
Randomised Algorithms
Lecture 13: Streaming Algorithms

Thomas Sauerwald (tms41@cam.ac.uk)

Lent 2022

Outline

Introduction

Approximate Counting

Distinct Elements and Frequency Moments

Extra Material (non-examinable): An Algorithm for F0 in the Turnstile Model

Streaming © Thomas Sauerwald Introduction 2

Background of Streaming Algorithms

The amount of data has been increased exponentially over the last years

For many applications computational devices’ memories are limited

We need to find good (approximate) solutions without storing the entire
input!

Time

Size of data

1990s 2000s 2010s 2020s

Streaming © Thomas Sauerwald Introduction 3

Background of Streaming Algorithms

The amount of data has been increased exponentially over the last years

For many applications computational devices’ memories are limited

We need to find good (approximate) solutions without storing the entire
input!

Time

Size of data

1990s 2000s 2010s 2020s

Streaming © Thomas Sauerwald Introduction 3

Background of Streaming Algorithms

The amount of data has been increased exponentially over the last years

For many applications computational devices’ memories are limited

We need to find good (approximate) solutions without storing the entire
input!

Time

Size of data

1990s 2000s 2010s 2020s

Streaming © Thomas Sauerwald Introduction 3

Motivation: Analysing Search Engine Queries

Text:
Time:

IP:
54.73.136.89

Text:
Time:

IP:
102.58.22.231

Text:
Time:

IP:
54.73.136.89

Text:
Time:

IP:
170.9.103.244

Text:
Time:

IP:
189.105.32.75

Text:
Time:

IP:
54.73.136.89

Text:
Time:

IP:
144.66.18.240

Text:
Time:

IP:
102.58.22.231

memory is much smaller than needed to store entire data stream

⇒ We can only read each data item once and in sequential order

What is the total number queries?

What is the total number of different IP addresses?

Extension 1: only consider queries within a certain interval (sliding window)

Extension 2: also allow the cancellation/removal of a query (turnstile model)

Extension 3: What if we have different data centers? (distributed streaming)
...

Other Applications:
Monitoring Financial Transactions

Analysing Buying Histories of Users

Streaming © Thomas Sauerwald Introduction 4

Motivation: Analysing Search Engine Queries

Text:
Time:

IP:
54.73.136.89

Text:
Time:

IP:
54.73.136.89

Text:
Time:

IP:
102.58.22.231

Text:
Time:

IP:
54.73.136.89

Text:
Time:

IP:
170.9.103.244

Text:
Time:

IP:
189.105.32.75

Text:
Time:

IP:
54.73.136.89

Text:
Time:

IP:
144.66.18.240

Text:
Time:

IP:
102.58.22.231

memory is much smaller than needed to store entire data stream

⇒ We can only read each data item once and in sequential order

What is the total number queries?

What is the total number of different IP addresses?

Extension 1: only consider queries within a certain interval (sliding window)

Extension 2: also allow the cancellation/removal of a query (turnstile model)

Extension 3: What if we have different data centers? (distributed streaming)
...

Other Applications:
Monitoring Financial Transactions

Analysing Buying Histories of Users

Streaming © Thomas Sauerwald Introduction 4

Motivation: Analysing Search Engine Queries

Text:
Time:

IP:
54.73.136.89

Text:
Time:

IP:
102.58.22.231

Text:
Time:

IP:
102.58.22.231

Text:
Time:

IP:
54.73.136.89

Text:
Time:

IP:
170.9.103.244

Text:
Time:

IP:
189.105.32.75

Text:
Time:

IP:
54.73.136.89

Text:
Time:

IP:
144.66.18.240

Text:
Time:

IP:
102.58.22.231

memory is much smaller than needed to store entire data stream

⇒ We can only read each data item once and in sequential order

What is the total number queries?

What is the total number of different IP addresses?

Extension 1: only consider queries within a certain interval (sliding window)

Extension 2: also allow the cancellation/removal of a query (turnstile model)

Extension 3: What if we have different data centers? (distributed streaming)
...

Other Applications:
Monitoring Financial Transactions

Analysing Buying Histories of Users

Streaming © Thomas Sauerwald Introduction 4

Motivation: Analysing Search Engine Queries

Text:
Time:

IP:
54.73.136.89

Text:
Time:

IP:
102.58.22.231

Text:
Time:

IP:
54.73.136.89

Text:
Time:

IP:
54.73.136.89

Text:
Time:

IP:
170.9.103.244

Text:
Time:

IP:
189.105.32.75

Text:
Time:

IP:
54.73.136.89

Text:
Time:

IP:
144.66.18.240

Text:
Time:

IP:
102.58.22.231

memory is much smaller than needed to store entire data stream

⇒ We can only read each data item once and in sequential order

What is the total number queries?

What is the total number of different IP addresses?

Extension 1: only consider queries within a certain interval (sliding window)

Extension 2: also allow the cancellation/removal of a query (turnstile model)

Extension 3: What if we have different data centers? (distributed streaming)
...

Other Applications:
Monitoring Financial Transactions

Analysing Buying Histories of Users

Streaming © Thomas Sauerwald Introduction 4

Motivation: Analysing Search Engine Queries

Text:
Time:

IP:
54.73.136.89

Text:
Time:

IP:
102.58.22.231

Text:
Time:

IP:
54.73.136.89

Text:
Time:

IP:
170.9.103.244

Text:
Time:

IP:
170.9.103.244

Text:
Time:

IP:
189.105.32.75

Text:
Time:

IP:
54.73.136.89

Text:
Time:

IP:
144.66.18.240

Text:
Time:

IP:
102.58.22.231

memory is much smaller than needed to store entire data stream

⇒ We can only read each data item once and in sequential order

What is the total number queries?

What is the total number of different IP addresses?

Extension 1: only consider queries within a certain interval (sliding window)

Extension 2: also allow the cancellation/removal of a query (turnstile model)

Extension 3: What if we have different data centers? (distributed streaming)
...

Other Applications:
Monitoring Financial Transactions

Analysing Buying Histories of Users

Streaming © Thomas Sauerwald Introduction 4

Motivation: Analysing Search Engine Queries

Text:
Time:

IP:
54.73.136.89

Text:
Time:

IP:
102.58.22.231

Text:
Time:

IP:
54.73.136.89

Text:
Time:

IP:
170.9.103.244

Text:
Time:

IP:
189.105.32.75

Text:
Time:

IP:
189.105.32.75

Text:
Time:

IP:
54.73.136.89

Text:
Time:

IP:
144.66.18.240

Text:
Time:

IP:
102.58.22.231

memory is much smaller than needed to store entire data stream

⇒ We can only read each data item once and in sequential order

What is the total number queries?

What is the total number of different IP addresses?

Extension 1: only consider queries within a certain interval (sliding window)

Extension 2: also allow the cancellation/removal of a query (turnstile model)

Extension 3: What if we have different data centers? (distributed streaming)
...

Other Applications:
Monitoring Financial Transactions

Analysing Buying Histories of Users

Streaming © Thomas Sauerwald Introduction 4

Motivation: Analysing Search Engine Queries

Text:
Time:

IP:
54.73.136.89

Text:
Time:

IP:
102.58.22.231

Text:
Time:

IP:
54.73.136.89

Text:
Time:

IP:
170.9.103.244

Text:
Time:

IP:
189.105.32.75

Text:
Time:

IP:
54.73.136.89

Text:
Time:

IP:
54.73.136.89

Text:
Time:

IP:
144.66.18.240

Text:
Time:

IP:
102.58.22.231

memory is much smaller than needed to store entire data stream

⇒ We can only read each data item once and in sequential order

What is the total number queries?

What is the total number of different IP addresses?

Extension 1: only consider queries within a certain interval (sliding window)

Extension 2: also allow the cancellation/removal of a query (turnstile model)

Extension 3: What if we have different data centers? (distributed streaming)
...

Other Applications:
Monitoring Financial Transactions

Analysing Buying Histories of Users

Streaming © Thomas Sauerwald Introduction 4

Motivation: Analysing Search Engine Queries

Text:
Time:

IP:
54.73.136.89

Text:
Time:

IP:
102.58.22.231

Text:
Time:

IP:
54.73.136.89

Text:
Time:

IP:
170.9.103.244

Text:
Time:

IP:
189.105.32.75

Text:
Time:

IP:
54.73.136.89

Text:
Time:

IP:
144.66.18.240

Text:
Time:

IP:
144.66.18.240

Text:
Time:

IP:
102.58.22.231

memory is much smaller than needed to store entire data stream

⇒ We can only read each data item once and in sequential order

What is the total number queries?

What is the total number of different IP addresses?

Extension 1: only consider queries within a certain interval (sliding window)

Extension 2: also allow the cancellation/removal of a query (turnstile model)

Extension 3: What if we have different data centers? (distributed streaming)
...

Other Applications:
Monitoring Financial Transactions

Analysing Buying Histories of Users

Streaming © Thomas Sauerwald Introduction 4

Motivation: Analysing Search Engine Queries

Text:
Time:

IP:
54.73.136.89

Text:
Time:

IP:
102.58.22.231

Text:
Time:

IP:
54.73.136.89

Text:
Time:

IP:
170.9.103.244

Text:
Time:

IP:
189.105.32.75

Text:
Time:

IP:
54.73.136.89

Text:
Time:

IP:
144.66.18.240

Text:
Time:

IP:
102.58.22.231

Text:
Time:

IP:
102.58.22.231

memory is much smaller than needed to store entire data stream

⇒ We can only read each data item once and in sequential order

What is the total number queries?

What is the total number of different IP addresses?

Extension 1: only consider queries within a certain interval (sliding window)

Extension 2: also allow the cancellation/removal of a query (turnstile model)

Extension 3: What if we have different data centers? (distributed streaming)
...

Other Applications:
Monitoring Financial Transactions

Analysing Buying Histories of Users

Streaming © Thomas Sauerwald Introduction 4

Motivation: Analysing Search Engine Queries

Text:
Time:

IP:
54.73.136.89

Text:
Time:

IP:
102.58.22.231

Text:
Time:

IP:
54.73.136.89

Text:
Time:

IP:
170.9.103.244

Text:
Time:

IP:
189.105.32.75

Text:
Time:

IP:
54.73.136.89

Text:
Time:

IP:
144.66.18.240

Text:
Time:

IP:
102.58.22.231

memory is much smaller than needed to store entire data stream

⇒ We can only read each data item once and in sequential order

What is the total number queries?

What is the total number of different IP addresses?

Extension 1: only consider queries within a certain interval (sliding window)

Extension 2: also allow the cancellation/removal of a query (turnstile model)

Extension 3: What if we have different data centers? (distributed streaming)
...

Other Applications:
Monitoring Financial Transactions

Analysing Buying Histories of Users

Streaming © Thomas Sauerwald Introduction 4

Motivation: Analysing Search Engine Queries

Text:
Time:

IP:
54.73.136.89

Text:
Time:

IP:
102.58.22.231

Text:
Time:

IP:
54.73.136.89

Text:
Time:

IP:
170.9.103.244

Text:
Time:

IP:
189.105.32.75

Text:
Time:

IP:
54.73.136.89

Text:
Time:

IP:
144.66.18.240

Text:
Time:

IP:
102.58.22.231

memory is much smaller than needed to store entire data stream

⇒ We can only read each data item once and in sequential order

What is the total number queries?

What is the total number of different IP addresses?

Extension 1: only consider queries within a certain interval (sliding window)

Extension 2: also allow the cancellation/removal of a query (turnstile model)

Extension 3: What if we have different data centers? (distributed streaming)
...

Other Applications:
Monitoring Financial Transactions

Analysing Buying Histories of Users

Streaming © Thomas Sauerwald Introduction 4

Motivation: Analysing Search Engine Queries

Text:
Time:

IP:
54.73.136.89

Text:
Time:

IP:
102.58.22.231

Text:
Time:

IP:
54.73.136.89

Text:
Time:

IP:
170.9.103.244

Text:
Time:

IP:
189.105.32.75

Text:
Time:

IP:
54.73.136.89

Text:
Time:

IP:
144.66.18.240

Text:
Time:

IP:
102.58.22.231

memory is much smaller than needed to store entire data stream

⇒ We can only read each data item once and in sequential order

What is the total number queries?

What is the total number of different IP addresses?

Extension 1: only consider queries within a certain interval (sliding window)

Extension 2: also allow the cancellation/removal of a query (turnstile model)

Extension 3: What if we have different data centers? (distributed streaming)
...

Other Applications:
Monitoring Financial Transactions

Analysing Buying Histories of Users

Streaming © Thomas Sauerwald Introduction 4

Motivation: Analysing Search Engine Queries

Text:
Time:

IP:
54.73.136.89

Text:
Time:

IP:
102.58.22.231

Text:
Time:

IP:
54.73.136.89

Text:
Time:

IP:
170.9.103.244

Text:
Time:

IP:
189.105.32.75

Text:
Time:

IP:
54.73.136.89

Text:
Time:

IP:
144.66.18.240

Text:
Time:

IP:
102.58.22.231

memory is much smaller than needed to store entire data stream

⇒ We can only read each data item once and in sequential order

What is the total number queries?

What is the total number of different IP addresses?

Extension 1: only consider queries within a certain interval (sliding window)

Extension 2: also allow the cancellation/removal of a query (turnstile model)

Extension 3: What if we have different data centers? (distributed streaming)
...

