Randomised Algorithms

Lecture 13: Streaming Algorithms

Thomas Sauerwald (tms41@cam.ac.uk)

Outline

Introduction

Approximate Counting

Distinct Elements and Frequency Moments

Extra Material (non-examinable): An Algorithm for F_{0} in the Turnstile Model

Background of Streaming Algorithms

- The amount of data has been increased exponentially over the last years

Background of Streaming Algorithms

- The amount of data has been increased exponentially over the last years
- For many applications computational devices' memories are limited

Background of Streaming Algorithms

- The amount of data has been increased exponentially over the last years
- For many applications computational devices' memories are limited
- We need to find good (approximate) solutions without storing the entire input!

Size of data

Motivation：Analysing Search Engine Queries

Motivation: Analysing Search Engine Queries

Motivation: Analysing Search Engine Queries

Motivation: Analysing Search Engine Queries

PageRank

Motivation: Analysing Search Engine Queries

Motivation: Analysing Search Engine Queries

IP:	IP:	IP:	IP:	IP:		
54.73 .136 .89	102.58 .22 .231	54.73 .136 .89	170.9 .103 .244	189.105 .32 .75		
Time:	Time:	Time:	Time:	Time:		
Text:	Text:	Text:	Text:	Text:		

Motivation: Analysing Search Engine Queries

| IP: | IP: | IP: | IP: | IP: | IP: | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 54.73 .136 .89 | 102.58 .22 .231 | 54.73 .136 .89 | 170.9 .103 .244 | 189.105 .32 .75 | 54.73 .136 .89 | |
| Time: | Time: | Time: | Time: | Time: | Time: | |
| Text: | Text: | Text: | Text: | Text: | Text: | |

Motivation: Analysing Search Engine Queries

Motivation: Analysing Search Engine Queries

Motivation: Analysing Search Engine Queries

| IP: |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 54.73 .136 .89 | 102.58 .22 .231 | 54.73 .136 .89 | 170.9 .103 .244 | 189.105 .32 .75 | 54.73 .136 .89 | 144.66 .18 .240 | 102.58 .22 .231 |
| Time: |
| Text: |

Motivation: Analysing Search Engine Queries

- memory is much smaller than needed to store entire data stream

| IP: |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 54.73.136.89 | 102.58 .22 .231 | 54.73 .136 .89 | 170.9 .103 .244 | 189.105 .32 .75 | 54.73 .136 .89 | 144.66 .18 .240 | 102.58 .22 .231 |
| Time: |
| Text: |

Motivation: Analysing Search Engine Queries

- memory is much smaller than needed to store entire data stream
\Rightarrow We can only read each data item once and in sequential order

| IP: |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 54.73.136.89 | 102.58 .22 .231 | 54.73 .136 .89 | 170.9 .103 .244 | 189.105 .32 .75 | 54.73 .136 .89 | 144.66 .18 .240 | 102.58 .22 .231 |
| Time: |
| Text: |

Motivation: Analysing Search Engine Queries

- What is the total number queries?
- What is the total number of different IP addresses?
- Extension 1: only consider queries within a certain interval (sliding window)
- Extension 2: also allow the cancellation/removal of a query (turnstile model)
- Extension 3: What if we have different data centers? (distributed streaming)
- memory is much smaller than needed to store entire data stream
\Rightarrow We can only read each data item once and in sequential order
2

| IP: |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 54.73.136.89 | 102.58 .22 .231 | 54.73 .136 .89 | 170.9 .103 .244 | 189.105 .32 .75 | 54.73 .136 .89 | 144.66.18.240 | 102.58.22.231 |
| Time: |
| Text: |

Motivation: Analysing Search Engine Queries

- What is the total number queries?
- What is the total number of different IP addresses?
- Extension 1: only consider queries within a certain interval (sliding window)
- Extension 2: also allow the cancellation/removal of a query (turnstile model)
- Extension 3: What if we have different data centers? (distributed streaming)
- memory is much smaller than needed to store entire data stream
\Rightarrow We can only read each data item once and in sequential order
V

P: Other Applications:

54.73.

Time:
Text:

- Monitoring Financial Transactions
- Analysing Buying Histories of Users

Motivation: Analysing Search Engine Queries

- What is the total number queries?
- What is the total number of different IP addresses?
- Extension 1: only consider queries within a certain interval (sliding window)
- Extension 2: also allow the cancellation/removal of a query (turnstile model)
- Extension 3: What if we have different data centers? (distributed streaming)
- memory is much smaller than needed to store entire data stream
\Rightarrow We can only read each data item once and in sequential order
V

P: Other Applications:

54.73.

Time:
Text:

- Monitoring Financial Transactions
- Analysing Buying Histories of Users

Streaming algorithms

- The input of a streaming algorithm is given as a data stream, which is a sequence of data

$$
\mathcal{S}=s_{1}, s_{2}, \ldots, s_{i}, \ldots
$$

and every s_{i} belongs to the universe U.

Streaming algorithms

- The input of a streaming algorithm is given as a data stream, which is a sequence of data

$$
\mathcal{S}=s_{1}, s_{2}, \ldots, s_{i}, \ldots
$$

and every s_{i} belongs to the universe U.

- Constraints for streaming algorithms: the space complexity should be sublinear in $|U|$ and $|\mathcal{S}|$.

Streaming algorithms

- The input of a streaming algorithm is given as a data stream, which is a sequence of data

$$
\mathcal{S}=s_{1}, s_{2}, \ldots, s_{i}, \ldots
$$

and every s_{i} belongs to the universe U.

- Constraints for streaming algorithms: the space complexity should be sublinear in $|U|$ and $|\mathcal{S}|$.
- Quality of the output: The algorithm needs to give a good approximate value with high probability.

Streaming algorithms

- The input of a streaming algorithm is given as a data stream, which is a sequence of data

$$
\mathcal{S}=s_{1}, s_{2}, \ldots, s_{i}, \ldots
$$

and every s_{i} belongs to the universe U.

- Constraints for streaming algorithms: the space complexity should be sublinear in $|\boldsymbol{U}|$ and $|\mathcal{S}|$.
- Quality of the output: The algorithm needs to give a good approximate value with high probability.

- (ε, δ)-approximation

For confidence parameter δ and approximation parameter ϵ, the algorithm's output Output and the exact answer Exact satisfies

$$
\mathbf{P}[\text { Output } \in(1-\varepsilon, 1+\varepsilon) \cdot \text { Exact }] \geq 1-\delta
$$

Outline

Introduction

Approximate Counting

Distinct Elements and Frequency Moments

Extra Material (non-examinable): An Algorithm for F_{0} in the Turnstile Model

Approximate Counting and Morris Algorithm

Approximate Counting
An approximate counting algorithm must monitor a sequence of events. At any given time, the algorithm must output an estimate of the number of events.

Approximate Counting and Morris Algorithm

This could be also described as a data structure maintaining an integer n and supporting two operations:

- update () : increment n by 1
- query (): output n

Approximate Counting
An approximate counting algorithm must monitor a sequence of events. At any given time, the algorithm must output an estimate of the number of events.

Approximate Counting and Morris Algorithm

This could be also described as a data structure maintaining an integer n and supporting two operations:

- update () : increment n by 1
- query(): output n

Approximate Counting
An approximate counting algorithm must monitor a sequence of events. At any given time, the algorithm must output an estimate of the number of events.

Trivial (and exact) solution uses $\log _{2} n$ space. Can we do better?

Approximate Counting and Morris Algorithm

This could be also described as a data structure maintaining an integer n and supporting two operations:

- update () : increment n by 1
- query(): output n

Approximate Counting
An approximate counting algorithm must monitor a sequence of events. At any given time, the algorithm must output an estimate of the number of events.

Trivial (and exact) solution uses $\log _{2} n$ space. Can we do better?

Morris Algorithm
1: $X \leftarrow 0$
2: While update()
With probability 2^{-X} set $X \leftarrow X+1$
4: Return $2^{X}-1$

Approximate Counting and Morris Algorithm

This could be also described as a data structure maintaining an integer n and supporting two operations:

- update () : increment n by 1
- query(): output n

Approximate Counting
An approximate counting algorithm must monitor a sequence of events. At any given time, the algorithm must output an estimate of the number of events.

Trivial (and exact) solution uses $\log _{2} n$ space. Can we do better?

Morris Algorithm
1: $X \leftarrow 0$
2: While update()
3: \quad With probability 2^{-X} set $X \leftarrow X+1$
4: Return $2^{X}-1$
Intuition: X will be an approximation of $\log _{2} n$ (that is, we try to approximate the number of bits of n in binary)

Analysis (1/3)

Lemma (Expectation Analysis)
Let X_{n} denote the value of X after n updates. For every $n \geq 0$,

$$
\mathbf{E}\left[2^{X_{n}}\right]=n+1 .
$$

Analysis (1/3)

Lemma (Expectation Analysis)
Let X_{n} denote the value of X after n updates. For every $n \geq 0$,

$$
\mathbf{E}\left[2^{x_{n}}\right]=n+1
$$

Proof:

Analysis (1/3)

Lemma (Expectation Analysis)
Let X_{n} denote the value of X after n updates. For every $n \geq 0$,

$$
\mathbf{E}\left[2^{x_{n}}\right]=n+1
$$

Proof:

- Base case: For $n=0$, we have $X_{n}=X_{0}=0$

Analysis (1/3)

Lemma (Expectation Analysis)
Let X_{n} denote the value of X after n updates. For every $n \geq 0$,

$$
\mathbf{E}\left[2^{x_{n}}\right]=n+1
$$

Proof:

- Base case: For $n=0$, we have $X_{n}=X_{0}=0 \checkmark$

Analysis (1/3)

Lemma (Expectation Analysis)

Let X_{n} denote the value of X after n updates. For every $n \geq 0$,

$$
\mathbf{E}\left[2^{x_{n}}\right]=n+1
$$

Proof:

- Base case: For $n=0$, we have $X_{n}=X_{0}=0 \checkmark$
- Induction step: $n \rightarrow n+1$: By conditioning on X_{n},

$$
\mathbf{E}\left[2^{x_{n+1}}\right]=\sum_{j=0}^{\infty} \mathbf{P}\left[X_{n}=j\right] \cdot \mathbf{E}\left[2^{X_{n+1}} \mid X_{n}=j\right]
$$

Analysis (1/3)

Lemma (Expectation Analysis)

Let X_{n} denote the value of X after n updates. For every $n \geq 0$,

$$
\mathbf{E}\left[2^{x_{n}}\right]=n+1
$$

Proof:

- Base case: For $n=0$, we have $X_{n}=X_{0}=0 \checkmark$
- Induction step: $n \rightarrow n+1$: By conditioning on X_{n},

$$
\begin{aligned}
\mathbf{E}\left[2^{X_{n+1}}\right] & =\sum_{j=0}^{\infty} \mathbf{P}\left[X_{n}=j\right] \cdot \mathbf{E}\left[2^{X_{n+1}} \mid X_{n}=j\right] \\
& =\sum_{j=0}^{\infty} \mathbf{P}\left[X_{n}=j\right] \cdot\left(2^{j} \cdot\left(1-\frac{1}{2^{j}}\right)+2^{j+1} \cdot \frac{1}{2^{j}}\right)
\end{aligned}
$$

