Randomised Algorithms

Lecture 11-12: Spectral Graph Theory and Clustering

Thomas Sauerwald (tms41@cam.ac.uk)

Outline

Introduction to (Spectral) Graph Theory and Clustering

Matrices, Spectrum and Structure

A Simplified Clustering Problem

Conductance, Cheeger's Inequality and Spectral Clustering

Illustrations of Spectral Clustering and Extension to Non-Regular Graphs

Relating Spectrum to Mixing Times

Outlook: Glimpse at Image Segmentation (non-examinable)

Origin of Graph Theory

Source: Wikipedia

Seven Bridges at Königsberg 1737

Origin of Graph Theory

Source: Wikipedia

Source: Wikipedia
Leonhard Euler (1707-1783)

Is there a tour which crosses each bridge exactly once?

Origin of Graph Theory

Source: Wikipedia

Source: Wikipedia
Leonhard Euler (1707-1783)

Is there a tour which crosses each bridge exactly once?

Origin of Graph Theory

Source: Wikipedia

Source: Wikipedia

Seven Bridges at Königsberg 1737

Is there a tour which crosses each bridge exactly once?
(B) (D)

Origin of Graph Theory

Source: Wikipedia

Source: Wikipedia

Is there a tour which crosses each bridge exactly once?

Graphs Nowadays: Clustering

Graphs Nowadays: Clustering

Graphs Nowadays: Clustering

Goal: Use spectrum of graphs (unstructured data) to extract clustering (communitites) or other structural information.

Graph Clustering (applications)

- Applications of Graph Clustering
- Community detection
- Group webpages according to their topics
- Find proteins performing the same function within a cell
- Image segmentation
- Identify bottlenecks in a network
" ...

Graph Clustering (applications)

- Applications of Graph Clustering
- Community detection
- Group webpages according to their topics
- Find proteins performing the same function within a cell
- Image segmentation
- Identify bottlenecks in a network
" ...
- Unsupervised learning method (there is no ground truth (usually), and we cannot learn from mistakes!)

Graph Clustering (applications)

- Applications of Graph Clustering
- Community detection
- Group webpages according to their topics
- Find proteins performing the same function within a cell
- Image segmentation
- Identify bottlenecks in a network
" ...
- Unsupervised learning method (there is no ground truth (usually), and we cannot learn from mistakes!)
- Different formalisations for different applications

Graph Clustering (applications)

- Applications of Graph Clustering
- Community detection
- Group webpages according to their topics
- Find proteins performing the same function within a cell
- Image segmentation
- Identify bottlenecks in a network
" ...
- Unsupervised learning method (there is no ground truth (usually), and we cannot learn from mistakes!)
- Different formalisations for different applications
- Geometric Clustering: partition points in a Euclidean space
- k-means, k-medians, k-centres, etc.

Graph Clustering (applications)

- Applications of Graph Clustering
- Community detection
- Group webpages according to their topics
- Find proteins performing the same function within a cell
- Image segmentation
- Identify bottlenecks in a network
" ...
- Unsupervised learning method (there is no ground truth (usually), and we cannot learn from mistakes!)
- Different formalisations for different applications
- Geometric Clustering: partition points in a Euclidean space
- k-means, k-medians, k-centres, etc.
- Graph Clustering: partition vertices in a graph
- modularity, conductance, min-cut, etc.

Graph Clustering (applications)

- Applications of Graph Clustering
- Community detection
- Group webpages according to their topics
- Find proteins performing the same function within a cell
- Image segmentation
- Identify bottlenecks in a network
" ...
- Unsupervised learning method (there is no ground truth (usually), and we cannot learn from mistakes!)
- Different formalisations for different applications
- Geometric Clustering: partition points in a Euclidean space
- k-means, k-medians, k-centres, etc.
- Graph Clustering: partition vertices in a graph
- modularity, conductance, min-cut, etc.

Graphs and Matrices

Graphs

Matrices

$$
\left(\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right)
$$

Graphs and Matrices

Graphs

Matrices

$$
\left(\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right)
$$

- Connectivity
- Bipartiteness
- Number of triangles
- Graph Clustering
- Graph isomorphism
- Maximum Flow
- Eigenvalues
- Eigenvectors
- Inverse
- Determinant
- Matrix-powers
- Shortest Paths
- . . .

Graphs and Matrices

Graphs

Matrices

$$
\left(\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right)
$$

- Connectivity
- Bipartiteness
- Number of triangles
- Graph Clustering
- Graph isomorphism
- Maximum Flow
- Eigenvalues
- Eigenvectors
- Inverse
- Determinant
- Matrix-powers
- Shortest Paths
- ...

Outline

Introduction to (Spectral) Graph Theory and Clustering

Matrices, Spectrum and Structure

A Simplified Clustering Problem

Conductance, Cheeger's Inequality and Spectral Clustering

Illustrations of Spectral Clustering and Extension to Non-Regular Graphs

Relating Spectrum to Mixing Times

Outlook: Glimpse at Image Segmentation (non-examinable)

Adjacency Matrix

Adjacency matrix
Let $G=(V, E)$ be an undirected graph. The adjacency matrix of G is the n by n matrix \mathbf{A} defined as

$$
\mathbf{A}_{u, v}= \begin{cases}1 & \text { if }\{u, v\} \in E \\ 0 & \text { otherwise }\end{cases}
$$

Adjacency Matrix

Adjacency matrix
Let $G=(V, E)$ be an undirected graph. The adjacency matrix of G is the n by n matrix \mathbf{A} defined as

$$
\mathbf{A}_{u, v}= \begin{cases}1 & \text { if }\{u, v\} \in E \\ 0 & \text { otherwise }\end{cases}
$$

$$
\mathbf{A}=\left(\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right)
$$

Adjacency Matrix

Adjacency matrix
Let $G=(V, E)$ be an undirected graph. The adjacency matrix of G is the n by n matrix A defined as

$$
\mathbf{A}_{u, v}= \begin{cases}1 & \text { if }\{u, v\} \in E \\ 0 & \text { otherwise }\end{cases}
$$

$$
\mathbf{A}=\left(\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right)
$$

Properties of \mathbf{A} :

- The sum of elements in each row/column i equals the degree of the corresponding vertex $i, \operatorname{deg}(i)$
- Since G is undirected, \mathbf{A} is symmetric

Eigenvalues and Graph Spectrum of A

Eigenvalues and Eigenvectors
Let $\mathbf{M} \in \mathbb{R}^{n \times n}, \lambda \in \mathbb{C}$ is an eigenvalue of \mathbf{M} if and only if there exists $x \in \mathbb{R}^{n} \backslash\{\mathbf{0}\}$ such that

$$
\mathbf{M} x=\lambda x
$$

We call x an eigenvector of \mathbf{M} corresponding to the eigenvalue λ.

Eigenvalues and Graph Spectrum of A

Eigenvalues and Eigenvectors
Let $\mathbf{M} \in \mathbb{R}^{n \times n}, \lambda \in \mathbb{C}$ is an eigenvalue of \mathbf{M} if and only if there exists $x \in \mathbb{R}^{n} \backslash\{\mathbf{0}\}$ such that

$$
\mathbf{M} x=\lambda x
$$

We call x an eigenvector of \mathbf{M} corresponding to the eigenvalue λ.

Graph Spectrum
Let \mathbf{A} be the adjacency matrix of a d-regular graph G with n vertices.

Eigenvalues and Graph Spectrum of A

Eigenvalues and Eigenvectors
Let $\mathbf{M} \in \mathbb{R}^{n \times n}, \lambda \in \mathbb{C}$ is an eigenvalue of \mathbf{M} if and only if there exists $x \in \mathbb{R}^{n} \backslash\{\mathbf{0}\}$ such that

$$
\mathbf{M} x=\lambda x
$$

We call x an eigenvector of \mathbf{M} corresponding to the eigenvalue λ.

An undirected graph G is d-regular if every degree is d, i.e., every vertex has exactly d connections.

Let \mathbf{A} be the adjacency matrix of a d-regular graph G with n vertices.

Eigenvalues and Graph Spectrum of A

Eigenvalues and Eigenvectors
Let $\mathbf{M} \in \mathbb{R}^{n \times n}, \lambda \in \mathbb{C}$ is an eigenvalue of \mathbf{M} if and only if there exists $x \in \mathbb{R}^{n} \backslash\{\mathbf{0}\}$ such that

$$
\mathbf{M} x=\lambda x
$$

We call x an eigenvector of \mathbf{M} corresponding to the eigenvalue λ.

An undirected graph G is d-regular if every degree is d, i.e., every vertex has exactly d connections.

Let \mathbf{A} be the adjacency matrix of a d-regular graph G with n vertices. Then, A has n real eigenvalues $\lambda_{1} \leq \cdots \leq \lambda_{n}$ and n corresponding orthonormal eigenvectors f_{1}, \ldots, f_{n}. These eigenvalues associated with their multiplicities constitute the spectrum of G.

Eigenvalues and Graph Spectrum of A

Eigenvalues and Eigenvectors
Let $\mathbf{M} \in \mathbb{R}^{n \times n}, \lambda \in \mathbb{C}$ is an eigenvalue of \mathbf{M} if and only if there exists $x \in \mathbb{R}^{n} \backslash\{\mathbf{0}\}$ such that

$$
\mathbf{M} x=\lambda x
$$

We call x an eigenvector of \mathbf{M} corresponding to the eigenvalue λ.

An undirected graph G is d-regular if every degree is d, i.e., every vertex has exactly d connections.

Let \mathbf{A} be the adjacency matrix of a d-regular graph G with n vertices. Then, A has n real eigenvalues $\lambda_{1} \leq \cdots \leq \lambda_{n}$ and n corresponding orthonormal eigenvectors f_{1}, \ldots, f_{n}. These eigenvalues associated with their multiplicities constitute the spectrum of G.

For symmetric matrices: algebraic multiplicity = geometric multiplicity

Exercise 1

Exercise: What are the Eigenvalues and Eigenvectors?

Exercise 1

Exercise: What are the Eigenvalues and Eigenvectors?

$$
\mathbf{A}=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

Exercise 1

Bonus: Can you find a short-cut to $\operatorname{det}(\mathbf{A}-\lambda \cdot \mathbf{I})$?

Exercise: What are the Eigenvalues and Eigenvectors?

$$
A=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

Exercise 1

Bonus: Can you find a short-cut to $\operatorname{det}(\mathbf{A}-\lambda \cdot \mathbf{I})$?

Exercise: What are the Eigenvalues and Eigenvectors?

$$
A=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

Solution:

- The three eigenvalues are $\lambda_{1}=\lambda_{2}=-1, \lambda_{3}=2$.
- The three eigenvectors are (for example):

$$
f_{1}=\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right), \quad f_{2}=\left(\begin{array}{c}
-\frac{1}{2} \\
1 \\
-\frac{1}{2}
\end{array}\right), \quad f_{3}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

Laplacian Matrix

Laplacian Matrix

Let $G=(V, E)$ be a d-regular undirected graph. The (normalised) Laplacian matrix of G is the n by n matrix L defined as

$$
\mathbf{L}=\mathbf{I}-\frac{1}{d} \mathbf{A}
$$

where I is the $n \times n$ identity matrix.

Laplacian Matrix

Laplacian Matrix

Let $G=(V, E)$ be a d-regular undirected graph. The (normalised) Laplacian matrix of G is the n by n matrix L defined as

$$
\mathbf{L}=\mathbf{I}-\frac{1}{d} \mathbf{A}
$$

where I is the $n \times n$ identity matrix.

$$
\mathbf{L}=\left(\begin{array}{cccc}
1 & -1 / 2 & 0 & -1 / 2 \\
-1 / 2 & 1 & -1 / 2 & 0 \\
0 & -1 / 2 & 1 & -1 / 2 \\
-1 / 2 & 0 & -1 / 2 & 1
\end{array}\right)
$$

Laplacian Matrix

Laplacian Matrix

Let $G=(V, E)$ be a d-regular undirected graph. The (normalised) Laplacian matrix of G is the n by n matrix L defined as

$$
\mathbf{L}=\mathbf{I}-\frac{1}{d} \mathbf{A}
$$

where I is the $n \times n$ identity matrix.

$$
\mathbf{L}=\left(\begin{array}{cccc}
1 & -1 / 2 & 0 & -1 / 2 \\
-1 / 2 & 1 & -1 / 2 & 0 \\
0 & -1 / 2 & 1 & -1 / 2 \\
-1 / 2 & 0 & -1 / 2 & 1
\end{array}\right)
$$

Properties of \mathbf{L} :

- The sum of elements in each row/column equals zero
- L is symmetric

Relating Spectrum of Adjacency Matrix and Laplacian Matrix

Correspondence between Adjacency and Laplacian Matrix
\mathbf{A} and \mathbf{L} have the same eigenvectors.

Relating Spectrum of Adjacency Matrix and Laplacian Matrix

Correspondence between Adjacency and Laplacian Matrix
\mathbf{A} and \mathbf{L} have the same eigenvectors.

Proof:

Relating Spectrum of Adjacency Matrix and Laplacian Matrix

Correspondence between Adjacency and Laplacian Matrix
\mathbf{A} and \mathbf{L} have the same eigenvectors.

Proof:

- Let λ and f be an eigenvalue and eigenvector of \mathbf{A}, i.e., $\mathbf{A} \cdot f=\lambda \cdot f$.

Relating Spectrum of Adjacency Matrix and Laplacian Matrix

Correspondence between Adjacency and Laplacian Matrix
\mathbf{A} and \mathbf{L} have the same eigenvectors.

