1011

2
1100

3
1101

2
1110

2
1111

1

0 1

0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Let x (t) be a 0/1 random variable, indicating if our t-th prediction is wrong.
Then:

E
[

x (1)
]

= 0 · 1
2

+ 1 · 1
2

=
1
2
.

Similarly, E
[

x (2)
]

= 2
3 , E

[
x (3)

]
= 1

2 and E
[

x (4)
]

= 2
3 .

Hence,

E
[

M(4)
]

=

E
[

x (1) + x (2) + x (3) + x (4)
]

= E
[

x (1)
]

+ E
[

x (2)
]

+ E
[

x (3)
]

+ E
[

x (4)
]

=
7
3

Much better than the
deterministic algorithm!

Learning with Experts © Thomas Sauerwald Randomised Weighted Majority 17



Example: Deterministic vs. Randomised Weighted Majority (2/2)
????

0??? 0 1??? 1

00?? 1 01?? 0 10?? 2 11?? 1

000? 2 001? 1 010? 1 011? 0 100? 3 101? 2 110? 2 111? 1

0000

3
0001

2
0010

2
0011

1
0100

2
0101

1
0110

1
0111

0
1000

4
1001

3
1010

3
1011

2
1100

3
1101

2
1110

2
1111

1

0 1

0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Let x (t) be a 0/1 random variable, indicating if our t-th prediction is wrong.
Then:

E
[

x (1)
]

= 0 · 1
2

+ 1 · 1
2

=
1
2
.

Similarly, E
[

x (2)
]

= 2
3 , E

[
x (3)

]
= 1

2 and E
[

x (4)
]

= 2
3 .

Hence,

E
[

M(4)
]

=

E
[

x (1) + x (2) + x (3) + x (4)
]

= E
[

x (1)
]

+ E
[

x (2)
]

+ E
[

x (3)
]

+ E
[

x (4)
]

=
7
3

Much better than the
deterministic algorithm!

Learning with Experts © Thomas Sauerwald Randomised Weighted Majority 17



Example: Deterministic vs. Randomised Weighted Majority (2/2)
????

0??? 0 1??? 1

00?? 1 01?? 0 10?? 2 11?? 1

000? 2 001? 1 010? 1 011? 0 100? 3 101? 2 110? 2 111? 1

0000

3
0001

2
0010

2
0011

1
0100

2
0101

1
0110

1
0111

0
1000

4
1001

3
1010

3
1011

2
1100

3
1101

2
1110

2
1111

1

0 1

0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Let x (t) be a 0/1 random variable, indicating if our t-th prediction is wrong.
Then:

E
[

x (1)
]

= 0 · 1
2

+ 1 · 1
2

=
1
2
.

Similarly, E
[

x (2)
]

= 2
3 , E

[
x (3)

]
= 1

2 and E
[

x (4)
]

= 2
3 .

Hence,

E
[

M(4)
]

=

E
[

x (1) + x (2) + x (3) + x (4)
]

= E
[

x (1)
]

+ E
[

x (2)
]

+ E
[

x (3)
]

+ E
[

x (4)
]

=
7
3

Much better than the
deterministic algorithm!

Learning with Experts © Thomas Sauerwald Randomised Weighted Majority 17



Example: Deterministic vs. Randomised Weighted Majority (2/2)
????

0??? 0 1??? 1

00?? 1 01?? 0 10?? 2 11?? 1

000? 2 001? 1 010? 1 011? 0 100? 3 101? 2 110? 2 111? 1

0000

3
0001

2
0010

2
0011

1
0100

2
0101

1
0110

1
0111

0
1000

4
1001

3
1010

3
1011

2
1100

3
1101

2
1110

2
1111

1

0 1

0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Let x (t) be a 0/1 random variable, indicating if our t-th prediction is wrong.
Then:

E
[

x (1)
]

= 0 · 1
2

+ 1 · 1
2

=
1
2
.

Similarly, E
[

x (2)
]

= 2
3 , E

[
x (3)

]
= 1

2 and E
[

x (4)
]

= 2
3 .

Hence,

E
[

M(4)
]

= E
[

x (1) + x (2) + x (3) + x (4)
]

= E
[

x (1)
]

+ E
[

x (2)
]

+ E
[

x (3)
]

+ E
[

x (4)
]

=
7
3

Much better than the
deterministic algorithm!

Learning with Experts © Thomas Sauerwald Randomised Weighted Majority 17



Example: Deterministic vs. Randomised Weighted Majority (2/2)
????

0??? 0 1??? 1

00?? 1 01?? 0 10?? 2 11?? 1

000? 2 001? 1 010? 1 011? 0 100? 3 101? 2 110? 2 111? 1

0000

3
0001

2
0010

2
0011

1
0100

2
0101

1
0110

1
0111

0
1000

4
1001

3
1010

3
1011

2
1100

3
1101

2
1110

2
1111

1

0 1

0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Let x (t) be a 0/1 random variable, indicating if our t-th prediction is wrong.
Then:

E
[

x (1)
]

= 0 · 1
2

+ 1 · 1
2

=
1
2
.

Similarly, E
[

x (2)
]

= 2
3 , E

[
x (3)

]
= 1

2 and E
[

x (4)
]

= 2
3 .

Hence,

E
[

M(4)
]

= E
[

x (1) + x (2) + x (3) + x (4)
]

= E
[

x (1)
]

+ E
[

x (2)
]

+ E
[

x (3)
]

+ E
[

x (4)
]

=
7
3

Much better than the
deterministic algorithm!

Learning with Experts © Thomas Sauerwald Randomised Weighted Majority 17



Example: Deterministic vs. Randomised Weighted Majority (2/2)
????

0??? 0 1??? 1

00?? 1 01?? 0 10?? 2 11?? 1

000? 2 001? 1 010? 1 011? 0 100? 3 101? 2 110? 2 111? 1

0000

3
0001

2
0010

2
0011

1
0100

2
0101

1
0110

1
0111

0
1000

4
1001

3
1010

3
1011

2
1100

3
1101

2
1110

2
1111

1

0 1

0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Let x (t) be a 0/1 random variable, indicating if our t-th prediction is wrong.
Then:

E
[

x (1)
]

= 0 · 1
2

+ 1 · 1
2

=
1
2
.

Similarly, E
[

x (2)
]

= 2
3 , E

[
x (3)

]
= 1

2 and E
[

x (4)
]

= 2
3 .

Hence,

E
[

M(4)
]

= E
[

x (1) + x (2) + x (3) + x (4)
]

= E
[

x (1)
]

+ E
[

x (2)
]

+ E
[

x (3)
]

+ E
[

x (4)
]

=
7
3

Much better than the
deterministic algorithm!

Learning with Experts © Thomas Sauerwald Randomised Weighted Majority 17



Example: Deterministic vs. Randomised Weighted Majority (2/2)
????

0??? 0 1??? 1

00?? 1 01?? 0 10?? 2 11?? 1

000? 2 001? 1 010? 1 011? 0 100? 3 101? 2 110? 2 111? 1

0000

3
0001

2
0010

2
0011

1
0100

2
0101

1
0110

1
0111

0
1000

4
1001

3
1010

3
1011

2
1100

3
1101

2
1110

2
1111

1

0 1

0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Let x (t) be a 0/1 random variable, indicating if our t-th prediction is wrong.
Then:

E
[

x (1)
]

= 0 · 1
2

+ 1 · 1
2

=
1
2
.

Similarly, E
[

x (2)
]

= 2
3 , E

[
x (3)

]
= 1

2 and E
[

x (4)
]

= 2
3 .

Hence,

E
[

M(4)
]

= E
[

x (1) + x (2) + x (3) + x (4)
]

= E
[

x (1)
]

+ E
[

x (2)
]

+ E
[

x (3)
]

+ E
[

x (4)
]

=
7
3

Much better than the
deterministic algorithm!

Learning with Experts © Thomas Sauerwald Randomised Weighted Majority 17



Analysis of Randomised Weighted Majority (non-examinable)

The expected number of mistakes of our algorithm M(T ) satisfies

E
[

M(T )
]
≤ 1 · (1 + δ) ·min

i∈[n]
m(T )

i +
ln n
δ
.

Analysis

This was a factor of 2 before!
Proof:

Define a potential function Φ(t) =
∑n

i=1 w (t)
i , so that Φ(1) = n.

The probability of picking expert i in round t is p(t)
i := w (t)

i /
∑n

j=1 w (t)
j = w (t)

i /Φ(t).

Let λ(t)
i be 1 iff expert i is wrong at time t (and 0 otherwise)

Then the expected number of mistakes by our algorithm is E[M(T )] =
∑T

t=1 λ
(t) · p(t).