Other Applications:
Monitoring Financial Transactions

Analysing Buying Histories of Users

Streaming © Thomas Sauerwald Introduction 4

Motivation: Analysing Search Engine Queries

Text:
Time:

IP:
54.73.136.89

Text:
Time:

IP:
102.58.22.231

Text:
Time:

IP:
54.73.136.89

Text:
Time:

IP:
170.9.103.244

Text:
Time:

IP:
189.105.32.75

Text:
Time:

IP:
54.73.136.89

Text:
Time:

IP:
144.66.18.240

Text:
Time:

IP:
102.58.22.231

memory is much smaller than needed to store entire data stream

⇒ We can only read each data item once and in sequential order

What is the total number queries?

What is the total number of different IP addresses?

Extension 1: only consider queries within a certain interval (sliding window)

Extension 2: also allow the cancellation/removal of a query (turnstile model)

Extension 3: What if we have different data centers? (distributed streaming)
...

Other Applications:
Monitoring Financial Transactions

Analysing Buying Histories of Users

Streaming © Thomas Sauerwald Introduction 4

Motivation: Analysing Search Engine Queries

Text:
Time:

IP:
54.73.136.89

Text:
Time:

IP:
102.58.22.231

Text:
Time:

IP:
54.73.136.89

Text:
Time:

IP:
170.9.103.244

Text:
Time:

IP:
189.105.32.75

Text:
Time:

IP:
54.73.136.89

Text:
Time:

IP:
144.66.18.240

Text:
Time:

IP:
102.58.22.231

memory is much smaller than needed to store entire data stream

⇒ We can only read each data item once and in sequential order

What is the total number queries?

What is the total number of different IP addresses?

Extension 1: only consider queries within a certain interval (sliding window)

Extension 2: also allow the cancellation/removal of a query (turnstile model)

Extension 3: What if we have different data centers? (distributed streaming)
...

Other Applications:
Monitoring Financial Transactions

Analysing Buying Histories of Users

Streaming © Thomas Sauerwald Introduction 4

Streaming algorithms

The input of a streaming algorithm is given as a data stream, which is a
sequence of data

S = s1, s2, . . . , si , . . .

and every si belongs to the universe U.

Constraints for streaming algorithms: the space complexity should be
sublinear in |U| and |S|.

Quality of the output: The algorithm needs to give a good approximate
value with high probability.

For confidence parameter δ and approximation parameter ε, the al-
gorithm’s output Output and the exact answer Exact satisfies

P [Output ∈ (1− ε, 1 + ε) · Exact] ≥ 1− δ.

(ε, δ)-approximation

Streaming © Thomas Sauerwald Introduction 5

Streaming algorithms

The input of a streaming algorithm is given as a data stream, which is a
sequence of data

S = s1, s2, . . . , si , . . .

and every si belongs to the universe U.

Constraints for streaming algorithms: the space complexity should be
sublinear in |U| and |S|.

Quality of the output: The algorithm needs to give a good approximate
value with high probability.

For confidence parameter δ and approximation parameter ε, the al-
gorithm’s output Output and the exact answer Exact satisfies

P [Output ∈ (1− ε, 1 + ε) · Exact] ≥ 1− δ.

(ε, δ)-approximation

Streaming © Thomas Sauerwald Introduction 5

Streaming algorithms

The input of a streaming algorithm is given as a data stream, which is a
sequence of data

S = s1, s2, . . . , si , . . .

and every si belongs to the universe U.

Constraints for streaming algorithms: the space complexity should be
sublinear in |U| and |S|.

Quality of the output: The algorithm needs to give a good approximate
value with high probability.

For confidence parameter δ and approximation parameter ε, the al-
gorithm’s output Output and the exact answer Exact satisfies

P [Output ∈ (1− ε, 1 + ε) · Exact] ≥ 1− δ.

(ε, δ)-approximation

Streaming © Thomas Sauerwald Introduction 5

Streaming algorithms

The input of a streaming algorithm is given as a data stream, which is a
sequence of data

S = s1, s2, . . . , si , . . .

and every si belongs to the universe U.

Constraints for streaming algorithms: the space complexity should be
sublinear in |U| and |S|.

Quality of the output: The algorithm needs to give a good approximate
value with high probability.

For confidence parameter δ and approximation parameter ε, the al-
gorithm’s output Output and the exact answer Exact satisfies

P [Output ∈ (1− ε, 1 + ε) · Exact] ≥ 1− δ.

(ε, δ)-approximation

Streaming © Thomas Sauerwald Introduction 5

Outline

Introduction

Approximate Counting

Distinct Elements and Frequency Moments

Extra Material (non-examinable): An Algorithm for F0 in the Turnstile Model

Streaming © Thomas Sauerwald Approximate Counting 6

Approximate Counting and Morris Algorithm

An approximate counting algorithm must monitor a sequence of events.
At any given time, the algorithm must output an estimate of the number
of events.

Approximate Counting

This could be also described as a data structure maintaining an integer n and
supporting two operations:

update(): increment n by 1

query(): output n

Trivial (and exact) solution uses log2 n space. Can we do better?

MORRIS ALGORITHM
1: X ← 0
2: While update()
3: With probability 2−X set X ← X + 1
4: Return 2X − 1

Intuition: X will be an approximation of log2 n (that is, we try to approximate
the number of bits of n in binary)

Streaming © Thomas Sauerwald Approximate Counting 7

Approximate Counting and Morris Algorithm

An approximate counting algorithm must monitor a sequence of events.
At any given time, the algorithm must output an estimate of the number
of events.

Approximate Counting

This could be also described as a data structure maintaining an integer n and
supporting two operations:

update(): increment n by 1

query(): output n

Trivial (and exact) solution uses log2 n space. Can we do better?

MORRIS ALGORITHM
1: X ← 0
2: While update()
3: With probability 2−X set X ← X + 1
4: Return 2X − 1

Intuition: X will be an approximation of log2 n (that is, we try to approximate
the number of bits of n in binary)

Streaming © Thomas Sauerwald Approximate Counting 7

Approximate Counting and Morris Algorithm

An approximate counting algorithm must monitor a sequence of events.
At any given time, the algorithm must output an estimate of the number
of events.

Approximate Counting

This could be also described as a data structure maintaining an integer n and
supporting two operations:

update(): increment n by 1

query(): output n

Trivial (and exact) solution uses log2 n space. Can we do better?

MORRIS ALGORITHM
1: X ← 0
2: While update()
3: With probability 2−X set X ← X + 1
4: Return 2X − 1

Intuition: X will be an approximation of log2 n (that is, we try to approximate
the number of bits of n in binary)

Streaming © Thomas Sauerwald Approximate Counting 7

Approximate Counting and Morris Algorithm

An approximate counting algorithm must monitor a sequence of events.
At any given time, the algorithm must output an estimate of the number
of events.

Approximate Counting

This could be also described as a data structure maintaining an integer n and
supporting two operations:

update(): increment n by 1

query(): output n

Trivial (and exact) solution uses log2 n space. Can we do better?

MORRIS ALGORITHM
1: X ← 0
2: While update()
3: With probability 2−X set X ← X + 1
4: Return 2X − 1

Intuition: X will be an approximation of log2 n (that is, we try to approximate
the number of bits of n in binary)

Streaming © Thomas Sauerwald Approximate Counting 7

Approximate Counting and Morris Algorithm

An approximate counting algorithm must monitor a sequence of events.
At any given time, the algorithm must output an estimate of the number
of events.

Approximate Counting

This could be also described as a data structure maintaining an integer n and
supporting two operations:

update(): increment n by 1

query(): output n

Trivial (and exact) solution uses log2 n space. Can we do better?

MORRIS ALGORITHM
1: X ← 0
2: While update()
3: With probability 2−X set X ← X + 1
4: Return 2X − 1

Intuition: X will be an approximation of log2 n (that is, we try to approximate
the number of bits of n in binary)

Streaming © Thomas Sauerwald Approximate Counting 7

Analysis (1/3)

Let Xn denote the value of X after n updates. For every n ≥ 0,

E
[

2Xn
]

= n + 1.

Lemma (Expectation Analysis)

Proof:

Base case: For n = 0, we have Xn = X0 = 0
Induction step: n→ n + 1: By conditioning on Xn,

E
[

2Xn+1
]

=
∞∑
j=0

P [Xn = j] · E
[

2Xn+1 | Xn = j
]

=
∞∑
j=0

P [Xn = j] ·
(

2j ·
(

1− 1
2j

)
+ 2j+1 · 1

2j

)

=
∞∑
j=0

P [Xn = j] · 2j +
∞∑
j=0

P [Xn = j]

= E
[

2Xn
]

+ 1

= (n + 1) + 1.

By Induction Hypothesis

Hence Θn := 2Xn − 1 is
an unbiased estimator of n.

Streaming © Thomas Sauerwald Approximate Counting 8

Analysis (1/3)

Let Xn denote the value of X after n updates. For every n ≥ 0,

E
[

2Xn
]

= n + 1.

Lemma (Expectation Analysis)

Proof:

Base case: For n = 0, we have Xn = X0 = 0
Induction step: n→ n + 1: By conditioning on Xn,

E
[

2Xn+1
]

=
∞∑
j=0

P [Xn = j] · E
[

2Xn+1 | Xn = j
]

=
∞∑
j=0

P [Xn = j] ·
(

2j ·
(

1− 1
2j

)
+ 2j+1 · 1

2j

)

=
∞∑
j=0

P [Xn = j] · 2j +
∞∑
j=0

P [Xn = j]

= E
[

2Xn
]

+ 1

= (n + 1) + 1.

By Induction Hypothesis

Hence Θn := 2Xn − 1 is
an unbiased estimator of n.

Streaming © Thomas Sauerwald Approximate Counting 8

Analysis (1/3)

Let Xn denote the value of X after n updates. For every n ≥ 0,

E
[

2Xn
]

= n + 1.

Lemma (Expectation Analysis)

Proof:
Base case: For n = 0, we have Xn = X0 = 0

Induction step: n→ n + 1: By conditioning on Xn,

E
[

2Xn+1
]

=
∞∑
j=0

P [Xn = j] · E
[

2Xn+1 | Xn = j
]

=
∞∑
j=0

P [Xn = j] ·
(

2j ·
(

1− 1
2j

)
+ 2j+1 · 1

2j

)

=
∞∑
j=0

P [Xn = j] · 2j +
∞∑
j=0

P [Xn = j]

= E
[

2Xn
]

+ 1

= (n + 1) + 1.

By Induction Hypothesis

Hence Θn := 2Xn − 1 is
an unbiased estimator of n.

Streaming © Thomas Sauerwald Approximate Counting 8

Analysis (1/3)

Let Xn denote the value of X after n updates. For every n ≥ 0,

E
[

2Xn
]

= n + 1.

Lemma (Expectation Analysis)

Proof:
Base case: For n = 0, we have Xn = X0 = 0 X

Induction step: n→ n + 1: By conditioning on Xn,

E
[

2Xn+1
]

=
∞∑
j=0

P [Xn = j] · E
[

2Xn+1 | Xn = j
]

=
∞∑
j=0

P [Xn = j] ·
(

2j ·
(

1− 1
2j

)
+ 2j+1 · 1

2j

)

=
∞∑
j=0

P [Xn = j] · 2j +
∞∑
j=0

P [Xn = j]

= E
[

2Xn
]

+ 1

= (n + 1) + 1.

By Induction Hypothesis

Hence Θn := 2Xn − 1 is
an unbiased estimator of n.

Streaming © Thomas Sauerwald Approximate Counting 8

Analysis (1/3)

Let Xn denote the value of X after n updates. For every n ≥ 0,

E
[

2Xn
]

= n + 1.

Lemma (Expectation Analysis)

Proof:
Base case: For n = 0, we have Xn = X0 = 0 X
Induction step: n→ n + 1: By conditioning on Xn,

E
[

2Xn+1
]

=
∞∑
j=0

P [Xn = j] · E
[

2Xn+1 | Xn = j
]

=
∞∑
j=0

P [Xn = j] ·
(

2j ·
(

1− 1
2j

)
+ 2j+1 · 1

2j

)

=
∞∑
j=0

P [Xn = j] · 2j +
∞∑
j=0

P [Xn = j]

= E
[

2Xn
]

+ 1

= (n + 1) + 1.By Induction Hypothesis

Hence Θn := 2Xn − 1 is
an unbiased estimator of n.

Streaming © Thomas Sauerwald Approximate Counting 8

Analysis (1/3)

Let Xn denote the value of X after n updates. For every n ≥ 0,

E
[

2Xn
]

= n + 1.

Lemma (Expectation Analysis)

Proof:
Base case: For n = 0, we have Xn = X0 = 0 X
Induction step: n→ n + 1: By conditioning on Xn,

E
[

2Xn+1
]

=
∞∑
j=0

P [Xn = j] · E
[

2Xn+1 | Xn = j
]

=
∞∑
j=0

P [Xn = j] ·
(

2j ·
(

1− 1
2j

)
+ 2j+1 · 1

2j

)

=
∞∑
j=0

P [Xn = j] · 2j +
∞∑
j=0

P [Xn = j]

= E
[

2Xn
]

+ 1

= (n + 1) + 1.By Induction Hypothesis

Hence Θn := 2Xn − 1 is
an unbiased estimator of n.

Streaming © Thomas Sauerwald Approximate Counting 8

Analysis (1/3)

Let Xn denote the value of X after n updates. For every n ≥ 0,

E
[

2Xn
]

= n + 1.