Analysis (1/3)

Lemma (Expectation Analysis)

Let X_{n} denote the value of X after n updates. For every $n \geq 0$,

$$
\mathbf{E}\left[2^{x_{n}}\right]=n+1
$$

Proof:

- Base case: For $n=0$, we have $X_{n}=X_{0}=0 \checkmark$
- Induction step: $n \rightarrow n+1$: By conditioning on X_{n},

$$
\begin{aligned}
\mathbf{E}\left[2^{X_{n+1}}\right] & =\sum_{j=0}^{\infty} \mathbf{P}\left[X_{n}=j\right] \cdot \mathbf{E}\left[2^{X_{n+1}} \mid X_{n}=j\right] \\
& =\sum_{j=0}^{\infty} \mathbf{P}\left[X_{n}=j\right] \cdot\left(2^{j} \cdot\left(1-\frac{1}{2^{j}}\right)+2^{j+1} \cdot \frac{1}{2^{j}}\right) \\
& =\sum_{j=0}^{\infty} \mathbf{P}\left[X_{n}=j\right] \cdot 2^{j}+\sum_{j=0}^{\infty} \mathbf{P}\left[X_{n}=j\right]
\end{aligned}
$$

Analysis (1/3)

Lemma (Expectation Analysis)

Let X_{n} denote the value of X after n updates. For every $n \geq 0$,

$$
\mathbf{E}\left[2^{x_{n}}\right]=n+1
$$

Proof:

- Base case: For $n=0$, we have $X_{n}=X_{0}=0 \checkmark$
- Induction step: $n \rightarrow n+1$: By conditioning on X_{n},

$$
\begin{aligned}
\mathbf{E}\left[2^{X_{n+1}}\right] & =\sum_{j=0}^{\infty} \mathbf{P}\left[X_{n}=j\right] \cdot \mathbf{E}\left[2^{X_{n+1}} \mid X_{n}=j\right] \\
& =\sum_{j=0}^{\infty} \mathbf{P}\left[X_{n}=j\right] \cdot\left(2^{j} \cdot\left(1-\frac{1}{2^{j}}\right)+2^{j+1} \cdot \frac{1}{2^{j}}\right) \\
& =\sum_{j=0}^{\infty} \mathbf{P}\left[X_{n}=j\right] \cdot 2^{j}+\sum_{j=0}^{\infty} \mathbf{P}\left[X_{n}=j\right] \\
& =\mathbf{E}\left[2^{X_{n}}\right]+1
\end{aligned}
$$

Analysis (1/3)

Lemma (Expectation Analysis)

Let X_{n} denote the value of X after n updates. For every $n \geq 0$,

$$
\mathbf{E}\left[2^{x_{n}}\right]=n+1
$$

Proof:

- Base case: For $n=0$, we have $X_{n}=X_{0}=0 \checkmark$
- Induction step: $n \rightarrow n+1$: By conditioning on X_{n},

$$
\begin{aligned}
\mathbf{E}\left[2^{X_{n+1}}\right] & =\sum_{j=0}^{\infty} \mathbf{P}\left[X_{n}=j\right] \cdot \mathbf{E}\left[2^{X_{n+1}} \mid X_{n}=j\right] \\
& =\sum_{j=0}^{\infty} \mathbf{P}\left[X_{n}=j\right] \cdot\left(2^{j} \cdot\left(1-\frac{1}{2^{j}}\right)+2^{j+1} \cdot \frac{1}{2^{j}}\right) \\
& =\sum_{j=0}^{\infty} \mathbf{P}\left[X_{n}=j\right] \cdot 2^{j}+\sum_{j=0}^{\infty} \mathbf{P}\left[X_{n}=j\right] \\
& =\mathbf{E}\left[2^{X_{n}}\right]+1 \\
& =(n+1)+1
\end{aligned}
$$

Analysis (1/3)

Lemma (Expectation Analysis)

Let X_{n} denote the value of X after n updates. For every $n \geq 0$,

$$
\mathbf{E}\left[2^{x_{n}}\right]=n+1
$$

Proof:

- Base case: For $n=0$, we have $X_{n}=X_{0}=0 \checkmark$
- Induction step: $n \rightarrow n+1$: By conditioning on X_{n},

$$
\begin{aligned}
\mathbf{E}\left[2^{X_{n+1}}\right] & =\sum_{j=0}^{\infty} \mathbf{P}\left[X_{n}=j\right] \cdot \mathbf{E}\left[2^{X_{n+1}} \mid X_{n}=j\right] \\
& =\sum_{j=0}^{\infty} \mathbf{P}\left[X_{n}=j\right] \cdot\left(2^{j} \cdot\left(1-\frac{1}{2^{j}}\right)+2^{j+1} \cdot \frac{1}{2^{j}}\right) \\
& =\sum_{j=0}^{\infty} \mathbf{P}\left[X_{n}=j\right] \cdot 2^{j}+\sum_{j=0}^{\infty} \mathbf{P}\left[X_{n}=j\right] \\
& =\mathbf{E}\left[2^{x_{n}}\right]+1
\end{aligned}
$$

$$
\text { By Induction Hypothesis }>=(n+1)+1 \text {. }
$$

Analysis (1/3)

Lemma (Expectation Analysis)

Let X_{n} denote the value of X after n updates. For every $n \geq 0$,

$$
\mathbf{E}\left[2^{x_{n}}\right]=n+1
$$

Proof:

 an unbiased estimator of n.- Base case: For $n=0$, we have $X_{n}=X_{0}=0 \checkmark$
- Induction step: $n \rightarrow n+1$: By conditioning on X_{n},

$$
\begin{aligned}
\mathbf{E}\left[2^{X_{n+1}}\right] & =\sum_{j=0}^{\infty} \mathbf{P}\left[X_{n}=j\right] \cdot \mathbf{E}\left[2^{X_{n+1}} \mid X_{n}=j\right] \\
& =\sum_{j=0}^{\infty} \mathbf{P}\left[X_{n}=j\right] \cdot\left(2^{j} \cdot\left(1-\frac{1}{2^{j}}\right)+2^{j+1} \cdot \frac{1}{2^{j}}\right) \\
& =\sum_{j=0}^{\infty} \mathbf{P}\left[X_{n}=j\right] \cdot 2^{j}+\sum_{j=0}^{\infty} \mathbf{P}\left[X_{n}=j\right] \\
& =\mathbf{E}\left[2^{x_{n}}\right]+1
\end{aligned}
$$

$$
\text { By Induction Hypothesis }=(n+1)+1
$$

Analysis (2/3)

Let X_{n} denote the value of X after n updates. For every $n \geq 0$,

$$
\mathbf{E}\left[\left(2^{X_{n}}\right)^{2}\right]=\mathbf{E}\left[2^{2 \cdot x_{n}}\right]=\frac{3}{2} n^{2}+\frac{3}{2} n+1
$$

Analysis (2/3)

_ Lemma (Second Moment Analysis)

Let X_{n} denote the value of X after n updates. For every $n \geq 0$,

$$
\mathbf{E}\left[\left(2^{x_{n}}\right)^{2}\right]=\mathbf{E}\left[2^{2 \cdot x_{n}}\right]=\frac{3}{2} n^{2}+\frac{3}{2} n+1
$$

This is shown similarly to that of the previous Lemma (see supervision sheet)

Analysis (2/3)

Lemma (Second Moment Analysis)

Let X_{n} denote the value of X after n updates. For every $n \geq 0$,

$$
\mathbf{E}\left[\left(2^{x_{n}}\right)^{2}\right]=\mathbf{E}\left[2^{2 \cdot x_{n}}\right]=\frac{3}{2} n^{2}+\frac{3}{2} n+1
$$

This is shown similarly to that of the previous Lemma (see supervision sheet)

- Recall $\Theta_{n}=2^{X_{n}}-1$.

Analysis (2/3)

Lemma (Second Moment Analysis)

Let X_{n} denote the value of X after n updates. For every $n \geq 0$,

$$
\mathbf{E}\left[\left(2^{x_{n}}\right)^{2}\right]=\mathbf{E}\left[2^{2 \cdot x_{n}}\right]=\frac{3}{2} n^{2}+\frac{3}{2} n+1
$$

This is shown similarly to that of the previous Lemma (see supervision sheet)

- Recall $\Theta_{n}=2^{x_{n}}-1$.
- Since $\mathbf{V}[Z]=\mathbf{E}\left[Z^{2}\right]-\mathbf{E}[Z]^{2}$,

$$
\mathbf{V}\left[\Theta_{n}\right]=\mathbf{V}\left[2^{x_{n}}\right]
$$

Analysis (2/3)

Lemma (Second Moment Analysis)

Let X_{n} denote the value of X after n updates. For every $n \geq 0$,

$$
\mathbf{E}\left[\left(2^{x_{n}}\right)^{2}\right]=\mathbf{E}\left[2^{2 \cdot x_{n}}\right]=\frac{3}{2} n^{2}+\frac{3}{2} n+1
$$

This is shown similarly to that of the previous Lemma (see supervision sheet)

- Recall $\Theta_{n}=2^{x_{n}}-1$.
- Since $\mathbf{V}[Z]=\mathbf{E}\left[Z^{2}\right]-\mathbf{E}[Z]^{2}$,

$$
\mathbf{V}\left[\Theta_{n}\right]=\mathbf{V}\left[2^{x_{n}}\right]=\mathbf{E}\left[2^{2 \cdot x_{n}}\right]-\left(\mathbf{E}\left[2^{X_{n}}\right]\right)^{2}
$$

Analysis (2/3)

Lemma (Second Moment Analysis)

Let X_{n} denote the value of X after n updates. For every $n \geq 0$,

$$
\mathbf{E}\left[\left(2^{x_{n}}\right)^{2}\right]=\mathbf{E}\left[2^{2 \cdot x_{n}}\right]=\frac{3}{2} n^{2}+\frac{3}{2} n+1
$$

This is shown similarly to that of the previous Lemma (see supervision sheet)

- Recall $\Theta_{n}=2^{x_{n}}-1$.
- Since $\mathbf{V}[Z]=\mathbf{E}\left[Z^{2}\right]-\mathbf{E}[Z]^{2}$,

$$
\begin{aligned}
\mathbf{V}\left[\Theta_{n}\right] & =\mathbf{V}\left[2^{x_{n}}\right]=\mathbf{E}\left[2^{2 \cdot x_{n}}\right]-\left(\mathbf{E}\left[2^{x_{n}}\right]\right)^{2} \\
& =\frac{3}{2} n^{2}+\frac{3}{2} n+1-(n+1)^{2}=\frac{n^{2}-n}{2}
\end{aligned}
$$