The new potential (which is deterministic!) can be upper bounded by:

Φ(t+1) =
n∑

i=1

w (t+1)
i

=
n∑

i=1

(1− δλ(t)
i ) · w (t+1)

i = Φ(t) ·
(

1− δλ(t)p(t)
)
≤ Φ(t) · exp

(
−δλ(t) · p(t)

)

Thus the final potential satisfies

Φ(T +1) ≤ Φ(1) · exp
(
−δ

T∑
t=1

λ
(t) · p(t)

)

= n · exp
(
−δ · E

[
M(T )

])
,

Φ(T +1) ≥ w (T +1)
i =

T∏
t=1

(
1− δλ(t)

i

)

= (1− δ)
m(T )

i

⇒ ln n − δ · E[M(T )] ≥ ln(1− δ) · m(T )
i ⇒ E[M(T )] ≤

(δ + δ2)

δ
· m(T )

i +
ln n
δ

ln(1 − δ) ≥ −δ − δ2

Learning with Experts © Thomas Sauerwald Randomised Weighted Majority 18



Analysis of Randomised Weighted Majority (non-examinable)

The expected number of mistakes of our algorithm M(T ) satisfies

E
[

M(T )
]
≤ 1 · (1 + δ) ·min

i∈[n]
m(T )

i +
ln n
δ
.

Analysis

This was a factor of 2 before!

Proof:

Define a potential function Φ(t) =
∑n

i=1 w (t)
i , so that Φ(1) = n.

The probability of picking expert i in round t is p(t)
i := w (t)

i /
∑n

j=1 w (t)
j = w (t)

i /Φ(t).

Let λ(t)
i be 1 iff expert i is wrong at time t (and 0 otherwise)

Then the expected number of mistakes by our algorithm is E[M(T )] =
∑T

t=1 λ
(t) · p(t).

The new potential (which is deterministic!) can be upper bounded by:

Φ(t+1) =
n∑

i=1

w (t+1)
i

=
n∑

i=1

(1− δλ(t)
i ) · w (t+1)

i = Φ(t) ·
(

1− δλ(t)p(t)
)
≤ Φ(t) · exp

(
−δλ(t) · p(t)

)

Thus the final potential satisfies

Φ(T +1) ≤ Φ(1) · exp
(
−δ

T∑
t=1

λ
(t) · p(t)

)

= n · exp
(
−δ · E

[
M(T )

])
,

Φ(T +1) ≥ w (T +1)
i =

T∏
t=1

(
1− δλ(t)

i

)

= (1− δ)
m(T )

i

⇒ ln n − δ · E[M(T )] ≥ ln(1− δ) · m(T )
i ⇒ E[M(T )] ≤

(δ + δ2)

δ
· m(T )

i +
ln n
δ

ln(1 − δ) ≥ −δ − δ2

Learning with Experts © Thomas Sauerwald Randomised Weighted Majority 18



Analysis of Randomised Weighted Majority (non-examinable)

The expected number of mistakes of our algorithm M(T ) satisfies

E
[

M(T )
]
≤ 1 · (1 + δ) ·min

i∈[n]
m(T )

i +
ln n
δ
.

Analysis

This was a factor of 2 before!
Proof:

Define a potential function Φ(t) =
∑n

i=1 w (t)
i , so that Φ(1) = n.

The probability of picking expert i in round t is p(t)
i := w (t)

i /
∑n

j=1 w (t)
j = w (t)

i /Φ(t).

Let λ(t)
i be 1 iff expert i is wrong at time t (and 0 otherwise)

Then the expected number of mistakes by our algorithm is E[M(T )] =
∑T

t=1 λ
(t) · p(t).

The new potential (which is deterministic!) can be upper bounded by:

Φ(t+1) =
n∑

i=1

w (t+1)
i

=
n∑

i=1

(1− δλ(t)
i ) · w (t+1)

i = Φ(t) ·
(

1− δλ(t)p(t)
)
≤ Φ(t) · exp

(
−δλ(t) · p(t)

)

Thus the final potential satisfies

Φ(T +1) ≤ Φ(1) · exp
(
−δ

T∑
t=1

λ
(t) · p(t)

)

= n · exp
(
−δ · E

[
M(T )

])
,

Φ(T +1) ≥ w (T +1)
i =

T∏
t=1

(
1− δλ(t)

i

)

= (1− δ)
m(T )

i

⇒ ln n − δ · E[M(T )] ≥ ln(1− δ) · m(T )
i ⇒ E[M(T )] ≤

(δ + δ2)

δ
· m(T )

i +
ln n
δ

ln(1 − δ) ≥ −δ − δ2

Learning with Experts © Thomas Sauerwald Randomised Weighted Majority 18



Analysis of Randomised Weighted Majority (non-examinable)

The expected number of mistakes of our algorithm M(T ) satisfies

E
[

M(T )
]
≤ 1 · (1 + δ) ·min

i∈[n]
m(T )

i +
ln n
δ
.

Analysis

This was a factor of 2 before!
Proof:

Define a potential function Φ(t) =
∑n

i=1 w (t)
i , so that Φ(1) = n.

The probability of picking expert i in round t is p(t)
i := w (t)

i /
∑n

j=1 w (t)
j = w (t)

i /Φ(t).

Let λ(t)
i be 1 iff expert i is wrong at time t (and 0 otherwise)

Then the expected number of mistakes by our algorithm is E[M(T )] =
∑T

t=1 λ
(t) · p(t).

The new potential (which is deterministic!) can be upper bounded by:

Φ(t+1) =
n∑

i=1

w (t+1)
i

=
n∑

i=1

(1− δλ(t)
i ) · w (t+1)

i = Φ(t) ·
(

1− δλ(t)p(t)
)
≤ Φ(t) · exp

(
−δλ(t) · p(t)

)

Thus the final potential satisfies

Φ(T +1) ≤ Φ(1) · exp
(
−δ

T∑
t=1

λ
(t) · p(t)

)

= n · exp
(
−δ · E

[
M(T )

])
,

Φ(T +1) ≥ w (T +1)
i =

T∏
t=1

(
1− δλ(t)

i

)

= (1− δ)
m(T )

i

⇒ ln n − δ · E[M(T )] ≥ ln(1− δ) · m(T )
i ⇒ E[M(T )] ≤

(δ + δ2)

δ
· m(T )

i +
ln n
δ

ln(1 − δ) ≥ −δ − δ2

Learning with Experts © Thomas Sauerwald Randomised Weighted Majority 18



Analysis of Randomised Weighted Majority (non-examinable)

The expected number of mistakes of our algorithm M(T ) satisfies

E
[

M(T )
]
≤ 1 · (1 + δ) ·min

i∈[n]
m(T )

i +
ln n
δ
.

Analysis

This was a factor of 2 before!
Proof:

Define a potential function Φ(t) =
∑n

i=1 w (t)
i , so that Φ(1) = n.

The probability of picking expert i in round t is p(t)
i := w (t)

i /
∑n

j=1 w (t)
j = w (t)

i /Φ(t).

Let λ(t)
i be 1 iff expert i is wrong at time t (and 0 otherwise)

Then the expected number of mistakes by our algorithm is E[M(T )] =
∑T

t=1 λ
(t) · p(t).

The new potential (which is deterministic!) can be upper bounded by:

Φ(t+1) =
n∑

i=1

w (t+1)
i

=
n∑

i=1

(1− δλ(t)
i ) · w (t+1)

i = Φ(t) ·
(

1− δλ(t)p(t)
)
≤ Φ(t) · exp

(
−δλ(t) · p(t)

)

Thus the final potential satisfies

Φ(T +1) ≤ Φ(1) · exp
(
−δ

T∑
t=1

λ
(t) · p(t)

)

= n · exp
(
−δ · E

[
M(T )

])
,

Φ(T +1) ≥ w (T +1)
i =

T∏
t=1

(
1− δλ(t)

i

)

= (1− δ)
m(T )

i

⇒ ln n − δ · E[M(T )] ≥ ln(1− δ) · m(T )
i ⇒ E[M(T )] ≤

(δ + δ2)

δ
· m(T )

i +
ln n
δ

ln(1 − δ) ≥ −δ − δ2

Learning with Experts © Thomas Sauerwald Randomised Weighted Majority 18



Analysis of Randomised Weighted Majority (non-examinable)

The expected number of mistakes of our algorithm M(T ) satisfies

E
[

M(T )
]
≤ 1 · (1 + δ) ·min

i∈[n]
m(T )

i +
ln n
δ
.

Analysis

This was a factor of 2 before!
Proof:

Define a potential function Φ(t) =
∑n

i=1 w (t)
i , so that Φ(1) = n.

The probability of picking expert i in round t is p(t)
i := w (t)

i /
∑n

j=1 w (t)
j = w (t)

i /Φ(t).