Proof:

- Let λ and f be an eigenvalue and eigenvector of \mathbf{A}, i.e., $\mathbf{A} \cdot f=\lambda \cdot f$.
- Then:
L. f

Relating Spectrum of Adjacency Matrix and Laplacian Matrix

Correspondence between Adjacency and Laplacian Matrix
\mathbf{A} and \mathbf{L} have the same eigenvectors.

Proof:

- Let λ and f be an eigenvalue and eigenvector of \mathbf{A}, i.e., $\mathbf{A} \cdot f=\lambda \cdot f$.
- Then:

$$
\mathbf{L} \cdot f=\left(\mathbf{I}-\frac{1}{d} \mathbf{A}\right) \cdot f
$$

Relating Spectrum of Adjacency Matrix and Laplacian Matrix

Correspondence between Adjacency and Laplacian Matrix
\mathbf{A} and \mathbf{L} have the same eigenvectors.

Proof:

- Let λ and f be an eigenvalue and eigenvector of \mathbf{A}, i.e., $\mathbf{A} \cdot f=\lambda \cdot f$.
- Then:

$$
\begin{aligned}
\mathbf{L} \cdot f & =\left(\mathbf{I}-\frac{1}{d} \mathbf{A}\right) \cdot f \\
& =\mathbf{I} \cdot f-\frac{1}{d} \mathbf{A} \cdot f
\end{aligned}
$$

Relating Spectrum of Adjacency Matrix and Laplacian Matrix

Correspondence between Adjacency and Laplacian Matrix
\mathbf{A} and \mathbf{L} have the same eigenvectors.

Proof:

- Let λ and f be an eigenvalue and eigenvector of \mathbf{A}, i.e., $\mathbf{A} \cdot f=\lambda \cdot f$.
- Then:

$$
\begin{aligned}
\mathbf{L} \cdot f & =\left(\mathbf{I}-\frac{1}{d} \mathbf{A}\right) \cdot f \\
& =\mathbf{I} \cdot f-\frac{1}{d} \mathbf{A} \cdot f \\
& =f-\frac{1}{d} \lambda \cdot f
\end{aligned}
$$

Relating Spectrum of Adjacency Matrix and Laplacian Matrix

Correspondence between Adjacency and Laplacian Matrix
\mathbf{A} and \mathbf{L} have the same eigenvectors.

Proof:

- Let λ and f be an eigenvalue and eigenvector of \mathbf{A}, i.e., $\mathbf{A} \cdot f=\lambda \cdot f$.
- Then:

$$
\begin{aligned}
\mathbf{L} \cdot f & =\left(\mathbf{I}-\frac{1}{d} \mathbf{A}\right) \cdot f \\
& =\mathbf{I} \cdot f-\frac{1}{d} \mathbf{A} \cdot f \\
& =f-\frac{1}{d} \lambda \cdot f \\
& =\left(1-\frac{\lambda}{d}\right) \cdot f
\end{aligned}
$$

Relating Spectrum of Adjacency Matrix and Laplacian Matrix

Correspondence between Adjacency and Laplacian Matrix
\mathbf{A} and \mathbf{L} have the same eigenvectors.

Proof:

- Let λ and f be an eigenvalue and eigenvector of \mathbf{A}, i.e., $\mathbf{A} \cdot f=\lambda \cdot f$.
- Then:

$$
\begin{aligned}
\mathbf{L} \cdot f & =\left(\mathbf{I}-\frac{1}{d} \mathbf{A}\right) \cdot f \\
& =\mathbf{I} \cdot f-\frac{1}{d} \mathbf{A} \cdot f \\
& =f-\frac{1}{d} \lambda \cdot f \\
& =\left(1-\frac{\lambda}{d}\right) \cdot f
\end{aligned}
$$

- Hence $\left(1-\frac{\lambda}{d}, f\right)$ is an eigenvalue and eigenvector pair of \mathbf{L}.

Eigenvalues and Graph Spectrum of L

Eigenvalues and eigenvectors
Let $\mathbf{M} \in \mathbb{R}^{n \times n}, \lambda \in \mathbb{C}$ is an eigenvalue of \mathbf{M} if and only if there exists $x \in \mathbb{R}^{n} \backslash\{\mathbf{0}\}$ such that

$$
\mathbf{M} x=\lambda x
$$

We call x an eigenvector of \mathbf{M} corresponding to the eigenvalue λ.

Graph Spectrum

Let \mathbf{L} be the Laplacian matrix of a d-regular graph G with n vertices. Then, \mathbf{L} has n real eigenvalues $\lambda_{1} \leq \cdots \leq \lambda_{n}$ and n corresponding orthonormal eigenvectors f_{1}, \ldots, f_{n}.

Useful Facts of Graph Spectrum

Lemma
Let \mathbf{L} be the Laplacian matrix of an undirected, regular graph $G=(V, E)$ with eigenvalues $\lambda_{1} \leq \cdots \leq \lambda_{n}$.

1. $\lambda_{1}=0$ with eigenvector 1
2. the multiplicity of the eigenvalue 0 is equal to the number of connected components in G

Useful Facts of Graph Spectrum

Lemma
Let \mathbf{L} be the Laplacian matrix of an undirected, regular graph $G=(V, E)$ with eigenvalues $\lambda_{1} \leq \cdots \leq \lambda_{n}$.

1. $\lambda_{1}=0$ with eigenvector $\mathbf{1}$
2. the multiplicity of the eigenvalue 0 is equal to the number of connected components in G
3. $\lambda_{n} \leq 2$
4. $\lambda_{n}=2$ iff there exists a bipartite connected component.

Useful Facts of Graph Spectrum

Lemma
Let \mathbf{L} be the Laplacian matrix of an undirected, regular graph $G=(V, E)$ with eigenvalues $\lambda_{1} \leq \cdots \leq \lambda_{n}$.

1. $\lambda_{1}=0$ with eigenvector $\mathbf{1}$
2. the multiplicity of the eigenvalue 0 is equal to the number of connected components in G
3. $\lambda_{n} \leq 2$
4. $\lambda_{n}=2$ iff there exists a bipartite connected component.

The proof of these properties is based on a powerful characterisation of eigenvalues/vectors!

A Min-Max Characterisation of Eigenvalues and Eigenvectors

Courant-Fischer Min-Max Formula
Let \mathbf{M} be an n by n symmetric matrix with eigenvalues $\lambda_{1} \leq \cdots \leq \lambda_{n}$. Then,

$$
\lambda_{k}=\min _{\substack{x^{(1)}, \ldots, x^{(k)} \in \mathbb{R}^{n} \\ x^{(i)} \perp x^{(j)}}} \max _{\substack{0\}}} \frac{x^{(i)^{T}} \mathbf{M} x^{(i)}}{} \frac{x^{(i, \ldots, k\}}}{x^{(i)} x^{T} x^{(i)}}
$$

The eigenvectors corresponding to $\lambda_{1}, \ldots, \lambda_{k}$ minimise such expression.

A Min-Max Characterisation of Eigenvalues and Eigenvectors

Courant-Fischer Min-Max Formula
Let \mathbf{M} be an n by n symmetric matrix with eigenvalues $\lambda_{1} \leq \cdots \leq \lambda_{n}$. Then,

$$
\lambda_{k}=\min _{\substack{x^{(1)}, \ldots, x^{(k)} \in \mathbb{R}^{n} \\ x^{(i)} \perp x^{(j)}}} \max _{\substack{0\}}} \frac{x^{(i)^{T}} \mathbf{M} x^{(i)}}{} \frac{x^{(i, \ldots, k\}}}{x^{(i)} x^{T} x^{(i)}}
$$

The eigenvectors corresponding to $\lambda_{1}, \ldots, \lambda_{k}$ minimise such expression.

$$
\lambda_{1}=\min _{x \in \mathbb{R}^{n} \backslash\{\mathbf{0}\}} \frac{x^{\top} \mathbf{M} x}{x^{\top} x}
$$

minimised by an eigenvector f_{1} for λ_{1}

A Min-Max Characterisation of Eigenvalues and Eigenvectors

Courant-Fischer Min-Max Formula
Let \mathbf{M} be an n by n symmetric matrix with eigenvalues $\lambda_{1} \leq \cdots \leq \lambda_{n}$. Then,

$$
\lambda_{k}=\min _{\substack{x^{(1)}, \ldots, x^{(k)} \in \mathbb{R}^{n} \\ x^{(i)} \perp x^{(j)}}} \max _{\substack{0\}}} \frac{x^{(i)^{T}} \mathbf{M} x^{(i)}}{} \frac{x^{(i, \ldots, k\}}}{x^{(i)} x^{T} x^{(i)}}
$$

The eigenvectors corresponding to $\lambda_{1}, \ldots, \lambda_{k}$ minimise such expression.

$$
\lambda_{1}=\min _{x \in \mathbb{R}^{n} \backslash\{\mathbf{0}\}} \frac{x^{\top} \mathbf{M} x}{x^{T} x}
$$

minimised by an eigenvector f_{1} for λ_{1}
$\lambda_{2}=\min _{\substack{x \in \mathbb{R}^{n} \backslash\{0\} \\ x \perp f_{1}}} \frac{x^{\top} \mathbf{M} x}{x^{\top} x}$
minimised by f_{2}

A Min-Max Characterisation of Eigenvalues and Eigenvectors

Courant-Fischer Min-Max Formula
Let \mathbf{M} be an n by n symmetric matrix with eigenvalues $\lambda_{1} \leq \cdots \leq \lambda_{n}$. Then,

$$
\lambda_{k}=\min _{\substack{x^{(1)}, \ldots, x^{(k)} \in \mathbb{R}^{n} \backslash\{0\}, x^{(i)} \perp x^{(j)}}} \max _{\substack{i \in\{1, \ldots, k\}}} \frac{x^{(i)^{T}} \mathbf{M} x^{(i)}}{x^{(i)}{ }^{T} x^{(i)}}
$$

The eigenvectors corresponding to $\lambda_{1}, \ldots, \lambda_{k}$ minimise such expression.

$$
\lambda_{1}=\min _{x \in \mathbb{R}^{n} \backslash\{\mathbf{0}\}} \frac{x^{\top} \mathbf{M} x}{x^{\top} x}
$$

minimised by an eigenvector f_{1} for λ_{1}

$$
\lambda_{2}=\min _{\substack{x \in \mathbb{R}^{n} \backslash\{0\} \\ x \perp f_{1}}} \frac{x^{\top} \mathbf{M} x}{x^{\top} X}
$$

minimised by f_{2}

A Min-Max Characterisation of Eigenvalues and Eigenvectors

Courant-Fischer Min-Max Formula
Let \mathbf{M} be an n by n symmetric matrix with eigenvalues $\lambda_{1} \leq \cdots \leq \lambda_{n}$. Then,

$$
\lambda_{k}=\min _{\substack{x^{(1)}, \ldots, x^{(k)} \in \mathbb{R}^{n} \backslash\{0\}, x^{(i)} \perp x^{(j)}}} \max _{\substack{i \in\{1, \ldots, k\}}} \frac{x^{(i)^{T}} \mathbf{M} x^{(i)}}{x^{(i)}{ }^{T} x^{(i)}}
$$

The eigenvectors corresponding to $\lambda_{1}, \ldots, \lambda_{k}$ minimise such expression.

$$
\lambda_{1}=\min _{x \in \mathbb{R}^{n} \backslash\{\mathbf{0}\}} \frac{x^{\top} \mathbf{M} x}{x^{\top} x}
$$

minimised by an eigenvector f_{1} for λ_{1}

$$
\lambda_{2}=\min _{\substack{x \in \mathbb{R}^{n} \backslash\{0\} \\ x \perp f_{1}}} \frac{x^{\top} \mathbf{M} x}{x^{\top} X}
$$

minimised by f_{2}

Quadratic Forms of the Laplacian

Lemma
Let \mathbf{L} be the Laplacian matrix of a d-regular graph $G=(V, E)$ with n vertices. For any $x \in \mathbb{R}^{n}$,

$$
x^{T} \mathbf{L} x=\sum_{\{u, v\} \in E} \frac{\left(x_{u}-x_{v}\right)^{2}}{d}
$$

Quadratic Forms of the Laplacian

Lemma

Let \mathbf{L} be the Laplacian matrix of a d-regular graph $G=(V, E)$ with n vertices. For any $x \in \mathbb{R}^{n}$,

$$
x^{T} \mathbf{L} x=\sum_{\{u, v\} \in E} \frac{\left(x_{u}-x_{v}\right)^{2}}{d}
$$

Proof:

$$
\begin{aligned}
x^{T} \mathbf{L} x & =x^{T}\left(\mathbf{I}-\frac{1}{d} \mathbf{A}\right) x=x^{T} x-\frac{1}{d} x^{T} \mathbf{A} x \\
& =\sum_{u \in V} x_{u}^{2}-\frac{2}{d} \sum_{\{u, v\} \in E} x_{u} x_{v} \\
& =\frac{1}{d} \sum_{\{u, v\} \in E}\left(x_{u}^{2}+x_{v}^{2}-2 x_{u} x_{v}\right) \\
& =\sum_{\{u, v\} \in E} \frac{\left(x_{u}-x_{v}\right)^{2}}{d} .
\end{aligned}
$$

Visualising a Graph

Question: How can we visualize a complicated object like an unknown graph with many vertices in low-dimensional space?

Visualising a Graph

Question: How can we visualize a complicated object like an unknown graph with many vertices in low-dimensional space?