Analysis (2/3)

Lemma (Second Moment Analysis)

Let X_{n} denote the value of X after n updates. For every $n \geq 0$,

$$
\mathbf{E}\left[\left(2^{x_{n}}\right)^{2}\right]=\mathbf{E}\left[2^{2 \cdot x_{n}}\right]=\frac{3}{2} n^{2}+\frac{3}{2} n+1
$$

This is shown similarly to that of the previous Lemma (see supervision sheet)

- Recall $\Theta_{n}=2^{x_{n}}-1$.
- Since $\mathbf{V}[Z]=\mathbf{E}\left[Z^{2}\right]-\mathbf{E}[Z]^{2}$,

$$
\begin{aligned}
\mathbf{V}\left[\Theta_{n}\right] & =\mathbf{V}\left[2^{x_{n}}\right]=\mathbf{E}\left[2^{2 \cdot x_{n}}\right]-\left(\mathbf{E}\left[2^{x_{n}}\right]\right)^{2} \\
& =\frac{3}{2} n^{2}+\frac{3}{2} n+1-(n+1)^{2}=\frac{n^{2}-n}{2}
\end{aligned}
$$

- Using Chebysheff's inequality,

Analysis (2/3)

Lemma (Second Moment Analysis)

Let X_{n} denote the value of X after n updates. For every $n \geq 0$,

$$
\mathbf{E}\left[\left(2^{x_{n}}\right)^{2}\right]=\mathbf{E}\left[2^{2 \cdot x_{n}}\right]=\frac{3}{2} n^{2}+\frac{3}{2} n+1
$$

This is shown similarly to that of the previous Lemma (see supervision sheet)

- Recall $\Theta_{n}=2^{x_{n}}-1$.
- Since $\mathbf{V}[Z]=\mathbf{E}\left[Z^{2}\right]-\mathbf{E}[Z]^{2}$,

$$
\begin{aligned}
\mathbf{V}\left[\Theta_{n}\right] & =\mathbf{V}\left[2^{x_{n}}\right]=\mathbf{E}\left[2^{2 \cdot x_{n}}\right]-\left(\mathbf{E}\left[2^{x_{n}}\right]\right)^{2} \\
& =\frac{3}{2} n^{2}+\frac{3}{2} n+1-(n+1)^{2}=\frac{n^{2}-n}{2}
\end{aligned}
$$

- Using Chebysheff's inequality,

$$
\mathbf{P}\left[\left|\Theta_{n}-n\right| \geq \epsilon \cdot n\right] \leq \frac{\mathbf{V}\left[\Theta_{n}\right]}{\epsilon^{2} \cdot n^{2}}
$$

Analysis (2/3)

Lemma (Second Moment Analysis)

Let X_{n} denote the value of X after n updates. For every $n \geq 0$,

$$
\mathbf{E}\left[\left(2^{x_{n}}\right)^{2}\right]=\mathbf{E}\left[2^{2 \cdot x_{n}}\right]=\frac{3}{2} n^{2}+\frac{3}{2} n+1
$$

This is shown similarly to that of the previous Lemma (see supervision sheet)

- Recall $\Theta_{n}=2^{x_{n}}-1$.
- Since $\mathbf{V}[Z]=\mathbf{E}\left[Z^{2}\right]-\mathbf{E}[Z]^{2}$,

$$
\begin{aligned}
\mathbf{V}\left[\Theta_{n}\right] & =\mathbf{V}\left[2^{x_{n}}\right]=\mathbf{E}\left[2^{2 \cdot x_{n}}\right]-\left(\mathbf{E}\left[2^{x_{n}}\right]\right)^{2} \\
& =\frac{3}{2} n^{2}+\frac{3}{2} n+1-(n+1)^{2}=\frac{n^{2}-n}{2}
\end{aligned}
$$

- Using Chebysheff's inequality,

$$
\mathbf{P}\left[\left|\Theta_{n}-n\right| \geq \epsilon \cdot n\right] \leq \frac{\mathbf{V}\left[\Theta_{n}\right]}{\epsilon^{2} \cdot n^{2}} \leq \frac{\frac{n^{2}}{2}}{\epsilon^{2} \cdot n^{2}}=\frac{1}{2 \epsilon^{2}}
$$

Analysis (2/3)

Lemma (Second Moment Analysis)

Let X_{n} denote the value of X after n updates. For every $n \geq 0$,

$$
\mathbf{E}\left[\left(2^{x_{n}}\right)^{2}\right]=\mathbf{E}\left[2^{2 \cdot x_{n}}\right]=\frac{3}{2} n^{2}+\frac{3}{2} n+1
$$

This is shown similarly to that of the previous Lemma (see supervision sheet)

- Recall $\Theta_{n}=2^{x_{n}}-1$.
- Since $\mathbf{V}[Z]=\mathbf{E}\left[Z^{2}\right]-\mathbf{E}[Z]^{2}$,

$$
\begin{aligned}
\mathbf{V}\left[\Theta_{n}\right] & =\mathbf{V}\left[2^{x_{n}}\right]=\mathbf{E}\left[2^{2 \cdot x_{n}}\right]-\left(\mathbf{E}\left[2^{x_{n}}\right]\right)^{2} \\
& =\frac{3}{2} n^{2}+\frac{3}{2} n+1-(n+1)^{2}=\frac{n^{2}-n}{2}
\end{aligned}
$$

- Using Chebysheff's inequality, This failure probability (estimate) is at least $\frac{1}{2}$ ©

$$
\mathbf{P}\left[\left|\Theta_{n}-n\right| \geq \epsilon \cdot n\right] \leq \frac{\mathbf{V}\left[\Theta_{n}\right]}{\epsilon^{2} \cdot n^{2}} \leq \frac{\frac{n^{2}}{2}}{\epsilon^{2} \cdot n^{2}}=\frac{1}{2 \epsilon^{2}}
$$

Analysis (3/3)

Idea: Reduce Variance by Running Independent Instances and Taking Average.

Analysis (3/3)

Idea: Reduce Variance by Running Independent Instances and Taking Average.

Improved Morris Algorithm(G)
1: Let $\Theta^{1}, \Theta^{2}, \ldots, \Theta^{k}$ be k independent instances of Morris
2: Return $\bar{\Theta}:=\frac{1}{k} \sum_{i=1}^{k} \Theta^{i}$

Analysis (3/3)

Idea: Reduce Variance by Running Independent Instances and Taking Average.

Improved Morris Algorithm(G)
1: Let $\Theta^{1}, \Theta^{2}, \ldots, \Theta^{k}$ be k independent instances of Morris
2: Return $\bar{\Theta}:=\frac{1}{k} \sum_{i=1}^{k} \Theta^{i}$

- Clearly, $\mathbf{E}[\bar{\Theta}]=n$.

Analysis (3/3)

Idea: Reduce Variance by Running Independent Instances and Taking Average.

Improved Morris Algorithm(G)
1: Let $\Theta^{1}, \Theta^{2}, \ldots, \Theta^{k}$ be k independent instances of Morris
2: Return $\bar{\Theta}:=\frac{1}{k} \sum_{i=1}^{k} \Theta^{i}$

- Clearly, $\mathbf{E}[\bar{\Theta}]=n$. For the variance,

Analysis (3/3)

Idea: Reduce Variance by Running Independent Instances and Taking Average.

Improved Morris Algorithm(G)
1: Let $\Theta^{1}, \Theta^{2}, \ldots, \Theta^{k}$ be k independent instances of Morris
2: Return $\bar{\Theta}:=\frac{1}{k} \sum_{i=1}^{k} \Theta^{i}$

- Clearly, $\mathbf{E}[\bar{\Theta}]=n$. For the variance,

$$
\mathbf{v}[\bar{\Theta}]=\frac{1}{k^{2}} \cdot \mathbf{v}\left[\sum_{i=1}^{k} \Theta^{i}\right]
$$

Analysis (3/3)

Idea: Reduce Variance by Running Independent Instances and Taking Average.

Improved Morris Algorithm(G)
1: Let $\Theta^{1}, \Theta^{2}, \ldots, \Theta^{k}$ be k independent instances of Morris
2: Return $\bar{\Theta}:=\frac{1}{k} \sum_{i=1}^{k} \Theta^{i}$

- Clearly, $\mathbf{E}[\bar{\Theta}]=n$. For the variance,

$$
\mathbf{v}[\bar{\Theta}]=\frac{1}{k^{2}} \cdot \mathbf{v}\left[\sum_{i=1}^{k} \Theta^{i}\right]=\frac{1}{k} \cdot \mathbf{v}\left[\Theta^{1}\right] \leq \frac{1}{k} \cdot \frac{n^{2}}{2}
$$

Analysis (3/3)

Idea: Reduce Variance by Running Independent Instances and Taking Average.

Improved Morris Algorithm(G)
1: Let $\Theta^{1}, \Theta^{2}, \ldots, \Theta^{k}$ be k independent instances of MORRIS
2: Return $\bar{\Theta}:=\frac{1}{k} \sum_{i=1}^{k} \Theta^{i}$

- Clearly, $\mathbf{E}[\bar{\Theta}]=n$. For the variance,

$$
\mathbf{v}[\bar{\Theta}]=\frac{1}{k^{2}} \cdot \mathbf{v}\left[\sum_{i=1}^{k} \Theta^{i}\right]=\frac{1}{k} \cdot \mathbf{v}\left[\Theta^{1}\right] \leq \frac{1}{k} \cdot \frac{n^{2}}{2}
$$

- Hence using Chebyshev,

$$
\mathbf{P}[|\bar{\Theta}-n| \geq \epsilon \cdot n] \leq \frac{1}{2 k \epsilon^{2}} .
$$

Analysis (3/3)

Idea: Reduce Variance by Running Independent Instances and Taking Average.