Let λ(t)
i be 1 iff expert i is wrong at time t (and 0 otherwise)

Then the expected number of mistakes by our algorithm is E[M(T )] =
∑T

t=1 λ
(t) · p(t).

The new potential (which is deterministic!) can be upper bounded by:

Φ(t+1) =
n∑

i=1

w (t+1)
i

=
n∑

i=1

(1− δλ(t)
i ) · w (t+1)

i = Φ(t) ·
(

1− δλ(t)p(t)
)
≤ Φ(t) · exp

(
−δλ(t) · p(t)

)

Thus the final potential satisfies

Φ(T +1) ≤ Φ(1) · exp
(
−δ

T∑
t=1

λ
(t) · p(t)

)

= n · exp
(
−δ · E

[
M(T )

])
,

Φ(T +1) ≥ w (T +1)
i =

T∏
t=1

(
1− δλ(t)

i

)

= (1− δ)
m(T )

i

⇒ ln n − δ · E[M(T )] ≥ ln(1− δ) · m(T )
i ⇒ E[M(T )] ≤

(δ + δ2)

δ
· m(T )

i +
ln n
δ

ln(1 − δ) ≥ −δ − δ2

Learning with Experts © Thomas Sauerwald Randomised Weighted Majority 18



Analysis of Randomised Weighted Majority (non-examinable)

The expected number of mistakes of our algorithm M(T ) satisfies

E
[

M(T )
]
≤ 1 · (1 + δ) ·min

i∈[n]
m(T )

i +
ln n
δ
.

Analysis

This was a factor of 2 before!
Proof:

Define a potential function Φ(t) =
∑n

i=1 w (t)
i , so that Φ(1) = n.

The probability of picking expert i in round t is p(t)
i := w (t)

i /
∑n

j=1 w (t)
j = w (t)

i /Φ(t).

Let λ(t)
i be 1 iff expert i is wrong at time t (and 0 otherwise)

Then the expected number of mistakes by our algorithm is E[M(T )] =
∑T

t=1 λ
(t) · p(t).

The new potential (which is deterministic!) can be upper bounded by:

Φ(t+1) =
n∑

i=1

w (t+1)
i

=
n∑

i=1

(1− δλ(t)
i ) · w (t+1)

i = Φ(t) ·
(

1− δλ(t)p(t)
)
≤ Φ(t) · exp

(
−δλ(t) · p(t)

)

Thus the final potential satisfies

Φ(T +1) ≤ Φ(1) · exp
(
−δ

T∑
t=1

λ
(t) · p(t)

)

= n · exp
(
−δ · E

[
M(T )

])
,

Φ(T +1) ≥ w (T +1)
i =

T∏
t=1

(
1− δλ(t)

i

)

= (1− δ)
m(T )

i

⇒ ln n − δ · E[M(T )] ≥ ln(1− δ) · m(T )
i ⇒ E[M(T )] ≤

(δ + δ2)

δ
· m(T )

i +
ln n
δ

ln(1 − δ) ≥ −δ − δ2

Learning with Experts © Thomas Sauerwald Randomised Weighted Majority 18



Analysis of Randomised Weighted Majority (non-examinable)

The expected number of mistakes of our algorithm M(T ) satisfies

E
[

M(T )
]
≤ 1 · (1 + δ) ·min

i∈[n]
m(T )

i +
ln n
δ
.

Analysis

This was a factor of 2 before!
Proof:

Define a potential function Φ(t) =
∑n

i=1 w (t)
i , so that Φ(1) = n.

The probability of picking expert i in round t is p(t)
i := w (t)

i /
∑n

j=1 w (t)
j = w (t)

i /Φ(t).

Let λ(t)
i be 1 iff expert i is wrong at time t (and 0 otherwise)

Then the expected number of mistakes by our algorithm is E[M(T )] =
∑T

t=1 λ
(t) · p(t).

The new potential (which is deterministic!) can be upper bounded by:

Φ(t+1) =
n∑

i=1

w (t+1)
i

=
n∑

i=1

(1− δλ(t)
i ) · w (t+1)

i = Φ(t) ·
(

1− δλ(t)p(t)
)
≤ Φ(t) · exp

(
−δλ(t) · p(t)

)
Thus the final potential satisfies

Φ(T +1) ≤ Φ(1) · exp
(
−δ

T∑
t=1

λ
(t) · p(t)

)

= n · exp
(
−δ · E

[
M(T )

])
,

Φ(T +1) ≥ w (T +1)
i =

T∏
t=1

(
1− δλ(t)

i

)

= (1− δ)
m(T )

i

⇒ ln n − δ · E[M(T )] ≥ ln(1− δ) · m(T )
i ⇒ E[M(T )] ≤

(δ + δ2)

δ
· m(T )

i +
ln n
δ

ln(1 − δ) ≥ −δ − δ2

Learning with Experts © Thomas Sauerwald Randomised Weighted Majority 18



Analysis of Randomised Weighted Majority (non-examinable)

The expected number of mistakes of our algorithm M(T ) satisfies

E
[

M(T )
]
≤ 1 · (1 + δ) ·min

i∈[n]
m(T )

i +
ln n
δ
.

Analysis

This was a factor of 2 before!
Proof:

Define a potential function Φ(t) =
∑n

i=1 w (t)
i , so that Φ(1) = n.

The probability of picking expert i in round t is p(t)
i := w (t)

i /
∑n

j=1 w (t)
j = w (t)

i /Φ(t).

Let λ(t)
i be 1 iff expert i is wrong at time t (and 0 otherwise)

Then the expected number of mistakes by our algorithm is E[M(T )] =
∑T

t=1 λ
(t) · p(t).

The new potential (which is deterministic!) can be upper bounded by:

Φ(t+1) =
n∑

i=1

w (t+1)
i =

n∑
i=1

(1− δλ(t)
i ) · w (t+1)

i

= Φ(t) ·
(

1− δλ(t)p(t)
)
≤ Φ(t) · exp

(
−δλ(t) · p(t)

)
Thus the final potential satisfies

Φ(T +1) ≤ Φ(1) · exp
(
−δ

T∑
t=1

λ
(t) · p(t)

)

= n · exp
(
−δ · E

[
M(T )

])
,

Φ(T +1) ≥ w (T +1)
i =

T∏
t=1

(
1− δλ(t)

i

)

= (1− δ)
m(T )

i

⇒ ln n − δ · E[M(T )] ≥ ln(1− δ) · m(T )
i ⇒ E[M(T )] ≤

(δ + δ2)

δ
· m(T )

i +
ln n
δ

ln(1 − δ) ≥ −δ − δ2

Learning with Experts © Thomas Sauerwald Randomised Weighted Majority 18



Analysis of Randomised Weighted Majority (non-examinable)

The expected number of mistakes of our algorithm M(T ) satisfies

E
[

M(T )
]
≤ 1 · (1 + δ) ·min

i∈[n]
m(T )

i +
ln n
δ
.

Analysis

This was a factor of 2 before!
Proof:

Define a potential function Φ(t) =
∑n

i=1 w (t)
i , so that Φ(1) = n.

The probability of picking expert i in round t is p(t)
i := w (t)

i /
∑n

j=1 w (t)
j = w (t)

i /Φ(t).

Let λ(t)
i be 1 iff expert i is wrong at time t (and 0 otherwise)

Then the expected number of mistakes by our algorithm is E[M(T )] =
∑T

t=1 λ
(t) · p(t).

The new potential (which is deterministic!) can be upper bounded by:

Φ(t+1) =
n∑

i=1

w (t+1)
i =

n∑
i=1

(1− δλ(t)
i ) · w (t+1)

i = Φ(t) ·
(

1− δλ(t)p(t)
)

≤ Φ(t) · exp
(
−δλ(t) · p(t)

)
Thus the final potential satisfies

Φ(T +1) ≤ Φ(1) · exp
(
−δ

T∑
t=1

λ
(t) · p(t)

)

= n · exp
(
−δ · E

[
M(T )

])
,

Φ(T +1) ≥ w (T +1)
i =

T∏
t=1

(
1− δλ(t)

i

)

= (1− δ)
m(T )

i

⇒ ln n − δ · E[M(T )] ≥ ln(1− δ) · m(T )
i ⇒ E[M(T )] ≤

(δ + δ2)

δ
· m(T )

i +
ln n
δ

ln(1 − δ) ≥ −δ − δ2

Learning with Experts © Thomas Sauerwald Randomised Weighted Majority 18



Analysis of Randomised Weighted Majority (non-examinable)

The expected number of mistakes of our algorithm M(T ) satisfies

E
[

M(T )
]
≤ 1 · (1 + δ) ·min

i∈[n]
m(T )

i +
ln n
δ
.

Analysis

This was a factor of 2 before!
Proof:

Define a potential function Φ(t) =
∑n

i=1 w (t)
i , so that Φ(1) = n.