Visualising a Graph

Question: How can we visualize a complicated object like an unknown graph with many vertices in low-dimensional space?

Embedding onto Line

Visualising a Graph

Question: How can we visualize a complicated object like an unknown graph with many vertices in low-dimensional space?

Embedding onto Line

Visualising a Graph

Question: How can we visualize a complicated object like an unknown graph with many vertices in low-dimensional space?

Embedding onto Line

$$
\lambda_{2}=\frac{1}{d} \cdot \min _{\substack{x \in \mathbb{R}^{n} \backslash\{0\} \\ x \perp f_{1}}} \frac{\sum_{\{u, v\} \in E}\left(x_{u}-x_{v}\right)^{2}}{\|x\|_{2}^{2}}
$$

Visualising a Graph

Question: How can we visualize a complicated object like an unknown graph with many vertices in low-dimensional space?

Embedding onto Line

Coordinates given by x

$$
\lambda_{2}=\frac{1}{d} \cdot \min _{\substack{x \in \mathbb{R}^{n} \backslash\{0\} \\ x \perp f_{1}}} \frac{\sum_{\{u, v\} \in E}\left(x_{u}-x_{v}\right)^{2}}{\|x\|_{2}^{2}}
$$

The coordinates in the vector \mathbf{x} indicate how similar/dissimilar vertices are. Edges between dissimilar vertices are penalised quadratically.

Outline

Introduction to (Spectral) Graph Theory and Clustering

Matrices, Spectrum and Structure

A Simplified Clustering Problem

Conductance, Cheeger's Inequality and Spectral Clustering

Illustrations of Spectral Clustering and Extension to Non-Regular Graphs
Relating Spectrum to Mixing Times

Outlook: Glimpse at Image Segmentation (non-examinable)

A Simplified Clustering Problem

Partition the graph into connected components so that any pair of vertices in the same component is connected, but vertices in different components are not.

A Simplified Clustering Problem

Partition the graph into connected components so that any pair of vertices in the same component is connected, but vertices in different components are not.

A Simplified Clustering Problem

Partition the graph into connected components so that any pair of vertices in the same component is connected, but vertices in different components are not.

A Simplified Clustering Problem

Partition the graph into connected components so that any pair of vertices in the same component is connected, but vertices in different components are not.

We could obviously solve this easily using DFS/BFS, but let's see how we can tackle this using the spectrum of L!

Exercise 2

Exercise: What are the Eigenvectors with Eigenvalue 0 of \mathbf{L} ?

Exercise 2

Exercise: What are the Eigenvectors with Eigenvalue 0 of \mathbf{L} ?

$$
\mathbf{A}=\left(\begin{array}{lllllll}
0 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 0
\end{array}\right)
$$

Exercise 2

Exercise: What are the Eigenvectors with Eigenvalue 0 of \mathbf{L} ?

$$
\begin{gathered}
\mathbf{A}=\left(\begin{array}{ccccccc}
0 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 0
\end{array}\right) \\
\mathbf{L}=\left(\begin{array}{ccccccc}
1 & -\frac{1}{2} & -\frac{1}{2} & 0 & 0 & 0 & 0 \\
-\frac{1}{2} & 1 & -\frac{1}{2} & 0 & 0 & 0 & 0 \\
-\frac{1}{2} & -\frac{1}{2} & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -\frac{1}{2} & 0 & -\frac{1}{2} \\
0 & 0 & 0 & -\frac{1}{2} & 1 & -\frac{1}{2} & 0 \\
0 & 0 & 0 & 0 & -\frac{1}{2} & 1 & -\frac{1}{2} \\
0 & 0 & 0 & -\frac{1}{2} & 0 & -\frac{1}{2} & 1
\end{array}\right)
\end{gathered}
$$

Exercise 2

Exercise: What are the Eigenvectors with Eigenvalue 0 of \mathbf{L} ?

Solution:

$$
\begin{gathered}
\mathbf{A}=\left(\begin{array}{ccccccc}
0 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 0
\end{array}\right) \\
\mathbf{L}=\left(\begin{array}{ccccccc}
1 & -\frac{1}{2} & -\frac{1}{2} & 0 & 0 & 0 & 0 \\
-\frac{1}{2} & 1 & -\frac{1}{2} & 0 & 0 & 0 & 0 \\
-\frac{1}{2} & -\frac{1}{2} & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -\frac{1}{2} & 0 & -\frac{1}{2} \\
0 & 0 & 0 & -\frac{1}{2} & 1 & -\frac{1}{2} & 0 \\
0 & 0 & 0 & 0 & -\frac{1}{2} & 1 & -\frac{1}{2} \\
0 & 0 & 0 & -\frac{1}{2} & 0 & -\frac{1}{2} & 1
\end{array}\right)
\end{gathered}
$$

- The two smallest eigenvalues are $\lambda_{1}=\lambda_{2}=0$.
- The corresponding two eigenvectors are:

$$
f_{1}=\left(\begin{array}{l}
1 \\
1 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right), \quad f_{2}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
1 \\
1 \\
1
\end{array}\right)
$$

Exercise 2

Exercise: What are the Eigenvectors with Eigenvalue 0 of \mathbf{L} ?

Solution:

$$
\begin{gathered}
\mathbf{A}=\left(\begin{array}{ccccccc}
0 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 0
\end{array}\right) \\
\mathbf{L}=\left(\begin{array}{ccccccc}
1 & -\frac{1}{2} & -\frac{1}{2} & 0 & 0 & 0 & 0 \\
-\frac{1}{2} & 1 & -\frac{1}{2} & 0 & 0 & 0 & 0 \\
-\frac{1}{2} & -\frac{1}{2} & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -\frac{1}{2} & 0 & -\frac{1}{2} \\
0 & 0 & 0 & -\frac{1}{2} & 1 & -\frac{1}{2} & 0 \\
0 & 0 & 0 & 0 & -\frac{1}{2} & 1 & -\frac{1}{2} \\
0 & 0 & 0 & -\frac{1}{2} & 0 & -\frac{1}{2} & 1
\end{array}\right)
\end{gathered}
$$

- The two smallest eigenvalues are $\lambda_{1}=\lambda_{2}=0$.
- The corresponding two eigenvectors are:

$$
f_{1}=\left(\begin{array}{l}
1 \\
1 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right), \quad f_{2}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
1 \\
1 \\
1
\end{array}\right) \quad\left(\text { or } \quad f_{1}=\left(\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right), \quad f_{2}=\left(\begin{array}{c}
-1 / 3 \\
-1 / 3 \\
-1 / 3 \\
1 / 4 \\
1 / 4 \\
1 / 4 \\
1 / 4
\end{array}\right),\right.
$$

Exercise 2

Exercise: What are the Eigenvectors with Eigenvalue 0 of \mathbf{L} ?

Solution:

- The two smallest eigenvalues are $\lambda_{1}=\lambda_{2}=0$.
- The corresponding two eigenvectors are:

$$
f_{1}=\left(\begin{array}{l}
1 \\
1 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right), \quad f_{2}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
1 \\
1 \\
1
\end{array}\right)
$$

Thus we can easily solve the simplified clustering problem by computing the eigenvectors with eigenvalue 0

Exercise 2

Exercise: What are the Eigenvectors with Eigenvalue 0 of \mathbf{L} ?

Solution:

- The two smallest eigenvalues are $\lambda_{1}=\lambda_{2}=0$.
- The corresponding two eigenvectors are:

$$
f_{1}=\left(\begin{array}{l}
1 \\
1 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right), \quad f_{2}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
1 \\
1 \\
1
\end{array}\right)
$$

Useful Facts of Graph Spectrum (Proof of 2)

> Let us generalise and formalise the example before!

Useful Facts of Graph Spectrum (Proof of 2)

Let us generalise and formalise the example before!
Proof of 2 (multiplicity of 0 equals the no. of connected components):

Useful Facts of Graph Spectrum (Proof of 2)

Let us generalise and formalise the example before!
Proof of 2 (multiplicity of 0 equals the no. of connected components):

1. (" $\Longrightarrow " C C(G) \leq \operatorname{mult}(0))$. We will show:
G has exactly k connected comp. $C_{1}, \ldots, C_{k} \Rightarrow \lambda_{1}=\cdots=\lambda_{k}=0$

Useful Facts of Graph Spectrum (Proof of 2)

Let us generalise and formalise the example before!
Proof of 2 (multiplicity of 0 equals the no. of connected components):

1. (" $\Longrightarrow " c c(G) \leq \operatorname{mult}(0))$. We will show:
G has exactly k connected comp. $C_{1}, \ldots, C_{k} \Rightarrow \lambda_{1}=\cdots=\lambda_{k}=0$

- Take $\chi c_{i} \in\{0,1\}^{n}$ such that $\chi c_{i}(u)=\mathbf{1}_{u \in c_{i}}$ for all $u \in V$

Useful Facts of Graph Spectrum (Proof of 2)

Let us generalise and formalise the example before!
Proof of 2 (multiplicity of 0 equals the no. of connected components):

1. (" $\Longrightarrow " c c(G) \leq \operatorname{mult}(0))$. We will show:
G has exactly k connected comp. $C_{1}, \ldots, C_{k} \Rightarrow \lambda_{1}=\cdots=\lambda_{k}=0$

- Take $\chi c_{i} \in\{0,1\}^{n}$ such that $\chi c_{i}(u)=\mathbf{1}_{u \in C_{i}}$ for all $u \in V$
- Clearly, the $\chi_{c_{i}}$'s are orthogonal

Useful Facts of Graph Spectrum (Proof of 2)

Let us generalise and formalise the example before!
Proof of 2 (multiplicity of 0 equals the no. of connected components):

1. (" $\Longrightarrow " C C(G) \leq \operatorname{mult}(0))$. We will show:
G has exactly k connected comp. $C_{1}, \ldots, C_{k} \Rightarrow \lambda_{1}=\cdots=\lambda_{k}=0$

- Take $\chi c_{i} \in\{0,1\}^{n}$ such that $\chi c_{i}(u)=\mathbf{1}_{u \in C_{i}}$ for all $u \in V$
- Clearly, the $\chi_{c_{i}}$'s are orthogonal
- $\chi_{C_{i}}^{T} \mathbf{L} \chi_{c_{i}}=\frac{1}{d} \cdot \sum_{\{u, v\} \in E}\left(\chi_{c_{i}}(u)-\chi_{c_{i}}(v)\right)^{2}=0 \Rightarrow \lambda_{1}=\cdots=\lambda_{k}=0$

Useful Facts of Graph Spectrum (Proof of 2)

Let us generalise and formalise the example before!

Proof of 2 (multiplicity of 0 equals the no. of connected components):

1. (" $\Longrightarrow " C C(G) \leq \operatorname{mult}(0))$. We will show:
G has exactly k connected comp. $C_{1}, \ldots, C_{k} \Rightarrow \lambda_{1}=\cdots=\lambda_{k}=0$

- Take $\chi c_{i} \in\{0,1\}^{n}$ such that $\chi c_{i}(u)=\mathbf{1}_{u \in C_{i}}$ for all $u \in V$
- Clearly, the $\chi_{c_{i}}$'s are orthogonal
- $\chi_{C_{i}}^{T} \mathbf{L} \chi_{c_{i}}=\frac{1}{d} \cdot \sum_{\{u, v\} \in E}\left(\chi_{c_{i}}(u)-\chi_{c_{i}}(v)\right)^{2}=0 \Rightarrow \lambda_{1}=\cdots=\lambda_{k}=0$

2. (" $\Longleftarrow " C C(G) \geq \operatorname{mult}(0))$. We will show:

Useful Facts of Graph Spectrum (Proof of 2)

Let us generalise and formalise the example before!

Proof of 2 (multiplicity of 0 equals the no. of connected components):

1. (" $\Longrightarrow " C C(G) \leq \operatorname{mult}(0))$. We will show:
G has exactly k connected comp. $C_{1}, \ldots, C_{k} \Rightarrow \lambda_{1}=\cdots=\lambda_{k}=0$

- Take $\chi c_{i} \in\{0,1\}^{n}$ such that $\chi c_{i}(u)=\mathbf{1}_{u \in C_{i}}$ for all $u \in V$
- Clearly, the $\chi_{c_{i}}$'s are orthogonal
- $\chi_{c_{i}}^{T} \mathbf{L} \chi_{c_{i}}=\frac{1}{d} \cdot \sum_{\{u, v\} \in E}\left(\chi_{c_{i}}(u)-\chi_{c_{i}}(v)\right)^{2}=0 \Rightarrow \lambda_{1}=\cdots=\lambda_{k}=0$

2. (" $\Longleftarrow " C C(G) \geq \operatorname{mult}(0))$. We will show:
$\lambda_{1}=\cdots=\lambda_{k}=0 \Rightarrow G$ has at least k connected comp. C_{1}, \ldots, C_{k}

Useful Facts of Graph Spectrum (Proof of 2)

Let us generalise and formalise the example before!