Improved Morris Algorithm(G)
1: Let $\Theta^{1}, \Theta^{2}, \ldots, \Theta^{k}$ be k independent instances of MORRIS
2: Return $\bar{\Theta}:=\frac{1}{k} \sum_{i=1}^{k} \Theta^{i}$

- Clearly, $\mathbf{E}[\bar{\Theta}]=n$. For the variance,

$$
\mathbf{v}[\bar{\Theta}]=\frac{1}{k^{2}} \cdot \mathbf{v}\left[\sum_{i=1}^{k} \Theta^{i}\right]=\frac{1}{k} \cdot \mathbf{v}\left[\Theta^{1}\right] \leq \frac{1}{k} \cdot \frac{n^{2}}{2}
$$

- Hence using Chebyshev,

$$
\mathbf{P}[|\bar{\Theta}-n| \geq \epsilon \cdot n] \leq \frac{1}{2 k \epsilon^{2}} .
$$

Conclusion
For any $\varepsilon, \delta<1$, the Improved Morris Alg. with $k \geq \frac{1}{2 \epsilon^{2} \delta}$ satisfies:

$$
\mathbf{P}[|\bar{\Theta}-n| \leq \epsilon \cdot n] \geq 1-\delta .
$$

Simulation

A run of Morris's algorithm on $n=1024$ data points
(source: http://gregorygundersen.com/blog/2019/11/11/morris-algorithm/)

Outline

Introduction

Approximate Counting

Distinct Elements and Frequency Moments

Extra Material (non-examinable): An Algorithm for F_{0} in the Turnstile Model

Norm Estimation: the Alon-Matias-Szegedy algorithm

```
Fp-norm (Frequency Moments)
Let \(U\) with \(|U|=n\). For \(i \in U\), let \(f_{i}\) be the number of occurrences of \(i \in U\) in the stream \(\mathcal{S}\).
```


Norm Estimation: the Alon-Matias-Szegedy algorithm

F_{p}-norm (Frequency Moments)
Let U with $|U|=n$. For $i \in U$, let f_{i} be the number of occurrences of $i \in U$ in the $\operatorname{stream} \mathcal{S}$. Then for any $p>0$, the F_{p}-norm is defined by

$$
F_{p}:=\sum_{i \in U} f_{i}^{p}
$$

Norm Estimation: the Alon-Matias-Szegedy algorithm

F_{p}-norm (Frequency Moments)
Let U with $|U|=n$. For $i \in U$, let f_{i} be the number of occurrences of $i \in U$ in the stream \mathcal{S}. Then for any $p>0$, the F_{p}-norm is defined by

$$
F_{p}:=\sum_{i \in U} f_{i}^{p}
$$

- $F_{1}=$ total number of items in stream \mathcal{S}.
- $F_{0}=$ total number of distinct items in stream \mathcal{S}.

Norm Estimation: the Alon-Matias-Szegedy algorithm

F_{p}-norm (Frequency Moments)
Let U with $|U|=n$. For $i \in U$, let f_{i} be the number of occurrences of $i \in U$ in the stream \mathcal{S}. Then for any $p>0$, the F_{p}-norm is defined by

$$
F_{p}:=\sum_{i \in U} f_{i}^{p}
$$

- $F_{1}=$ total number of items in stream \mathcal{S}.
- $F_{0}=$ total number of distinct items in stream \mathcal{S}.

Alon, Matias, and Szegedy (1996) presented a systematical study for approximating frequency moments.

Norm Estimation: the Alon-Matias-Szegedy algorithm

F_{p}-norm (Frequency Moments)
Let U with $|U|=n$. For $i \in U$, let f_{i} be the number of occurrences of $i \in U$ in the stream \mathcal{S}. Then for any $p>0$, the F_{p}-norm is defined by

$$
F_{p}:=\sum_{i \in U} f_{i}^{p}
$$

- $F_{1}=$ total number of items in stream \mathcal{S}.
- $F_{0}=$ total number of distinct items in stream \mathcal{S}.

Alon, Matias, and Szegedy (1996) presented a systematical study for approximating frequency moments.

- F_{0}, F_{1}, F_{2} can be approximated in space logarithmic in n and $|\mathcal{S}|$.

Norm Estimation: the Alon-Matias-Szegedy algorithm

F_{p}-norm (Frequency Moments)
Let U with $|U|=n$. For $i \in U$, let f_{i} be the number of occurrences of $i \in U$ in the stream \mathcal{S}. Then for any $p>0$, the F_{p}-norm is defined by

$$
F_{p}:=\sum_{i \in U} f_{i}^{p}
$$

- $F_{1}=$ total number of items in stream \mathcal{S}.
- $F_{0}=$ total number of distinct items in stream \mathcal{S}.

Alon, Matias, and Szegedy (1996) presented a systematical study for approximating frequency moments.

- F_{0}, F_{1}, F_{2} can be approximated in space logarithmic in n and $|\mathcal{S}|$.
- Approximating F_{p} for $p \geq 6$ requires $n^{\Omega(1)}$ space.

Norm Estimation: the Alon-Matias-Szegedy algorithm

F_{p}-norm (Frequency Moments)
Let U with $|U|=n$. For $i \in U$, let f_{i} be the number of occurrences of $i \in U$ in the stream \mathcal{S}. Then for any $p>0$, the F_{p}-norm is defined by

$$
F_{p}:=\sum_{i \in U} f_{i}^{p}
$$

- $F_{1}=$ total number of items in stream \mathcal{S}.
- $F_{0}=$ total number of distinct items in stream \mathcal{S}.

Alon, Matias, and Szegedy (1996) presented a systematical study for approximating frequency moments.

- F_{0}, F_{1}, F_{2} can be approximated in space logarithmic in n and $|\mathcal{S}|$.
- Approximating F_{p} for $p \geq 6$ requires $n^{\Omega(1)}$ space.
- The paper won 2005 Gödel Award for "their foundational contribution to streaming algorithms".

We will focus on the simpler case of F_{0}, the number of distinct elements.

Important Tool: Pairwise independent Hash Functions

We will focus on the simpler case of F_{0}, the number of distinct elements.

Pairwise Independence
A family of functions $H=\{h \mid h: U \mapsto[n]\}$ is pairwise independent if, for any h chosen uniformly at random from H, the following holds:

1. $h(x)$ is uniformly distributed in $[n]=\{1,2, \ldots, n\}$ for any $x \in U$;
2. For any $x_{1} \neq x_{2} \in U, h\left(x_{1}\right)$ and $h\left(x_{2}\right)$ are independent.

Important Tool: Pairwise independent Hash Functions

We will focus on the simpler case of F_{0}, the number of distinct elements.

Pairwise Independence
A family of functions $H=\{h \mid h: U \mapsto[n]\}$ is pairwise independent if, for any h chosen uniformly at random from H, the following holds:

1. $h(x)$ is uniformly distributed in $[n]=\{1,2, \ldots, n\}$ for any $x \in U$;
2. For any $x_{1} \neq x_{2} \in U, h\left(x_{1}\right)$ and $h\left(x_{2}\right)$ are independent.

Theorem (Fact)
Let n be a prime number, and let $h_{a, b}(x)=(a x+b) \bmod n$. Define

$$
H=\left\{h_{a, b} \mid 0 \leq a, b \leq n-1\right\} .
$$

Then H is a family of pairwise independent hash functions.

Intuition behind the AMS algorithm

Assume that we have a random hash function h.

Intuition behind the AMS algorithm

Assume that we have a random hash function h. Define

$$
\rho(x):=\max _{i \geq 0}\left\{i: x \bmod 2^{i}=0\right\},
$$

which is the number of consecutive 0 's among the lowest bits of x.

Intuition behind the AMS algorithm

Assume that we have a random hash function h. Define

$$
\rho(x):=\max _{i \geq 0}\left\{i: x \bmod 2^{i}=0\right\},
$$

which is the number of consecutive 0 's among the lowest bits of x.

$$
\text { Example: } \rho(2)=1, \rho(3)=0, \rho(4)=2, \rho(8)=3, \rho(16)=4, \rho(17)=0 \text {. }
$$

Intuition behind the AMS algorithm

Assume that we have a random hash function h. Define

$$
\rho(x):=\max _{i \geq 0}\left\{i: x \bmod 2^{i}=0\right\}
$$

which is the number of consecutive 0 's among the lowest bits of x.

$$
\text { Example: } \rho(2)=1, \rho(3)=0, \rho(4)=2, \rho(8)=3, \rho(16)=4, \rho(17)=0 \text {. }
$$

Observation. Since $h(x)$ is uniformly distributed over [n], the following holds:

- with probability $1 / 2$, we have $\rho(h(x)) \geq 1$

Intuition behind the AMS algorithm

Assume that we have a random hash function h. Define

$$
\rho(x):=\max _{i \geq 0}\left\{i: x \bmod 2^{i}=0\right\}
$$

which is the number of consecutive 0 's among the lowest bits of x.

$$
\text { Example: } \rho(2)=1, \rho(3)=0, \rho(4)=2, \rho(8)=3, \rho(16)=4, \rho(17)=0 \text {. }
$$

Observation. Since $h(x)$ is uniformly distributed over [n], the following holds:

- with probability $1 / 2$, we have $\rho(h(x)) \geq 1$
- with probability $1 / 4$, we have $\rho(h(x)) \geq 2$
- with probability $1 / 8$, we have $\rho(h(x)) \geq 3$

Intuition behind the AMS algorithm

Assume that we have a random hash function h. Define

$$
\rho(x):=\max _{i \geq 0}\left\{i: x \bmod 2^{i}=0\right\}
$$

which is the number of consecutive 0 's among the lowest bits of x.

$$
\text { Example: } \rho(2)=1, \rho(3)=0, \rho(4)=2, \rho(8)=3, \rho(16)=4, \rho(17)=0 \text {. }
$$

Observation. Since $h(x)$ is uniformly distributed over [n], the following holds:

- with probability $1 / 2$, we have $\rho(h(x)) \geq 1$
- with probability $1 / 4$, we have $\rho(h(x)) \geq 2$
- with probability $1 / 8$, we have $\rho(h(x)) \geq 3$
- with probability $1 / 2^{r}$, we have $\rho(h(x)) \geq r$

Intuition behind the AMS algorithm

Assume that we have a random hash function h. Define

$$
\rho(x):=\max _{i \geq 0}\left\{i: x \bmod 2^{i}=0\right\}
$$

which is the number of consecutive 0's among the lowest bits of x.

$$
\text { Example: } \rho(2)=1, \rho(3)=0, \rho(4)=2, \rho(8)=3, \rho(16)=4, \rho(17)=0
$$

Observation. Since $h(x)$ is uniformly distributed over [n], the following holds:

- with probability $1 / 2$, we have $\rho(h(x)) \geq 1$
- with probability $1 / 4$, we have $\rho(h(x)) \geq 2$
- with probability $1 / 8$, we have $\rho(h(x)) \geq 3$
- with probability $1 / 2^{r}$, we have $\rho(h(x)) \geq r$

Since n is not a power of 2 , this probability is in fact equal to $\frac{\left\lfloor n / 2^{r}\right\rfloor}{n} \approx 1 / 2^{r}-o(1)$.