The probability of picking expert i in round t is p(t)
i := w (t)

i /
∑n

j=1 w (t)
j = w (t)

i /Φ(t).

Let λ(t)
i be 1 iff expert i is wrong at time t (and 0 otherwise)

Then the expected number of mistakes by our algorithm is E[M(T )] =
∑T

t=1 λ
(t) · p(t).

The new potential (which is deterministic!) can be upper bounded by:

Φ(t+1) =
n∑

i=1

w (t+1)
i =

n∑
i=1

(1− δλ(t)
i ) · w (t+1)

i = Φ(t) ·
(

1− δλ(t)p(t)
)
≤ Φ(t) · exp

(
−δλ(t) · p(t)

)

Thus the final potential satisfies

Φ(T +1) ≤ Φ(1) · exp
(
−δ

T∑
t=1

λ
(t) · p(t)

)

= n · exp
(
−δ · E

[
M(T )

])
,

Φ(T +1) ≥ w (T +1)
i =

T∏
t=1

(
1− δλ(t)

i

)

= (1− δ)
m(T )

i

⇒ ln n − δ · E[M(T )] ≥ ln(1− δ) · m(T )
i ⇒ E[M(T )] ≤

(δ + δ2)

δ
· m(T )

i +
ln n
δ

ln(1 − δ) ≥ −δ − δ2

Learning with Experts © Thomas Sauerwald Randomised Weighted Majority 18



Analysis of Randomised Weighted Majority (non-examinable)

The expected number of mistakes of our algorithm M(T ) satisfies

E
[

M(T )
]
≤ 1 · (1 + δ) ·min

i∈[n]
m(T )

i +
ln n
δ
.

Analysis

This was a factor of 2 before!
Proof:

Define a potential function Φ(t) =
∑n

i=1 w (t)
i , so that Φ(1) = n.

The probability of picking expert i in round t is p(t)
i := w (t)

i /
∑n

j=1 w (t)
j = w (t)

i /Φ(t).

Let λ(t)
i be 1 iff expert i is wrong at time t (and 0 otherwise)

Then the expected number of mistakes by our algorithm is E[M(T )] =
∑T

t=1 λ
(t) · p(t).

The new potential (which is deterministic!) can be upper bounded by:

Φ(t+1) =
n∑

i=1

w (t+1)
i =

n∑
i=1

(1− δλ(t)
i ) · w (t+1)

i = Φ(t) ·
(

1− δλ(t)p(t)
)
≤ Φ(t) · exp

(
−δλ(t) · p(t)

)
Thus the final potential satisfies

Φ(T +1) ≤ Φ(1) · exp
(
−δ

T∑
t=1

λ
(t) · p(t)

)

= n · exp
(
−δ · E

[
M(T )

])
,

Φ(T +1) ≥ w (T +1)
i =

T∏
t=1

(
1− δλ(t)

i

)

= (1− δ)
m(T )

i

⇒ ln n − δ · E[M(T )] ≥ ln(1− δ) · m(T )
i ⇒ E[M(T )] ≤

(δ + δ2)

δ
· m(T )

i +
ln n
δ

ln(1 − δ) ≥ −δ − δ2

Learning with Experts © Thomas Sauerwald Randomised Weighted Majority 18



Analysis of Randomised Weighted Majority (non-examinable)

The expected number of mistakes of our algorithm M(T ) satisfies

E
[

M(T )
]
≤ 1 · (1 + δ) ·min

i∈[n]
m(T )

i +
ln n
δ
.

Analysis

This was a factor of 2 before!
Proof:

Define a potential function Φ(t) =
∑n

i=1 w (t)
i , so that Φ(1) = n.

The probability of picking expert i in round t is p(t)
i := w (t)

i /
∑n

j=1 w (t)
j = w (t)

i /Φ(t).

Let λ(t)
i be 1 iff expert i is wrong at time t (and 0 otherwise)

Then the expected number of mistakes by our algorithm is E[M(T )] =
∑T

t=1 λ
(t) · p(t).

The new potential (which is deterministic!) can be upper bounded by:

Φ(t+1) =
n∑

i=1

w (t+1)
i =

n∑
i=1

(1− δλ(t)
i ) · w (t+1)

i = Φ(t) ·
(

1− δλ(t)p(t)
)
≤ Φ(t) · exp

(
−δλ(t) · p(t)

)
Thus the final potential satisfies

Φ(T +1) ≤ Φ(1) · exp
(
−δ

T∑
t=1

λ
(t) · p(t)

)
= n · exp

(
−δ · E

[
M(T )

])
,

Φ(T +1) ≥ w (T +1)
i =

T∏
t=1

(
1− δλ(t)

i

)

= (1− δ)
m(T )

i

⇒ ln n − δ · E[M(T )] ≥ ln(1− δ) · m(T )
i ⇒ E[M(T )] ≤

(δ + δ2)

δ
· m(T )

i +
ln n
δ

ln(1 − δ) ≥ −δ − δ2

Learning with Experts © Thomas Sauerwald Randomised Weighted Majority 18



Analysis of Randomised Weighted Majority (non-examinable)

The expected number of mistakes of our algorithm M(T ) satisfies

E
[

M(T )
]
≤ 1 · (1 + δ) ·min

i∈[n]
m(T )

i +
ln n
δ
.

Analysis

This was a factor of 2 before!
Proof:

Define a potential function Φ(t) =
∑n

i=1 w (t)
i , so that Φ(1) = n.

The probability of picking expert i in round t is p(t)
i := w (t)

i /
∑n

j=1 w (t)
j = w (t)

i /Φ(t).

Let λ(t)
i be 1 iff expert i is wrong at time t (and 0 otherwise)

Then the expected number of mistakes by our algorithm is E[M(T )] =
∑T

t=1 λ
(t) · p(t).

The new potential (which is deterministic!) can be upper bounded by:

Φ(t+1) =
n∑

i=1

w (t+1)
i =

n∑
i=1

(1− δλ(t)
i ) · w (t+1)

i = Φ(t) ·
(

1− δλ(t)p(t)
)
≤ Φ(t) · exp

(
−δλ(t) · p(t)

)
Thus the final potential satisfies

Φ(T +1) ≤ Φ(1) · exp
(
−δ

T∑
t=1

λ
(t) · p(t)

)
= n · exp

(
−δ · E

[
M(T )

])
,

Φ(T +1) ≥ w (T +1)
i =

T∏
t=1

(
1− δλ(t)

i

)

= (1− δ)
m(T )

i

⇒ ln n − δ · E[M(T )] ≥ ln(1− δ) · m(T )
i ⇒ E[M(T )] ≤

(δ + δ2)

δ
· m(T )

i +
ln n
δ

ln(1 − δ) ≥ −δ − δ2

Learning with Experts © Thomas Sauerwald Randomised Weighted Majority 18



Analysis of Randomised Weighted Majority (non-examinable)

The expected number of mistakes of our algorithm M(T ) satisfies

E
[

M(T )
]
≤ 1 · (1 + δ) ·min

i∈[n]
m(T )

i +
ln n
δ
.

Analysis

This was a factor of 2 before!
Proof:

Define a potential function Φ(t) =
∑n

i=1 w (t)
i , so that Φ(1) = n.

The probability of picking expert i in round t is p(t)
i := w (t)

i /
∑n

j=1 w (t)
j = w (t)

i /Φ(t).

Let λ(t)
i be 1 iff expert i is wrong at time t (and 0 otherwise)

Then the expected number of mistakes by our algorithm is E[M(T )] =
∑T

t=1 λ
(t) · p(t).

The new potential (which is deterministic!) can be upper bounded by:

Φ(t+1) =
n∑

i=1

w (t+1)
i =

n∑
i=1

(1− δλ(t)
i ) · w (t+1)

i = Φ(t) ·
(

1− δλ(t)p(t)
)
≤ Φ(t) · exp

(
−δλ(t) · p(t)

)
Thus the final potential satisfies

Φ(T +1) ≤ Φ(1) · exp
(
−δ

T∑
t=1

λ
(t) · p(t)

)
= n · exp

(
−δ · E

[
M(T )

])
,

Φ(T +1) ≥ w (T +1)
i =

T∏
t=1

(
1− δλ(t)

i

)
= (1− δ)

m(T )
i

⇒ ln n − δ · E[M(T )] ≥ ln(1− δ) · m(T )
i ⇒ E[M(T )] ≤

(δ + δ2)

δ
· m(T )

i +
ln n
δ

ln(1 − δ) ≥ −δ − δ2

Learning with Experts © Thomas Sauerwald Randomised Weighted Majority 18



Analysis of Randomised Weighted Majority (non-examinable)

The expected number of mistakes of our algorithm M(T ) satisfies

E
[

M(T )
]
≤ 1 · (1 + δ) ·min

i∈[n]
m(T )

i +
ln n
δ
.