Lemma (Expectation Analysis)

Proof:
Base case: For n = 0, we have Xn = X0 = 0 X
Induction step: n→ n + 1: By conditioning on Xn,

E
[

2Xn+1
]

=
∞∑
j=0

P [Xn = j] · E
[

2Xn+1 | Xn = j
]

=
∞∑
j=0

P [Xn = j] ·
(

2j ·
(

1− 1
2j

)
+ 2j+1 · 1

2j

)

=
∞∑
j=0

P [Xn = j] · 2j +
∞∑
j=0

P [Xn = j]

= E
[

2Xn
]

+ 1

= (n + 1) + 1.By Induction Hypothesis

Hence Θn := 2Xn − 1 is
an unbiased estimator of n.

Streaming © Thomas Sauerwald Approximate Counting 8

Analysis (1/3)

Let Xn denote the value of X after n updates. For every n ≥ 0,

E
[

2Xn
]

= n + 1.

Lemma (Expectation Analysis)

Proof:
Base case: For n = 0, we have Xn = X0 = 0 X
Induction step: n→ n + 1: By conditioning on Xn,

E
[

2Xn+1
]

=
∞∑
j=0

P [Xn = j] · E
[

2Xn+1 | Xn = j
]

=
∞∑
j=0

P [Xn = j] ·
(

2j ·
(

1− 1
2j

)
+ 2j+1 · 1

2j

)

=
∞∑
j=0

P [Xn = j] · 2j +
∞∑
j=0

P [Xn = j]

= E
[

2Xn
]

+ 1

= (n + 1) + 1.By Induction Hypothesis

Hence Θn := 2Xn − 1 is
an unbiased estimator of n.

Streaming © Thomas Sauerwald Approximate Counting 8

Analysis (1/3)

Let Xn denote the value of X after n updates. For every n ≥ 0,

E
[

2Xn
]

= n + 1.

Lemma (Expectation Analysis)

Proof:
Base case: For n = 0, we have Xn = X0 = 0 X
Induction step: n→ n + 1: By conditioning on Xn,

E
[

2Xn+1
]

=
∞∑
j=0

P [Xn = j] · E
[

2Xn+1 | Xn = j
]

=
∞∑
j=0

P [Xn = j] ·
(

2j ·
(

1− 1
2j

)
+ 2j+1 · 1

2j

)

=
∞∑
j=0

P [Xn = j] · 2j +
∞∑
j=0

P [Xn = j]

= E
[

2Xn
]

+ 1

= (n + 1) + 1.

By Induction Hypothesis

Hence Θn := 2Xn − 1 is
an unbiased estimator of n.

Streaming © Thomas Sauerwald Approximate Counting 8

Analysis (1/3)

Let Xn denote the value of X after n updates. For every n ≥ 0,

E
[

2Xn
]

= n + 1.

Lemma (Expectation Analysis)

Proof:
Base case: For n = 0, we have Xn = X0 = 0 X
Induction step: n→ n + 1: By conditioning on Xn,

E
[

2Xn+1
]

=
∞∑
j=0

P [Xn = j] · E
[

2Xn+1 | Xn = j
]

=
∞∑
j=0

P [Xn = j] ·
(

2j ·
(

1− 1
2j

)
+ 2j+1 · 1

2j

)

=
∞∑
j=0

P [Xn = j] · 2j +
∞∑
j=0

P [Xn = j]

= E
[

2Xn
]

+ 1

= (n + 1) + 1.By Induction Hypothesis

Hence Θn := 2Xn − 1 is
an unbiased estimator of n.

Streaming © Thomas Sauerwald Approximate Counting 8

Analysis (1/3)

Let Xn denote the value of X after n updates. For every n ≥ 0,

E
[

2Xn
]

= n + 1.

Lemma (Expectation Analysis)

Proof:
Base case: For n = 0, we have Xn = X0 = 0 X
Induction step: n→ n + 1: By conditioning on Xn,

E
[

2Xn+1
]

=
∞∑
j=0

P [Xn = j] · E
[

2Xn+1 | Xn = j
]

=
∞∑
j=0

P [Xn = j] ·
(

2j ·
(

1− 1
2j

)
+ 2j+1 · 1

2j

)

=
∞∑
j=0

P [Xn = j] · 2j +
∞∑
j=0

P [Xn = j]

= E
[

2Xn
]

+ 1

= (n + 1) + 1.By Induction Hypothesis

Hence Θn := 2Xn − 1 is
an unbiased estimator of n.

Streaming © Thomas Sauerwald Approximate Counting 8

Analysis (2/3)

Let Xn denote the value of X after n updates. For every n ≥ 0,

E
[(

2Xn
)2
]

= E
[

22·Xn
]

=
3
2

n2 +
3
2

n + 1.

Lemma (Second Moment Analysis)

This is shown similarly to that of the previous Lemma (see supervision sheet)

Recall Θn = 2Xn − 1.
Since V [Z] = E

[
Z 2]− E [Z]2,

V [Θn] = V
[

2Xn
]

= E
[

22·Xn
]
−
(

E
[

2Xn
])2

=
3
2

n2 +
3
2

n + 1− (n + 1)2 =
n2 − n

2

Using Chebysheff’s inequality,

P [|Θn − n| ≥ ε · n] ≤ V [Θn]

ε2 · n2 ≤
n2

2

ε2 · n2 =
1

2ε2 .

This failure probability (estimate) is at least 1
2 /

Streaming © Thomas Sauerwald Approximate Counting 9

Analysis (2/3)

Let Xn denote the value of X after n updates. For every n ≥ 0,

E
[(

2Xn
)2
]

= E
[

22·Xn
]

=
3
2

n2 +
3
2

n + 1.

Lemma (Second Moment Analysis)

This is shown similarly to that of the previous Lemma (see supervision sheet)

Recall Θn = 2Xn − 1.
Since V [Z] = E

[
Z 2]− E [Z]2,

V [Θn] = V
[

2Xn
]

= E
[

22·Xn
]
−
(

E
[

2Xn
])2

=
3
2

n2 +
3
2

n + 1− (n + 1)2 =
n2 − n

2

Using Chebysheff’s inequality,

P [|Θn − n| ≥ ε · n] ≤ V [Θn]

ε2 · n2 ≤
n2

2

ε2 · n2 =
1

2ε2 .

This failure probability (estimate) is at least 1
2 /

Streaming © Thomas Sauerwald Approximate Counting 9

Analysis (2/3)

Let Xn denote the value of X after n updates. For every n ≥ 0,

E
[(

2Xn
)2
]

= E
[

22·Xn
]

=
3
2

n2 +
3
2

n + 1.

Lemma (Second Moment Analysis)

This is shown similarly to that of the previous Lemma (see supervision sheet)

Recall Θn = 2Xn − 1.

Since V [Z] = E
[

Z 2]− E [Z]2,

V [Θn] = V
[

2Xn
]

= E
[

22·Xn
]
−
(

E
[

2Xn
])2

=
3
2

n2 +
3
2

n + 1− (n + 1)2 =
n2 − n

2

Using Chebysheff’s inequality,

P [|Θn − n| ≥ ε · n] ≤ V [Θn]

ε2 · n2 ≤
n2

2

ε2 · n2 =
1

2ε2 .

This failure probability (estimate) is at least 1
2 /

Streaming © Thomas Sauerwald Approximate Counting 9

Analysis (2/3)

Let Xn denote the value of X after n updates. For every n ≥ 0,

E
[(

2Xn
)2
]

= E
[

22·Xn
]

=
3
2

n2 +
3
2

n + 1.

Lemma (Second Moment Analysis)

This is shown similarly to that of the previous Lemma (see supervision sheet)

Recall Θn = 2Xn − 1.
Since V [Z] = E

[
Z 2]− E [Z]2,

V [Θn] = V
[

2Xn
]

= E
[

22·Xn
]
−
(

E
[

2Xn
])2

=
3
2

n2 +
3
2

n + 1− (n + 1)2 =
n2 − n

2
Using Chebysheff’s inequality,

P [|Θn − n| ≥ ε · n] ≤ V [Θn]

ε2 · n2 ≤
n2

2

ε2 · n2 =
1

2ε2 .

This failure probability (estimate) is at least 1
2 /

Streaming © Thomas Sauerwald Approximate Counting 9

Analysis (2/3)

Let Xn denote the value of X after n updates. For every n ≥ 0,

E
[(

2Xn
)2
]

= E
[

22·Xn
]

=
3
2

n2 +
3
2

n + 1.

Lemma (Second Moment Analysis)

This is shown similarly to that of the previous Lemma (see supervision sheet)

Recall Θn = 2Xn − 1.
Since V [Z] = E

[
Z 2]− E [Z]2,

V [Θn] = V
[

2Xn
]

= E
[

22·Xn
]
−
(

E
[

2Xn
])2

=
3
2

n2 +
3
2

n + 1− (n + 1)2 =
n2 − n

2
Using Chebysheff’s inequality,

P [|Θn − n| ≥ ε · n] ≤ V [Θn]

ε2 · n2 ≤
n2

2

ε2 · n2 =
1

2ε2 .

This failure probability (estimate) is at least 1
2 /

Streaming © Thomas Sauerwald Approximate Counting 9

Analysis (2/3)

Let Xn denote the value of X after n updates. For every n ≥ 0,

E
[(

2Xn
)2
]

= E
[

22·Xn
]

=
3
2

n2 +
3
2

n + 1.

Lemma (Second Moment Analysis)

This is shown similarly to that of the previous Lemma (see supervision sheet)

Recall Θn = 2Xn − 1.
Since V [Z] = E

[
Z 2]− E [Z]2,

V [Θn] = V
[

2Xn
]

= E
[

22·Xn
]
−
(

E
[

2Xn
])2

=
3
2

n2 +
3
2

n + 1− (n + 1)2 =
n2 − n

2

Using Chebysheff’s inequality,

P [|Θn − n| ≥ ε · n] ≤ V [Θn]

ε2 · n2 ≤
n2

2

ε2 · n2 =
1

2ε2 .

This failure probability (estimate) is at least 1
2 /

Streaming © Thomas Sauerwald Approximate Counting 9

Analysis (2/3)

Let Xn denote the value of X after n updates. For every n ≥ 0,

E
[(

2Xn
)2
]

= E
[

22·Xn
]

=
3
2

n2 +
3
2

n + 1.

Lemma (Second Moment Analysis)

This is shown similarly to that of the previous Lemma (see supervision sheet)

Recall Θn = 2Xn − 1.
Since V [Z] = E

[
Z 2]− E [Z]2,

V [Θn] = V
[

2Xn
]

= E
[

22·Xn
]
−
(

E
[

2Xn
])2

=
3
2

n2 +
3
2

n + 1− (n + 1)2 =
n2 − n

2
Using Chebysheff’s inequality,

P [|Θn − n| ≥ ε · n] ≤ V [Θn]

ε2 · n2 ≤
n2

2

ε2 · n2 =
1

2ε2 .

This failure probability (estimate) is at least 1
2 /

Streaming © Thomas Sauerwald Approximate Counting 9

Analysis (2/3)

Let Xn denote the value of X after n updates. For every n ≥ 0,

E
[(

2Xn
)2
]

= E
[

22·Xn
]

=
3
2

n2 +
3
2

n + 1.

Lemma (Second Moment Analysis)

This is shown similarly to that of the previous Lemma (see supervision sheet)

Recall Θn = 2Xn − 1.
Since V [Z] = E

[
Z 2]− E [Z]2,

V [Θn] = V
[

2Xn
]

= E
[

22·Xn
]
−
(

E
[

2Xn
])2

=
3
2

n2 +
3
2

n + 1− (n + 1)2 =
n2 − n

2
Using Chebysheff’s inequality,

P [|Θn − n| ≥ ε · n] ≤ V [Θn]

ε2 · n2

≤
n2

2

ε2 · n2 =
1

2ε2 .

This failure probability (estimate) is at least 1
2 /

Streaming © Thomas Sauerwald Approximate Counting 9

Analysis (2/3)

Let Xn denote the value of X after n updates. For every n ≥ 0,

E
[(

2Xn
)2
]

= E
[

22·Xn
]

=
3
2

n2 +
3
2

n + 1.

Lemma (Second Moment Analysis)

This is shown similarly to that of the previous Lemma (see supervision sheet)

Recall Θn = 2Xn − 1.
Since V [Z] = E

[
Z 2]− E [Z]2,

V [Θn] = V
[

2Xn
]

= E
[

22·Xn
]
−
(

E
[

2Xn
])2

=
3
2

n2 +
3
2

n + 1− (n + 1)2 =
n2 − n

2
Using Chebysheff’s inequality,

P [|Θn − n| ≥ ε · n] ≤ V [Θn]

ε2 · n2 ≤
n2

2

ε2 · n2 =
1

2ε2 .

This failure probability (estimate) is at least 1
2 /

Streaming © Thomas Sauerwald Approximate Counting 9

Analysis (2/3)

Let Xn denote the value of X after n updates. For every n ≥ 0,

E
[(

2Xn
)2
]

= E
[

22·Xn
]

=
3
2

n2 +
3
2

n + 1.