The AMS Algorithm

AMS Algorithm

1: Choose a random hash function $h:[n] \rightarrow[n]$
2: $Z \leftarrow 0$
3: while item x from stream \mathcal{S} arrives
4: \quad if $\rho(h(x))>Z$ then $Z \leftarrow \rho(h(x))$
5: return $2^{z+1 / 2}$

The AMS Algorithm

AMS Algorithm

1: Choose a random hash function $h:[n] \rightarrow[n]$
2: $Z \leftarrow 0$
3: while item x from stream \mathcal{S} arrives
4: \quad if $\rho(h(x))>Z$ then $Z \leftarrow \rho(h(x)) \quad Z \leftarrow \max \{Z, \rho(h(x))\}$
5: return $2^{z+1 / 2}$

The AMS Algorithm

AMS Algorithm

1: Choose a random hash function $h:[n] \rightarrow[n]$
2: $Z \leftarrow 0$
3: while item x from stream \mathcal{S} arrives
4:
if $\rho(h(x))>Z$ then $Z \leftarrow \rho(h(x)) \quad Z \leftarrow \max \{Z, \rho(h(x))\}$
5: return $2^{z+1 / 2}$

Analysis of AMS Algorithm
With constant probability >0, the algorithm's output satisfies

$$
2^{Z+1 / 2} \in\left[F_{0} / 3,3 \cdot F_{0}\right] .
$$

The AMS Algorithm

AMS Algorithm

1: Choose a random hash function $h:[n] \rightarrow[n]$
2: $Z \leftarrow 0$
3: while item x from stream \mathcal{S} arrives
4:
if $\rho(h(x))>Z$ then $Z \leftarrow \rho(h(x))$ $Z \leftarrow \max \{Z, \rho(h(x))\}$

5: return $2^{z+1 / 2}$

Analysis of AMS Algorithm
With constant probability >0, the algorithm's output satisfies

$$
2^{Z+1 / 2} \in\left[F_{0} / 3,3 \cdot F_{0}\right] .
$$

We get an $(O(1), \delta)$-approximation of F_{0} by running $\Theta(\log (1 / \delta))$ independent copies of the algorithm and returning the median.

The AMS Algorithm

AMS Algorithm

1: Choose a random hash function $h:[n] \rightarrow[n]$
2: $Z \leftarrow 0$
3: while item x from stream \mathcal{S} arrives
4:

```
    if \(\rho(h(x))>Z\) then \(Z \leftarrow \rho(h(x))\)
return \(2^{z+1 / 2}\)
```

$Z \leftarrow \max \{Z, \rho(h(x))\}$

Analysis of AMS Algorithm
With constant probability >0, the algorithm's output satisfies

$$
2^{Z+1 / 2} \in\left[F_{0} / 3,3 \cdot F_{0}\right] .
$$

We get an $(O(1), \delta)$-approximation of F_{0} by running $\Theta(\log (1 / \delta))$ independent copies of the algorithm and returning the median.

Recall (ε, δ)-approximation:
$\mathbf{P}[$ Output $\in(1-\varepsilon, 1+\varepsilon)$. Exact $] \geq 1-\delta$

Example of the AMS Algorithm

- Assume $n=101$ (which is prime)
- The hash function is $h(x)=(a x+b) \bmod n$ with $a=28, b=16$

Example of the AMS Algorithm

- Assume $n=101$ (which is prime)
- The hash function is $h(x)=(a x+b) \bmod n$ with $a=28, b=16$
- The data stream is:

$$
\mathcal{S}=(25,76,14,51,25,14,76,76,3,51,96,14,67,3,15,25,2,76,14,71)
$$

- $F_{0}=10$, as the following numbers appeared: $\{2,3,14,15,25,51,67,71,76,96\}$

Example of the AMS Algorithm

- Assume $n=101$ (which is prime)
- The hash function is $h(x)=(a x+b) \bmod n$ with $a=28, b=16$
- The data stream is:

$$
\mathcal{S}=(25,76,14,51,25,14,76,76,3,51,96,14,67,3,15,25,2,76,14,71)
$$

- $F_{0}=10$, as the following numbers appeared: $\{2,3,14,15,25,51,67,71,76,96\}$

| x | $h(x)$ | Binary Representation | | | | | | | $\rho(h(x))$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 72 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 3 |
| 3 | 100 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 2 |
| 14 | 4 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 2 |
| 15 | 32 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 5 |
| 25 | 9 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| 51 | 30 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 |
| 67 | 74 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |
| 71 | 85 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
| 76 | 23 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 |
| 96 | 78 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 |

Example of the AMS Algorithm

- Assume $n=101$ (which is prime)
- The hash function is $h(x)=(a x+b) \bmod n$ with $a=28, b=16$
- The data stream is:

$$
\mathcal{S}=(25,76,14,51,25,14,76,76,3,51,96,14,67,3,15,25,2,76,14,71)
$$

- $F_{0}=10$, as the following numbers appeared: $\{2,3,14,15,25,51,67,71,76,96\}$

x	$h(x)$	Binary Representation							$\rho(h(x))$
2	72	1	0	0	1	0	0	0	3
3	100	1	1	0	0	1	0	0	2
14	4	0	0	0	0	1	0	0	2
15	32	0	1	0	0	0	0	0	5
25	9	0	0	0	1	0	0	1	0
51	30	0	0	1	1	1	1	0	1
67	74	1	0	0	1	0	1	0	1
71	85	1	0	1	0	1	0	1	0
76	23	0	0	1	0	1	1	1	0
9	78	1	0	0	1	1	1	0	1

Analysis (1/2)

Let $X_{r, j}$ be a $0 / 1$ indicator random variable such that

$$
X_{r, j}=1 \Leftrightarrow \rho(h(j)) \geq r .
$$

We say item j reaches level r if $X_{r, j}=1$.

Analysis (1/2)

Let $X_{r, j}$ be a $0 / 1$ indicator random variable such that

$$
X_{r, j}=1 \Leftrightarrow \rho(h(j)) \geq r .
$$

We say item j reaches level r if $X_{r, j}=1$.
Let $Y_{r}=\sum_{j \in \mathcal{S}} X_{r, j}$ be the number of items j reaching level r.

Analysis (1/2)

Let $X_{r, j}$ be a 0/1 indicator random variable such that

$$
X_{r, j}=1 \Leftrightarrow \rho(h(j)) \geq r
$$

We say item j reaches level r if $X_{r, j}=1$.

Let $Y_{r}=\sum_{j \in \mathcal{S}} X_{r, j}$ be the number of items j reaching level r.
Using that $h(j)$ is uniformly distributed, we conclude

$$
\begin{gathered}
\mathbf{E}\left[X_{r, j}\right]=\mathbf{P}[\rho(h(j)) \geq r]=\mathbf{P}\left[h(j) \bmod 2^{r}=0\right]=2^{-r} . \\
\text { definition of function } \rho
\end{gathered}
$$

Analysis (1/2)

Let $X_{r, j}$ be a $0 / 1$ indicator random variable such that

$$
X_{r, j}=1 \Leftrightarrow \rho(h(j)) \geq r
$$

We say item j reaches level r if $X_{r, j}=1$.

Let $Y_{r}=\sum_{j \in \mathcal{S}} X_{r, j}$ be the number of items j reaching level r.
Using that $h(j)$ is uniformly distributed, we conclude

$$
\begin{aligned}
& \qquad \mathbf{E}\left[X_{r, j}\right]=\mathbf{P}[\rho(h(j)) \geq r]=\mathbf{P}\left[h(j) \bmod 2^{r}=0\right]=2^{-r} . \\
& \text { By linearity of expectation, we have }
\end{aligned}
$$

$$
\mathbf{E}\left[Y_{r}\right]=\sum_{j \in \mathcal{S}} \mathbf{E}\left[X_{r, j}\right]=\frac{F_{0}}{2^{r}}
$$

Analysis (1/2)

Let $X_{r, j}$ be a $0 / 1$ indicator random variable such that

$$
X_{r, j}=1 \Leftrightarrow \rho(h(j)) \geq r
$$

We say item j reaches level r if $X_{r, j}=1$.

Let $Y_{r}=\sum_{j \in \mathcal{S}} X_{r, j}$ be the number of items j reaching level r.
Using that $h(j)$ is uniformly distributed, we conclude

$$
\begin{aligned}
& \qquad \mathbf{E}\left[X_{r, j}\right]=\mathbf{P}[\rho(h(j)) \geq r]=\mathbf{P}\left[h(j) \bmod 2^{r}=0\right]=2^{-r} . \\
& \text { By linearity of expectation, we have }
\end{aligned}
$$

$$
\mathbf{E}\left[Y_{r}\right]=\sum_{j \in \mathcal{S}} \mathbf{E}\left[X_{r, j}\right]=\frac{F_{0}}{2^{r}}
$$

$$
\mathbf{V}\left[Y_{r}\right]=\sum_{j \in \mathcal{S}} \mathbf{V}\left[X_{r, j}\right]
$$

Analysis (1/2)

Let $X_{r, j}$ be a $0 / 1$ indicator random variable such that

$$
X_{r, j}=1 \Leftrightarrow \rho(h(j)) \geq r
$$

We say item j reaches level r if $X_{r, j}=1$.

Let $Y_{r}=\sum_{j \in \mathcal{S}} X_{r, j}$ be the number of items j reaching level r.
Using that $h(j)$ is uniformly distributed, we conclude

$$
\begin{aligned}
& \qquad \mathbf{E}\left[X_{r, j}\right]=\mathbf{P}[\rho(h(j)) \geq r]=\mathbf{P}\left[h(j) \bmod 2^{r}=0\right]=2^{-r} . \\
& \text { By linearity of expectation, we have }
\end{aligned}
$$

$$
\mathbf{E}\left[Y_{r}\right]=\sum_{j \in \mathcal{S}} \mathbf{E}\left[X_{r, j}\right]=\frac{F_{0}}{2^{r}}
$$

$$
\mathbf{V}\left[Y_{r}\right]=\sum_{j \in \mathcal{S}} \mathbf{V}\left[X_{r, j}\right]
$$

using pairwise independence of h !

Analysis (1/2)

Let $X_{r, j}$ be a $0 / 1$ indicator random variable such that

$$
X_{r, j}=1 \Leftrightarrow \rho(h(j)) \geq r
$$

We say item j reaches level r if $X_{r, j}=1$.

Let $Y_{r}=\sum_{j \in \mathcal{S}} X_{r, j}$ be the number of items j reaching level r.
Using that $h(j)$ is uniformly distributed, we conclude

$$
\begin{aligned}
& \qquad \mathbf{E}\left[X_{r, j}\right]=\mathbf{P}[\rho(h(j)) \geq r]=\mathbf{P}\left[h(j) \bmod 2^{r}=0\right]=2^{-r} . \\
& \text { By linearity of expectation, we have }
\end{aligned}
$$

$$
\begin{array}{r}
\mathbf{E}\left[Y_{r}\right]=\sum_{j \in \mathcal{S}} \mathbf{E}\left[X_{r, j}\right]=\frac{F_{0}}{2^{r}}, \\
\mathbf{V}\left[Y_{r}\right]=\sum_{j \in \mathcal{S}} \mathbf{V}\left[X_{r, j}\right] \leq \sum_{j \in \mathcal{S}} \mathbf{E}\left[X_{r, j}^{2}\right] \\
\text { using pairwise independence of } h!
\end{array}
$$

Analysis (1/2)

Let $X_{r, j}$ be a $0 / 1$ indicator random variable such that

$$
X_{r, j}=1 \Leftrightarrow \rho(h(j)) \geq r
$$

We say item j reaches level r if $X_{r, j}=1$.