Analysis

This was a factor of 2 before!
Proof:

Define a potential function Φ(t) =
∑n

i=1 w (t)
i , so that Φ(1) = n.

The probability of picking expert i in round t is p(t)
i := w (t)

i /
∑n

j=1 w (t)
j = w (t)

i /Φ(t).

Let λ(t)
i be 1 iff expert i is wrong at time t (and 0 otherwise)

Then the expected number of mistakes by our algorithm is E[M(T )] =
∑T

t=1 λ
(t) · p(t).

The new potential (which is deterministic!) can be upper bounded by:

Φ(t+1) =
n∑

i=1

w (t+1)
i =

n∑
i=1

(1− δλ(t)
i ) · w (t+1)

i = Φ(t) ·
(

1− δλ(t)p(t)
)
≤ Φ(t) · exp

(
−δλ(t) · p(t)

)
Thus the final potential satisfies

Φ(T +1) ≤ Φ(1) · exp
(
−δ

T∑
t=1

λ
(t) · p(t)

)
= n · exp

(
−δ · E

[
M(T )

])
,

Φ(T +1) ≥ w (T +1)
i =

T∏
t=1

(
1− δλ(t)

i

)
= (1− δ)

m(T )
i

⇒ ln n − δ · E[M(T )] ≥ ln(1− δ) · m(T )
i

⇒ E[M(T )] ≤
(δ + δ2)

δ
· m(T )

i +
ln n
δ

ln(1 − δ) ≥ −δ − δ2

Learning with Experts © Thomas Sauerwald Randomised Weighted Majority 18



Analysis of Randomised Weighted Majority (non-examinable)

The expected number of mistakes of our algorithm M(T ) satisfies

E
[

M(T )
]
≤ 1 · (1 + δ) ·min

i∈[n]
m(T )

i +
ln n
δ
.

Analysis

This was a factor of 2 before!
Proof:

Define a potential function Φ(t) =
∑n

i=1 w (t)
i , so that Φ(1) = n.

The probability of picking expert i in round t is p(t)
i := w (t)

i /
∑n

j=1 w (t)
j = w (t)

i /Φ(t).

Let λ(t)
i be 1 iff expert i is wrong at time t (and 0 otherwise)

Then the expected number of mistakes by our algorithm is E[M(T )] =
∑T

t=1 λ
(t) · p(t).

The new potential (which is deterministic!) can be upper bounded by:

Φ(t+1) =
n∑

i=1

w (t+1)
i =

n∑
i=1

(1− δλ(t)
i ) · w (t+1)

i = Φ(t) ·
(

1− δλ(t)p(t)
)
≤ Φ(t) · exp

(
−δλ(t) · p(t)

)
Thus the final potential satisfies

Φ(T +1) ≤ Φ(1) · exp
(
−δ

T∑
t=1

λ
(t) · p(t)

)
= n · exp

(
−δ · E

[
M(T )

])
,

Φ(T +1) ≥ w (T +1)
i =

T∏
t=1

(
1− δλ(t)

i

)
= (1− δ)

m(T )
i

⇒ ln n − δ · E[M(T )] ≥ ln(1− δ) · m(T )
i ⇒ E[M(T )] ≤

(δ + δ2)

δ
· m(T )

i +
ln n
δ

ln(1 − δ) ≥ −δ − δ2

Learning with Experts © Thomas Sauerwald Randomised Weighted Majority 18



Analysis of Randomised Weighted Majority (non-examinable)

The expected number of mistakes of our algorithm M(T ) satisfies

E
[

M(T )
]
≤ 1 · (1 + δ) ·min

i∈[n]
m(T )

i +
ln n
δ
.

Analysis

This was a factor of 2 before!
Proof:

Define a potential function Φ(t) =
∑n

i=1 w (t)
i , so that Φ(1) = n.

The probability of picking expert i in round t is p(t)
i := w (t)

i /
∑n

j=1 w (t)
j = w (t)

i /Φ(t).

Let λ(t)
i be 1 iff expert i is wrong at time t (and 0 otherwise)

Then the expected number of mistakes by our algorithm is E[M(T )] =
∑T

t=1 λ
(t) · p(t).

The new potential (which is deterministic!) can be upper bounded by:

Φ(t+1) =
n∑

i=1

w (t+1)
i =

n∑
i=1

(1− δλ(t)
i ) · w (t+1)

i = Φ(t) ·
(

1− δλ(t)p(t)
)
≤ Φ(t) · exp

(
−δλ(t) · p(t)

)
Thus the final potential satisfies

Φ(T +1) ≤ Φ(1) · exp
(
−δ

T∑
t=1

λ
(t) · p(t)

)
= n · exp

(
−δ · E

[
M(T )

])
,

Φ(T +1) ≥ w (T +1)
i =

T∏
t=1

(
1− δλ(t)

i

)
= (1− δ)

m(T )
i

⇒ ln n − δ · E[M(T )] ≥ ln(1− δ) · m(T )
i ⇒ E[M(T )] ≤

(δ + δ2)

δ
· m(T )

i +
ln n
δ

ln(1 − δ) ≥ −δ − δ2

Learning with Experts © Thomas Sauerwald Randomised Weighted Majority 18



Analysis of Randomised Weighted Majority (non-examinable)

The expected number of mistakes of our algorithm M(T ) satisfies

E
[

M(T )
]
≤ 1 · (1 + δ) ·min

i∈[n]
m(T )

i +
ln n
δ
.

Analysis

This was a factor of 2 before!
Proof:

Define a potential function Φ(t) =
∑n

i=1 w (t)
i , so that Φ(1) = n.

The probability of picking expert i in round t is p(t)
i := w (t)

i /
∑n

j=1 w (t)
j = w (t)

i /Φ(t).

Let λ(t)
i be 1 iff expert i is wrong at time t (and 0 otherwise)

Then the expected number of mistakes by our algorithm is E[M(T )] =
∑T

t=1 λ
(t) · p(t).

The new potential (which is deterministic!) can be upper bounded by:

Φ(t+1) =
n∑

i=1

w (t+1)
i =

n∑
i=1

(1− δλ(t)
i ) · w (t+1)

i = Φ(t) ·
(

1− δλ(t)p(t)
)
≤ Φ(t) · exp

(
−δλ(t) · p(t)

)
Thus the final potential satisfies

Φ(T +1) ≤ Φ(1) · exp
(
−δ

T∑
t=1

λ
(t) · p(t)

)
= n · exp

(
−δ · E

[
M(T )

])
,

Φ(T +1) ≥ w (T +1)
i =

T∏
t=1

(
1− δλ(t)

i

)
= (1− δ)

m(T )
i

⇒ ln n − δ · E[M(T )] ≥ ln(1− δ) · m(T )
i ⇒ E[M(T )] ≤

(δ + δ2)

δ
· m(T )

i +
ln n
δ

ln(1 − δ) ≥ −δ − δ2

Learning with Experts © Thomas Sauerwald Randomised Weighted Majority 18



Optimising the Learning Rate

The expected number of mistakes of our algorithm M(T ) satisfies

E
[

M(T )
]
≤ 1 · (1 + δ) ·min

i∈[n]
m(T )

i +
ln n
δ
.

Analysis

Interpretation:

Suppose that T is known in advance

Pick learning rate δ =
√

ln(n)/T
(assuming T is large enough so that δ ≤ 1/2!)

E
[

M(T )
]
≤ min

i∈[n]
m(T )

i +
√

ln(n)/T · T +
√

ln(n) · T

= min
i∈[n]

m(T )
i + 2·

√
T ln(n)

Additive error (“regret”) negligible in most cases compared to mini∈[n] m(T )
i !

Can we do better than that?

Learning with Experts © Thomas Sauerwald Randomised Weighted Majority 19



Optimising the Learning Rate

The expected number of mistakes of our algorithm M(T ) satisfies

E
[

M(T )
]
≤ 1 · (1 + δ) ·min

i∈[n]
m(T )

i +
ln n
δ
.

Analysis

Interpretation:

Suppose that T is known in advance

Pick learning rate δ =
√

ln(n)/T
(assuming T is large enough so that δ ≤ 1/2!)

E
[

M(T )
]
≤ min

i∈[n]
m(T )

i +
√

ln(n)/T · T +
√

ln(n) · T

= min
i∈[n]

m(T )
i + 2·

√
T ln(n)

Additive error (“regret”) negligible in most cases compared to mini∈[n] m(T )
i !

Can we do better than that?

Learning with Experts © Thomas Sauerwald Randomised Weighted Majority 19



Optimising the Learning Rate

The expected number of mistakes of our algorithm M(T ) satisfies

E
[

M(T )
]
≤ 1 · (1 + δ) ·min

i∈[n]
m(T )

i +
ln n
δ
.