Lemma (Second Moment Analysis)

This is shown similarly to that of the previous Lemma (see supervision sheet)

Recall Θn = 2Xn − 1.
Since V [Z] = E

[
Z 2]− E [Z]2,

V [Θn] = V
[

2Xn
]

= E
[

22·Xn
]
−
(

E
[

2Xn
])2

=
3
2

n2 +
3
2

n + 1− (n + 1)2 =
n2 − n

2
Using Chebysheff’s inequality,

P [|Θn − n| ≥ ε · n] ≤ V [Θn]

ε2 · n2 ≤
n2

2

ε2 · n2 =
1

2ε2 .

This failure probability (estimate) is at least 1
2 /

Streaming © Thomas Sauerwald Approximate Counting 9

Analysis (3/3)

Idea: Reduce Variance by Running Independent Instances and Taking Average.

IMPROVED MORRIS ALGORITHM(G)
1: Let Θ1,Θ2, . . . ,Θk be k independent instances of MORRIS
2: Return Θ := 1

k

∑k
i=1 Θi

Clearly, E
[

Θ
]

= n.

For the variance,

V
[

Θ
]

=
1
k2 · V

[
k∑

i=1

Θi

]
=

1
k
· V
[

Θ1
]
≤ 1

k
· n2

2

Hence using Chebyshev,

P
[∣∣Θ− n

∣∣ ≥ ε · n] ≤ 1
2kε2 .

For any ε, δ < 1, the IMPROVED MORRIS ALG. with k ≥ 1
2ε2δ

satisfies:

P
[∣∣Θ− n

∣∣ ≤ ε · n] ≥ 1− δ.

Conclusion

Streaming © Thomas Sauerwald Approximate Counting 10

Analysis (3/3)

Idea: Reduce Variance by Running Independent Instances and Taking Average.

IMPROVED MORRIS ALGORITHM(G)
1: Let Θ1,Θ2, . . . ,Θk be k independent instances of MORRIS
2: Return Θ := 1

k

∑k
i=1 Θi

Clearly, E
[

Θ
]

= n.

For the variance,

V
[

Θ
]

=
1
k2 · V

[
k∑

i=1

Θi

]
=

1
k
· V
[

Θ1
]
≤ 1

k
· n2

2

Hence using Chebyshev,

P
[∣∣Θ− n

∣∣ ≥ ε · n] ≤ 1
2kε2 .

For any ε, δ < 1, the IMPROVED MORRIS ALG. with k ≥ 1
2ε2δ

satisfies:

P
[∣∣Θ− n

∣∣ ≤ ε · n] ≥ 1− δ.

Conclusion

Streaming © Thomas Sauerwald Approximate Counting 10

Analysis (3/3)

Idea: Reduce Variance by Running Independent Instances and Taking Average.

IMPROVED MORRIS ALGORITHM(G)
1: Let Θ1,Θ2, . . . ,Θk be k independent instances of MORRIS
2: Return Θ := 1

k

∑k
i=1 Θi

Clearly, E
[

Θ
]

= n.

For the variance,

V
[

Θ
]

=
1
k2 · V

[
k∑

i=1

Θi

]
=

1
k
· V
[

Θ1
]
≤ 1

k
· n2

2

Hence using Chebyshev,

P
[∣∣Θ− n

∣∣ ≥ ε · n] ≤ 1
2kε2 .

For any ε, δ < 1, the IMPROVED MORRIS ALG. with k ≥ 1
2ε2δ

satisfies:

P
[∣∣Θ− n

∣∣ ≤ ε · n] ≥ 1− δ.

Conclusion

Streaming © Thomas Sauerwald Approximate Counting 10

Analysis (3/3)

Idea: Reduce Variance by Running Independent Instances and Taking Average.

IMPROVED MORRIS ALGORITHM(G)
1: Let Θ1,Θ2, . . . ,Θk be k independent instances of MORRIS
2: Return Θ := 1

k

∑k
i=1 Θi

Clearly, E
[

Θ
]

= n. For the variance,

V
[

Θ
]

=
1
k2 · V

[
k∑

i=1

Θi

]
=

1
k
· V
[

Θ1
]
≤ 1

k
· n2

2

Hence using Chebyshev,

P
[∣∣Θ− n

∣∣ ≥ ε · n] ≤ 1
2kε2 .

For any ε, δ < 1, the IMPROVED MORRIS ALG. with k ≥ 1
2ε2δ

satisfies:

P
[∣∣Θ− n

∣∣ ≤ ε · n] ≥ 1− δ.

Conclusion

Streaming © Thomas Sauerwald Approximate Counting 10

Analysis (3/3)

Idea: Reduce Variance by Running Independent Instances and Taking Average.

IMPROVED MORRIS ALGORITHM(G)
1: Let Θ1,Θ2, . . . ,Θk be k independent instances of MORRIS
2: Return Θ := 1

k

∑k
i=1 Θi

Clearly, E
[

Θ
]

= n. For the variance,

V
[

Θ
]

=
1
k2 · V

[
k∑

i=1

Θi

]

=
1
k
· V
[

Θ1
]
≤ 1

k
· n2

2

Hence using Chebyshev,

P
[∣∣Θ− n

∣∣ ≥ ε · n] ≤ 1
2kε2 .

For any ε, δ < 1, the IMPROVED MORRIS ALG. with k ≥ 1
2ε2δ

satisfies:

P
[∣∣Θ− n

∣∣ ≤ ε · n] ≥ 1− δ.

Conclusion

Streaming © Thomas Sauerwald Approximate Counting 10

Analysis (3/3)

Idea: Reduce Variance by Running Independent Instances and Taking Average.

IMPROVED MORRIS ALGORITHM(G)
1: Let Θ1,Θ2, . . . ,Θk be k independent instances of MORRIS
2: Return Θ := 1

k

∑k
i=1 Θi

Clearly, E
[

Θ
]

= n. For the variance,

V
[

Θ
]

=
1
k2 · V

[
k∑

i=1

Θi

]
=

1
k
· V
[

Θ1
]
≤ 1

k
· n2

2

Hence using Chebyshev,

P
[∣∣Θ− n

∣∣ ≥ ε · n] ≤ 1
2kε2 .

For any ε, δ < 1, the IMPROVED MORRIS ALG. with k ≥ 1
2ε2δ

satisfies:

P
[∣∣Θ− n

∣∣ ≤ ε · n] ≥ 1− δ.

Conclusion

Streaming © Thomas Sauerwald Approximate Counting 10

Analysis (3/3)

Idea: Reduce Variance by Running Independent Instances and Taking Average.

IMPROVED MORRIS ALGORITHM(G)
1: Let Θ1,Θ2, . . . ,Θk be k independent instances of MORRIS
2: Return Θ := 1

k

∑k
i=1 Θi

Clearly, E
[

Θ
]

= n. For the variance,

V
[

Θ
]

=
1
k2 · V

[
k∑

i=1

Θi

]
=

1
k
· V
[

Θ1
]
≤ 1

k
· n2

2

Hence using Chebyshev,

P
[∣∣Θ− n

∣∣ ≥ ε · n] ≤ 1
2kε2 .

For any ε, δ < 1, the IMPROVED MORRIS ALG. with k ≥ 1
2ε2δ

satisfies:

P
[∣∣Θ− n

∣∣ ≤ ε · n] ≥ 1− δ.

Conclusion

Streaming © Thomas Sauerwald Approximate Counting 10

Analysis (3/3)

Idea: Reduce Variance by Running Independent Instances and Taking Average.

IMPROVED MORRIS ALGORITHM(G)
1: Let Θ1,Θ2, . . . ,Θk be k independent instances of MORRIS
2: Return Θ := 1

k

∑k
i=1 Θi

Clearly, E
[

Θ
]

= n. For the variance,

V
[

Θ
]

=
1
k2 · V

[
k∑

i=1

Θi

]
=

1
k
· V
[

Θ1
]
≤ 1

k
· n2

2

Hence using Chebyshev,

P
[∣∣Θ− n

∣∣ ≥ ε · n] ≤ 1
2kε2 .

For any ε, δ < 1, the IMPROVED MORRIS ALG. with k ≥ 1
2ε2δ

satisfies:

P
[∣∣Θ− n

∣∣ ≤ ε · n] ≥ 1− δ.

Conclusion

Streaming © Thomas Sauerwald Approximate Counting 10

Simulation

A run of Morris’s algorithm on n = 1024 data points

(source: http://gregorygundersen.com/blog/2019/11/11/morris-algorithm/)

Streaming © Thomas Sauerwald Approximate Counting 11

http://gregorygundersen.com/blog/2019/11/11/morris-algorithm/

Outline

Introduction

Approximate Counting

Distinct Elements and Frequency Moments

Extra Material (non-examinable): An Algorithm for F0 in the Turnstile Model

Streaming © Thomas Sauerwald Distinct Elements and Frequency Moments 12

Norm Estimation: the Alon-Matias-Szegedy algorithm

Let U with |U| = n. For i ∈ U, let fi be the number of occurrences of
i ∈ U in the stream S.

Then for any p > 0, the Fp-norm is defined by

Fp :=
∑
i∈U

f p
i .

Fp-norm (Frequency Moments)

F1 = total number of items in stream S.

F0 = total number of distinct items in stream S.

Alon, Matias, and Szegedy (1996) presented a systematical study for
approximating frequency moments.

F0,F1,F2 can be approximated in space logarithmic in n and |S|.
Approximating Fp for p ≥ 6 requires nΩ(1) space.

The paper won 2005 Gödel Award for “their foundational contribution to
streaming algorithms”.

Streaming © Thomas Sauerwald Distinct Elements and Frequency Moments 13

Norm Estimation: the Alon-Matias-Szegedy algorithm

Let U with |U| = n. For i ∈ U, let fi be the number of occurrences of
i ∈ U in the stream S. Then for any p > 0, the Fp-norm is defined by

Fp :=
∑
i∈U

f p
i .

Fp-norm (Frequency Moments)

F1 = total number of items in stream S.

F0 = total number of distinct items in stream S.

Alon, Matias, and Szegedy (1996) presented a systematical study for
approximating frequency moments.

F0,F1,F2 can be approximated in space logarithmic in n and |S|.
Approximating Fp for p ≥ 6 requires nΩ(1) space.

The paper won 2005 Gödel Award for “their foundational contribution to
streaming algorithms”.

Streaming © Thomas Sauerwald Distinct Elements and Frequency Moments 13

Norm Estimation: the Alon-Matias-Szegedy algorithm

Let U with |U| = n. For i ∈ U, let fi be the number of occurrences of
i ∈ U in the stream S. Then for any p > 0, the Fp-norm is defined by

Fp :=
∑
i∈U

f p
i .

Fp-norm (Frequency Moments)

F1 = total number of items in stream S.

F0 = total number of distinct items in stream S.

Alon, Matias, and Szegedy (1996) presented a systematical study for
approximating frequency moments.

F0,F1,F2 can be approximated in space logarithmic in n and |S|.
Approximating Fp for p ≥ 6 requires nΩ(1) space.

The paper won 2005 Gödel Award for “their foundational contribution to
streaming algorithms”.

Streaming © Thomas Sauerwald Distinct Elements and Frequency Moments 13

Norm Estimation: the Alon-Matias-Szegedy algorithm

Let U with |U| = n. For i ∈ U, let fi be the number of occurrences of
i ∈ U in the stream S. Then for any p > 0, the Fp-norm is defined by

Fp :=
∑
i∈U

f p
i .

Fp-norm (Frequency Moments)

F1 = total number of items in stream S.

F0 = total number of distinct items in stream S.

Alon, Matias, and Szegedy (1996) presented a systematical study for
approximating frequency moments.

F0,F1,F2 can be approximated in space logarithmic in n and |S|.
Approximating Fp for p ≥ 6 requires nΩ(1) space.

The paper won 2005 Gödel Award for “their foundational contribution to
streaming algorithms”.

Streaming © Thomas Sauerwald Distinct Elements and Frequency Moments 13

Norm Estimation: the Alon-Matias-Szegedy algorithm

Let U with |U| = n. For i ∈ U, let fi be the number of occurrences of
i ∈ U in the stream S. Then for any p > 0, the Fp-norm is defined by

Fp :=
∑
i∈U

f p
i .

Fp-norm (Frequency Moments)

F1 = total number of items in stream S.

F0 = total number of distinct items in stream S.

Alon, Matias, and Szegedy (1996) presented a systematical study for
approximating frequency moments.

F0,F1,F2 can be approximated in space logarithmic in n and |S|.

Approximating Fp for p ≥ 6 requires nΩ(1) space.

The paper won 2005 Gödel Award for “their foundational contribution to
streaming algorithms”.

Streaming © Thomas Sauerwald Distinct Elements and Frequency Moments 13

Norm Estimation: the Alon-Matias-Szegedy algorithm

Let U with |U| = n. For i ∈ U, let fi be the number of occurrences of
i ∈ U in the stream S. Then for any p > 0, the Fp-norm is defined by

Fp :=
∑
i∈U

f p
i .

Fp-norm (Frequency Moments)

F1 = total number of items in stream S.

F0 = total number of distinct items in stream S.

Alon, Matias, and Szegedy (1996) presented a systematical study for
approximating frequency moments.

F0,F1,F2 can be approximated in space logarithmic in n and |S|.
Approximating Fp for p ≥ 6 requires nΩ(1) space.

The paper won 2005 Gödel Award for “their foundational contribution to
streaming algorithms”.

Streaming © Thomas Sauerwald Distinct Elements and Frequency Moments 13

Norm Estimation: the Alon-Matias-Szegedy algorithm

Let U with |U| = n. For i ∈ U, let fi be the number of occurrences of
i ∈ U in the stream S. Then for any p > 0, the Fp-norm is defined by

Fp :=
∑
i∈U

f p
i .