Let $Y_{r}=\sum_{j \in \mathcal{S}} X_{r, j}$ be the number of items j reaching level r.
Using that $h(j)$ is uniformly distributed, we conclude

$$
\begin{aligned}
& \qquad \mathbf{E}\left[X_{r, j}\right]=\mathbf{P}[\rho(h(j)) \geq r]=\mathbf{P}\left[h(j) \bmod 2^{r}=0\right]=2^{-r} . \\
& \text { By linearity of expectation, we have }
\end{aligned}
$$

$$
\begin{gathered}
\mathbf{E}\left[Y_{r}\right]=\sum_{j \in \mathcal{S}} \mathbf{E}\left[X_{r, j}\right]=\frac{F_{0}}{2^{r}}, \\
\mathbf{V}\left[Y_{r}\right]=\sum_{j \in \mathcal{S}} \mathbf{V}\left[X_{r, j}\right] \leq \sum_{j \in \mathcal{S}} \mathbf{E}\left[X_{r, j}^{2}\right]=\sum_{j \in \mathcal{S}} \mathbf{E}\left[X_{r, j}\right]=\frac{F_{0}}{2^{r}} \\
\text { using pairwise independence of } h!
\end{gathered}
$$

Analysis (2/2)

We have proved $\mathbf{E}\left[Y_{r}\right]=\frac{F_{0}}{2^{r}}$ and $\mathbf{V}\left[Y_{r}\right] \leq \frac{F_{0}}{2^{r}}$.

Analysis (2/2)

We have proved $\mathbf{E}\left[Y_{r}\right]=\frac{F_{0}}{2^{r}}$ and $\mathbf{V}\left[Y_{r}\right] \leq \frac{F_{0}}{2^{r}}$.
By Markov's inequality, we have

$$
\mathbf{P}\left[Y_{r}>0\right]=\mathbf{P}\left[Y_{r} \geq 1\right] \leq \frac{\mathbf{E}\left[Y_{r}\right]}{1}=\frac{F_{0}}{2^{r}} .
$$

Analysis (2/2)

We have proved $\mathbf{E}\left[Y_{r}\right]=\frac{F_{0}}{2^{r}}$ and $\mathbf{V}\left[Y_{r}\right] \leq \frac{F_{0}}{2^{r}}$.
By Markov's inequality, we have

$$
\mathbf{P}\left[Y_{r}>0\right]=\mathbf{P}\left[Y_{r} \geq 1\right] \leq \frac{\mathbf{E}\left[Y_{r}\right]}{1}=\frac{F_{0}}{2^{r}} .
$$

By Chebyshev's inequality, we have

$$
\mathbf{P}\left[Y_{r}=0\right] \leq \mathbf{P}\left[\left|Y_{r}-\mathbf{E}\left[Y_{r}\right]\right| \geq F_{0} / 2^{r}\right] \leq \frac{\mathbf{V}\left[Y_{r}\right]}{\left(F_{0} / 2^{r}\right)^{2}} \leq \frac{2^{r}}{F_{0}} .
$$

Analysis (2/2)

We have proved $\mathbf{E}\left[Y_{r}\right]=\frac{F_{0}}{2^{r}}$ and $\mathbf{V}\left[Y_{r}\right] \leq \frac{F_{0}}{2^{r}}$.
By Markov's inequality, we have

$$
\mathbf{P}\left[Y_{r}>0\right]=\mathbf{P}\left[Y_{r} \geq 1\right] \leq \frac{\mathbf{E}\left[Y_{r}\right]}{1}=\frac{F_{0}}{2^{r}}
$$

By Chebyshev's inequality, we have

$$
\mathbf{P}\left[Y_{r}=0\right] \leq \mathbf{P}\left[\left|Y_{r}-\mathbf{E}\left[Y_{r}\right]\right| \geq F_{0} / 2^{r}\right] \leq \frac{\mathbf{V}\left[Y_{r}\right]}{\left(F_{0} / 2^{r}\right)^{2}} \leq \frac{2^{r}}{F_{0}}
$$

Let Z be the final integer the algo. keeps. So the algo. returns $2^{Z+1 / 2}$.

Analysis (2/2)

We have proved $\mathbf{E}\left[Y_{r}\right]=\frac{F_{0}}{2^{r}}$ and $\mathbf{V}\left[Y_{r}\right] \leq \frac{F_{0}}{2^{r}}$.
By Markov's inequality, we have

$$
\mathbf{P}\left[Y_{r}>0\right]=\mathbf{P}\left[Y_{r} \geq 1\right] \leq \frac{\mathbf{E}\left[Y_{r}\right]}{1}=\frac{F_{0}}{2^{r}} .
$$

By Chebyshev's inequality, we have

$$
\mathbf{P}\left[Y_{r}=0\right] \leq \mathbf{P}\left[\left|Y_{r}-\mathbf{E}\left[Y_{r}\right]\right| \geq F_{0} / 2^{r}\right] \leq \frac{\mathbf{V}\left[Y_{r}\right]}{\left(F_{0} / 2^{r}\right)^{2}} \leq \frac{2^{r}}{F_{0}} .
$$

Let Z be the final integer the algo. keeps. So the algo. returns $2^{Z+1 / 2}$. Let p be the smallest integer such that $2^{p+1 / 2} \geq 3 F_{0}$:

Analysis (2/2)

We have proved $\mathbf{E}\left[Y_{r}\right]=\frac{F_{0}}{2^{r}}$ and $\mathbf{V}\left[Y_{r}\right] \leq \frac{F_{0}}{2^{r}}$.
By Markov's inequality, we have

$$
\mathbf{P}\left[Y_{r}>0\right]=\mathbf{P}\left[Y_{r} \geq 1\right] \leq \frac{\mathbf{E}\left[Y_{r}\right]}{1}=\frac{F_{0}}{2^{r}}
$$

By Chebyshev's inequality, we have

$$
\mathbf{P}\left[Y_{r}=0\right] \leq \mathbf{P}\left[\left|Y_{r}-\mathbf{E}\left[Y_{r}\right]\right| \geq F_{0} / 2^{r}\right] \leq \frac{\mathbf{V}\left[Y_{r}\right]}{\left(F_{0} / 2^{r}\right)^{2}} \leq \frac{2^{r}}{F_{0}}
$$

Let Z be the final integer the algo. keeps. So the algo. returns $2^{Z+1 / 2}$. Let p be the smallest integer such that $2^{p+1 / 2} \geq 3 F_{0}$:

$$
\mathbf{P}\left[2^{z+1 / 2} \geq 3 F_{0}\right]
$$

Analysis (2/2)

We have proved $\mathbf{E}\left[Y_{r}\right]=\frac{F_{0}}{2^{r}}$ and $\mathbf{V}\left[Y_{r}\right] \leq \frac{F_{0}}{2^{r}}$.
By Markov's inequality, we have

$$
\mathbf{P}\left[Y_{r}>0\right]=\mathbf{P}\left[Y_{r} \geq 1\right] \leq \frac{\mathbf{E}\left[Y_{r}\right]}{1}=\frac{F_{0}}{2^{r}} .
$$

By Chebyshev's inequality, we have

$$
\mathbf{P}\left[Y_{r}=0\right] \leq \mathbf{P}\left[\left|Y_{r}-\mathbf{E}\left[Y_{r}\right]\right| \geq F_{0} / 2^{r}\right] \leq \frac{\mathbf{V}\left[Y_{r}\right]}{\left(F_{0} / 2^{r}\right)^{2}} \leq \frac{2^{r}}{F_{0}} .
$$

Let Z be the final integer the algo. keeps. So the algo. returns $2^{Z+1 / 2}$. Let p be the smallest integer such that $2^{p+1 / 2} \geq 3 F_{0}$:

$$
\mathbf{P}\left[2^{Z+1 / 2} \geq 3 F_{0}\right]=\mathbf{P}[z \geq p]
$$

Analysis (2/2)

We have proved $\mathbf{E}\left[Y_{r}\right]=\frac{F_{0}}{2^{r}}$ and $\mathbf{V}\left[Y_{r}\right] \leq \frac{F_{0}}{2^{r}}$.
By Markov's inequality, we have

$$
\mathbf{P}\left[Y_{r}>0\right]=\mathbf{P}\left[Y_{r} \geq 1\right] \leq \frac{\mathbf{E}\left[Y_{r}\right]}{1}=\frac{F_{0}}{2^{r}} .
$$

By Chebyshev's inequality, we have

$$
\mathbf{P}\left[Y_{r}=0\right] \leq \mathbf{P}\left[\left|Y_{r}-\mathbf{E}\left[Y_{r}\right]\right| \geq F_{0} / 2^{r}\right] \leq \frac{\mathbf{V}\left[Y_{r}\right]}{\left(F_{0} / 2^{r}\right)^{2}} \leq \frac{2^{r}}{F_{0}} .
$$

Let Z be the final integer the algo. keeps. So the algo. returns $2^{Z+1 / 2}$. Let p be the smallest integer such that $2^{p+1 / 2} \geq 3 F_{0}$:

$$
\mathbf{P}\left[2^{Z+1 / 2} \geq 3 F_{0}\right]=\mathbf{P}[Z \geq p]=\mathbf{P}\left[Y_{p}>0\right]
$$

Analysis (2/2)

We have proved $\mathbf{E}\left[Y_{r}\right]=\frac{F_{0}}{2^{r}}$ and $\mathbf{V}\left[Y_{r}\right] \leq \frac{F_{0}}{2^{r}}$.
By Markov's inequality, we have

$$
\mathbf{P}\left[Y_{r}>0\right]=\mathbf{P}\left[Y_{r} \geq 1\right] \leq \frac{\mathbf{E}\left[Y_{r}\right]}{1}=\frac{F_{0}}{2^{r}} .
$$

By Chebyshev's inequality, we have

$$
\mathbf{P}\left[Y_{r}=0\right] \leq \mathbf{P}\left[\left|Y_{r}-\mathbf{E}\left[Y_{r}\right]\right| \geq F_{0} / 2^{r}\right] \leq \frac{\mathbf{V}\left[Y_{r}\right]}{\left(F_{0} / 2^{r}\right)^{2}} \leq \frac{2^{r}}{F_{0}} .
$$

Let Z be the final integer the algo. keeps. So the algo. returns $2^{Z+1 / 2}$. Let p be the smallest integer such that $2^{p+1 / 2} \geq 3 F_{0}$:

$$
\mathbf{P}\left[2^{Z+1 / 2} \geq 3 F_{0}\right]=\mathbf{P}[Z \geq p]=\mathbf{P}\left[Y_{p}>0\right] \leq \frac{F_{0}}{2^{p}}
$$

Analysis (2/2)

We have proved $\mathbf{E}\left[Y_{r}\right]=\frac{F_{0}}{2^{r}}$ and $\mathbf{V}\left[Y_{r}\right] \leq \frac{F_{0}}{2^{r}}$.
By Markov's inequality, we have

$$
\mathbf{P}\left[Y_{r}>0\right]=\mathbf{P}\left[Y_{r} \geq 1\right] \leq \frac{\mathbf{E}\left[Y_{r}\right]}{1}=\frac{F_{0}}{2^{r}}
$$