Analysis

Interpretation:

Suppose that T is known in advance

Pick learning rate δ =
√

ln(n)/T
(assuming T is large enough so that δ ≤ 1/2!)

E
[

M(T )
]
≤ min

i∈[n]
m(T )

i +
√

ln(n)/T · T +
√

ln(n) · T

= min
i∈[n]

m(T )
i + 2·

√
T ln(n)

Additive error (“regret”) negligible in most cases compared to mini∈[n] m(T )
i !

Can we do better than that?

Learning with Experts © Thomas Sauerwald Randomised Weighted Majority 19



Optimising the Learning Rate

The expected number of mistakes of our algorithm M(T ) satisfies

E
[

M(T )
]
≤ 1 · (1 + δ) ·min

i∈[n]
m(T )

i +
ln n
δ
.

Analysis

Interpretation:

Suppose that T is known in advance

Pick learning rate δ =
√

ln(n)/T
(assuming T is large enough so that δ ≤ 1/2!)

E
[

M(T )
]
≤ min

i∈[n]
m(T )

i +
√

ln(n)/T · T +
√

ln(n) · T

= min
i∈[n]

m(T )
i + 2·

√
T ln(n)

Additive error (“regret”) negligible in most cases compared to mini∈[n] m(T )
i !

Can we do better than that?

Learning with Experts © Thomas Sauerwald Randomised Weighted Majority 19



Optimising the Learning Rate

The expected number of mistakes of our algorithm M(T ) satisfies

E
[

M(T )
]
≤ 1 · (1 + δ) ·min

i∈[n]
m(T )

i +
ln n
δ
.

Analysis

Interpretation:

Suppose that T is known in advance

Pick learning rate δ =
√

ln(n)/T
(assuming T is large enough so that δ ≤ 1/2!)

E
[

M(T )
]
≤ min

i∈[n]
m(T )

i +
√

ln(n)/T · T +
√

ln(n) · T

= min
i∈[n]

m(T )
i + 2·

√
T ln(n)

Additive error (“regret”) negligible in most cases compared to mini∈[n] m(T )
i !

Can we do better than that?

Learning with Experts © Thomas Sauerwald Randomised Weighted Majority 19



Optimising the Learning Rate

The expected number of mistakes of our algorithm M(T ) satisfies

E
[

M(T )
]
≤ 1 · (1 + δ) ·min

i∈[n]
m(T )

i +
ln n
δ
.

Analysis

Interpretation:

Suppose that T is known in advance

Pick learning rate δ =
√

ln(n)/T
(assuming T is large enough so that δ ≤ 1/2!)

E
[

M(T )
]
≤ min

i∈[n]
m(T )

i +
√

ln(n)/T · T +
√

ln(n) · T

= min
i∈[n]

m(T )
i + 2·

√
T ln(n)

Additive error (“regret”) negligible in most cases compared to mini∈[n] m(T )
i !

Can we do better than that?

Learning with Experts © Thomas Sauerwald Randomised Weighted Majority 19



Optimising the Learning Rate

The expected number of mistakes of our algorithm M(T ) satisfies

E
[

M(T )
]
≤ 1 · (1 + δ) ·min

i∈[n]
m(T )

i +
ln n
δ
.

Analysis

Interpretation:

Suppose that T is known in advance

Pick learning rate δ =
√

ln(n)/T
(assuming T is large enough so that δ ≤ 1/2!)

E
[

M(T )
]
≤ min

i∈[n]
m(T )

i +
√

ln(n)/T · T +
√

ln(n) · T

= min
i∈[n]

m(T )
i + 2·

√
T ln(n)

Additive error (“regret”) negligible in most cases compared to mini∈[n] m(T )
i !

Can we do better than that?

Learning with Experts © Thomas Sauerwald Randomised Weighted Majority 19



Optimising the Learning Rate

The expected number of mistakes of our algorithm M(T ) satisfies

E
[

M(T )
]
≤ 1 · (1 + δ) ·min

i∈[n]
m(T )

i +
ln n
δ
.

Analysis

Interpretation:

Suppose that T is known in advance

Pick learning rate δ =
√

ln(n)/T
(assuming T is large enough so that δ ≤ 1/2!)

E
[

M(T )
]
≤ min

i∈[n]
m(T )

i +
√

ln(n)/T · T +
√

ln(n) · T

= min
i∈[n]

m(T )
i + 2·

√
T ln(n)

Additive error (“regret”) negligible in most cases compared to mini∈[n] m(T )
i !

Can we do better than that?

Learning with Experts © Thomas Sauerwald Randomised Weighted Majority 19



A Tight Lower Bound

For δ =
√

ln(n)/T , the expected number of our mistakes M(T ) satisfies

E
[

M(T )
]
≤ min

i∈[n]
m(T )

i + 2·
√

T ln(n).

Corollary

Suppose every expert i = 1, 2, . . . , n flips an unbiased coin, and the result
is also an unbiased coin flip (independent of the experts’ predictions)

⇒ Regardless of our algorithm, the number of our mistakes satisfies

E
[

M(T )
]

= T · 1
2

How good is the best expert?

Every expert i ∈ [n] will make T/2±Θ(
√

T ) many mistakes
Best expert will make T/2−Θ(

√
T ln(n)) many mistakes (proof omitted, is

based on central limit theorem)

This demonstrates tightness of the error term

Best expert will be good just by chance!

Learning with Experts © Thomas Sauerwald Randomised Weighted Majority 20



A Tight Lower Bound

For δ =
√

ln(n)/T , the expected number of our mistakes M(T ) satisfies

E
[

M(T )
]
≤ min

i∈[n]
m(T )

i + 2·
√

T ln(n).

Corollary

Suppose every expert i = 1, 2, . . . , n flips an unbiased coin, and the result
is also an unbiased coin flip (independent of the experts’ predictions)

⇒ Regardless of our algorithm, the number of our mistakes satisfies

E
[

M(T )
]

= T · 1
2

How good is the best expert?

Every expert i ∈ [n] will make T/2±Θ(
√

T ) many mistakes
Best expert will make T/2−Θ(

√
T ln(n)) many mistakes (proof omitted, is

based on central limit theorem)

This demonstrates tightness of the error term

Best expert will be good just by chance!

Learning with Experts © Thomas Sauerwald Randomised Weighted Majority 20



A Tight Lower Bound

For δ =
√

ln(n)/T , the expected number of our mistakes M(T ) satisfies

E
[

M(T )
]
≤ min

i∈[n]
m(T )

i + 2·
√

T ln(n).

Corollary

Suppose every expert i = 1, 2, . . . , n flips an unbiased coin, and the result
is also an unbiased coin flip (independent of the experts’ predictions)

⇒ Regardless of our algorithm, the number of our mistakes satisfies

E
[

M(T )
]

= T · 1
2

How good is the best expert?

Every expert i ∈ [n] will make T/2±Θ(
√

T ) many mistakes
Best expert will make T/2−Θ(

√
T ln(n)) many mistakes (proof omitted, is

based on central limit theorem)

This demonstrates tightness of the error term

Best expert will be good just by chance!

Learning with Experts © Thomas Sauerwald Randomised Weighted Majority 20



A Tight Lower Bound

For δ =
√

ln(n)/T , the expected number of our mistakes M(T ) satisfies

E
[

M(T )
]
≤ min

i∈[n]
m(T )

i + 2·
√

T ln(n).

Corollary

Suppose every expert i = 1, 2, . . . , n flips an unbiased coin, and the result
is also an unbiased coin flip (independent of the experts’ predictions)

⇒ Regardless of our algorithm, the number of our mistakes satisfies

E
[

M(T )
]

= T · 1
2

How good is the best expert?

Every expert i ∈ [n] will make T/2±Θ(
√

T ) many mistakes
Best expert will make T/2−Θ(

√
T ln(n)) many mistakes (proof omitted, is

based on central limit theorem)

This demonstrates tightness of the error term

Best expert will be good just by chance!

Learning with Experts © Thomas Sauerwald Randomised Weighted Majority 20



A Tight Lower Bound

For δ =
√

ln(n)/T , the expected number of our mistakes M(T ) satisfies

E
[

M(T )
]
≤ min

i∈[n]
m(T )

i + 2·
√

T ln(n).

Corollary

Suppose every expert i = 1, 2, . . . , n flips an unbiased coin, and the result
is also an unbiased coin flip (independent of the experts’ predictions)

⇒ Regardless of our algorithm, the number of our mistakes satisfies

E
[

M(T )
]

= T · 1
2

How good is the best expert?