Proof of 2 (multiplicity of 0 equals the no. of connected components):

1. (" $\Longrightarrow " C C(G) \leq \operatorname{mult}(0))$. We will show:
G has exactly k connected comp. $C_{1}, \ldots, C_{k} \Rightarrow \lambda_{1}=\cdots=\lambda_{k}=0$

- Take $\chi c_{i} \in\{0,1\}^{n}$ such that $\chi c_{i}(u)=\mathbf{1}_{u \in C_{i}}$ for all $u \in V$
- Clearly, the $\chi_{c_{i}}$'s are orthogonal
- $\chi_{C_{i}}^{T} \mathbf{L} \chi_{c_{i}}=\frac{1}{d} \cdot \sum_{\{u, v\} \in E}\left(\chi_{c_{i}}(u)-\chi_{c_{i}}(v)\right)^{2}=0 \Rightarrow \lambda_{1}=\cdots=\lambda_{k}=0$

2. (" $\Longleftarrow " C C(G) \geq \operatorname{mult}(0))$. We will show:
$\lambda_{1}=\cdots=\lambda_{k}=0 \Rightarrow G$ has at least k connected comp. C_{1}, \ldots, C_{k}
" there exist f_{1}, \ldots, f_{k} orthonormal such that $\sum_{\{u, v\} \in E}\left(f_{i}(u)-f_{i}(v)\right)^{2}=0$

Useful Facts of Graph Spectrum (Proof of 2)

Let us generalise and formalise the example before!

Proof of 2 (multiplicity of 0 equals the no. of connected components):

1. (" $\Longrightarrow " C C(G) \leq \operatorname{mult}(0))$. We will show:
G has exactly k connected comp. $C_{1}, \ldots, C_{k} \Rightarrow \lambda_{1}=\cdots=\lambda_{k}=0$

- Take $\chi c_{i} \in\{0,1\}^{n}$ such that $\chi c_{i}(u)=\mathbf{1}_{u \in C_{i}}$ for all $u \in V$
- Clearly, the $\chi_{c_{i}}$'s are orthogonal
- $\chi_{C_{i}}^{T} \mathbf{L} \chi_{c_{i}}=\frac{1}{d} \cdot \sum_{\{u, v\} \in E}\left(\chi_{c_{i}}(u)-\chi_{c_{i}}(v)\right)^{2}=0 \Rightarrow \lambda_{1}=\cdots=\lambda_{k}=0$

2. (" $\Longleftarrow " c C(G) \geq \operatorname{mult}(0))$. We will show:
$\lambda_{1}=\cdots=\lambda_{k}=0 \Rightarrow G$ has at least k connected comp. C_{1}, \ldots, C_{k}

- there exist f_{1}, \ldots, f_{k} orthonormal such that $\sum_{\{u, v\} \in E}\left(f_{i}(u)-f_{i}(v)\right)^{2}=0$
- $\Rightarrow f_{1}, \ldots, f_{k}$ constant on connected components

Useful Facts of Graph Spectrum (Proof of 2)

Let us generalise and formalise the example before!

Proof of 2 (multiplicity of 0 equals the no. of connected components):

1. (" $\Longrightarrow " C C(G) \leq \operatorname{mult}(0))$. We will show:
G has exactly k connected comp. $C_{1}, \ldots, C_{k} \Rightarrow \lambda_{1}=\cdots=\lambda_{k}=0$

- Take $\chi c_{i} \in\{0,1\}^{n}$ such that $\chi c_{i}(u)=\mathbf{1}_{u \in C_{i}}$ for all $u \in V$
- Clearly, the $\chi_{c_{i}}$'s are orthogonal
- $\chi_{C_{i}}^{T} \mathbf{L} \chi_{c_{i}}=\frac{1}{d} \cdot \sum_{\{u, v\} \in E}\left(\chi_{c_{i}}(u)-\chi_{c_{i}}(v)\right)^{2}=0 \Rightarrow \lambda_{1}=\cdots=\lambda_{k}=0$

2. (" $\Longleftarrow " C C(G) \geq \operatorname{mult}(0))$. We will show:
$\lambda_{1}=\cdots=\lambda_{k}=0 \Rightarrow G$ has at least k connected comp. C_{1}, \ldots, C_{k}

- there exist f_{1}, \ldots, f_{k} orthonormal such that $\sum_{\{u, v\} \in E}\left(f_{i}(u)-f_{i}(v)\right)^{2}=0$
- $\Rightarrow f_{1}, \ldots, f_{k}$ constant on connected components
- as f_{1}, \ldots, f_{k} are pairwise orthogonal, G must have k different connected components.

Useful Facts of Graph Spectrum (Proof of 2)

Let us generalise and formalise the example before!

Proof of 2 (multiplicity of 0 equals the no. of connected components):

1. (" $\Longrightarrow " C C(G) \leq \operatorname{mult}(0))$. We will show:
G has exactly k connected comp. $C_{1}, \ldots, C_{k} \Rightarrow \lambda_{1}=\cdots=\lambda_{k}=0$

- Take $\chi c_{i} \in\{0,1\}^{n}$ such that $\chi c_{i}(u)=\mathbf{1}_{u \in C_{i}}$ for all $u \in V$
- Clearly, the $\chi_{c_{i}}$'s are orthogonal
- $\chi_{c_{i}}^{\top} \mathbf{L} \chi_{c_{i}}=\frac{1}{d} \cdot \sum_{\{u, v\} \in E}\left(\chi_{c_{i}}(u)-\chi c_{i}(v)\right)^{2}=0 \Rightarrow \lambda_{1}=\cdots=\lambda_{k}=0$

2. (" $\Longleftarrow " c C(G) \geq \operatorname{mult}(0))$. We will show:
$\lambda_{1}=\cdots=\lambda_{k}=0 \Rightarrow G$ has at least k connected comp. C_{1}, \ldots, C_{k}

- there exist f_{1}, \ldots, f_{k} orthonormal such that $\sum_{\{u, v\} \in E}\left(f_{i}(u)-f_{i}(v)\right)^{2}=0$
- $\Rightarrow f_{1}, \ldots, f_{k}$ constant on connected components
- as f_{1}, \ldots, f_{k} are pairwise orthogonal, G must have k different connected components.

Outline

Introduction to (Spectral) Graph Theory and Clustering

Matrices, Spectrum and Structure

A Simplified Clustering Problem

Conductance, Cheeger's Inequality and Spectral Clustering

Illustrations of Spectral Clustering and Extension to Non-Regular Graphs

Relating Spectrum to Mixing Times

Outlook: Glimpse at Image Segmentation (non-examinable)

Graph Clustering

Partition the graph into pieces (clusters) so that vertices in the same piece have, on average, more connections among each other than with vertices in other clusters

Graph Clustering

Partition the graph into pieces (clusters) so that vertices in the same piece have, on average, more connections among each other than with vertices in other clusters

Graph Clustering

Partition the graph into pieces (clusters) so that vertices in the same piece have, on average, more connections among each other than with vertices in other clusters

Conductance

Conductance
Let $G=(V, E)$ be a d-regular and undirected graph and $\emptyset \neq S \subsetneq V$. The conductance (edge expansion) of S is

$$
\phi(S):=\frac{e\left(S, S^{c}\right)}{d \cdot|S|}
$$

Conductance

Conductance
Let $G=(V, E)$ be a d-regular and undirected graph and $\emptyset \neq S \subsetneq V$. The conductance (edge expansion) of S is

$$
\phi(S):=\frac{e\left(S, S^{c}\right)}{d \cdot|S|}
$$

Moreover, the conductance (edge expansion) of the graph G is

$$
\phi(G):=\min _{S \subseteq v: 1 \leq|S| \leq n / 2} \phi(S)
$$

Conductance

Conductance
Let $G=(V, E)$ be a d-regular and undirected graph and $\emptyset \neq S \subsetneq V$.
The conductance (edge expansion) of S is

$$
\phi(S):=\frac{e\left(S, S^{c}\right)}{d \cdot|S|}
$$

Moreover, the conductance (edge expansion) of the graph G is

$$
\phi(G):=\min _{S \subseteq v: 1 \leq|S| \leq n / 2} \phi(S)
$$

Conductance

Conductance
Let $G=(V, E)$ be a d-regular and undirected graph and $\emptyset \neq S \subsetneq V$.
The conductance (edge expansion) of S is

$$
\phi(S):=\frac{e\left(S, S^{c}\right)}{d \cdot|S|}
$$

Moreover, the conductance (edge expansion) of the graph G is

$$
\phi(G):=\min _{S \subseteq v: 1 \leq|S| \leq n / 2} \phi(S)
$$

- $\phi(S)=? ?$

Conductance

Conductance
Let $G=(V, E)$ be a d-regular and undirected graph and $\emptyset \neq S \subsetneq V$.
The conductance (edge expansion) of S is

$$
\phi(S):=\frac{e\left(S, S^{c}\right)}{d \cdot|S|}
$$

Moreover, the conductance (edge expansion) of the graph G is

$$
\phi(G):=\min _{S \subseteq v: 1 \leq|S| \leq n / 2} \phi(S)
$$

- $\phi(S)=\frac{5}{9}$

Conductance

Conductance
Let $G=(V, E)$ be a d-regular and undirected graph and $\emptyset \neq S \subsetneq V$.
The conductance (edge expansion) of S is

$$
\phi(S):=\frac{e\left(S, S^{c}\right)}{d \cdot|S|}
$$

Moreover, the conductance (edge expansion) of the graph G is

$$
\phi(G):=\min _{S \subseteq v: 1 \leq|S| \leq n / 2} \phi(S)
$$

- $\phi(S)=\frac{5}{9}$
- $\phi(G) \in[0,1]$ and $\phi(G)=0$ iff G is disconnected

Conductance

Conductance
Let $G=(V, E)$ be a d-regular and undirected graph and $\emptyset \neq S \subsetneq V$.
The conductance (edge expansion) of S is

$$
\phi(S):=\frac{e\left(S, S^{c}\right)}{d \cdot|S|}
$$

Moreover, the conductance (edge expansion) of the graph G is

$$
\phi(G):=\min _{S \subseteq v: 1 \leq|S| \leq n / 2} \phi(S)
$$

- $\phi(S)=\frac{5}{9}$
- $\phi(G) \in[0,1]$ and $\phi(G)=0$ iff G is disconnected
- If G is a complete graph, then $e(S, V \backslash S)=|S| \cdot(n-|S|)$ and $\phi(G) \approx 1 / 2$.

Conductance

Conductance
Let $G=(V, E)$ be a d-regular and undirected graph and $\emptyset \neq S \subsetneq V$.
The conductance (edge expansion) of S is

$$
\phi(S):=\frac{e\left(S, S^{c}\right)}{d \cdot|S|}
$$

Moreover, the conductance (edge expansion) of the graph G is

$$
\phi(G):=\min _{S \subseteq v: 1 \leq|S| \leq n / 2} \phi(S)
$$

NP-hard to compute!

- $\phi(S)=\frac{5}{9}$
- $\phi(G) \in[0,1]$ and $\phi(G)=0$ iff G is disconnected
- If G is a complete graph, then $e(S, V \backslash S)=|S| \cdot(n-|S|)$ and $\phi(G) \approx 1 / 2$.

λ_{2} versus Conductance (1/2)

G is disconnected

G is disconnected

$$
\phi(G)=0 \Leftrightarrow G \text { is disconnected }
$$

$$
\phi(G)=0 \Leftrightarrow G \text { is disconnected } \Leftrightarrow \lambda_{2}(G)=0
$$

$$
\phi(G)=0 \Leftrightarrow G \text { is disconnected } \Leftrightarrow \lambda_{2}(G)=0
$$

What is the relationship between $\phi(G)$ and $\lambda_{2}(G)$ for connected graphs?

λ_{2} versus Conductance (2/2)

2D Grid

$$
\begin{aligned}
\lambda_{2} & \sim n^{-2} \\
\phi & \sim n^{-1}
\end{aligned}
$$

$$
\begin{aligned}
\lambda_{2} & \sim n^{-1} \\
\phi & \sim n^{-1 / 2}
\end{aligned}
$$

3D Grid

$$
\begin{aligned}
\lambda_{2} & \sim n^{-2 / 3} \\
\phi & \sim n^{-1 / 3}
\end{aligned}
$$

1D Grid

$$
\begin{aligned}
\lambda_{2} & \sim n^{-2} \\
\phi & \sim n^{-1}
\end{aligned}
$$

$$
\begin{aligned}
\lambda_{2} & \sim n^{-1} \\
\phi & \sim n^{-1 / 2}
\end{aligned}
$$

Random Graph (Expanders)

Hypercube

$\lambda_{2} \sim(\log n)^{-1}$
$\phi \sim(\log n)^{-1}$

$$
\begin{aligned}
\lambda_{2} & =\Theta(1) \\
\phi & =\Theta(1)
\end{aligned}
$$

3D Grid

$\lambda_{2} \sim n^{-2 / 3}$

$$
\phi \sim n^{-1 / 3}
$$

Binary Tree

$\lambda_{2} \sim n^{-1}$
$\phi \sim n^{-1}$

Relating λ_{2} and Conductance

Cheeger's inequality
Let G be a d-regular undirected graph and $\lambda_{1} \leq \cdots \leq \lambda_{n}$ be the eigenvalues of its Laplacian matrix. Then,

$$
\frac{\lambda_{2}}{2} \leq \phi(G) \leq \sqrt{2 \lambda_{2}}
$$

Relating λ_{2} and Conductance

Cheeger's inequality
Let G be a d-regular undirected graph and $\lambda_{1} \leq \cdots \leq \lambda_{n}$ be the eigenvalues of its Laplacian matrix. Then,

$$
\frac{\lambda_{2}}{2} \leq \phi(G) \leq \sqrt{2 \lambda_{2}} .
$$

Spectral Clustering:

Relating λ_{2} and Conductance

Cheeger's inequality
Let G be a d-regular undirected graph and $\lambda_{1} \leq \cdots \leq \lambda_{n}$ be the eigenvalues of its Laplacian matrix. Then,

$$
\frac{\lambda_{2}}{2} \leq \phi(G) \leq \sqrt{2 \lambda_{2}} .
$$

Spectral Clustering:

1. Compute the eigenvector x corresponding to λ_{2}

Relating λ_{2} and Conductance

Cheeger's inequality
Let G be a d-regular undirected graph and $\lambda_{1} \leq \cdots \leq \lambda_{n}$ be the eigenvalues of its Laplacian matrix. Then,

$$
\frac{\lambda_{2}}{2} \leq \phi(G) \leq \sqrt{2 \lambda_{2}} .
$$

Spectral Clustering:

1. Compute the eigenvector x corresponding to λ_{2}
2. Order the vertices so that $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$ (embed V on \mathbb{R})

Relating λ_{2} and Conductance

Cheeger's inequality
Let G be a d-regular undirected graph and $\lambda_{1} \leq \cdots \leq \lambda_{n}$ be the eigenvalues of its Laplacian matrix. Then,

$$
\frac{\lambda_{2}}{2} \leq \phi(G) \leq \sqrt{2 \lambda_{2}}
$$

Spectral Clustering:

1. Compute the eigenvector x corresponding to λ_{2}
2. Order the vertices so that $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$ (embed V on \mathbb{R})
3. Try all $n-1$ sweep cuts of the form $(\{1,2, \ldots, k\},\{k+1, \ldots, n\})$ and return the one with smallest conductance

Relating λ_{2} and Conductance

Cheeger's inequality
Let G be a d-regular undirected graph and $\lambda_{1} \leq \cdots \leq \lambda_{n}$ be the eigenvalues of its Laplacian matrix. Then,

$$
\frac{\lambda_{2}}{2} \leq \phi(G) \leq \sqrt{2 \lambda_{2}}
$$

Spectral Clustering:

1. Compute the eigenvector x corresponding to λ_{2}
2. Order the vertices so that $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$ (embed V on \mathbb{R})
3. Try all $n-1$ sweep cuts of the form $(\{1,2, \ldots, k\},\{k+1, \ldots, n\})$ and return the one with smallest conductance

- It returns cluster $S \subseteq V$ such that $\phi(S) \leq \sqrt{2 \lambda_{2}}$

Relating λ_{2} and Conductance

Cheeger's inequality
Let G be a d-regular undirected graph and $\lambda_{1} \leq \cdots \leq \lambda_{n}$ be the eigenvalues of its Laplacian matrix. Then,

$$
\frac{\lambda_{2}}{2} \leq \phi(G) \leq \sqrt{2 \lambda_{2}}
$$

Spectral Clustering:

1. Compute the eigenvector x corresponding to λ_{2}
2. Order the vertices so that $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$ (embed V on \mathbb{R})
3. Try all $n-1$ sweep cuts of the form $(\{1,2, \ldots, k\},\{k+1, \ldots, n\})$ and return the one with smallest conductance

- It returns cluster $S \subseteq V$ such that $\phi(S) \leq \sqrt{2 \lambda_{2}} \leq 2 \sqrt{\phi(G)}$

Relating λ_{2} and Conductance

Cheeger's inequality
Let G be a d-regular undirected graph and $\lambda_{1} \leq \cdots \leq \lambda_{n}$ be the eigenvalues of its Laplacian matrix. Then,

$$
\frac{\lambda_{2}}{2} \leq \phi(G) \leq \sqrt{2 \lambda_{2}}
$$

Spectral Clustering:

1. Compute the eigenvector x corresponding to λ_{2}
2. Order the vertices so that $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$ (embed V on \mathbb{R})
3. Try all $n-1$ sweep cuts of the form $(\{1,2, \ldots, k\},\{k+1, \ldots, n\})$ and return the one with smallest conductance

- It returns cluster $S \subseteq V$ such that $\phi(S) \leq \sqrt{2 \lambda_{2}} \leq 2 \sqrt{\phi(G)}$
- no constant factor worst-case guarantee, but usually works well in practice (see examples later!)

Relating λ_{2} and Conductance

Cheeger's inequality
Let G be a d-regular undirected graph and $\lambda_{1} \leq \cdots \leq \lambda_{n}$ be the eigenvalues of its Laplacian matrix. Then,

$$
\frac{\lambda_{2}}{2} \leq \phi(G) \leq \sqrt{2 \lambda_{2}}
$$

Spectral Clustering:

1. Compute the eigenvector x corresponding to λ_{2}
2. Order the vertices so that $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$ (embed V on \mathbb{R})
3. Try all $n-1$ sweep cuts of the form $(\{1,2, \ldots, k\},\{k+1, \ldots, n\})$ and return the one with smallest conductance

- It returns cluster $S \subseteq V$ such that $\phi(S) \leq \sqrt{2 \lambda_{2}} \leq 2 \sqrt{\phi(G)}$
- no constant factor worst-case guarantee, but usually works well in practice (see examples later!)
- very fast: can be implemented in $O(|E| \log |E|)$ time

Proof of Cheeger's Inequality (non-examinable)

Proof (of the easy direction):

Proof of Cheeger's Inequality (non-examinable)

Proof (of the easy direction):

- By the Courant-Fischer Formula,

$$
\lambda_{2}=\min _{\substack{x \in \mathbb{R}^{n} \\ x \neq 0, x \perp 1}} \frac{x^{\top} \mathbf{L} x}{x^{\top} x}
$$

Proof of Cheeger's Inequality (non-examinable)

Proof (of the easy direction):

- By the Courant-Fischer Formula,

$$
\lambda_{2}=\min _{\substack{x \in \mathbb{R}^{n} \\ x \neq 0, x \perp 1}} \frac{x^{T} \mathbf{L} x}{x^{\top} x}=\frac{1}{d} \cdot \min _{\substack{x \in \mathbb{R}^{n} \\ x \neq 0, x \perp 1}} \frac{\sum_{u \sim v}\left(x_{u}-x_{v}\right)^{2}}{\sum_{u} x_{u}^{2}}
$$

Proof of Cheeger's Inequality (non-examinable)

Proof (of the easy direction):
Optimisation Problem: Embed vertices on a line

- By the Courant-Fischer Formula, such that sum of squared distances is minimised

$$
\lambda_{2}=\min _{\substack{x \in \mathbb{R}^{n} \\ x \neq 0, x \perp 1}} \frac{x^{\top} L x}{x^{T} x}=\frac{1}{d} \cdot \min _{\substack{x \in \mathbb{R}^{n} \\ x \neq, \neq \times 11}} \frac{\sum_{u \sim v}\left(x_{u}-x_{v}\right)^{2}}{\sum_{u} x_{u}^{2}} .
$$

Proof of Cheeger's Inequality (non-examinable)

Proof (of the easy direction):
Optimisation Problem: Embed vertices on a line

- By the Courant-Fischer Formula, such that sum of squared distances is minimised

$$
\lambda_{2}=\min _{\substack{x \in \mathbb{R}^{n} \\ x \neq 0, x \perp 1}} \frac{x^{\top} L x}{x^{\top} X}=\frac{1}{d} \cdot \min _{\substack{x \in \mathbb{R}^{n} \\ x \neq 0, x \perp 1}} \frac{\sum_{u \sim v}\left(x_{u}-x_{v}\right)^{2}}{\sum_{u} x_{U}^{2}} .
$$

- Let $S \subseteq V$ be the subset for which $\phi(G)$ is minimised. Define $y \in \mathbb{R}^{n}$ by:

$$
y_{u}= \begin{cases}\frac{1}{|S|} & \text { if } u \in S, \\ -\frac{1}{|V| S \mid} & \text { if } u \in V \backslash S .\end{cases}
$$

Proof of Cheeger's Inequality (non-examinable)

Proof (of the easy direction):
Optimisation Problem: Embed vertices on a line

- By the Courant-Fischer Formula, such that sum of squared distances is minimised

$$
\lambda_{2}=\min _{\substack{x \in \mathbb{R}^{n} \\ x \neq 0, x \perp 1}} \frac{x^{\top} L x}{x^{T} x}=\frac{1}{d} \cdot \min _{\substack{x \in \mathbb{R}^{n} \perp 1 \\ x \neq 0, x \perp 1}} \frac{\sum_{u \sim v}\left(x_{u}-x_{v}\right)^{2}}{\sum_{u} x_{u}^{2}}
$$

- Let $S \subseteq V$ be the subset for which $\phi(G)$ is minimised. Define $y \in \mathbb{R}^{n}$ by:

$$
y_{u}= \begin{cases}\frac{1}{|S|} & \text { if } u \in S, \\ -\frac{1}{|V| S \mid} & \text { if } u \in V \backslash S .\end{cases}
$$

- Since $y \perp 1$, it follows that

$$
\begin{aligned}
\lambda_{2} & \leq \frac{1}{d} \cdot \frac{\sum_{u \sim v}\left(y_{u}-y_{v}\right)^{2}}{\sum_{u} y_{u}^{2}}=\frac{1}{d} \cdot \frac{|E(S, V \backslash S)| \cdot\left(\frac{1}{|S|}+\frac{1}{|V \backslash S|}\right)^{2}}{\frac{1}{|S|}+\frac{1}{|V \backslash S|}} \\
& =\frac{1}{d} \cdot|E(S, V \backslash S)| \cdot\left(\frac{1}{|S|}+\frac{1}{|V \backslash S|}\right) \\
& \leq \frac{1}{d} \cdot \frac{2 \cdot|E(S, V \backslash S)|}{|S|}=2 \cdot \phi(G) . \quad \square
\end{aligned}
$$

Outline

Introduction to (Spectral) Graph Theory and Clustering

Matrices, Spectrum and Structure

A Simplified Clustering Problem

Conductance, Cheeger's Inequality and Spectral Clustering

Illustrations of Spectral Clustering and Extension to Non-Regular Graphs
Relating Spectrum to Mixing Times

Outlook: Glimpse at Image Segmentation (non-examinable)

Illustration on a small Example

$$
\mathbf{A}=\left(\begin{array}{llllllll}
0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 0
\end{array}\right) \quad \mathbf{L}=\left(\begin{array}{cccccccc}
1 & 0 & -\frac{1}{3} & -\frac{1}{3} & 0 & 0 & -\frac{1}{3} & 0 \\
0 & 1 & 0 & 0 & -\frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} & 0 \\
-\frac{1}{3} & 0 & 1 & -\frac{1}{3} & 0 & 0 & 0 & -\frac{1}{3} \\
-\frac{1}{3} & 0 & -\frac{1}{3} & 1 & 0 & 0 & -\frac{1}{3} & 0 \\
0 & -\frac{1}{3} & 0 & 0 & 1 & -\frac{1}{3} & 0 & -\frac{1}{3} \\
0 & -\frac{1}{3} & 0 & 0 & -\frac{1}{3} & 1 & 0 & -\frac{1}{3} \\
-\frac{1}{3} & -\frac{1}{3} & 0 & -\frac{1}{3} & 0 & 0 & 1 & 0 \\
0 & 0 & -\frac{1}{3} & 0 & -\frac{1}{3} & -\frac{1}{3} & 0 & 1
\end{array}\right)
$$

Illustration on a small Example

$$
\mathbf{A}=\left(\begin{array}{llllllll}
0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 0
\end{array}\right) \quad \mathbf{L}=\left(\begin{array}{cccccccc}
1 & 0 & -\frac{1}{3} & -\frac{1}{3} & 0 & 0 & -\frac{1}{3} & 0 \\
0 & 1 & 0 & 0 & -\frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} & 0 \\
-\frac{1}{3} & 0 & 1 & -\frac{1}{3} & 0 & 0 & 0 & -\frac{1}{3} \\
-\frac{1}{3} & 0 & -\frac{1}{3} & 1 & 0 & 0 & -\frac{1}{3} & 0 \\
0 & -\frac{1}{3} & 0 & 0 & 1 & -\frac{1}{3} & 0 & -\frac{1}{3} \\
0 & -\frac{1}{3} & 0 & 0 & -\frac{1}{3} & 1 & 0 & -\frac{1}{3} \\
-\frac{1}{3} & -\frac{1}{3} & 0 & -\frac{1}{3} & 0 & 0 & 1 & 0 \\
0 & 0 & -\frac{1}{3} & 0 & -\frac{1}{3} & -\frac{1}{3} & 0 & 1
\end{array}\right)
$$

Illustration on a small Example

$$
\begin{aligned}
& \mathbf{A}=\left(\begin{array}{llllllll}
0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 0
\end{array}\right) \quad \mathbf{L}=\left(\begin{array}{cccccccc}
1 & 0 & -\frac{1}{3} & -\frac{1}{3} & 0 & 0 & -\frac{1}{3} & 0 \\
0 & 1 & 0 & 0 & -\frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} & 0 \\
-\frac{1}{3} & 0 & 1 & -\frac{1}{3} & 0 & 0 & 0 & -\frac{1}{3} \\
-\frac{1}{3} & 0 & -\frac{1}{3} & 1 & 0 & 0 & -\frac{1}{3} & -\frac{1}{3} \\
0 & -\frac{1}{3} & 0 & 0 & 1 & -\frac{1}{3} & 0 & 0 \\
0 & -\frac{1}{3} \\
-\frac{1}{3} & -\frac{3}{3} & 0 & 0 & -\frac{1}{3} & 1 & 0 & -\frac{1}{3} \\
0 & 0 & -\frac{1}{3} & 0 & -\frac{1}{3} & 0 & 1 & -\frac{1}{3} \\
0 & 0 & 1
\end{array}\right) \\
& \lambda_{2}=1-\sqrt{5} / 3 \approx 0.25 \\
& v=(-0.425,+0.263,-0.263,-0.425,+0.425,+0.425,-0.263,+0.263)^{T}
\end{aligned}
$$