By Chebyshev's inequality, we have

$$
\mathbf{P}\left[Y_{r}=0\right] \leq \mathbf{P}\left[\left|Y_{r}-\mathbf{E}\left[Y_{r}\right]\right| \geq F_{0} / 2^{r}\right] \leq \frac{\mathbf{V}\left[Y_{r}\right]}{\left(F_{0} / 2^{r}\right)^{2}} \leq \frac{2^{r}}{F_{0}}
$$

Let Z be the final integer the algo. keeps. So the algo. returns $2^{Z+1 / 2}$. Let p be the smallest integer such that $2^{p+1 / 2} \geq 3 F_{0}$:

$$
\mathbf{P}\left[2^{Z+1 / 2} \geq 3 F_{0}\right]=\mathbf{P}[Z \geq p]=\mathbf{P}\left[Y_{p}>0\right] \leq \frac{F_{0}}{2^{p}} \leq \frac{\sqrt{2}}{3} .
$$

Analysis (2/2)

We have proved $\mathbf{E}\left[Y_{r}\right]=\frac{F_{0}}{2^{r}}$ and $\mathbf{V}\left[Y_{r}\right] \leq \frac{F_{0}}{2^{r}}$.
By Markov's inequality, we have

$$
\mathbf{P}\left[Y_{r}>0\right]=\mathbf{P}\left[Y_{r} \geq 1\right] \leq \frac{\mathbf{E}\left[Y_{r}\right]}{1}=\frac{F_{0}}{2^{r}}
$$

By Chebyshev's inequality, we have

$$
\mathbf{P}\left[Y_{r}=0\right] \leq \mathbf{P}\left[\left|Y_{r}-\mathbf{E}\left[Y_{r}\right]\right| \geq F_{0} / 2^{r}\right] \leq \frac{\mathbf{V}\left[Y_{r}\right]}{\left(F_{0} / 2^{r}\right)^{2}} \leq \frac{2^{r}}{F_{0}}
$$

Let Z be the final integer the algo. keeps. So the algo. returns $2^{Z+1 / 2}$. Let p be the smallest integer such that $2^{p+1 / 2} \geq 3 F_{0}$:

$$
\mathbf{P}\left[2^{Z+1 / 2} \geq 3 F_{0}\right]=\mathbf{P}[Z \geq p]=\mathbf{P}\left[Y_{p}>0\right] \leq \frac{F_{0}}{2^{p}} \leq \frac{\sqrt{2}}{3} .
$$

Let q be the largest integer such that $2^{q+1 / 2} \leq F_{0} / 3$:

Analysis (2/2)

We have proved $\mathbf{E}\left[Y_{r}\right]=\frac{F_{0}}{2^{r}}$ and $\mathbf{V}\left[Y_{r}\right] \leq \frac{F_{0}}{2^{r}}$.
By Markov's inequality, we have

$$
\mathbf{P}\left[Y_{r}>0\right]=\mathbf{P}\left[Y_{r} \geq 1\right] \leq \frac{\mathbf{E}\left[Y_{r}\right]}{1}=\frac{F_{0}}{2^{r}}
$$

By Chebyshev's inequality, we have

$$
\mathbf{P}\left[Y_{r}=0\right] \leq \mathbf{P}\left[\left|Y_{r}-\mathbf{E}\left[Y_{r}\right]\right| \geq F_{0} / 2^{r}\right] \leq \frac{\mathbf{V}\left[Y_{r}\right]}{\left(F_{0} / 2^{r}\right)^{2}} \leq \frac{2^{r}}{F_{0}}
$$

Let Z be the final integer the algo. keeps. So the algo. returns $2^{Z+1 / 2}$. Let p be the smallest integer such that $2^{p+1 / 2} \geq 3 F_{0}$:

$$
\mathbf{P}\left[2^{Z+1 / 2} \geq 3 F_{0}\right]=\mathbf{P}[Z \geq p]=\mathbf{P}\left[Y_{p}>0\right] \leq \frac{F_{0}}{2^{p}} \leq \frac{\sqrt{2}}{3}
$$

Let q be the largest integer such that $2^{q+1 / 2} \leq F_{0} / 3$:

$$
\mathbf{P}\left[2^{z+1 / 2} \leq F_{0} / 3\right]
$$

Analysis (2/2)

We have proved $\mathbf{E}\left[Y_{r}\right]=\frac{F_{0}}{2^{r}}$ and $\mathbf{V}\left[Y_{r}\right] \leq \frac{F_{0}}{2^{r}}$.
By Markov's inequality, we have

$$
\mathbf{P}\left[Y_{r}>0\right]=\mathbf{P}\left[Y_{r} \geq 1\right] \leq \frac{\mathbf{E}\left[Y_{r}\right]}{1}=\frac{F_{0}}{2^{r}}
$$

By Chebyshev's inequality, we have

$$
\mathbf{P}\left[Y_{r}=0\right] \leq \mathbf{P}\left[\left|Y_{r}-\mathbf{E}\left[Y_{r}\right]\right| \geq F_{0} / 2^{r}\right] \leq \frac{\mathbf{V}\left[Y_{r}\right]}{\left(F_{0} / 2^{r}\right)^{2}} \leq \frac{2^{r}}{F_{0}}
$$

Let Z be the final integer the algo. keeps. So the algo. returns $2^{Z+1 / 2}$. Let p be the smallest integer such that $2^{p+1 / 2} \geq 3 F_{0}$:

$$
\mathbf{P}\left[2^{Z+1 / 2} \geq 3 F_{0}\right]=\mathbf{P}[Z \geq p]=\mathbf{P}\left[Y_{p}>0\right] \leq \frac{F_{0}}{2^{p}} \leq \frac{\sqrt{2}}{3}
$$

Let q be the largest integer such that $2^{q+1 / 2} \leq F_{0} / 3$:

$$
\mathbf{P}\left[2^{z+1 / 2} \leq F_{0} / 3\right]=\mathbf{P}[Z \leq q]
$$

Analysis (2/2)

We have proved $\mathbf{E}\left[Y_{r}\right]=\frac{F_{0}}{2^{r}}$ and $\mathbf{V}\left[Y_{r}\right] \leq \frac{F_{0}}{2^{r}}$.
By Markov's inequality, we have

$$
\mathbf{P}\left[Y_{r}>0\right]=\mathbf{P}\left[Y_{r} \geq 1\right] \leq \frac{\mathbf{E}\left[Y_{r}\right]}{1}=\frac{F_{0}}{2^{r}}
$$

By Chebyshev's inequality, we have

$$
\mathbf{P}\left[Y_{r}=0\right] \leq \mathbf{P}\left[\left|Y_{r}-\mathbf{E}\left[Y_{r}\right]\right| \geq F_{0} / 2^{r}\right] \leq \frac{\mathbf{V}\left[Y_{r}\right]}{\left(F_{0} / 2^{r}\right)^{2}} \leq \frac{2^{r}}{F_{0}}
$$

Let Z be the final integer the algo. keeps. So the algo. returns $2^{Z+1 / 2}$. Let p be the smallest integer such that $2^{p+1 / 2} \geq 3 F_{0}$:

$$
\mathbf{P}\left[2^{Z+1 / 2} \geq 3 F_{0}\right]=\mathbf{P}[Z \geq p]=\mathbf{P}\left[Y_{p}>0\right] \leq \frac{F_{0}}{2^{p}} \leq \frac{\sqrt{2}}{3}
$$

Let q be the largest integer such that $2^{q+1 / 2} \leq F_{0} / 3$:

$$
\mathbf{P}\left[2^{Z+1 / 2} \leq F_{0} / 3\right]=\mathbf{P}[Z \leq q] \leq \mathbf{P}\left[Y_{q+1}=0\right]
$$

Analysis (2/2)

We have proved $\mathbf{E}\left[Y_{r}\right]=\frac{F_{0}}{2^{r}}$ and $\mathbf{V}\left[Y_{r}\right] \leq \frac{F_{0}}{2^{r}}$.
By Markov's inequality, we have

$$
\mathbf{P}\left[Y_{r}>0\right]=\mathbf{P}\left[Y_{r} \geq 1\right] \leq \frac{\mathbf{E}\left[Y_{r}\right]}{1}=\frac{F_{0}}{2^{r}}
$$

By Chebyshev's inequality, we have

$$
\mathbf{P}\left[Y_{r}=0\right] \leq \mathbf{P}\left[\left|Y_{r}-\mathbf{E}\left[Y_{r}\right]\right| \geq F_{0} / 2^{r}\right] \leq \frac{\mathbf{V}\left[Y_{r}\right]}{\left(F_{0} / 2^{r}\right)^{2}} \leq \frac{2^{r}}{F_{0}}
$$

Let Z be the final integer the algo. keeps. So the algo. returns $2^{Z+1 / 2}$. Let p be the smallest integer such that $2^{p+1 / 2} \geq 3 F_{0}$:

$$
\mathbf{P}\left[2^{Z+1 / 2} \geq 3 F_{0}\right]=\mathbf{P}[Z \geq p]=\mathbf{P}\left[Y_{p}>0\right] \leq \frac{F_{0}}{2^{p}} \leq \frac{\sqrt{2}}{3}
$$

Let q be the largest integer such that $2^{q+1 / 2} \leq F_{0} / 3$:

$$
\mathbf{P}\left[2^{Z+1 / 2} \leq F_{0} / 3\right]=\mathbf{P}[Z \leq q] \leq \mathbf{P}\left[Y_{q+1}=0\right] \leq \frac{2^{q+1}}{F_{0}}
$$

Analysis (2/2)

We have proved $\mathbf{E}\left[Y_{r}\right]=\frac{F_{0}}{2^{r}}$ and $\mathbf{V}\left[Y_{r}\right] \leq \frac{F_{0}}{2^{r}}$.
By Markov's inequality, we have

$$
\mathbf{P}\left[Y_{r}>0\right]=\mathbf{P}\left[Y_{r} \geq 1\right] \leq \frac{\mathbf{E}\left[Y_{r}\right]}{1}=\frac{F_{0}}{2^{r}}
$$

By Chebyshev's inequality, we have

$$
\mathbf{P}\left[Y_{r}=0\right] \leq \mathbf{P}\left[\left|Y_{r}-\mathbf{E}\left[Y_{r}\right]\right| \geq F_{0} / 2^{r}\right] \leq \frac{\mathbf{V}\left[Y_{r}\right]}{\left(F_{0} / 2^{r}\right)^{2}} \leq \frac{2^{r}}{F_{0}}
$$

Let Z be the final integer the algo. keeps. So the algo. returns $2^{Z+1 / 2}$. Let p be the smallest integer such that $2^{p+1 / 2} \geq 3 F_{0}$:

$$
\mathbf{P}\left[2^{Z+1 / 2} \geq 3 F_{0}\right]=\mathbf{P}[Z \geq p]=\mathbf{P}\left[Y_{p}>0\right] \leq \frac{F_{0}}{2^{p}} \leq \frac{\sqrt{2}}{3}
$$