Fp-norm (Frequency Moments)

F1 = total number of items in stream S.

F0 = total number of distinct items in stream S.

Alon, Matias, and Szegedy (1996) presented a systematical study for
approximating frequency moments.

F0,F1,F2 can be approximated in space logarithmic in n and |S|.
Approximating Fp for p ≥ 6 requires nΩ(1) space.

The paper won 2005 Gödel Award for “their foundational contribution to
streaming algorithms”.

Streaming © Thomas Sauerwald Distinct Elements and Frequency Moments 13

Important Tool: Pairwise independent Hash Functions

We will focus on the simpler case of F0, the number of distinct elements.

A family of functions H = {h | h : U 7→ [n]} is pairwise independent if, for
any h chosen uniformly at random from H, the following holds:

1. h(x) is uniformly distributed in [n] = {1, 2, . . . , n} for any x ∈ U;
2. For any x1 6= x2 ∈ U, h(x1) and h(x2) are independent.

Pairwise Independence

Let n be a prime number, and let ha,b(x) = (ax + b) mod n. Define

H = {ha,b | 0 ≤ a, b ≤ n − 1}.

Then H is a family of pairwise independent hash functions.

Theorem (Fact)

Streaming © Thomas Sauerwald Distinct Elements and Frequency Moments 14

Important Tool: Pairwise independent Hash Functions

We will focus on the simpler case of F0, the number of distinct elements.

A family of functions H = {h | h : U 7→ [n]} is pairwise independent if, for
any h chosen uniformly at random from H, the following holds:

1. h(x) is uniformly distributed in [n] = {1, 2, . . . , n} for any x ∈ U;
2. For any x1 6= x2 ∈ U, h(x1) and h(x2) are independent.

Pairwise Independence

Let n be a prime number, and let ha,b(x) = (ax + b) mod n. Define

H = {ha,b | 0 ≤ a, b ≤ n − 1}.

Then H is a family of pairwise independent hash functions.

Theorem (Fact)

Streaming © Thomas Sauerwald Distinct Elements and Frequency Moments 14

Important Tool: Pairwise independent Hash Functions

We will focus on the simpler case of F0, the number of distinct elements.

A family of functions H = {h | h : U 7→ [n]} is pairwise independent if, for
any h chosen uniformly at random from H, the following holds:

1. h(x) is uniformly distributed in [n] = {1, 2, . . . , n} for any x ∈ U;
2. For any x1 6= x2 ∈ U, h(x1) and h(x2) are independent.

Pairwise Independence

Let n be a prime number, and let ha,b(x) = (ax + b) mod n. Define

H = {ha,b | 0 ≤ a, b ≤ n − 1}.

Then H is a family of pairwise independent hash functions.

Theorem (Fact)

Streaming © Thomas Sauerwald Distinct Elements and Frequency Moments 14

Intuition behind the AMS algorithm

Assume that we have a random hash function h.

Define

ρ(x) := max
i≥0

{
i : x mod 2i = 0

}
,

which is the number of consecutive 0’s among the lowest bits of x .

Example: ρ(2) = 1, ρ(3) = 0, ρ(4) = 2, ρ(8) = 3, ρ(16) = 4, ρ(17) = 0.

Observation. Since h(x) is uniformly distributed over [n], the following holds:

with probability 1/2, we have ρ(h(x)) ≥ 1

with probability 1/4, we have ρ(h(x)) ≥ 2

with probability 1/8, we have ρ(h(x)) ≥ 3
...

with probability 1/2r , we have ρ(h(x)) ≥ r

Since n is not a power of 2, this probability is in fact equal to bn/2r c
n ≈ 1/2r − o(1).

Streaming © Thomas Sauerwald Distinct Elements and Frequency Moments 15

Intuition behind the AMS algorithm

Assume that we have a random hash function h. Define

ρ(x) := max
i≥0

{
i : x mod 2i = 0

}
,

which is the number of consecutive 0’s among the lowest bits of x .

Example: ρ(2) = 1, ρ(3) = 0, ρ(4) = 2, ρ(8) = 3, ρ(16) = 4, ρ(17) = 0.

Observation. Since h(x) is uniformly distributed over [n], the following holds:

with probability 1/2, we have ρ(h(x)) ≥ 1

with probability 1/4, we have ρ(h(x)) ≥ 2

with probability 1/8, we have ρ(h(x)) ≥ 3
...

with probability 1/2r , we have ρ(h(x)) ≥ r

Since n is not a power of 2, this probability is in fact equal to bn/2r c
n ≈ 1/2r − o(1).

Streaming © Thomas Sauerwald Distinct Elements and Frequency Moments 15

Intuition behind the AMS algorithm

Assume that we have a random hash function h. Define

ρ(x) := max
i≥0

{
i : x mod 2i = 0

}
,

which is the number of consecutive 0’s among the lowest bits of x .

Example: ρ(2) = 1, ρ(3) = 0, ρ(4) = 2, ρ(8) = 3, ρ(16) = 4, ρ(17) = 0.

Observation. Since h(x) is uniformly distributed over [n], the following holds:

with probability 1/2, we have ρ(h(x)) ≥ 1

with probability 1/4, we have ρ(h(x)) ≥ 2

with probability 1/8, we have ρ(h(x)) ≥ 3
...

with probability 1/2r , we have ρ(h(x)) ≥ r

Since n is not a power of 2, this probability is in fact equal to bn/2r c
n ≈ 1/2r − o(1).

Streaming © Thomas Sauerwald Distinct Elements and Frequency Moments 15

Intuition behind the AMS algorithm

Assume that we have a random hash function h. Define

ρ(x) := max
i≥0

{
i : x mod 2i = 0

}
,

which is the number of consecutive 0’s among the lowest bits of x .

Example: ρ(2) = 1, ρ(3) = 0, ρ(4) = 2, ρ(8) = 3, ρ(16) = 4, ρ(17) = 0.

Observation. Since h(x) is uniformly distributed over [n], the following holds:

with probability 1/2, we have ρ(h(x)) ≥ 1

with probability 1/4, we have ρ(h(x)) ≥ 2

with probability 1/8, we have ρ(h(x)) ≥ 3
...

with probability 1/2r , we have ρ(h(x)) ≥ r

Since n is not a power of 2, this probability is in fact equal to bn/2r c
n ≈ 1/2r − o(1).

Streaming © Thomas Sauerwald Distinct Elements and Frequency Moments 15

Intuition behind the AMS algorithm

Assume that we have a random hash function h. Define

ρ(x) := max
i≥0

{
i : x mod 2i = 0

}
,

which is the number of consecutive 0’s among the lowest bits of x .

Example: ρ(2) = 1, ρ(3) = 0, ρ(4) = 2, ρ(8) = 3, ρ(16) = 4, ρ(17) = 0.

Observation. Since h(x) is uniformly distributed over [n], the following holds:

with probability 1/2, we have ρ(h(x)) ≥ 1

with probability 1/4, we have ρ(h(x)) ≥ 2

with probability 1/8, we have ρ(h(x)) ≥ 3

...

with probability 1/2r , we have ρ(h(x)) ≥ r

Since n is not a power of 2, this probability is in fact equal to bn/2r c
n ≈ 1/2r − o(1).

Streaming © Thomas Sauerwald Distinct Elements and Frequency Moments 15

Intuition behind the AMS algorithm

Assume that we have a random hash function h. Define

ρ(x) := max
i≥0

{
i : x mod 2i = 0

}
,

which is the number of consecutive 0’s among the lowest bits of x .

Example: ρ(2) = 1, ρ(3) = 0, ρ(4) = 2, ρ(8) = 3, ρ(16) = 4, ρ(17) = 0.

Observation. Since h(x) is uniformly distributed over [n], the following holds:

with probability 1/2, we have ρ(h(x)) ≥ 1

with probability 1/4, we have ρ(h(x)) ≥ 2

with probability 1/8, we have ρ(h(x)) ≥ 3
...

with probability 1/2r , we have ρ(h(x)) ≥ r

Since n is not a power of 2, this probability is in fact equal to bn/2r c
n ≈ 1/2r − o(1).

Streaming © Thomas Sauerwald Distinct Elements and Frequency Moments 15

Intuition behind the AMS algorithm

Assume that we have a random hash function h. Define

ρ(x) := max
i≥0

{
i : x mod 2i = 0

}
,

which is the number of consecutive 0’s among the lowest bits of x .

Example: ρ(2) = 1, ρ(3) = 0, ρ(4) = 2, ρ(8) = 3, ρ(16) = 4, ρ(17) = 0.

Observation. Since h(x) is uniformly distributed over [n], the following holds:

with probability 1/2, we have ρ(h(x)) ≥ 1

with probability 1/4, we have ρ(h(x)) ≥ 2

with probability 1/8, we have ρ(h(x)) ≥ 3
...

with probability 1/2r , we have ρ(h(x)) ≥ r

Since n is not a power of 2, this probability is in fact equal to bn/2r c
n ≈ 1/2r − o(1).

Streaming © Thomas Sauerwald Distinct Elements and Frequency Moments 15

The AMS Algorithm

AMS ALGORITHM
1: Choose a random hash function h : [n]→ [n]
2: Z ← 0
3: while item x from stream S arrives
4: if ρ(h(x)) > Z then Z ← ρ(h(x))
5: return 2Z+1/2

Z ← max{Z , ρ(h(x))}

With constant probability > 0, the algorithm’s output satisfies

2Z+1/2 ∈ [F0/3, 3 · F0].

Analysis of AMS Algorithm

We get an (O(1), δ)-approximation of F0 by running Θ(log(1/δ)) independent
copies of the algorithm and returning the median.

Recall (ε, δ)-approximation:
P [Output ∈ (1− ε, 1 + ε) · Exact] ≥ 1− δ

Streaming © Thomas Sauerwald Distinct Elements and Frequency Moments 16

The AMS Algorithm

AMS ALGORITHM
1: Choose a random hash function h : [n]→ [n]
2: Z ← 0
3: while item x from stream S arrives
4: if ρ(h(x)) > Z then Z ← ρ(h(x))
5: return 2Z+1/2

Z ← max{Z , ρ(h(x))}

With constant probability > 0, the algorithm’s output satisfies

2Z+1/2 ∈ [F0/3, 3 · F0].

Analysis of AMS Algorithm

We get an (O(1), δ)-approximation of F0 by running Θ(log(1/δ)) independent
copies of the algorithm and returning the median.

Recall (ε, δ)-approximation:
P [Output ∈ (1− ε, 1 + ε) · Exact] ≥ 1− δ

Streaming © Thomas Sauerwald Distinct Elements and Frequency Moments 16

The AMS Algorithm

AMS ALGORITHM
1: Choose a random hash function h : [n]→ [n]
2: Z ← 0
3: while item x from stream S arrives
4: if ρ(h(x)) > Z then Z ← ρ(h(x))
5: return 2Z+1/2

Z ← max{Z , ρ(h(x))}

With constant probability > 0, the algorithm’s output satisfies

2Z+1/2 ∈ [F0/3, 3 · F0].

Analysis of AMS Algorithm

We get an (O(1), δ)-approximation of F0 by running Θ(log(1/δ)) independent
copies of the algorithm and returning the median.

Recall (ε, δ)-approximation:
P [Output ∈ (1− ε, 1 + ε) · Exact] ≥ 1− δ

Streaming © Thomas Sauerwald Distinct Elements and Frequency Moments 16

The AMS Algorithm

AMS ALGORITHM
1: Choose a random hash function h : [n]→ [n]
2: Z ← 0
3: while item x from stream S arrives
4: if ρ(h(x)) > Z then Z ← ρ(h(x))
5: return 2Z+1/2

Z ← max{Z , ρ(h(x))}

With constant probability > 0, the algorithm’s output satisfies

2Z+1/2 ∈ [F0/3, 3 · F0].

Analysis of AMS Algorithm

We get an (O(1), δ)-approximation of F0 by running Θ(log(1/δ)) independent
copies of the algorithm and returning the median.

Recall (ε, δ)-approximation:
P [Output ∈ (1− ε, 1 + ε) · Exact] ≥ 1− δ

Streaming © Thomas Sauerwald Distinct Elements and Frequency Moments 16

The AMS Algorithm

AMS ALGORITHM
1: Choose a random hash function h : [n]→ [n]
2: Z ← 0
3: while item x from stream S arrives
4: if ρ(h(x)) > Z then Z ← ρ(h(x))
5: return 2Z+1/2

Z ← max{Z , ρ(h(x))}

With constant probability > 0, the algorithm’s output satisfies

2Z+1/2 ∈ [F0/3, 3 · F0].

Analysis of AMS Algorithm

We get an (O(1), δ)-approximation of F0 by running Θ(log(1/δ)) independent
copies of the algorithm and returning the median.