Illustration on a small Example

$$
\begin{aligned}
\mathbf{A} & =\left(\begin{array}{llllllll}
0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 0
\end{array}\right) \quad \mathbf{L}=\left(\begin{array}{cccccccc}
1 & 0 & -\frac{1}{3} & -\frac{1}{3} & 0 & 0 & -\frac{1}{3} & 0 \\
0 & 1 & 0 & 0 & -\frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} & 0 \\
-\frac{1}{3} & 0 & 1 & -\frac{1}{3} & 0 & 0 & 0 & -\frac{1}{3} \\
0 & 0 & -\frac{1}{3} & 0 & 0 & 0 & 0 & -\frac{1}{3} \\
0 & -\frac{1}{3} & 0 & 0 & 0 & 0 & 0 & 0 \\
-\frac{1}{3} & -\frac{1}{3} & 0 & 0 & -\frac{1}{3} \\
0 & 0 & -\frac{1}{3} & -\frac{1}{3} & 0 & 0 & 0 & -\frac{1}{3} \\
0 & -\frac{1}{3} & 1 & 0 & 1
\end{array}\right) \\
\lambda_{2} & =1-\sqrt{5} / 3 \approx 0.25 \\
V & =(-0.425,+0.263,-0.263,-0.425,+0.425,+0.425,-0.263,+0.263)^{T}
\end{aligned}
$$

Illustration on a small Example

$$
\begin{aligned}
\mathbf{A} & =\left(\begin{array}{llllllll}
0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 0
\end{array}\right) \quad \mathbf{L}=\left(\begin{array}{cccccccc}
1 & 0 & -\frac{1}{3} & -\frac{1}{3} & 0 & 0 & -\frac{1}{3} & 0 \\
0 & 1 & 0 & 0 & -\frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} & 0 \\
-\frac{1}{3} & 0 & 1 & -\frac{1}{3} & 0 & 0 & 0 & -\frac{1}{3} \\
0 & 0 & -\frac{1}{3} & 0 & 0 & 0 & 1 & -\frac{1}{3} \\
0 & -\frac{1}{3} & 0 & 0 & 0 & 0 & -\frac{1}{3} \\
-\frac{1}{3} & -\frac{3}{3} & 0 & 0 & -\frac{1}{3} & 1 & 0 & -\frac{1}{3} \\
0 & 0 & -\frac{1}{3} & 0 & 0 & 0 & -\frac{1}{3} & -\frac{1}{3} \\
0 & 0 & 0
\end{array}\right) \\
\lambda_{2} & =1-\sqrt{5} / 3 \approx 0.25 \\
V & =(-0.425,+0.263,-0.263,-0.425,+0.425,+0.425,-0.263,+0.263)^{T}
\end{aligned}
$$

Illustration on a small Example

$$
\begin{aligned}
& \mathbf{A}=\left(\begin{array}{llllllll}
0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 0
\end{array}\right) \quad \mathbf{L}=\left(\begin{array}{cccccccc}
1 & 0 & -\frac{1}{3} & -\frac{1}{3} & 0 & 0 & -\frac{1}{3} & 0 \\
0 & 1 & 0 & 0 & -\frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} & 0 \\
-\frac{1}{3} & 0 & 1 & -\frac{1}{3} & 0 & 0 & 0 & -\frac{1}{3} \\
-\frac{1}{3} & 0 & -\frac{1}{3} & 1 & 0 & 0 & -\frac{1}{3} & 0 \\
0 & -\frac{1}{3} & 0 & 0 & 1 & -\frac{1}{3} & 0 & -\frac{1}{3} \\
0 & -\frac{3}{3} & 0 & 0 & -\frac{1}{3} & 1 & 0 & -\frac{3}{3} \\
-\frac{1}{3} & -\frac{3}{3} & 0 & -\frac{1}{3} & 0 & 0 & 1 & 0 \\
0 & 0 & -\frac{1}{3} & 0 & -\frac{1}{3} & -\frac{1}{3} & 0 & 1
\end{array}\right) \\
& \lambda_{2}=1-\sqrt{5} / 3 \approx 0.25 \\
& v=(-0.425,+0.263,-0.263,-0.425,+0.425,+0.425,-0.263,+0.263)^{T}
\end{aligned}
$$

Illustration on a small Example

$$
\begin{aligned}
& \mathbf{A}=\left(\begin{array}{llllllll}
0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 0
\end{array}\right) \quad \mathbf{L}=\left(\begin{array}{cccccccc}
1 & 0 & -\frac{1}{3} & -\frac{1}{3} & 0 & 0 & -\frac{1}{3} & 0 \\
0 & 1 & 0 & 0 & -\frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} & 0 \\
-\frac{1}{3} & 0 & 1 & -\frac{1}{3} & 0 & 0 & 0 & -\frac{1}{3} \\
-\frac{1}{3} & 0 & -\frac{1}{3} & 1 & 0 & 0 & -\frac{1}{3} & 0 \\
0 & -\frac{1}{3} & 0 & 0 & 1 & -\frac{1}{3} & 0 & -\frac{1}{3} \\
0 & -\frac{3}{3} & 0 & 0 & -\frac{1}{3} & 1 & 0 & -\frac{3}{3} \\
-\frac{1}{3} & -\frac{3}{3} & 0 & -\frac{1}{3} & 0 & 0 & 1 & 0 \\
0 & 0 & -\frac{1}{3} & 0 & -\frac{1}{3} & -\frac{1}{3} & 0 & 1
\end{array}\right) \\
& \lambda_{2}=1-\sqrt{5} / 3 \approx 0.25 \\
& v=(-0.425,+0.263,-0.263,-0.425,+0.425,+0.425,-0.263,+0.263)^{T}
\end{aligned}
$$

Illustration on a small Example

$$
\begin{aligned}
& \mathbf{A}=\left(\begin{array}{llllllll}
0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 0
\end{array}\right) \quad \mathbf{L}=\left(\begin{array}{cccccccc}
1 & 0 & -\frac{1}{3} & -\frac{1}{3} & 0 & 0 & -\frac{1}{3} & 0 \\
0 & 1 & 0 & 0 & -\frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} & 0 \\
-\frac{1}{3} & 0 & 1 & -\frac{1}{3} & 0 & 0 & 0 & -\frac{1}{3} \\
-\frac{1}{3} & 0 & -\frac{1}{3} & 1 & 0 & 0 & -\frac{1}{3} & 0 \\
0 & -\frac{1}{3} & 0 & 0 & 1 & -\frac{1}{3} & 0 & -\frac{1}{3} \\
0 & -\frac{3}{3} & 0 & 0 & -\frac{1}{3} & 1 & 0 & -\frac{3}{3} \\
-\frac{1}{3} & -\frac{3}{3} & 0 & -\frac{1}{3} & 0 & 0 & 1 & 0 \\
0 & 0 & -\frac{1}{3} & 0 & -\frac{1}{3} & -\frac{1}{3} & 0 & 1
\end{array}\right) \\
& \lambda_{2}=1-\sqrt{5} / 3 \approx 0.25 \\
& v=(-0.425,+0.263,-0.263,-0.425,+0.425,+0.425,-0.263,+0.263)^{T}
\end{aligned}
$$

4

Illustration on a small Example

$$
\begin{aligned}
& \mathbf{A}=\left(\begin{array}{llllllll}
0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 0
\end{array}\right) \quad \mathbf{L}=\left(\begin{array}{cccccccc}
1 & 0 & -\frac{1}{3} & -\frac{1}{3} & 0 & 0 & -\frac{1}{3} & 0 \\
0 & 1 & 0 & 0 & -\frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} & 0 \\
-\frac{1}{3} & 0 & 1 & -\frac{1}{3} & 0 & 0 & 0 & -\frac{1}{3} \\
-\frac{1}{3} & 0 & -\frac{1}{3} & 1 & 0 & 0 & -\frac{1}{3} & 0 \\
0 & -\frac{1}{3} & 0 & 0 & 1 & -\frac{1}{3} & 0 & -\frac{1}{3} \\
0 & -\frac{3}{3} & 0 & 0 & -\frac{1}{3} & 1 & 0 & -\frac{3}{3} \\
-\frac{1}{3} & -\frac{3}{3} & 0 & -\frac{1}{3} & 0 & 0 & 1 & 0 \\
0 & 0 & -\frac{1}{3} & 0 & -\frac{1}{3} & -\frac{1}{3} & 0 & 1
\end{array}\right) \\
& \lambda_{2}=1-\sqrt{5} / 3 \approx 0.25 \\
& v=(-0.425,+0.263,-0.263,-0.425,+0.425,+0.425,-0.263,+0.263)^{T}
\end{aligned}
$$

4

$$
\begin{aligned}
& \mathbf{A}=\left(\begin{array}{llllllll}
0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 0
\end{array}\right)=\left(\begin{array}{cccccccc}
1 & 0 & -\frac{1}{3} & -\frac{1}{3} & 0 & 0 & -\frac{1}{3} & 0 \\
0 & 1 & 0 & 0 & -\frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} & 0 \\
-\frac{1}{3} & 0 & 1 & -\frac{1}{3} & 0 & 0 & 0 & -\frac{1}{3} \\
-\frac{1}{3} & 0 & -\frac{1}{3} & 1 & 0 & 0 & -\frac{1}{3} & 0 \\
0 & -\frac{1}{3} & 0 & 0 & 1 & -\frac{1}{3} & 0 & -\frac{1}{3} \\
0 & -\frac{1}{3} & 0 & 0 & -\frac{1}{3} & 1 & 0 & -\frac{1}{3} \\
-\frac{1}{3} & -\frac{1}{3} & 0 & -\frac{1}{3} & 0 & 0 & 1 & 0 \\
0 & 0 & -\frac{1}{3} & 0 & -\frac{1}{3} & -\frac{1}{3} & 0 & 1
\end{array}\right) \\
& \lambda_{2}=1-\sqrt{5} / 3 \approx 0.25 \\
& v=(-0.425,+0.263,-0.263,-0.425,+0.425,+0.425,-0.263,+0.263)^{T} \\
& \begin{array}{ll}
4 & 6 \\
0 & 0
\end{array} \\
& \begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 3 & 2 & 5
\end{array} \\
& \xrightarrow[-0.425-0.263]{1} \quad \begin{array}{l}
\text { 1 } \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{A}=\left(\begin{array}{llllllll}
0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 0
\end{array}\right)=\left(\begin{array}{cccccccc}
1 & 0 & -\frac{1}{3} & -\frac{1}{3} & 0 & 0 & -\frac{1}{3} & 0 \\
0 & 1 & 0 & 0 & -\frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} & 0 \\
-\frac{1}{3} & 0 & 1 & -\frac{1}{3} & 0 & 0 & 0 & -\frac{1}{3} \\
-\frac{1}{3} & 0 & -\frac{1}{3} & 1 & 0 & 0 & -\frac{1}{3} & 0 \\
0 & -\frac{1}{3} & 0 & 0 & 1 & -\frac{1}{3} & 0 & -\frac{1}{3} \\
0 & -\frac{1}{3} & 0 & 0 & -\frac{1}{3} & 1 & 0 & -\frac{1}{3} \\
-\frac{1}{3} & -\frac{1}{3} & 0 & -\frac{1}{3} & 0 & 0 & 1 & 0 \\
0 & 0 & -\frac{1}{3} & 0 & -\frac{1}{3} & -\frac{1}{3} & 0 & 1
\end{array}\right) \\
& \lambda_{2}=1-\sqrt{5} / 3 \approx 0.25 \\
& v=(-0.425,+0.263,-0.263,-0.425,+0.425,+0.425,-0.263,+0.263)^{T} \\
& \begin{array}{ll}
4 & 7 \\
0 & 0
\end{array} \\
& \begin{array}{l}
6 \\
0
\end{array} \\
& \begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 3 & 2 & 5
\end{array} \\
& \xrightarrow[-0.425-0.263]{1} \quad \begin{array}{lll}
1 & +1 \\
\hline 1
\end{array}
\end{aligned}
$$