Every expert i ∈ [n] will make T/2±Θ(
√

T ) many mistakes
Best expert will make T/2−Θ(

√
T ln(n)) many mistakes (proof omitted, is

based on central limit theorem)

This demonstrates tightness of the error term

Best expert will be good just by chance!

Learning with Experts © Thomas Sauerwald Randomised Weighted Majority 20



A Tight Lower Bound

For δ =
√

ln(n)/T , the expected number of our mistakes M(T ) satisfies

E
[

M(T )
]
≤ min

i∈[n]
m(T )

i + 2·
√

T ln(n).

Corollary

Suppose every expert i = 1, 2, . . . , n flips an unbiased coin, and the result
is also an unbiased coin flip (independent of the experts’ predictions)

⇒ Regardless of our algorithm, the number of our mistakes satisfies

E
[

M(T )
]

= T · 1
2

How good is the best expert?
Every expert i ∈ [n] will make T/2±Θ(

√
T ) many mistakes

Best expert will make T/2−Θ(
√

T ln(n)) many mistakes (proof omitted, is
based on central limit theorem)

This demonstrates tightness of the error term

Best expert will be good just by chance!

Learning with Experts © Thomas Sauerwald Randomised Weighted Majority 20



A Tight Lower Bound

For δ =
√

ln(n)/T , the expected number of our mistakes M(T ) satisfies

E
[

M(T )
]
≤ min

i∈[n]
m(T )

i + 2·
√

T ln(n).

Corollary

Suppose every expert i = 1, 2, . . . , n flips an unbiased coin, and the result
is also an unbiased coin flip (independent of the experts’ predictions)

⇒ Regardless of our algorithm, the number of our mistakes satisfies

E
[

M(T )
]

= T · 1
2

How good is the best expert?
Every expert i ∈ [n] will make T/2±Θ(

√
T ) many mistakes

Best expert will make T/2−Θ(
√

T ln(n)) many mistakes (proof omitted, is
based on central limit theorem)

This demonstrates tightness of the error term

Best expert will be good just by chance!

Learning with Experts © Thomas Sauerwald Randomised Weighted Majority 20



A Tight Lower Bound

For δ =
√

ln(n)/T , the expected number of our mistakes M(T ) satisfies

E
[

M(T )
]
≤ min

i∈[n]
m(T )

i + 2·
√

T ln(n).

Corollary

Suppose every expert i = 1, 2, . . . , n flips an unbiased coin, and the result
is also an unbiased coin flip (independent of the experts’ predictions)

⇒ Regardless of our algorithm, the number of our mistakes satisfies

E
[

M(T )
]

= T · 1
2

How good is the best expert?
Every expert i ∈ [n] will make T/2±Θ(

√
T ) many mistakes

Best expert will make T/2−Θ(
√

T ln(n)) many mistakes (proof omitted, is
based on central limit theorem)

This demonstrates tightness of the error term

Best expert will be good just by chance!

Learning with Experts © Thomas Sauerwald Randomised Weighted Majority 20



A Tight Lower Bound

For δ =
√

ln(n)/T , the expected number of our mistakes M(T ) satisfies

E
[

M(T )
]
≤ min

i∈[n]
m(T )

i + 2·
√

T ln(n).

Corollary

Suppose every expert i = 1, 2, . . . , n flips an unbiased coin, and the result
is also an unbiased coin flip (independent of the experts’ predictions)

⇒ Regardless of our algorithm, the number of our mistakes satisfies

E
[

M(T )
]

= T · 1
2

How good is the best expert?
Every expert i ∈ [n] will make T/2±Θ(

√
T ) many mistakes

Best expert will make T/2−Θ(
√

T ln(n)) many mistakes (proof omitted, is
based on central limit theorem)

This demonstrates tightness of the error term

Best expert will be good just by chance!

Learning with Experts © Thomas Sauerwald Randomised Weighted Majority 20



A Tight Lower Bound

For δ =
√

ln(n)/T , the expected number of our mistakes M(T ) satisfies

E
[

M(T )
]
≤ min

i∈[n]
m(T )

i + 2·
√

T ln(n).

Corollary

Suppose every expert i = 1, 2, . . . , n flips an unbiased coin, and the result
is also an unbiased coin flip (independent of the experts’ predictions)

⇒ Regardless of our algorithm, the number of our mistakes satisfies

E
[

M(T )
]

= T · 1
2

How good is the best expert?
Every expert i ∈ [n] will make T/2±Θ(

√
T ) many mistakes

Best expert will make T/2−Θ(
√

T ln(n)) many mistakes (proof omitted, is
based on central limit theorem)

This demonstrates tightness of the error term

Best expert will be good just by chance!

Learning with Experts © Thomas Sauerwald Randomised Weighted Majority 20



Outline

Introduction

Deterministic Weighted Majority

Randomised Weighted Majority

Extensions and Conclusions

Learning with Experts © Thomas Sauerwald Extensions and Conclusions 21



Choosing the Learning Rate Dynamically (1/2)

Question: How to adjust learning rate if T is not known in advance?

Algorithm:
1. For m = 1, 2, . . .
2. Run a new instance of algorithm on the 2m rounds t = 2m, . . . , 2m+1−1

with “optimal” learning rate (for an algorithm that runs for 2m steps)

Analysis before shows that in phase m, number of additional
mistakes compared to best expert (regret) is at most α ·

√
2m

⇒ total regret after T steps is at most
√

2√
2− 1

α
√

T ,

where α = 2·
√

ln(n).

Approach 1: “The Doubling Trick”

Learning with Experts © Thomas Sauerwald Extensions and Conclusions 22



Choosing the Learning Rate Dynamically (1/2)

Question: How to adjust learning rate if T is not known in advance?

Algorithm:
1. For m = 1, 2, . . .
2. Run a new instance of algorithm on the 2m rounds t = 2m, . . . , 2m+1−1

with “optimal” learning rate (for an algorithm that runs for 2m steps)

Analysis before shows that in phase m, number of additional
mistakes compared to best expert (regret) is at most α ·

√
2m

⇒ total regret after T steps is at most
√

2√
2− 1

α
√

T ,

where α = 2·
√

ln(n).

Approach 1: “The Doubling Trick”

Learning with Experts © Thomas Sauerwald Extensions and Conclusions 22



Choosing the Learning Rate Dynamically (2/2)

Algorithm:
1. Run the randomised WMA with learning rate δt ≈ 1/

√
t in round t

A modification of our analysis proves for any time-interval [T/2,T ]:

T∑
t=T/2

δt · λ(t) · p(t) ≤ log(Φ(T/2)) + (1− δT )m[T/2,T ]
i

⇒ E
[

M [T/2,T ]
]
≤

m[T/2,T ]
i · log(1− δT )

δT/2
+

log(Φ(T/2))

δT/2

Approach 2

Algorithm:

1. Run the randomised WMA with learning rate δt ≈ 1/
√

mini∈[n] m(t)
i (or

1/
√

M(t)) in round t

Approach 3: “Self-Confident Algorithm”

Learning with Experts © Thomas Sauerwald Extensions and Conclusions 23



Choosing the Learning Rate Dynamically (2/2)

Algorithm:
1. Run the randomised WMA with learning rate δt ≈ 1/

√
t in round t

A modification of our analysis proves for any time-interval [T/2,T ]:

T∑
t=T/2

δt · λ(t) · p(t) ≤ log(Φ(T/2)) + (1− δT )m[T/2,T ]
i

⇒ E
[

M [T/2,T ]
]
≤

m[T/2,T ]
i · log(1− δT )

δT/2
+

log(Φ(T/2))

δT/2

Approach 2

Algorithm:

1. Run the randomised WMA with learning rate δt ≈ 1/
√

mini∈[n] m(t)
i (or

1/
√

M(t)) in round t

Approach 3: “Self-Confident Algorithm”

Learning with Experts © Thomas Sauerwald Extensions and Conclusions 23



A More General Setting

New Setup
At each step, we pick one expert i randomly out of n experts
That expert i and our algorithm incur a cost m(t)

i , but we also observe the
costs of all experts (a vector (m(t)

j )n
i=1)

costs m(t)
j can be arbitrary in the range [−1, 1]

Coming back to our example of stock prediction:

could define cost m(t)
j = 0 if expert j is neutral (HOLD)

cost m(t)
j > 0 if expert j makes the wrong prediction

(closer to 1 the stronger prediction and stronger the price change)

cost m(t)
j < 0 if expert j makes the correct prediction

In the first iteration, simply pick an expert uniformly at random

Every expert will be penalised or rewarded through a multiplicative
weight-update

Idea of the “Multiplicative Weights-Algorithm”

Learning with Experts © Thomas Sauerwald Extensions and Conclusions 24



A More General Setting

New Setup
At each step, we pick one expert i randomly out of n experts
That expert i and our algorithm incur a cost m(t)

i , but we also observe the
costs of all experts (a vector (m(t)

j )n
i=1)

costs m(t)
j can be arbitrary in the range [−1, 1]