Recall (ε, δ)-approximation:
P [Output ∈ (1− ε, 1 + ε) · Exact] ≥ 1− δ

Streaming © Thomas Sauerwald Distinct Elements and Frequency Moments 16

Example of the AMS Algorithm

Assume n = 101 (which is prime)

The hash function is h(x) = (ax + b) mod n with a = 28, b = 16

The data stream is:

S = (25, 76, 14, 51, 25, 14, 76, 76, 3, 51, 96, 14, 67, 3, 15, 25, 2, 76, 14, 71)

F0 = 10, as the following numbers appeared: {2, 3, 14, 15, 25, 51, 67, 71, 76, 96}

x h(x) Binary Representation ρ(h(x))

2 72 1 0 0 1 0 0 0 3

3 100 1 1 0 0 1 0 0 2

14 4 0 0 0 0 1 0 0 2

15 32 0 1 0 0 0 0 0 5

25 9 0 0 0 1 0 0 1 0

51 30 0 0 1 1 1 1 0 1

67 74 1 0 0 1 0 1 0 1

71 85 1 0 1 0 1 0 1 0

76 23 0 0 1 0 1 1 1 0

96 78 1 0 0 1 1 1 0 1

returned estimate:
25+1/2 ≈ 45.25

Streaming © Thomas Sauerwald Distinct Elements and Frequency Moments 17

Example of the AMS Algorithm

Assume n = 101 (which is prime)

The hash function is h(x) = (ax + b) mod n with a = 28, b = 16

The data stream is:

S = (25, 76, 14, 51, 25, 14, 76, 76, 3, 51, 96, 14, 67, 3, 15, 25, 2, 76, 14, 71)

F0 = 10, as the following numbers appeared: {2, 3, 14, 15, 25, 51, 67, 71, 76, 96}

x h(x) Binary Representation ρ(h(x))

2 72 1 0 0 1 0 0 0 3

3 100 1 1 0 0 1 0 0 2

14 4 0 0 0 0 1 0 0 2

15 32 0 1 0 0 0 0 0 5

25 9 0 0 0 1 0 0 1 0

51 30 0 0 1 1 1 1 0 1

67 74 1 0 0 1 0 1 0 1

71 85 1 0 1 0 1 0 1 0

76 23 0 0 1 0 1 1 1 0

96 78 1 0 0 1 1 1 0 1

returned estimate:
25+1/2 ≈ 45.25

Streaming © Thomas Sauerwald Distinct Elements and Frequency Moments 17

Example of the AMS Algorithm

Assume n = 101 (which is prime)

The hash function is h(x) = (ax + b) mod n with a = 28, b = 16

The data stream is:

S = (25, 76, 14, 51, 25, 14, 76, 76, 3, 51, 96, 14, 67, 3, 15, 25, 2, 76, 14, 71)

F0 = 10, as the following numbers appeared: {2, 3, 14, 15, 25, 51, 67, 71, 76, 96}

x h(x) Binary Representation ρ(h(x))

2 72 1 0 0 1 0 0 0 3

3 100 1 1 0 0 1 0 0 2

14 4 0 0 0 0 1 0 0 2

15 32 0 1 0 0 0 0 0 5

25 9 0 0 0 1 0 0 1 0

51 30 0 0 1 1 1 1 0 1

67 74 1 0 0 1 0 1 0 1

71 85 1 0 1 0 1 0 1 0

76 23 0 0 1 0 1 1 1 0

96 78 1 0 0 1 1 1 0 1

returned estimate:
25+1/2 ≈ 45.25

Streaming © Thomas Sauerwald Distinct Elements and Frequency Moments 17

Example of the AMS Algorithm

Assume n = 101 (which is prime)

The hash function is h(x) = (ax + b) mod n with a = 28, b = 16

The data stream is:

S = (25, 76, 14, 51, 25, 14, 76, 76, 3, 51, 96, 14, 67, 3, 15, 25, 2, 76, 14, 71)

F0 = 10, as the following numbers appeared: {2, 3, 14, 15, 25, 51, 67, 71, 76, 96}

x h(x) Binary Representation ρ(h(x))

2 72 1 0 0 1 0 0 0 3

3 100 1 1 0 0 1 0 0 2

14 4 0 0 0 0 1 0 0 2

15 32 0 1 0 0 0 0 0 5

25 9 0 0 0 1 0 0 1 0

51 30 0 0 1 1 1 1 0 1

67 74 1 0 0 1 0 1 0 1

71 85 1 0 1 0 1 0 1 0

76 23 0 0 1 0 1 1 1 0

96 78 1 0 0 1 1 1 0 1

returned estimate:
25+1/2 ≈ 45.25

Streaming © Thomas Sauerwald Distinct Elements and Frequency Moments 17

Analysis (1/2)

Let Xr,j be a 0/1 indicator random variable such that

Xr,j = 1⇔ ρ(h(j)) ≥ r .

We say item j reaches level r if Xr,j = 1.

Let Yr =
∑

j∈S Xr,j be the number of items j reaching level r .

Using that h(j) is uniformly distributed, we conclude

E [Xr,j] = P [ρ(h(j)) ≥ r] = P
[

h(j) mod 2r = 0
]

= 2−r .

definition of function ρ

By linearity of expectation, we have

E [Yr] =
∑
j∈S

E [Xr,j] =
F0

2r ,

V [Yr] =
∑
j∈S

V [Xr,j]

≤
∑
j∈S

E
[

X 2
r,j

]
=
∑
j∈S

E [Xr,j] =
F0

2r

using pairwise independence of h!

Streaming © Thomas Sauerwald Distinct Elements and Frequency Moments 18

Analysis (1/2)

Let Xr,j be a 0/1 indicator random variable such that

Xr,j = 1⇔ ρ(h(j)) ≥ r .

We say item j reaches level r if Xr,j = 1.

Let Yr =
∑

j∈S Xr,j be the number of items j reaching level r .

Using that h(j) is uniformly distributed, we conclude

E [Xr,j] = P [ρ(h(j)) ≥ r] = P
[

h(j) mod 2r = 0
]

= 2−r .

definition of function ρ

By linearity of expectation, we have

E [Yr] =
∑
j∈S

E [Xr,j] =
F0

2r ,

V [Yr] =
∑
j∈S

V [Xr,j]

≤
∑
j∈S

E
[

X 2
r,j

]
=
∑
j∈S

E [Xr,j] =
F0

2r

using pairwise independence of h!

Streaming © Thomas Sauerwald Distinct Elements and Frequency Moments 18

Analysis (1/2)

Let Xr,j be a 0/1 indicator random variable such that

Xr,j = 1⇔ ρ(h(j)) ≥ r .

We say item j reaches level r if Xr,j = 1.

Let Yr =
∑

j∈S Xr,j be the number of items j reaching level r .

Using that h(j) is uniformly distributed, we conclude

E [Xr,j] = P [ρ(h(j)) ≥ r] = P
[

h(j) mod 2r = 0
]

= 2−r .

definition of function ρ

By linearity of expectation, we have

E [Yr] =
∑
j∈S

E [Xr,j] =
F0

2r ,

V [Yr] =
∑
j∈S

V [Xr,j]

≤
∑
j∈S

E
[

X 2
r,j

]
=
∑
j∈S

E [Xr,j] =
F0

2r

using pairwise independence of h!

Streaming © Thomas Sauerwald Distinct Elements and Frequency Moments 18

Analysis (1/2)

Let Xr,j be a 0/1 indicator random variable such that

Xr,j = 1⇔ ρ(h(j)) ≥ r .

We say item j reaches level r if Xr,j = 1.

Let Yr =
∑

j∈S Xr,j be the number of items j reaching level r .

Using that h(j) is uniformly distributed, we conclude

E [Xr,j] = P [ρ(h(j)) ≥ r] = P
[

h(j) mod 2r = 0
]

= 2−r .

definition of function ρ

By linearity of expectation, we have

E [Yr] =
∑
j∈S

E [Xr,j] =
F0

2r ,

V [Yr] =
∑
j∈S

V [Xr,j]

≤
∑
j∈S

E
[

X 2
r,j

]
=
∑
j∈S

E [Xr,j] =
F0

2r

using pairwise independence of h!

Streaming © Thomas Sauerwald Distinct Elements and Frequency Moments 18

Analysis (1/2)

Let Xr,j be a 0/1 indicator random variable such that

Xr,j = 1⇔ ρ(h(j)) ≥ r .

We say item j reaches level r if Xr,j = 1.

Let Yr =
∑

j∈S Xr,j be the number of items j reaching level r .

Using that h(j) is uniformly distributed, we conclude

E [Xr,j] = P [ρ(h(j)) ≥ r] = P
[

h(j) mod 2r = 0
]

= 2−r .

definition of function ρ

By linearity of expectation, we have

E [Yr] =
∑
j∈S

E [Xr,j] =
F0

2r ,

V [Yr] =
∑
j∈S

V [Xr,j]

≤
∑
j∈S

E
[

X 2
r,j

]
=
∑
j∈S

E [Xr,j] =
F0

2r

using pairwise independence of h!

Streaming © Thomas Sauerwald Distinct Elements and Frequency Moments 18

Analysis (1/2)

Let Xr,j be a 0/1 indicator random variable such that

Xr,j = 1⇔ ρ(h(j)) ≥ r .

We say item j reaches level r if Xr,j = 1.

Let Yr =
∑

j∈S Xr,j be the number of items j reaching level r .

Using that h(j) is uniformly distributed, we conclude

E [Xr,j] = P [ρ(h(j)) ≥ r] = P
[

h(j) mod 2r = 0
]

= 2−r .

definition of function ρ

By linearity of expectation, we have

E [Yr] =
∑
j∈S

E [Xr,j] =
F0

2r ,

V [Yr] =
∑
j∈S

V [Xr,j]

≤
∑
j∈S

E
[

X 2
r,j

]
=
∑
j∈S

E [Xr,j] =
F0

2r

using pairwise independence of h!

Streaming © Thomas Sauerwald Distinct Elements and Frequency Moments 18

Analysis (1/2)

Let Xr,j be a 0/1 indicator random variable such that

Xr,j = 1⇔ ρ(h(j)) ≥ r .

We say item j reaches level r if Xr,j = 1.

Let Yr =
∑

j∈S Xr,j be the number of items j reaching level r .

Using that h(j) is uniformly distributed, we conclude

E [Xr,j] = P [ρ(h(j)) ≥ r] = P
[

h(j) mod 2r = 0
]

= 2−r .

definition of function ρ

By linearity of expectation, we have

E [Yr] =
∑
j∈S

E [Xr,j] =
F0

2r ,

V [Yr] =
∑
j∈S

V [Xr,j] ≤
∑
j∈S

E
[

X 2
r,j

]

=
∑
j∈S

E [Xr,j] =
F0

2r

using pairwise independence of h!

Streaming © Thomas Sauerwald Distinct Elements and Frequency Moments 18

Analysis (1/2)

Let Xr,j be a 0/1 indicator random variable such that

Xr,j = 1⇔ ρ(h(j)) ≥ r .

We say item j reaches level r if Xr,j = 1.

Let Yr =
∑

j∈S Xr,j be the number of items j reaching level r .

Using that h(j) is uniformly distributed, we conclude

E [Xr,j] = P [ρ(h(j)) ≥ r] = P
[

h(j) mod 2r = 0
]

= 2−r .

definition of function ρ

By linearity of expectation, we have

E [Yr] =
∑
j∈S

E [Xr,j] =
F0

2r ,

V [Yr] =
∑
j∈S

V [Xr,j] ≤
∑
j∈S

E
[

X 2
r,j

]
=
∑
j∈S

E [Xr,j] =
F0

2r

using pairwise independence of h!

Streaming © Thomas Sauerwald Distinct Elements and Frequency Moments 18

Analysis (2/2)

We have proved E [Yr] = F0
2r and V [Yr] ≤ F0

2r .

By Markov’s inequality, we have

P [Yr > 0] = P [Yr ≥ 1] ≤ E [Yr]

1
=

F0

2r .

By Chebyshev’s inequality, we have

P [Yr = 0] ≤ P
[
|Yr − E [Yr] | ≥ F0/2r] ≤ V [Yr]

(F0/2r)2 ≤
2r

F0
.

Let Z be the final integer the algo. keeps. So the algo. returns 2Z+1/2.
Let p be the smallest integer such that 2p+1/2 ≥ 3F0:

P
[

2Z+1/2 ≥ 3F0

]
= P [Z ≥ p] = P [Yp > 0] ≤ F0

2p ≤
√

2
3
.

Let q be the largest integer such that 2q+1/2 ≤ F0/3:

P
[

2Z+1/2 ≤ F0/3
]

= P [Z ≤ q] ≤ P [Yq+1 = 0] ≤ 2q+1

F0
≤
√

2
3
.

Union Bound: Error ≤ 2 ·
√

2
3 < 1

Streaming © Thomas Sauerwald Distinct Elements and Frequency Moments 19

Analysis (2/2)

We have proved E [Yr] = F0
2r and V [Yr] ≤ F0

2r .
By Markov’s inequality, we have

P [Yr > 0] = P [Yr ≥ 1] ≤ E [Yr]

1
=

F0

2r .

By Chebyshev’s inequality, we have

P [Yr = 0] ≤ P
[
|Yr − E [Yr] | ≥ F0/2r] ≤ V [Yr]

(F0/2r)2 ≤
2r

F0
.

Let Z be the final integer the algo. keeps. So the algo. returns 2Z+1/2.
Let p be the smallest integer such that 2p+1/2 ≥ 3F0:

P
[

2Z+1/2 ≥ 3F0

]
= P [Z ≥ p] = P [Yp > 0] ≤ F0

2p ≤
√

2
3
.

Let q be the largest integer such that 2q+1/2 ≤ F0/3:

P
[

2Z+1/2 ≤ F0/3
]

= P [Z ≤ q] ≤ P [Yq+1 = 0] ≤ 2q+1

F0
≤
√

2
3
.