Let q be the largest integer such that $2^{q+1 / 2} \leq F_{0} / 3$:

$$
\mathbf{P}\left[2^{Z+1 / 2} \leq F_{0} / 3\right]=\mathbf{P}[Z \leq q] \leq \mathbf{P}\left[Y_{q+1}=0\right] \leq \frac{2^{q+1}}{F_{0}} \leq \frac{\sqrt{2}}{3}
$$

Analysis (2/2)

We have proved $\mathbf{E}\left[Y_{r}\right]=\frac{F_{0}}{2^{r}}$ and $\mathbf{V}\left[Y_{r}\right] \leq \frac{F_{0}}{2^{r}}$.
By Markov's inequality, we have

$$
\mathbf{P}\left[Y_{r}>0\right]=\mathbf{P}\left[Y_{r} \geq 1\right] \leq \frac{\mathbf{E}\left[Y_{r}\right]}{1}=\frac{F_{0}}{2^{r}}
$$

By Chebyshev's inequality, we have

$$
\mathbf{P}\left[Y_{r}=0\right] \leq \mathbf{P}\left[\left|Y_{r}-\mathbf{E}\left[Y_{r}\right]\right| \geq F_{0} / 2^{r}\right] \leq \frac{\mathbf{V}\left[Y_{r}\right]}{\left(F_{0} / 2^{r}\right)^{2}} \leq \frac{2^{r}}{F_{0}}
$$

Let Z be the final integer the algo. keeps. So the algo. returns $2^{Z+1 / 2}$.
Let p be the smallest integer such that $2^{p+1 / 2} \geq 3 F_{0}$:

$$
\mathbf{P}\left[2^{Z+1 / 2} \geq 3 F_{0}\right]=\mathbf{P}[Z \geq p]=\mathbf{P}\left[Y_{p}>0\right] \leq \frac{F_{0}}{2^{p}} \leq \frac{\sqrt{2}}{3}
$$

Let q be the largest integer such that $2^{q+1 / 2} \leq F_{0} / 3:$ Union Bound: Error $\leq 2 \cdot \frac{\sqrt{2}}{3}<1$

$$
\mathbf{P}\left[2^{Z+1 / 2} \leq F_{0} / 3\right]=\mathbf{P}[Z \leq q] \leq \mathbf{P}\left[Y_{q+1}=0\right] \leq \frac{2^{q+1}}{F_{0}} \leq \frac{\sqrt{2}}{3}
$$

Analysis (2/2)

We have proved $\mathbf{E}\left[Y_{r}\right]=\frac{F_{0}}{2^{r}}$ and $\mathbf{V}\left[Y_{r}\right] \leq \frac{F_{0}}{2^{r}}$.
By Markov's inequality, we have

$$
\mathbf{P}\left[Y_{r}>0\right]=\mathbf{P}\left[Y_{r} \geq 1\right] \leq \frac{\mathbf{E}\left[Y_{r}\right]}{1}=\frac{F_{0}}{2^{r}}
$$

By Chebyshev's inequality, we have

$$
\mathbf{P}\left[Y_{r}=0\right] \leq \mathbf{P}\left[\left|Y_{r}-\mathbf{E}\left[Y_{r}\right]\right| \geq F_{0} / 2^{r}\right] \leq \frac{\mathbf{V}\left[Y_{r}\right]}{\left(F_{0} / 2^{r}\right)^{2}} \leq \frac{2^{r}}{F_{0}}
$$

Let Z be the final integer the algo. keeps. So the algo. returns $2^{Z+1 / 2}$.
Let p be the smallest integer such that $2^{p+1 / 2} \geq 3 F_{0}$:

$$
\mathbf{P}\left[2^{Z+1 / 2} \geq 3 F_{0}\right]=\mathbf{P}[Z \geq p]=\mathbf{P}\left[Y_{p}>0\right] \leq \frac{F_{0}}{2^{p}} \leq \frac{\sqrt{2}}{3}
$$

Let q be the largest integer such that $2^{q+1 / 2} \leq F_{0} / 3:$ Union Bound: Error $\leq 2 \cdot \frac{\sqrt{2}}{3}<1$

$$
\mathbf{P}\left[2^{Z+1 / 2} \leq F_{0} / 3\right]=\mathbf{P}[Z \leq q] \leq \mathbf{P}\left[Y_{q+1}=0\right] \leq \frac{2^{q+1}}{F_{0}} \leq \frac{\sqrt{2}}{3}
$$

Final Remarks

- Durand and Flajolet (2003) proposed the LoGLOG algorithm for estimating F_{0}
- Their algorithm condenses the whole of Shakespeare's works to a table of 256 "small bytes" of 4 bits each
- The estimate of the number of distinct words is $\widetilde{F_{0}}=30897$, while the true answer is $F_{0}=28239$, which represents a relative error $+9.4 \%$.

[^0]
Outline

Introduction

Approximate Counting

Distinct Elements and Frequency Moments

Extra Material (non-examinable): An Algorithm for F_{0} in the Turnstile Model

The AMS algorithm (cash register model)

Common approach for designing algorithms in the cash register model:

1. Sample the data items based on hashed values;

The AMS algorithm (cash register model)

Common approach for designing algorithms in the cash register model:

1. Sample the data items based on hashed values;
2. Store the statistical information of the sampled items, or store the sampled items directly.

The AMS algorithm (cash register model)

Common approach for designing algorithms in the cash register model:

1. Sample the data items based on hashed values;
2. Store the statistical information of the sampled items, or store the sampled items directly.

Downside of this framework:

- Sampling probability for the current item usually depends on the whole data stream that algorithm has seen so far.
- Deleting an item appeared before could potentially make the current statistical information useless! :(

The AMS algorithm (cash register model)

Common approach for designing algorithms in the cash register model:

1. Sample the data items based on hashed values;
2. Store the statistical information of the sampled items, or store the sampled items directly.

Downside of this framework:

- Sampling probability for the current item usually depends on the whole data stream that algorithm has seen so far.
- Deleting an item appeared before could potentially make the current statistical information useless! :(

Sampling techniques are usually non-applicable in the turnstile model.

Algorithm to approximate F_{2} in the turnstile model

Algorithm to approximate F_{2} (simplified description)
1: Choose a 4-wise independent hash function $h:[n] \rightarrow\{-1,1\}$
2: $y=0$
3: while item (x, \pm) from stream \mathcal{S} arrives
4: \quad if x is inserted then $y \leftarrow y+h(x)$
5: else $y \leftarrow y-h(x)$
6: return $Z:=y^{2}$

Algorithm to approximate F_{2} in the turnstile model

Algorithm to approximate F_{2} (simplified description)
1: Choose a 4-wise independent hash function $h:[n] \rightarrow\{-1,1\}$
2: $y=0$
3: while item (x, \pm) from stream \mathcal{S} arrives
4: \quad if x is inserted then $y \leftarrow y+h(x)$
5: else $y \leftarrow y-h(x)$
return $Z:=y^{2}$

The algorithm runs in the turnstile model!

Algorithm to approximate F_{2} in the turnstile model

Algorithm to approximate F_{2} (simplified description)
1: Choose a 4-wise independent hash function $h:[n] \rightarrow\{-1,1\}$
2: $y=0$
3: while item (x, \pm) from stream \mathcal{S} arrives
4: \quad if x is inserted then $y \leftarrow y+h(x)$
5: else $y \leftarrow y-h(x)$
return $Z:=y^{2}$

The algorithm runs in the turnstile model!
Key Lemma
It holds that $\mathbf{E}[Z]=F_{2}$ and $\mathbf{V}[Z] \leq 2 \cdot\left(\sum_{i \in \mathcal{S}} m_{i}^{2}\right)^{2}=2 F_{2}^{2}$.

Algorithm to approximate F_{2} in the turnstile model

Algorithm to approximate F_{2} (simplified description)
1: Choose a 4-wise independent hash function $h:[n] \rightarrow\{-1,1\}$
2: $y=0$
3: while item (x, \pm) from stream \mathcal{S} arrives
4: \quad if x is inserted then $y \leftarrow y+h(x)$
5: else $y \leftarrow y-h(x)$
return $Z:=y^{2}$

The algorithm runs in the turnstile model!
Key Lemma
It holds that $\mathbf{E}[Z]=F_{2}$ and $\mathbf{V}[Z] \leq 2 \cdot\left(\sum_{i \in \mathcal{S}} m_{i}^{2}\right)^{2}=2 F_{2}^{2}$.

Hence, we can (ε, δ)-approximate F_{2}, by running multiple copies of the algorithm in parallel and return the average value.

Algorithm to approximate F_{2} in the turnstile model

Algorithm to approximate F_{2} (details)
1: $t=\left\lceil 6 / \varepsilon^{2}\right\rceil$
2: Choose t 4-wise independent hash function h_{1}, \ldots, h_{t}, where

$$
h_{i}:[n] \rightarrow\{-1,1\}
$$

3: $y_{i}=0$ for each $i=1, \ldots, t$
4: while item (x, \pm) from stream \mathcal{S} arrives
5: \quad if x is inserted then $y_{i}=y_{i}+h_{i}(x)$ for every $1 \leq i \leq t$
6: \quad else $y_{i}=y_{i}-h_{i}(x)$ for every $1 \leq i \leq t$
7: return $\frac{1}{t} \cdot \sum_{i=1}^{t} Z_{i}$, where $Z_{i}=y_{i}^{2}$

Algorithm to approximate F_{2} in the turnstile model

Algorithm to approximate F_{2} (details)
1: $t=\left\lceil 6 / \varepsilon^{2}\right\rceil$
2: Choose t 4-wise independent hash function h_{1}, \ldots, h_{t}, where

$$
h_{i}:[n] \rightarrow\{-1,1\}
$$

3: $y_{i}=0$ for each $i=1, \ldots, t$
4: while item (x, \pm) from stream \mathcal{S} arrives
5: \quad if x is inserted then $y_{i}=y_{i}+h_{i}(x)$ for every $1 \leq i \leq t$
6: \quad else $y_{i}=y_{i}-h_{i}(x)$ for every $1 \leq i \leq t$
7: return $\frac{1}{t} \cdot \sum_{i=1}^{t} Z_{i}$, where $Z_{i}=y_{i}^{2}$

Analysis

With constant probability, the returned value of the algorithm lies in (1$\varepsilon, 1+\varepsilon) \cdot F_{2}$. Moreover, the space complexity is $O\left(\left(1 / \varepsilon^{2}\right) \log n\right)$ bits.

[^0]: ghfffghfghgghggggghghheehfhfhhgghghghhfgffffhhhiigfhhffgfiihfhhh igigighfgihfffghigihghigfhhgeegeghgghhhgghhfhidiigihighihehhhfgg hfgighigffghdieghhhggghhfghhfiiheffghghihifgggffihgihfggighgiiif fjgfgjhhjiifhjgehgghfhhfhjhiggghghihigghhihihgiighgfhlgjfgjjjmfl

