Randomised Algorithms
Lecture 13: Streaming Algorithms

Thomas Sauerwald (tms41@cam.ac.uk)

Lent 2022

Outline

Introduction

Streaming © Thomas Sauerwald Introduction

Background of Streaming Algorithms

= The amount of data has been increased exponentially over the last years

= For many applications computational devices’ memories are limited

= We need to find good (approximate) solutions without storing the entire

input!

Size of data

A

N

v

1990s 2000s 2010s 2020s Time

Streaming © Thomas Sauerwald Introduction

Motivation: Analysing Search Engine Queries

= What is the total number queries?

= What is the total number of different IP addresses?

= Extension 1: only consider queries within a certain interval (sliding window)
= Extension 2: also allow the cancellation/removal of a query (turnstile model)
= Extension 3: What if we have different data centers? (distributed streaming)

T 4 -

{ B
= memory is much smaller than needed to store entire data stream

=- We can only read each data item once and in sequential order

Y TN —

IP:

54.73.1

Time:
Text:

N
Other Applications:
= Monitoring Financial Transactions |
= Analysing Buying Histories of Users
J

Streaming © Thomas Sauerwald Introduction 4

Streaming algorithms

= The input of a streaming algorithm is given as a data stream, which is a
sequence of data
S=51,8,...,8i,...

and every s; belongs to the universe U.

= Constraints for streaming algorithms: the space complexity should be
sublinear in |U| and |S|.

= Quality of the output: The algorithm needs to give a good approximate
value with high probability.

(g, 6)-approximation

For confidence parameter § and approximation parameter ¢, the al-
gorithm’s output Output and the exact answer Exact satisfies

P[Output € (1 —¢,1+4¢)-Exact] > 1 —4.

Streaming © Thomas Sauerwald Introduction

Outline

Approximate Counting

Streaming © Thomas Sauerwald Approximate Counting

Approximate Counting and Morris Algorithm

p
This could be also described as a data structure maintaining an integer n and
supporting two operations:

= update(): increment n by 1
= query(): output n

v

An approximate counting algorithm must monitor a sequence of events.
At any given time, the algorithm must output an estimate of the number
of events. o~

4[Trivial (and exact) solution uses log, n space. Can we do better?]

MORRIS ALGORITHM
: X<+0
: While update ()
With probability 2=% set X « X + 1
: Return 2% — 1

Approximate Counting

S
[Intuition: X will be an approximation of log, n (that is, we try to approximate J

the number of bits of nin binary)

Streaming © Thomas Sauerwald Approximate Counting 7

Analysis (1/3)

Lemma (Expectation Analysis)
Let X, denote the value of X after n updates. For every n > 0,
E [2’(“} —nt1.
Hence ©, := 2X — 1 is
Proof: | an unbiased estimator of n.

= Base case: Forn=0,we have X, = Xp =0V
= Induction step: n — n+ 1: By conditioning on Xa,

E [2Xn+1} :ip[xn:/‘]-e [2X~+1 | xn:j]

—ZP[Xn—/]((1>+2’+‘-%)

=3 PIX =112+ Y PIX =]
:E[ZX"]JH

[By Induction Hypothesis > =(n+1)+1.

Streaming © Thomas Sauerwald Approximate Counting 8

Analysis (2/3)

Lemma (Second Moment Analysis)
Let X, denote the value of X after n updates. For every n > 0,
x\2 | _ 2x,] _ 3 2 3
E| (29)°| —E[2%] = 3 Sn .

N
A\

[This is shown similarly to that of the previous Lemma (see supervision sheet)]

* Recall ©, = 2% — 1.
= Since V[Z]=E[Z?] -E[Z],

vie, =Vv[2"] =E[2**] - (E [zanZ

3, 3 m”—-n
=50 +2n+1—(n+1) 5
= Using Chebysheff’s inequality, [This failure probability (estimate) is at least % @]
vies . = Vi

P[|©n—nl>e-n] < ~n2§ nzzg.

Streaming © Thomas Sauerwald Approximate Counting 9

Analysis (3/3)

Idea: Reduce Variance by Running Independent Instances and Taking Average.