Coming back to our example of stock prediction:

could define cost m(t)
j = 0 if expert j is neutral (HOLD)

cost m(t)
j > 0 if expert j makes the wrong prediction

(closer to 1 the stronger prediction and stronger the price change)

cost m(t)
j < 0 if expert j makes the correct prediction

In the first iteration, simply pick an expert uniformly at random

Every expert will be penalised or rewarded through a multiplicative
weight-update

Idea of the “Multiplicative Weights-Algorithm”

Learning with Experts © Thomas Sauerwald Extensions and Conclusions 24



A More General Setting

New Setup
At each step, we pick one expert i randomly out of n experts
That expert i and our algorithm incur a cost m(t)

i , but we also observe the
costs of all experts (a vector (m(t)

j )n
i=1)

costs m(t)
j can be arbitrary in the range [−1, 1]

Coming back to our example of stock prediction:

could define cost m(t)
j = 0 if expert j is neutral (HOLD)

cost m(t)
j > 0 if expert j makes the wrong prediction

(closer to 1 the stronger prediction and stronger the price change)

cost m(t)
j < 0 if expert j makes the correct prediction

In the first iteration, simply pick an expert uniformly at random

Every expert will be penalised or rewarded through a multiplicative
weight-update

Idea of the “Multiplicative Weights-Algorithm”

Learning with Experts © Thomas Sauerwald Extensions and Conclusions 24



A More General Setting

New Setup
At each step, we pick one expert i randomly out of n experts
That expert i and our algorithm incur a cost m(t)

i , but we also observe the
costs of all experts (a vector (m(t)

j )n
i=1)

costs m(t)
j can be arbitrary in the range [−1, 1]

Coming back to our example of stock prediction:

could define cost m(t)
j = 0 if expert j is neutral (HOLD)

cost m(t)
j > 0 if expert j makes the wrong prediction

(closer to 1 the stronger prediction and stronger the price change)

cost m(t)
j < 0 if expert j makes the correct prediction

In the first iteration, simply pick an expert uniformly at random

Every expert will be penalised or rewarded through a multiplicative
weight-update

Idea of the “Multiplicative Weights-Algorithm”

Learning with Experts © Thomas Sauerwald Extensions and Conclusions 24



A More General Setting

New Setup
At each step, we pick one expert i randomly out of n experts
That expert i and our algorithm incur a cost m(t)

i , but we also observe the
costs of all experts (a vector (m(t)

j )n
i=1)

costs m(t)
j can be arbitrary in the range [−1, 1]

Coming back to our example of stock prediction:

could define cost m(t)
j = 0 if expert j is neutral (HOLD)

cost m(t)
j > 0 if expert j makes the wrong prediction

(closer to 1 the stronger prediction and stronger the price change)

cost m(t)
j < 0 if expert j makes the correct prediction

In the first iteration, simply pick an expert uniformly at random

Every expert will be penalised or rewarded through a multiplicative
weight-update

Idea of the “Multiplicative Weights-Algorithm”

Learning with Experts © Thomas Sauerwald Extensions and Conclusions 24



A More General Setting

New Setup
At each step, we pick one expert i randomly out of n experts
That expert i and our algorithm incur a cost m(t)

i , but we also observe the
costs of all experts (a vector (m(t)

j )n
i=1)

costs m(t)
j can be arbitrary in the range [−1, 1]

Coming back to our example of stock prediction:

could define cost m(t)
j = 0 if expert j is neutral (HOLD)

cost m(t)
j > 0 if expert j makes the wrong prediction

(closer to 1 the stronger prediction and stronger the price change)

cost m(t)
j < 0 if expert j makes the correct prediction

In the first iteration, simply pick an expert uniformly at random

Every expert will be penalised or rewarded through a multiplicative
weight-update

Idea of the “Multiplicative Weights-Algorithm”

Learning with Experts © Thomas Sauerwald Extensions and Conclusions 24



The Multiplicative Weights Algorithm

The Multiplicative Weights Algorithm
Initialization: Fix δ ≤ 1/2. For every i ∈ [n], let w (1)

i := 1
Update: For t = 1, 2, . . . ,T :

Choose expert i with prop. proportional to w (t)
i .

Observe the costs of all n experts in round t , m(t)

For every expert i , update its weight by:

w (t+1)
i = (1− δm(t)

i )w (t)
i

For any expert i , the expected cost of this algorithm is at most

T∑
t=1

m(t)
i + δ ·

T∑
t=1

∣∣∣m(t)
i

∣∣∣+
log n
δ

.

Analysis

Derivation is very similar to the ones shown before.

Learning with Experts © Thomas Sauerwald Extensions and Conclusions 25



The Multiplicative Weights Algorithm

The Multiplicative Weights Algorithm
Initialization: Fix δ ≤ 1/2. For every i ∈ [n], let w (1)

i := 1
Update: For t = 1, 2, . . . ,T :

Choose expert i with prop. proportional to w (t)
i .

Observe the costs of all n experts in round t , m(t)

For every expert i , update its weight by:

w (t+1)
i = (1− δm(t)

i )w (t)
i

For any expert i , the expected cost of this algorithm is at most

T∑
t=1

m(t)
i + δ ·

T∑
t=1

∣∣∣m(t)
i

∣∣∣+
log n
δ

.

Analysis

Derivation is very similar to the ones shown before.

Learning with Experts © Thomas Sauerwald Extensions and Conclusions 25



The Multiplicative Weights Algorithm

The Multiplicative Weights Algorithm
Initialization: Fix δ ≤ 1/2. For every i ∈ [n], let w (1)

i := 1
Update: For t = 1, 2, . . . ,T :

Choose expert i with prop. proportional to w (t)
i .

Observe the costs of all n experts in round t , m(t)

For every expert i , update its weight by:

w (t+1)
i = (1− δm(t)

i )w (t)
i

For any expert i , the expected cost of this algorithm is at most

T∑
t=1

m(t)
i + δ ·

T∑
t=1

∣∣∣m(t)
i

∣∣∣+
log n
δ

.

Analysis

Derivation is very similar to the ones shown before.

Learning with Experts © Thomas Sauerwald Extensions and Conclusions 25



Conclusions

Weighted Majority Algorithm
natural, simple (and deterministic) algorithm
good performance, but could be a factor of 2 worse than the best expert

Randomised Weighted Majority Algorithm
Randomised extension
almost optimal performance thanks to randomisation which guards
against tailored worst-case instances (cmp. Quick-Sort!)
impact of the learning rate: small learning rate gives very good
performance guarantees. However, actual performance may depend on
the specific data set at hand (cf. simulations!)

Multiplicative Weight-Update Algorithm
further generalisation of the (randomised) weighted majority algorithm

Summary

These algorithms are examples of the Ensemble-Method:
Framework combining weak predictions into a strong learner

A closely related algorithmic approach: Follow the Perturbed Leader

Similar update schemes are Perceptron and AdaBoost

Outlook

Learning with Experts © Thomas Sauerwald Extensions and Conclusions 26



Conclusions

Weighted Majority Algorithm
natural, simple (and deterministic) algorithm
good performance, but could be a factor of 2 worse than the best expert

Randomised Weighted Majority Algorithm
Randomised extension
almost optimal performance thanks to randomisation which guards
against tailored worst-case instances (cmp. Quick-Sort!)
impact of the learning rate: small learning rate gives very good
performance guarantees. However, actual performance may depend on
the specific data set at hand (cf. simulations!)

Multiplicative Weight-Update Algorithm
further generalisation of the (randomised) weighted majority algorithm

Summary

These algorithms are examples of the Ensemble-Method:
Framework combining weak predictions into a strong learner

A closely related algorithmic approach: Follow the Perturbed Leader

Similar update schemes are Perceptron and AdaBoost

Outlook

Learning with Experts © Thomas Sauerwald Extensions and Conclusions 26



References

S. Arora, E. Hazan and S. Kale
The Multiplicative Weights Update Method: A Meta-Algorithm and
Applications
Theory of Computing, Volume 8 (2012).

N. Littlestone and M.K. Warmuth
The Weighted Majority Algorithm
Information and Computation, Volume 108, Issue 2, 1994.

S. Shalev-Shwartz and S. Ben-David
Understanding Machine Learning: From Theory to Algorithms
Cambridge University Press, 2014.
https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/
understanding-machine-learning-theory-algorithms.pdf

Learning with Experts © Thomas Sauerwald Extensions and Conclusions 27

https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/understanding-machine-learning-theory-algorithms.pdf
https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/understanding-machine-learning-theory-algorithms.pdf

	Introduction
	Deterministic Weighted Majority
	Randomised Weighted Majority
	Extensions and Conclusions