Union Bound: Error ≤ 2 ·
√

2
3 < 1

Streaming © Thomas Sauerwald Distinct Elements and Frequency Moments 19

Analysis (2/2)

We have proved E [Yr] = F0
2r and V [Yr] ≤ F0

2r .
By Markov’s inequality, we have

P [Yr > 0] = P [Yr ≥ 1] ≤ E [Yr]

1
=

F0

2r .

By Chebyshev’s inequality, we have

P [Yr = 0] ≤ P
[
|Yr − E [Yr] | ≥ F0/2r] ≤ V [Yr]

(F0/2r)2 ≤
2r

F0
.

Let Z be the final integer the algo. keeps. So the algo. returns 2Z+1/2.
Let p be the smallest integer such that 2p+1/2 ≥ 3F0:

P
[

2Z+1/2 ≥ 3F0

]
= P [Z ≥ p] = P [Yp > 0] ≤ F0

2p ≤
√

2
3
.

Let q be the largest integer such that 2q+1/2 ≤ F0/3:

P
[

2Z+1/2 ≤ F0/3
]

= P [Z ≤ q] ≤ P [Yq+1 = 0] ≤ 2q+1

F0
≤
√

2
3
.

Union Bound: Error ≤ 2 ·
√

2
3 < 1

Streaming © Thomas Sauerwald Distinct Elements and Frequency Moments 19

Analysis (2/2)

We have proved E [Yr] = F0
2r and V [Yr] ≤ F0

2r .
By Markov’s inequality, we have

P [Yr > 0] = P [Yr ≥ 1] ≤ E [Yr]

1
=

F0

2r .

By Chebyshev’s inequality, we have

P [Yr = 0] ≤ P
[
|Yr − E [Yr] | ≥ F0/2r] ≤ V [Yr]

(F0/2r)2 ≤
2r

F0
.

Let Z be the final integer the algo. keeps. So the algo. returns 2Z+1/2.

Let p be the smallest integer such that 2p+1/2 ≥ 3F0:

P
[

2Z+1/2 ≥ 3F0

]
= P [Z ≥ p] = P [Yp > 0] ≤ F0

2p ≤
√

2
3
.

Let q be the largest integer such that 2q+1/2 ≤ F0/3:

P
[

2Z+1/2 ≤ F0/3
]

= P [Z ≤ q] ≤ P [Yq+1 = 0] ≤ 2q+1

F0
≤
√

2
3
.

Union Bound: Error ≤ 2 ·
√

2
3 < 1

Streaming © Thomas Sauerwald Distinct Elements and Frequency Moments 19

Analysis (2/2)

We have proved E [Yr] = F0
2r and V [Yr] ≤ F0

2r .
By Markov’s inequality, we have

P [Yr > 0] = P [Yr ≥ 1] ≤ E [Yr]

1
=

F0

2r .

By Chebyshev’s inequality, we have

P [Yr = 0] ≤ P
[
|Yr − E [Yr] | ≥ F0/2r] ≤ V [Yr]

(F0/2r)2 ≤
2r

F0
.

Let Z be the final integer the algo. keeps. So the algo. returns 2Z+1/2.
Let p be the smallest integer such that 2p+1/2 ≥ 3F0:

P
[

2Z+1/2 ≥ 3F0

]
= P [Z ≥ p] = P [Yp > 0] ≤ F0

2p ≤
√

2
3
.

Let q be the largest integer such that 2q+1/2 ≤ F0/3:

P
[

2Z+1/2 ≤ F0/3
]

= P [Z ≤ q] ≤ P [Yq+1 = 0] ≤ 2q+1

F0
≤
√

2
3
.

Union Bound: Error ≤ 2 ·
√

2
3 < 1

Streaming © Thomas Sauerwald Distinct Elements and Frequency Moments 19

Analysis (2/2)

We have proved E [Yr] = F0
2r and V [Yr] ≤ F0

2r .
By Markov’s inequality, we have

P [Yr > 0] = P [Yr ≥ 1] ≤ E [Yr]

1
=

F0

2r .

By Chebyshev’s inequality, we have

P [Yr = 0] ≤ P
[
|Yr − E [Yr] | ≥ F0/2r] ≤ V [Yr]

(F0/2r)2 ≤
2r

F0
.

Let Z be the final integer the algo. keeps. So the algo. returns 2Z+1/2.
Let p be the smallest integer such that 2p+1/2 ≥ 3F0:

P
[

2Z+1/2 ≥ 3F0

]

= P [Z ≥ p] = P [Yp > 0] ≤ F0

2p ≤
√

2
3
.

Let q be the largest integer such that 2q+1/2 ≤ F0/3:

P
[

2Z+1/2 ≤ F0/3
]

= P [Z ≤ q] ≤ P [Yq+1 = 0] ≤ 2q+1

F0
≤
√

2
3
.

Union Bound: Error ≤ 2 ·
√

2
3 < 1

Streaming © Thomas Sauerwald Distinct Elements and Frequency Moments 19

Analysis (2/2)

We have proved E [Yr] = F0
2r and V [Yr] ≤ F0

2r .
By Markov’s inequality, we have

P [Yr > 0] = P [Yr ≥ 1] ≤ E [Yr]

1
=

F0

2r .

By Chebyshev’s inequality, we have

P [Yr = 0] ≤ P
[
|Yr − E [Yr] | ≥ F0/2r] ≤ V [Yr]

(F0/2r)2 ≤
2r

F0
.

Let Z be the final integer the algo. keeps. So the algo. returns 2Z+1/2.
Let p be the smallest integer such that 2p+1/2 ≥ 3F0:

P
[

2Z+1/2 ≥ 3F0

]
= P [Z ≥ p]

= P [Yp > 0] ≤ F0

2p ≤
√

2
3
.

Let q be the largest integer such that 2q+1/2 ≤ F0/3:

P
[

2Z+1/2 ≤ F0/3
]

= P [Z ≤ q] ≤ P [Yq+1 = 0] ≤ 2q+1

F0
≤
√

2
3
.

Union Bound: Error ≤ 2 ·
√

2
3 < 1

Streaming © Thomas Sauerwald Distinct Elements and Frequency Moments 19

Analysis (2/2)

We have proved E [Yr] = F0
2r and V [Yr] ≤ F0

2r .
By Markov’s inequality, we have

P [Yr > 0] = P [Yr ≥ 1] ≤ E [Yr]

1
=

F0

2r .

By Chebyshev’s inequality, we have

P [Yr = 0] ≤ P
[
|Yr − E [Yr] | ≥ F0/2r] ≤ V [Yr]

(F0/2r)2 ≤
2r

F0
.

Let Z be the final integer the algo. keeps. So the algo. returns 2Z+1/2.
Let p be the smallest integer such that 2p+1/2 ≥ 3F0:

P
[

2Z+1/2 ≥ 3F0

]
= P [Z ≥ p] = P [Yp > 0]

≤ F0

2p ≤
√

2
3
.

Let q be the largest integer such that 2q+1/2 ≤ F0/3:

P
[

2Z+1/2 ≤ F0/3
]

= P [Z ≤ q] ≤ P [Yq+1 = 0] ≤ 2q+1

F0
≤
√

2
3
.

Union Bound: Error ≤ 2 ·
√

2
3 < 1

Streaming © Thomas Sauerwald Distinct Elements and Frequency Moments 19

Analysis (2/2)

We have proved E [Yr] = F0
2r and V [Yr] ≤ F0

2r .
By Markov’s inequality, we have

P [Yr > 0] = P [Yr ≥ 1] ≤ E [Yr]

1
=

F0

2r .

By Chebyshev’s inequality, we have

P [Yr = 0] ≤ P
[
|Yr − E [Yr] | ≥ F0/2r] ≤ V [Yr]

(F0/2r)2 ≤
2r

F0
.

Let Z be the final integer the algo. keeps. So the algo. returns 2Z+1/2.
Let p be the smallest integer such that 2p+1/2 ≥ 3F0:

P
[

2Z+1/2 ≥ 3F0

]
= P [Z ≥ p] = P [Yp > 0] ≤ F0

2p

≤
√

2
3
.

Let q be the largest integer such that 2q+1/2 ≤ F0/3:

P
[

2Z+1/2 ≤ F0/3
]

= P [Z ≤ q] ≤ P [Yq+1 = 0] ≤ 2q+1

F0
≤
√

2
3
.

Union Bound: Error ≤ 2 ·
√

2
3 < 1

Streaming © Thomas Sauerwald Distinct Elements and Frequency Moments 19

Analysis (2/2)

We have proved E [Yr] = F0
2r and V [Yr] ≤ F0

2r .
By Markov’s inequality, we have

P [Yr > 0] = P [Yr ≥ 1] ≤ E [Yr]

1
=

F0

2r .

By Chebyshev’s inequality, we have

P [Yr = 0] ≤ P
[
|Yr − E [Yr] | ≥ F0/2r] ≤ V [Yr]

(F0/2r)2 ≤
2r

F0
.

Let Z be the final integer the algo. keeps. So the algo. returns 2Z+1/2.
Let p be the smallest integer such that 2p+1/2 ≥ 3F0:

P
[

2Z+1/2 ≥ 3F0

]
= P [Z ≥ p] = P [Yp > 0] ≤ F0

2p ≤
√

2
3
.

Let q be the largest integer such that 2q+1/2 ≤ F0/3:

P
[

2Z+1/2 ≤ F0/3
]

= P [Z ≤ q] ≤ P [Yq+1 = 0] ≤ 2q+1

F0
≤
√

2
3
.

Union Bound: Error ≤ 2 ·
√

2
3 < 1

Streaming © Thomas Sauerwald Distinct Elements and Frequency Moments 19

Analysis (2/2)

We have proved E [Yr] = F0
2r and V [Yr] ≤ F0

2r .
By Markov’s inequality, we have

P [Yr > 0] = P [Yr ≥ 1] ≤ E [Yr]

1
=

F0

2r .

By Chebyshev’s inequality, we have

P [Yr = 0] ≤ P
[
|Yr − E [Yr] | ≥ F0/2r] ≤ V [Yr]

(F0/2r)2 ≤
2r

F0
.

Let Z be the final integer the algo. keeps. So the algo. returns 2Z+1/2.
Let p be the smallest integer such that 2p+1/2 ≥ 3F0:

P
[

2Z+1/2 ≥ 3F0

]
= P [Z ≥ p] = P [Yp > 0] ≤ F0

2p ≤
√

2
3
.

Let q be the largest integer such that 2q+1/2 ≤ F0/3:

P
[

2Z+1/2 ≤ F0/3
]

= P [Z ≤ q] ≤ P [Yq+1 = 0] ≤ 2q+1

F0
≤
√

2
3
.

Union Bound: Error ≤ 2 ·
√

2
3 < 1

Streaming © Thomas Sauerwald Distinct Elements and Frequency Moments 19

Analysis (2/2)

We have proved E [Yr] = F0
2r and V [Yr] ≤ F0

2r .
By Markov’s inequality, we have

P [Yr > 0] = P [Yr ≥ 1] ≤ E [Yr]

1
=

F0

2r .

By Chebyshev’s inequality, we have

P [Yr = 0] ≤ P
[
|Yr − E [Yr] | ≥ F0/2r] ≤ V [Yr]

(F0/2r)2 ≤
2r

F0
.

Let Z be the final integer the algo. keeps. So the algo. returns 2Z+1/2.
Let p be the smallest integer such that 2p+1/2 ≥ 3F0:

P
[

2Z+1/2 ≥ 3F0

]
= P [Z ≥ p] = P [Yp > 0] ≤ F0

2p ≤
√

2
3
.

Let q be the largest integer such that 2q+1/2 ≤ F0/3:

P
[

2Z+1/2 ≤ F0/3
]

= P [Z ≤ q] ≤ P [Yq+1 = 0] ≤ 2q+1

F0
≤
√

2
3
.

Union Bound: Error ≤ 2 ·
√

2
3 < 1

Streaming © Thomas Sauerwald Distinct Elements and Frequency Moments 19

Analysis (2/2)

We have proved E [Yr] = F0
2r and V [Yr] ≤ F0

2r .
By Markov’s inequality, we have

P [Yr > 0] = P [Yr ≥ 1] ≤ E [Yr]

1
=

F0

2r .

By Chebyshev’s inequality, we have

P [Yr = 0] ≤ P
[
|Yr − E [Yr] | ≥ F0/2r] ≤ V [Yr]

(F0/2r)2 ≤
2r

F0
.

Let Z be the final integer the algo. keeps. So the algo. returns 2Z+1/2.
Let p be the smallest integer such that 2p+1/2 ≥ 3F0:

P
[

2Z+1/2 ≥ 3F0

]
= P [Z ≥ p] = P [Yp > 0] ≤ F0

2p ≤
√

2
3
.

Let q be the largest integer such that 2q+1/2 ≤ F0/3:

P
[

2Z+1/2 ≤ F0/3
]

= P [Z ≤ q]

≤ P [Yq+1 = 0] ≤ 2q+1

F0
≤
√

2
3
.

Union Bound: Error ≤ 2 ·
√

2
3 < 1

Streaming © Thomas Sauerwald Distinct Elements and Frequency Moments 19

Analysis (2/2)

We have proved E [Yr] = F0
2r and V [Yr] ≤ F0

2r .
By Markov’s inequality, we have

P [Yr > 0] = P [Yr ≥ 1] ≤ E [Yr]

1
=

F0

2r .