Illustration on a small Example

$$
\begin{aligned}
& \mathbf{A}=\left(\begin{array}{llllllll}
0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 0
\end{array}\right)=\left(\begin{array}{cccccccc}
1 & 0 & -\frac{1}{3} & -\frac{1}{3} & 0 & 0 & -\frac{1}{3} & 0 \\
0 & 1 & 0 & 0 & -\frac{1}{3} & -\frac{1}{3} & -\frac{3}{3} & 0 \\
-\frac{1}{3} & 0 & 1 & -\frac{1}{3} & 0 & 0 & 0 & -\frac{1}{3} \\
-\frac{1}{3} & 0 & -\frac{1}{3} & 1 & 0 & 0 & -\frac{1}{3} & 0 \\
0 & -\frac{1}{3} & 0 & 0 & 1 & -\frac{1}{3} & 0 & -\frac{1}{3} \\
0 & -\frac{3}{3} & 0 & 0 & -\frac{1}{3} & 1 & 0 & -\frac{3}{3} \\
-\frac{1}{3} & -\frac{1}{3} & 0 & -\frac{1}{3} & 0 & 0 & 1 & 0 \\
0 & 0 & -\frac{1}{3} & 0 & -\frac{1}{3} & -\frac{1}{3} & 0 & 1
\end{array}\right) \\
& \lambda_{2}=1-\sqrt{5} / 3 \approx 0.25 \\
& v=(-0.425,+0.263,-0.263,-0.425,+0.425,+0.425,-0.263,+0.263)^{T} \\
& \begin{array}{ll}
4 & 7 \\
0 & 0
\end{array} \\
& \begin{array}{ll}
8 & 6 \\
0 & 0
\end{array} \\
& \begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 3 & 2 & 5
\end{array} \\
& \xrightarrow[-0.425-0.263]{1} \quad \begin{array}{l}
1 \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{A} & =\left(\begin{array}{llllllll}
0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 0
\end{array}\right) \quad \mathbf{L}=\left(\begin{array}{cccccccc}
1 & 0 & -\frac{1}{3} & -\frac{1}{3} & 0 & 0 & -\frac{1}{3} & 0 \\
0 & 1 & 0 & 0 \\
-\frac{1}{3} & 0 & 1 & 0 & -\frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} & 0 \\
-\frac{1}{3} & 0 & -\frac{1}{3} & 1 & 0 & 0 & 0 & -\frac{1}{3} \\
0 & -\frac{1}{3} & 0 & 0 & 1 & 0 & -\frac{1}{3} & 0 \\
0 & -\frac{3}{3} & 0 & 0 & -\frac{1}{3} & 1 & 0 & -\frac{1}{3} \\
-\frac{1}{3} & -\frac{1}{3} & 0 & -\frac{1}{3} & 0 & 0 & 0 & 0 \\
0 & 0 & -\frac{1}{3} & 0 & -\frac{1}{3} & -\frac{1}{3} & 0 & 0 \\
1
\end{array}\right) \\
\lambda_{2} & =1-\sqrt{5} / 3 \approx 0.25 \\
V & =(-0.425,+0.263,-0.263,-0.425,+0.425,+0.425,-0.263,+0.263)^{T}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{A} & =\left(\begin{array}{llllllll}
0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 0
\end{array}\right) \quad \mathbf{L}=\left(\begin{array}{cccccccc}
1 & 0 & -\frac{1}{3} & -\frac{1}{3} & 0 & 0 & -\frac{1}{3} & 0 \\
0 & 1 & 0 & 0 & -\frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} & 0 \\
-\frac{1}{3} & 0 & 1 & -\frac{1}{3} & 0 & 0 & 0 & -\frac{1}{3} \\
0 & 0 & -\frac{1}{3} & 1 & 0 & 0 & -\frac{1}{3} & 0 \\
0 & -\frac{1}{3} & 0 & 0 & 1 & -\frac{1}{3} & 0 & -\frac{1}{3} \\
0 & -\frac{3}{3} & 0 & 0 & -\frac{1}{3} & 1 & 0 & -\frac{3}{3} \\
-\frac{1}{3} & -\frac{1}{3} & 0 & -\frac{1}{3} & 0 & 0 & 1 & 0 \\
0 & 0 & -\frac{1}{3} & 0 & -\frac{1}{3} & -\frac{1}{3} & 0 & 1
\end{array}\right) \\
\lambda_{2} & =1-\sqrt{5} / 3 \approx 0.25 \\
V & =(-0.425,+0.263,-0.263,-0.425,+0.425,+0.425,-0.263,+0.263)^{T}
\end{aligned}
$$

Sweep: 1
Conductance: 1

$$
\begin{aligned}
& \mathbf{A}=\left(\begin{array}{llllllll}
0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 0
\end{array}\right) \quad \mathbf{L}=\left(\begin{array}{cccccccc}
1 & 0 & -\frac{1}{3} & -\frac{1}{3} & 0 & 0 & -\frac{1}{3} & 0 \\
0 & 1 & 0 & 0 & -\frac{1}{3} & -\frac{1}{3} & -\frac{3}{3} & 0 \\
-\frac{1}{3} & 0 & 1 & 0 & -\frac{1}{3} & 0 & 0 & 0 \\
0 & 0 & -\frac{1}{3} & 1 & 0 & 0 & -\frac{1}{3} & -\frac{1}{3} \\
0 & -\frac{1}{3} & 0 & 0 & 1 & -\frac{1}{3} & 0 & 0 \\
-\frac{1}{3} & -\frac{1}{3} & 0 & 0 & -\frac{1}{3} & 1 & 0 & -\frac{1}{3} \\
0 & 0 & -\frac{1}{3} & 0 & 0 & -\frac{1}{3} & 0 & -\frac{1}{3} \\
0 & 0 & 0
\end{array}\right) \\
& \lambda_{2}=1-\sqrt{5} / 3 \approx 0.25 \\
& V
\end{aligned}
$$

Sweep: 2
Conductance: 0.666

$$
\begin{aligned}
\mathbf{A} & =\left(\begin{array}{llllllll}
0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 0
\end{array}\right) \quad \mathbf{L}=\left(\begin{array}{cccccccc}
1 & 0 & -\frac{1}{3} & -\frac{1}{3} & 0 & 0 & -\frac{1}{3} & 0 \\
0 & 1 & 0 & 0 & -\frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} & 0 \\
-\frac{1}{3} & 0 & 1 & -\frac{1}{3} & 0 & 0 & 0 & -\frac{1}{3} \\
0 & 0 & -\frac{1}{3} & 0 & 0 & 0 & 1 & -\frac{1}{3} \\
0 & -\frac{1}{3} & 0 & 0 & 0 & 0 & -\frac{1}{3} \\
-\frac{1}{3} & -\frac{3}{3} & 0 & 0 & -\frac{1}{3} & 1 & 0 & -\frac{1}{3} \\
0 & 0 & -\frac{1}{3} & 0 & 0 & 0 & -\frac{1}{3} & -\frac{1}{3} \\
0 & 0 & 0
\end{array}\right) \\
\lambda_{2} & =1-\sqrt{5} / 3 \approx 0.25 \\
V & =(-0.425,+0.263,-0.263,-0.425,+0.425,+0.425,-0.263,+0.263)^{T}
\end{aligned}
$$

Sweep: 3
Conductance: 0.333

$$
\begin{aligned}
\mathbf{A} & =\left(\begin{array}{llllllll}
0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 0
\end{array}\right) \quad \mathbf{L}=\left(\begin{array}{cccccccc}
1 & 0 & -\frac{1}{3} & -\frac{1}{3} & 0 & 0 & -\frac{1}{3} & 0 \\
0 & 1 & 0 & 0 & -\frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} & 0 \\
-\frac{1}{3} & 0 & 1 & -\frac{1}{3} & 0 & 0 & 0 & -\frac{1}{3} \\
0 & 0 & -\frac{1}{3} & 0 & 0 & 0 & 1 & -\frac{1}{3} \\
0 & -\frac{1}{3} & 0 & 0 & 0 & 0 & -\frac{1}{3} \\
-\frac{1}{3} & -\frac{3}{3} & 0 & 0 & -\frac{1}{3} & 1 & 0 & -\frac{1}{3} \\
0 & 0 & -\frac{1}{3} & 0 & 0 & 0 & -\frac{1}{3} & -\frac{1}{3} \\
0 & 0 & 0
\end{array}\right) \\
\lambda_{2} & =1-\sqrt{5} / 3 \approx 0.25 \\
V & =(-0.425,+0.263,-0.263,-0.425,+0.425,+0.425,-0.263,+0.263)^{T}
\end{aligned}
$$

Sweep: 4
Conductance: 0.166

$$
\begin{aligned}
\mathbf{A} & =\left(\begin{array}{llllllll}
0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 0
\end{array}\right) \quad \mathbf{L}=\left(\begin{array}{cccccccc}
1 & 0 & -\frac{1}{3} & -\frac{1}{3} & 0 & 0 & -\frac{1}{3} & 0 \\
0 & 1 & 0 & 0 & -\frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} & 0 \\
-\frac{1}{3} & 0 & 1 & -\frac{1}{3} & 0 & 0 & 0 & -\frac{1}{3} \\
0 & 0 & -\frac{1}{3} & 0 & 0 & 0 & 1 & -\frac{1}{3} \\
0 & -\frac{1}{3} & 0 & 0 & 0 & 0 & -\frac{1}{3} \\
-\frac{1}{3} & -\frac{3}{3} & 0 & 0 & -\frac{1}{3} & 1 & 0 & -\frac{1}{3} \\
0 & 0 & -\frac{1}{3} & 0 & 0 & 0 & -\frac{1}{3} & -\frac{1}{3} \\
0 & 0 & 0
\end{array}\right) \\
\lambda_{2} & =1-\sqrt{5} / 3 \approx 0.25 \\
V & =(-0.425,+0.263,-0.263,-0.425,+0.425,+0.425,-0.263,+0.263)^{T}
\end{aligned}
$$

Sweep: 5
Conductance: 0.333

$$
\begin{aligned}
& \mathbf{A}=\left(\begin{array}{llllllll}
0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 0
\end{array}\right) \quad \mathbf{L}=\left(\begin{array}{cccccccc}
1 & 0 & -\frac{1}{3} & -\frac{1}{3} & 0 & 0 & -\frac{1}{3} & 0 \\
0 & 1 & 0 & 0 & -\frac{1}{3} & -\frac{1}{3} & -\frac{3}{3} & 0 \\
-\frac{1}{3} & 0 & 1 & 0 & -\frac{1}{3} & 0 & 0 & 0 \\
0 & 0 & -\frac{1}{3} & 1 & 0 & 0 & -\frac{1}{3} & -\frac{1}{3} \\
0 & -\frac{1}{3} & 0 & 0 & 1 & -\frac{1}{3} & 0 & 0 \\
-\frac{1}{3} & -\frac{1}{3} & 0 & 0 & -\frac{1}{3} & 1 & 0 & -\frac{1}{3} \\
0 & 0 & -\frac{1}{3} & 0 & 0 & -\frac{1}{3} & 0 & -\frac{1}{3} \\
0 & 0 & 0
\end{array}\right) \\
& \lambda_{2}=1-\sqrt{5} / 3 \approx 0.25 \\
& V
\end{aligned}
$$

Sweep: 6
Conductance: 0.666

$$
\begin{aligned}
& \mathbf{A}=\left(\begin{array}{llllllll}
0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 0
\end{array}\right) \quad \mathbf{L}=\left(\begin{array}{cccccccc}
1 & 0 & -\frac{1}{3} & -\frac{1}{3} & 0 & 0 & -\frac{1}{3} & 0 \\
0 & 1 & 0 & 0 & -\frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} & 0 \\
-\frac{1}{3} & 0 & 1 & -\frac{1}{3} & 0 & 0 & 0 & -\frac{1}{3} \\
-\frac{3}{3} & 0 & -\frac{1}{3} & 1 & 0 & 0 & -\frac{1}{3} & 0 \\
0 & -\frac{1}{3} & 0 & 0 & 1 & -\frac{1}{3} & 0 & -\frac{1}{3} \\
0 & -\frac{3}{3} & 0 & 0 & -\frac{1}{3} & 1 & 0 & -\frac{1}{3} \\
-\frac{1}{3} & -\frac{1}{3} & 0 & -\frac{1}{3} & 0 & 0 & 1 & 0 \\
0 & 0 & -\frac{1}{3} & 0 & -\frac{1}{3} & -\frac{1}{3} & 0 & 1
\end{array}\right) \\
& \lambda_{2}=1-\sqrt{5} / 3 \approx 0.25 \\
& v=(-0.425,+0.263,-0.263,-0.425,+0.425,+0.425,-0.263,+0.263)^{T}
\end{aligned}
$$

Sweep: 7
Conductance: 1

Let us now look at an example of a non-regular graph!

The Laplacian Matrix (General Version)

The (normalised) Laplacian matrix of $G=(V, E, w)$ is the n by n matrix

$$
\mathbf{L}=\mathbf{I}-\mathbf{D}^{-1 / 2} \mathbf{A} \mathbf{D}^{-1 / 2}
$$

where \mathbf{D} is a diagonal $n \times n$ matrix s.t. $\mathbf{D}_{u u}=\operatorname{deg}(u)=\sum_{\{u, v\} \in E} w(u, v)$, and \mathbf{A} is the weighted adjacency matrix of G.

The Laplacian Matrix (General Version)

The (normalised) Laplacian matrix of $G=(V, E, w)$ is the n by n matrix

$$
\mathbf{L}=\mathbf{I}-\mathbf{D}^{-1 / 2} \mathbf{A} \mathbf{D}^{-1 / 2}
$$

where \mathbf{D} is a diagonal $n \times n$ matrix s.t. $\mathbf{D}_{u u}=\operatorname{deg}(u)=\sum_{\{u, v\} \in E} w(u, v)$, and \mathbf{A} is the weighted adjacency matrix of G.

$$
\mathbf{L}=\left(\begin{array}{cccc}
1 & -16 / 25 & 0 & -9 / 20 \\
-16 / 25 & 1 & -9 / 20 & 0 \\
0 & -9 / 20 & 1 & -7 / 16 \\
-9 / 20 & 0 & -7 / 16 & 1
\end{array}\right)
$$

The Laplacian Matrix (General Version)

The (normalised) Laplacian matrix of $G=(V, E, w)$ is the n by n matrix

$$
\mathbf{L}=\mathbf{I}-\mathbf{D}^{-1 / 2} \mathbf{A} \mathbf{D}^{-1 / 2}
$$

where \mathbf{D} is a diagonal $n \times n$ matrix s.t. $\mathbf{D}_{u u}=\operatorname{deg}(u)=\sum_{\{u, v\} \in E} w(u, v)$, and \mathbf{A} is the weighted adjacency matrix of G.