IMPROVED MORRIS ALGORITHM(G)
1: Let®', 0% ..., ©" be k independent instances of MORRIS
2. Return © := 1 ¢ @

= Clearly, E[©] = n. For the variance,

V[e]=1.v ie" —1-v[e1]<1.’f
T V&% Tk Sk 2

= Hence using Chebyshev,

Conclusion
For any ¢,6 < 1, the IMPROVED MORRIS ALG. with k > 26‘—25 satisfies:

P[[©-n/<en]>1-4

Streaming © Thomas Sauerwald Approximate Counting 10

Simulation

1000

nand6,

0 200 400 600 800 1000

A run of Morris’s algorithm on n = 1024 data points

(source: http://gregorygundersen.com/blog/2019/11/11/morris-algorithm/)

Streaming © Thomas Sauerwald Approximate Counting 11

http://gregorygundersen.com/blog/2019/11/11/morris-algorithm/

Outline

Distinct Elements and Frequency Moments

Streaming © Thomas Sauerwald Distinct Elements and Frequency Moments

Norm Estimation: the Alon-Matias-Szegedy algorithm

Fp-norm (Frequency Moments)

Let U with |U| = n. For i € U, let f; be the number of occurrences of
i € Uinthe stream S. Then for any p > 0, the Fp-norm is defined by

Fo ::Zfip.

ieu

= F; =total number of items in stream S.
= Fy = total number of distinct items in stream S.

Alon, Matias, and Szegedy (1996) presented a systematical study for
approximating frequency moments.

* Fo, F1, F> can be approximated in space logarithmic in nand |S]|.
= Approximating F, for p > 6 requires n“(") space.

= The paper won 2005 Gddel Award for “their foundational contribution to
streaming algorithms”.

Streaming © Thomas Sauerwald Distinct Elements and Frequency Moments

Important Tool: Pairwise independent Hash Functions

We will focus on the simpler case of Fy, the number of distinct elements.

Pairwise Independence
A family of functions H = {h| h: U — [n]} is pairwise independent if, for
any h chosen uniformly at random from H, the following holds:

1. h(x) is uniformly distributed in [n] = {1,2,...,n} forany x € U;
2. Forany x1 # x2 € U, h(x1) and h(x2) are independent.

Theorem (Fact)

Let n be a prime number, and let h, p(x) = (ax + b) mod n. Define
H={h,p |0<ab<n-1}.

Then H is a family of pairwise independent hash functions.

Streaming © Thomas Sauerwald Distinct Elements and Frequency Moments

Intuition behind the AMS algorithm

Assume that we have a random hash function h. Define
L P i_
p(x) = rpzaox{l :xmod2' = 0} ,

which is the number of consecutive 0's among the lowest bits of x.

[Example: p(2) = 1, p(3) = 0, p(4) = 2, p(8) = 3, p(16) = 4, p(17) = 0.]

Observation. Since h(x) is uniformly distributed over [n], the following holds:
= with probability 1/2, we have p(h(x)) > 1
= with probability 1/4, we have p(h(x)) > 2
= with probability 1/8, we have p(h(x)) > 3

= with probability 1/2", we have p(h(x)) > r
T~
[Since nis not a power of 2, this probability is in fact equal to L7221 ~ 1/27 — o(1).]

Streaming © Thomas Sauerwald Distinct Elements and Frequency Moments 15

The AMS Algorithm

AMS ALGORITHM
: Choose a random hash function h : [n] — [n]
Z+0
: While item x from stream S arrives
if p(h(x)) > Z then Z « p(h(x)) < Z « max{Z, p(h(x))}]
. return 2+1/2

(SN NI A R RN

Analysis of AMS Algorithm
With constant probability > 0, the algorithm’s output satisfies

27M1/2 ¢ [Ry/3,3 - Fo).

We get an (O(1), §)-approximation of Fy by running ©(log(1/4)) independent
copies of the algorithm and returning the median.

N
Recall (e, §)-approximation:
P[Output € (1 —¢,1+¢) -Exact] >1 -3¢

Streaming © Thomas Sauerwald Distinct Elements and Frequency Moments 16

Example of the AMS Algorithm

Assume n = 101 (which is prime)

The hash function is h(x) = (ax 4+ b) mod n with a= 28, b = 16

The data stream is:
S =(25,76,14,51,25,14,76,76,3,51,96,14,67,3,15,25,2,76,14,71)

Fo = 10, as the following numbers appeared: {2,3,14,15,25,51,67,71,76,96}

returned estimate:
25+1/2

~ 45.25

]

X h(x) Binary Representation p(h(x))
2 72 1 0 0 1 0 0 0 3

3 100 1 1 0 0 1 0 0 2

14 4 0 0 0 0 1 0 0 2
15 32 0 1 0 0 0 0 0 5 {
25 9 0 0 0 1 0 0 1 0

51 30 0 0 1 1 1 1 0 1

67 74 1 0 0 1 0 1 0 1

71 85 1 0 1 0 1 0 1 0
76 23 0 0 1 0 1 1 1 0
96 78 1 0 0 1 1 1 0 1

Streaming © Thomas Sauerwald

Distinct Elements and Frequency Moments

Analysis (1/2)

Let X; ; be a 0/1 indicator random variable such that
Xrj =1 p(h(j)) > r.

We say item j reaches level rif X;; = 1.

Let Y, = ngs X; ; be the number of items j reaching level r.