By Chebyshev’s inequality, we have

P [Yr = 0] ≤ P
[
|Yr − E [Yr] | ≥ F0/2r] ≤ V [Yr]

(F0/2r)2 ≤
2r

F0
.

Let Z be the final integer the algo. keeps. So the algo. returns 2Z+1/2.
Let p be the smallest integer such that 2p+1/2 ≥ 3F0:

P
[

2Z+1/2 ≥ 3F0

]
= P [Z ≥ p] = P [Yp > 0] ≤ F0

2p ≤
√

2
3
.

Let q be the largest integer such that 2q+1/2 ≤ F0/3:

P
[

2Z+1/2 ≤ F0/3
]

= P [Z ≤ q] ≤ P [Yq+1 = 0]

≤ 2q+1

F0
≤
√

2
3
.

Union Bound: Error ≤ 2 ·
√

2
3 < 1

Streaming © Thomas Sauerwald Distinct Elements and Frequency Moments 19

Analysis (2/2)

We have proved E [Yr] = F0
2r and V [Yr] ≤ F0

2r .
By Markov’s inequality, we have

P [Yr > 0] = P [Yr ≥ 1] ≤ E [Yr]

1
=

F0

2r .

By Chebyshev’s inequality, we have

P [Yr = 0] ≤ P
[
|Yr − E [Yr] | ≥ F0/2r] ≤ V [Yr]

(F0/2r)2 ≤
2r

F0
.

Let Z be the final integer the algo. keeps. So the algo. returns 2Z+1/2.
Let p be the smallest integer such that 2p+1/2 ≥ 3F0:

P
[

2Z+1/2 ≥ 3F0

]
= P [Z ≥ p] = P [Yp > 0] ≤ F0

2p ≤
√

2
3
.

Let q be the largest integer such that 2q+1/2 ≤ F0/3:

P
[

2Z+1/2 ≤ F0/3
]

= P [Z ≤ q] ≤ P [Yq+1 = 0] ≤ 2q+1

F0

≤
√

2
3
.

Union Bound: Error ≤ 2 ·
√

2
3 < 1

Streaming © Thomas Sauerwald Distinct Elements and Frequency Moments 19

Analysis (2/2)

We have proved E [Yr] = F0
2r and V [Yr] ≤ F0

2r .
By Markov’s inequality, we have

P [Yr > 0] = P [Yr ≥ 1] ≤ E [Yr]

1
=

F0

2r .

By Chebyshev’s inequality, we have

P [Yr = 0] ≤ P
[
|Yr − E [Yr] | ≥ F0/2r] ≤ V [Yr]

(F0/2r)2 ≤
2r

F0
.

Let Z be the final integer the algo. keeps. So the algo. returns 2Z+1/2.
Let p be the smallest integer such that 2p+1/2 ≥ 3F0:

P
[

2Z+1/2 ≥ 3F0

]
= P [Z ≥ p] = P [Yp > 0] ≤ F0

2p ≤
√

2
3
.

Let q be the largest integer such that 2q+1/2 ≤ F0/3:

P
[

2Z+1/2 ≤ F0/3
]

= P [Z ≤ q] ≤ P [Yq+1 = 0] ≤ 2q+1

F0
≤
√

2
3
.

Union Bound: Error ≤ 2 ·
√

2
3 < 1

Streaming © Thomas Sauerwald Distinct Elements and Frequency Moments 19

Analysis (2/2)

We have proved E [Yr] = F0
2r and V [Yr] ≤ F0

2r .
By Markov’s inequality, we have

P [Yr > 0] = P [Yr ≥ 1] ≤ E [Yr]

1
=

F0

2r .

By Chebyshev’s inequality, we have

P [Yr = 0] ≤ P
[
|Yr − E [Yr] | ≥ F0/2r] ≤ V [Yr]

(F0/2r)2 ≤
2r

F0
.

Let Z be the final integer the algo. keeps. So the algo. returns 2Z+1/2.
Let p be the smallest integer such that 2p+1/2 ≥ 3F0:

P
[

2Z+1/2 ≥ 3F0

]
= P [Z ≥ p] = P [Yp > 0] ≤ F0

2p ≤
√

2
3
.

Let q be the largest integer such that 2q+1/2 ≤ F0/3:

P
[

2Z+1/2 ≤ F0/3
]

= P [Z ≤ q] ≤ P [Yq+1 = 0] ≤ 2q+1

F0
≤
√

2
3
.

Union Bound: Error ≤ 2 ·
√

2
3 < 1

Streaming © Thomas Sauerwald Distinct Elements and Frequency Moments 19

Analysis (2/2)

We have proved E [Yr] = F0
2r and V [Yr] ≤ F0

2r .
By Markov’s inequality, we have

P [Yr > 0] = P [Yr ≥ 1] ≤ E [Yr]

1
=

F0

2r .

By Chebyshev’s inequality, we have

P [Yr = 0] ≤ P
[
|Yr − E [Yr] | ≥ F0/2r] ≤ V [Yr]

(F0/2r)2 ≤
2r

F0
.

Let Z be the final integer the algo. keeps. So the algo. returns 2Z+1/2.
Let p be the smallest integer such that 2p+1/2 ≥ 3F0:

P
[

2Z+1/2 ≥ 3F0

]
= P [Z ≥ p] = P [Yp > 0] ≤ F0

2p ≤
√

2
3
.

Let q be the largest integer such that 2q+1/2 ≤ F0/3:

P
[

2Z+1/2 ≤ F0/3
]

= P [Z ≤ q] ≤ P [Yq+1 = 0] ≤ 2q+1

F0
≤
√

2
3
.

Union Bound: Error ≤ 2 ·
√

2
3 < 1

Streaming © Thomas Sauerwald Distinct Elements and Frequency Moments 19

Final Remarks

Durand and Flajolet (2003) proposed the LOGLOG algorithm for
estimating F0

Their algorithm condenses the whole of Shakespeare’s works to a table of
256 “small bytes” of 4 bits each

The estimate of the number of distinct words is F̃0 = 30897, while the true
answer is F0 = 28239, which represents a relative error +9.4%.

Streaming © Thomas Sauerwald Distinct Elements and Frequency Moments 20

Outline

Introduction

Approximate Counting

Distinct Elements and Frequency Moments

Extra Material (non-examinable): An Algorithm for F0 in the Turnstile Model

Streaming © Thomas Sauerwald Extra Material (non-examinable): An Algorithm for F0 in the Turnstile Model 21

The AMS algorithm (cash register model)

Common approach for designing algorithms in the cash register model:

1. Sample the data items based on hashed values;

2. Store the statistical information of the sampled items, or store the
sampled items directly.

Downside of this framework:

Sampling probability for the current item usually depends on the whole
data stream that algorithm has seen so far.

Deleting an item appeared before could potentially make the current
statistical information useless! :(

Sampling techniques are usually non-applicable in the turnstile model.

Streaming © Thomas Sauerwald Extra Material (non-examinable): An Algorithm for F0 in the Turnstile Model 22

The AMS algorithm (cash register model)

Common approach for designing algorithms in the cash register model:

1. Sample the data items based on hashed values;

2. Store the statistical information of the sampled items, or store the
sampled items directly.

Downside of this framework:

Sampling probability for the current item usually depends on the whole
data stream that algorithm has seen so far.

Deleting an item appeared before could potentially make the current
statistical information useless! :(

Sampling techniques are usually non-applicable in the turnstile model.

Streaming © Thomas Sauerwald Extra Material (non-examinable): An Algorithm for F0 in the Turnstile Model 22

The AMS algorithm (cash register model)

Common approach for designing algorithms in the cash register model:

1. Sample the data items based on hashed values;

2. Store the statistical information of the sampled items, or store the
sampled items directly.

Downside of this framework:

Sampling probability for the current item usually depends on the whole
data stream that algorithm has seen so far.

Deleting an item appeared before could potentially make the current
statistical information useless! :(

Sampling techniques are usually non-applicable in the turnstile model.

Streaming © Thomas Sauerwald Extra Material (non-examinable): An Algorithm for F0 in the Turnstile Model 22

The AMS algorithm (cash register model)

Common approach for designing algorithms in the cash register model:

1. Sample the data items based on hashed values;

2. Store the statistical information of the sampled items, or store the
sampled items directly.

Downside of this framework:

Sampling probability for the current item usually depends on the whole
data stream that algorithm has seen so far.

Deleting an item appeared before could potentially make the current
statistical information useless! :(

Sampling techniques are usually non-applicable in the turnstile model.

Streaming © Thomas Sauerwald Extra Material (non-examinable): An Algorithm for F0 in the Turnstile Model 22

Algorithm to approximate F2 in the turnstile model

1: Choose a 4-wise independent hash function h : [n]→ {−1, 1}
2: y = 0
3: while item (x ,±) from stream S arrives
4: if x is inserted then y ← y + h(x)
5: else y ← y − h(x)
6: return Z := y2

Algorithm to approximate F2 (simplified description)

The algorithm runs in the turnstile model!

It holds that E [Z] = F2 and V [Z] ≤ 2 ·
(∑

i∈S m2
i
)2

= 2F 2
2 .

Key Lemma

Hence, we can (ε, δ)-approximate F2, by running multiple copies
of the algorithm in parallel and return the average value.

Streaming © Thomas Sauerwald Extra Material (non-examinable): An Algorithm for F0 in the Turnstile Model 23

Algorithm to approximate F2 in the turnstile model

1: Choose a 4-wise independent hash function h : [n]→ {−1, 1}
2: y = 0
3: while item (x ,±) from stream S arrives
4: if x is inserted then y ← y + h(x)
5: else y ← y − h(x)
6: return Z := y2

Algorithm to approximate F2 (simplified description)

The algorithm runs in the turnstile model!

It holds that E [Z] = F2 and V [Z] ≤ 2 ·
(∑

i∈S m2
i
)2

= 2F 2
2 .

Key Lemma

Hence, we can (ε, δ)-approximate F2, by running multiple copies
of the algorithm in parallel and return the average value.

Streaming © Thomas Sauerwald Extra Material (non-examinable): An Algorithm for F0 in the Turnstile Model 23

Algorithm to approximate F2 in the turnstile model

1: Choose a 4-wise independent hash function h : [n]→ {−1, 1}
2: y = 0
3: while item (x ,±) from stream S arrives
4: if x is inserted then y ← y + h(x)
5: else y ← y − h(x)
6: return Z := y2

Algorithm to approximate F2 (simplified description)

The algorithm runs in the turnstile model!

It holds that E [Z] = F2 and V [Z] ≤ 2 ·
(∑

i∈S m2
i
)2

= 2F 2
2 .

Key Lemma

Hence, we can (ε, δ)-approximate F2, by running multiple copies
of the algorithm in parallel and return the average value.

Streaming © Thomas Sauerwald Extra Material (non-examinable): An Algorithm for F0 in the Turnstile Model 23

Algorithm to approximate F2 in the turnstile model

1: Choose a 4-wise independent hash function h : [n]→ {−1, 1}
2: y = 0
3: while item (x ,±) from stream S arrives
4: if x is inserted then y ← y + h(x)
5: else y ← y − h(x)
6: return Z := y2

Algorithm to approximate F2 (simplified description)

The algorithm runs in the turnstile model!

It holds that E [Z] = F2 and V [Z] ≤ 2 ·
(∑

i∈S m2
i
)2

= 2F 2
2 .

Key Lemma

Hence, we can (ε, δ)-approximate F2, by running multiple copies
of the algorithm in parallel and return the average value.

Streaming © Thomas Sauerwald Extra Material (non-examinable): An Algorithm for F0 in the Turnstile Model 23

Algorithm to approximate F2 in the turnstile model

1: t = d6/ε2e
2: Choose t 4-wise independent hash function h1, . . . , ht , where

hi : [n]→ {−1, 1}

3: yi = 0 for each i = 1, . . . , t
4: while item (x ,±) from stream S arrives
5: if x is inserted then yi = yi + hi (x) for every 1 ≤ i ≤ t
6: else yi = yi − hi (x) for every 1 ≤ i ≤ t
7: return 1

t ·
∑t

i=1 Zi , where Zi = y2
i

Algorithm to approximate F2 (details)

With constant probability, the returned value of the algorithm lies in (1 −
ε, 1 + ε) · F2. Moreover, the space complexity is O

(
(1/ε2) log n

)
bits.

Analysis

Streaming © Thomas Sauerwald Extra Material (non-examinable): An Algorithm for F0 in the Turnstile Model 24

Algorithm to approximate F2 in the turnstile model

1: t = d6/ε2e
2: Choose t 4-wise independent hash function h1, . . . , ht , where

hi : [n]→ {−1, 1}

3: yi = 0 for each i = 1, . . . , t
4: while item (x ,±) from stream S arrives
5: if x is inserted then yi = yi + hi (x) for every 1 ≤ i ≤ t
6: else yi = yi − hi (x) for every 1 ≤ i ≤ t
7: return 1

t ·
∑t

i=1 Zi , where Zi = y2
i

Algorithm to approximate F2 (details)

With constant probability, the returned value of the algorithm lies in (1 −
ε, 1 + ε) · F2. Moreover, the space complexity is O

(
(1/ε2) log n

)
bits.

Analysis

Streaming © Thomas Sauerwald Extra Material (non-examinable): An Algorithm for F0 in the Turnstile Model 24

	Introduction
	Approximate Counting
	Distinct Elements and Frequency Moments
	Extra Material (non-examinable): An Algorithm for F0 in the Turnstile Model