Using that h(j) is uniformly distributed, we conclude

E[X.;]=P[p(h(j)) >r]=P[h(j)mod2" =0] =27".
N

[deﬁnition of function pJ
By linearity of expectation, we have

E[Yr]:ZE[Xr,/’]:%’
jes
VIV =YV < Y E[XE] = S EDG) -
] _ies jes jes

[using pairwise independence of h!]

Streaming © Thomas Sauerwald Distinct Elements and Frequency Moments

Analysis (2/2)

We have proved E[Y;] = % andV[Y,] < %
By Markov’s inequality, we have

PIY,>0]=P[y,>1]< EL_ 5
By Chebyshev’s inequality, we have
PIY,=0]<P[|Y,—E[V/] |>F/2] < LY _2

(Fo/2'? = Fo’

Let Z be the final integer the algo. keeps. So the algo. returns 2+1/2,
Let p be the smallest integer such that 2°*"/2 > 3f:
Fo V2

P[272 >8R] =P[Z>p] =P[Y,>0] < 57 < %=,

Let g be the largest integer such that 29+"/2 < F,/3: [Union Bound: Error < 2- %2 < 1]

q+1
291 V2
Fb — 8

O

P27 < Fo/3] =P[Z<q] <P[Y41=0] <

Streaming © Thomas Sauerwald Distinct Elements and Frequency Moments 19

Final Remarks

= Durand and Flajolet (2003) proposed the LOGLOG algorithm for
estimating Fo

= Their algorithm condenses the whole of Shakespeare’s works to a table of
256 “small bytes” of 4 bits each

= The estimate of the number of distinct words is IA-'S = 30897, while the true
answer is Fy = 28239, which represents a relative error +9.4%.

ghfffghfghgghggggghghheehfhfhhgghghghhfgffffhhhiigfhhffgfiihfhhh
igigighfgihfffghigihghigfhhgeegeghgghhhgghhfhidiigihighihehhhfgg
hfgighigffghdieghhhggghhfghhfiiheffghghihifgggffihgihfggighgiiif
fjgfgjhhjiifhjgehgghfhhfhjhiggghghihigghhihihgiighgfhlgjfgjjjmfl

Streaming © Thomas Sauerwald Distinct Elements and Frequency Moments

20

Outline

Extra Material (non-examinable): An Algorithm for Fy in the Turnstile Model

Streaming © Thomas Sauerwald ~ Extra Material (non-examinable): An Algorithm for Fyy in the Turnstile Model

21

The AMS algorithm (cash register model)

Common approach for designing algorithms in the cash register model:

1. Sample the data items based on hashed values;

2. Store the statistical information of the sampled items, or store the
sampled items directly.

Downside of this framework:

= Sampling probability for the current item usually depends on the whole
data stream that algorithm has seen so far.

= Deleting an item appeared before could potentially make the current
statistical information useless! :(

N\
1\

[Sampling techniques are usually non-applicable in the turnstile model.]

Streaming © Thomas Sauerwald ~ Extra Material (non-examinable): An Algorithm for Fgy in the Turnstile Model 22

Algorithm to approximate F; in the turnstile model

——— Algorithm to approximate F, (simplified description)

1

22y=0

3: while item (x, £) from stream S arrives
4: if x is inserted then y < y + h(x)
5: else y «+ y — h(x)
6: return Z .= y?

N

: Choose a 4-wise independent hash function h: [n] — {—1,1}

1 X

[The algorithm runs in the turnstile model!]

— Key Lemma

It holds that E[Z] = F, and V[Z] < 2- (X5 MF)% = 2F%.

AN

Hence, we can (e, §)-approximate F,, by running multiple copies
of the algorithm in parallel and return the average value.

]

Streaming © Thomas Sauerwald Extra Material (non-examinable): An Algorithm for Fyy in the Turnstile Model

23

Algorithm to approximate F; in the turnstile model

——— Algorithm to approximate F, (details)

-

D t=[6/e%]
2: Choose t 4-wise independent hash function hy, ..., h;, where

hi:[n] = {-1,1}

:yi=0foreachi=1,...t
: while item (x, £) from stream S arrives
if x is inserted then y; = y; + hi(x) forevery 1 < <t
else yi =y — hi(x) forevery 1 <i<t
return 1 - 3"/, Z, where Z = y?

N R

~——— Analysis N\
With constant probability, the returned value of the algorithm lies in (1 —
e,1+¢€) - F2. Moreover, the space complexity is O ((1/<%) log n) bits.

\ J

Streaming © Thomas Sauerwald ~ Extra Material (non-examinable): An Algorithm for Fgy in the Turnstile Model 24

	Introduction
	Approximate Counting
	Distinct Elements and Frequency Moments
	Extra Material (non-examinable): An Algorithm for F0 in the Turnstile Model