- $\mathbf{L}_{u v}=\frac{w(u, v)}{\sqrt{d_{u} d_{v}}}$ for $u \neq v$
- L is symmetric
- If G is d-regular, $\mathbf{L}=\mathbf{I}-\frac{1}{d} \cdot \mathbf{A}$.

$$
\mathbf{L}=\left(\begin{array}{cccc}
1 & -16 / 25 & 0 & -9 / 20 \\
-16 / 25 & 1 & -9 / 20 & 0 \\
0 & -9 / 20 & 1 & -7 / 16 \\
-9 / 20 & 0 & -7 / 16 & 1
\end{array}\right)
$$

Conductance and Spectral Clustering (General Version)

$$
\begin{aligned}
& \text { Conductance (General Version) } \\
& \text { Let } G=(V, E, w) \text { and } \emptyset \subsetneq S \subsetneq V \text {. The conductance (edge expansion) } \\
& \text { of } S \text { is } \\
& \qquad \phi(S):=\frac{w\left(S, S^{c}\right)}{\min \left\{\operatorname{vol}(S), \operatorname{vol}\left(S^{c}\right)\right\}}, \\
& \text { where } w\left(S, S^{c}\right):=\sum_{u \in S, v \in S^{c}} w(u, v) \text { and } \operatorname{vol}(S):=\sum_{u \in S} d(u) . \\
& \text { Moreover, the conductance (edge expansion) of } G \text { is } \\
& \qquad \phi(G):=\min _{\emptyset \neq S \subsetneq V} \phi(S) .
\end{aligned}
$$

Conductance and Spectral Clustering (General Version)

Conductance (General Version)
Let $G=(V, E, w)$ and $\emptyset \subsetneq S \subsetneq V$. The conductance (edge expansion) of S is

$$
\phi(S):=\frac{w\left(S, S^{c}\right)}{\min \left\{\operatorname{vol}(S), \operatorname{vol}\left(S^{c}\right)\right\}}
$$

where $w\left(S, S^{c}\right):=\sum_{u \in S, v \in S^{c}} w(u, v)$ and $\operatorname{vol}(S):=\sum_{u \in S} d(u)$.
Moreover, the conductance (edge expansion) of G is

$$
\phi(G):=\min _{\emptyset \neq S \subsetneq V} \phi(S) .
$$

Spectral Clustering (General Version):

Conductance and Spectral Clustering (General Version)

Conductance (General Version)
Let $G=(V, E, w)$ and $\emptyset \subsetneq S \subsetneq V$. The conductance (edge expansion) of S is

$$
\phi(S):=\frac{w\left(S, S^{c}\right)}{\min \left\{\operatorname{vol}(S), \operatorname{vol}\left(S^{c}\right)\right\}}
$$

where $w\left(S, S^{c}\right):=\sum_{u \in S, v \in S^{c}} w(u, v)$ and $\operatorname{vol}(S):=\sum_{u \in S} d(u)$.
Moreover, the conductance (edge expansion) of G is

$$
\phi(G):=\min _{\emptyset \neq S \subsetneq V} \phi(S) .
$$

Spectral Clustering (General Version):

1. Compute the eigenvector x corresponding to λ_{2} and $y=\mathbf{D}^{-1 / 2} x$.

Conductance and Spectral Clustering (General Version)

Conductance (General Version)
Let $G=(V, E, w)$ and $\emptyset \subsetneq S \subsetneq V$. The conductance (edge expansion) of S is

$$
\phi(S):=\frac{w\left(S, S^{c}\right)}{\min \left\{\operatorname{vol}(S), \operatorname{vol}\left(S^{c}\right)\right\}}
$$

where $w\left(S, S^{c}\right):=\sum_{u \in S, v \in S^{c}} w(u, v)$ and $\operatorname{vol}(S):=\sum_{u \in S} d(u)$.
Moreover, the conductance (edge expansion) of G is

$$
\phi(G):=\min _{\emptyset \neq S \subsetneq V} \phi(S) .
$$

Spectral Clustering (General Version):

1. Compute the eigenvector x corresponding to λ_{2} and $y=\mathbf{D}^{-1 / 2} x$.
2. Order the vertices so that $y_{1} \leq y_{2} \leq \cdots \leq y_{n}$ (embed V on \mathbb{R})

Conductance and Spectral Clustering (General Version)

Conductance (General Version)
Let $G=(V, E, w)$ and $\emptyset \subsetneq S \subsetneq V$. The conductance (edge expansion) of S is

$$
\phi(S):=\frac{w\left(S, S^{c}\right)}{\min \left\{\operatorname{vol}(S), \operatorname{vol}\left(S^{c}\right)\right\}}
$$

where $w\left(S, S^{c}\right):=\sum_{u \in S, v \in S^{c}} w(u, v)$ and $\operatorname{vol}(S):=\sum_{u \in S} d(u)$.
Moreover, the conductance (edge expansion) of G is

$$
\phi(G):=\min _{\emptyset \neq S \subsetneq V} \phi(S) .
$$

Spectral Clustering (General Version):

1. Compute the eigenvector x corresponding to λ_{2} and $y=\mathbf{D}^{-1 / 2} x$.
2. Order the vertices so that $y_{1} \leq y_{2} \leq \cdots \leq y_{n}$ (embed V on \mathbb{R})
3. Try all $n-1$ sweep cuts of the form $(\{1,2, \ldots, k\},\{k+1, \ldots, n\})$ and return the one with smallest conductance

Stochastic Block Model and 1D-Embedding

Stochastic Block Model
$G=(V, E)$ with clusters $S_{1}, S_{2} \subseteq V, 0 \leq q<p \leq 1$

$$
\mathbf{P}[\{u, v\} \in E]= \begin{cases}p & \text { if } u, v \in S_{i}, \\ q & \text { if } u \in S_{i}, v \in S_{j}, i \neq j .\end{cases}
$$

Stochastic Block Model and 1D-Embedding

$$
\begin{aligned}
G= & (V, E) \text { with clusters } S_{1}, S_{2} \subseteq V, 0 \leq q<p \leq 1 \\
& \mathbf{P}[\{u, v\} \in E]= \begin{cases}p & \text { if } u, v \in S_{i}, \\
q & \text { if } u \in S_{i}, v \in S_{j}, i \neq j .\end{cases}
\end{aligned}
$$

Here:

- $\left|S_{1}\right|=80$, $\left|S_{2}\right|=120$
- $p=0.08$
- $q=0.01$

Stochastic Block Model and 1D-Embedding

Stochastic Block Model

$G=(V, E)$ with clusters $S_{1}, S_{2} \subseteq V, 0 \leq q<p \leq 1$

$$
\mathbf{P}[\{u, v\} \in E]= \begin{cases}p & \text { if } u, v \in S_{i} \\ q & \text { if } u \in S_{i}, v \in S_{j}, i \neq j\end{cases}
$$

Here:

- $\left|S_{1}\right|=80$, $\left|S_{2}\right|=120$
- $p=0.08$
- $q=0.01$

Number of Vertices: 200
Number of Edges: 919
Eigenvalue $1:-1.1968431479565368 \mathrm{e}-16$
Eigenvalue 2 : 0.1543784937248489
Eigenvalue 3 : 0.37049909753568877
Eigenvalue 4 : 0.39770640242147404
Eigenvalue 5 : 0.4316114413430584
Eigenvalue 6 : 0.44379221120189777
Eigenvalue 7 : 0.4564011652684181
Eigenvalue 8 : 0.4632911204500282
Eigenvalue 9 : 0.474638606357877
Eigenvalue $10: 0.4814019607292904$

Stochastic Block Model and 1D-Embedding

Stochastic Block Model

$G=(V, E)$ with clusters $S_{1}, S_{2} \subseteq V, 0 \leq q<p \leq 1$

$$
\mathbf{P}[\{u, v\} \in E]= \begin{cases}p & \text { if } u, v \in S_{i} \\ q & \text { if } u \in S_{i}, v \in S_{j}, i \neq j\end{cases}
$$

Here:

- $\left|S_{1}\right|=80$, $\left|S_{2}\right|=120$
- $p=0.08$
- $q=0.01$

Number of Vertices: 200
Number of Edges: 919
Eigenvalue 1 : $-1.1968431479565368 \mathrm{e}-16$
Eigenvalue 2 : 0.1543784937248489
Eigenvalue 3 : 0.37049909753568877
Eigenvalue 4 : 0.39770640242147404
Eigenvalue 5 : 0.4316114413430584
Eigenvalue 6 : 0.44379221120189777
Eigenvalue 7 : 0.4564011652684181
Eigenvalue 8 : 0.4632911204500282
Eigenvalue 9 : 0.474638606357877
Eigenvalue $10: 0.4814019607292904$

Drawing the 2D-Embedding

Spectral Clustering

Best Solution found by Spectral Clustering

- Step: 78
- Threshold: -0.0268
- Partition Sizes: 78/122
- Cut Edges: 84
- Conductance: 0.1448

Clustering induced by Blocks

- Step: 1
- Threshold: 0
- Partition Sizes: 80/120
- Cut Edges: 88
- Conductance: 0.1486

Additional Example: Stochastic Block Models with 3 Clusters

Graph $G=(V, E)$ with clusters
$S_{1}, S_{2}, S_{3} \subseteq V ; \quad 0 \leq q<p \leq 1$
$\mathbf{P}[\{u, v\} \in E]= \begin{cases}p & u, v \in S_{i} \\ q & u \in S_{i}, v \in S_{j}, i \neq j\end{cases}$

Additional Example: Stochastic Block Models with 3 Clusters

Graph $G=(V, E)$ with clusters $S_{1}, S_{2}, S_{3} \subseteq V ; \quad 0 \leq q<p \leq 1$
$\mathbf{P}[\{u, v\} \in E]= \begin{cases}p & u, v \in S_{i} \\ q & u \in S_{i}, v \in S_{j}, i \neq j\end{cases}$
$|V|=300,\left|S_{i}\right|=100$
$p=0.08, q=0.01$.

Additional Example: Stochastic Block Models with 3 Clusters

Graph $G=(V, E)$ with clusters $S_{1}, S_{2}, S_{3} \subseteq V ; \quad 0 \leq q<p \leq 1$
$\mathbf{P}[\{u, v\} \in E]= \begin{cases}p & u, v \in S_{i} \\ q & u \in S_{i}, v \in S_{j}, i \neq j\end{cases}$
$|V|=300,\left|S_{i}\right|=100$
$p=0.08, q=0.01$.

Spectral embedding

Additional Example: Stochastic Block Models with 3 Clusters

Graph $G=(V, E)$ with clusters $S_{1}, S_{2}, S_{3} \subseteq V ; \quad 0 \leq q<p \leq 1$
$\mathbf{P}[\{u, v\} \in E]= \begin{cases}p & u, v \in S_{i} \\ q & u \in S_{i}, v \in S_{j}, i \neq j\end{cases}$
$|V|=300,\left|S_{i}\right|=100$
$p=0.08, q=0.01$.

Spectral embedding

Output of Spectral Clustering

Choosing the Cluster Number k

- If k is unknown:
- small λ_{k} means there exist k sparsely connected subsets in the graph (recall: $\lambda_{1}=\ldots=\lambda_{k}=0$ means there are k connected components)

Choosing the Cluster Number k

- If k is unknown:
- small λ_{k} means there exist k sparsely connected subsets in the graph (recall: $\lambda_{1}=\ldots=\lambda_{k}=0$ means there are k connected components)
- large λ_{k+1} means all these k subsets have "good" inner-connectivity properties

Choosing the Cluster Number k

- If k is unknown:
- small λ_{k} means there exist k sparsely connected subsets in the graph (recall: $\lambda_{1}=\ldots=\lambda_{k}=0$ means there are k connected components)
- large λ_{k+1} means all these k subsets have "good" inner-connectivity properties
\Rightarrow choose smallest $k \geq 2$ so that the spectral gap $\lambda_{k+1}-\lambda_{k}$ is "large"

Choosing the Cluster Number k

- If k is unknown:
- small λ_{k} means there exist k sparsely connected subsets in the graph (recall: $\lambda_{1}=\ldots=\lambda_{k}=0$ means there are k connected components)
- large λ_{k+1} means all these k subsets have "good" inner-connectivity properties
\Rightarrow choose smallest $k \geq 2$ so that the spectral gap $\lambda_{k+1}-\lambda_{k}$ is "large"
- In the latter example $\lambda=\{0,0.20,0.22,0.43,0.45, \ldots\} \Longrightarrow k=3$.

Choosing the Cluster Number k

- If k is unknown:
- small λ_{k} means there exist k sparsely connected subsets in the graph (recall: $\lambda_{1}=\ldots=\lambda_{k}=0$ means there are k connected components)
- large λ_{k+1} means all these k subsets have "good" inner-connectivity properties
\Rightarrow choose smallest $k \geq 2$ so that the spectral gap $\lambda_{k+1}-\lambda_{k}$ is "large"
- In the latter example $\lambda=\{0,0.20,0.22,0.43,0.45, \ldots\} \Longrightarrow k=3$.
- In the former example $\lambda=\{0,0.15,0.37,0.40,0.43, \ldots\} \Longrightarrow k=2$.

Choosing the Cluster Number k

- If k is unknown:
- small λ_{k} means there exist k sparsely connected subsets in the graph (recall: $\lambda_{1}=\ldots=\lambda_{k}=0$ means there are k connected components)
- large λ_{k+1} means all these k subsets have "good" inner-connectivity properties
\Rightarrow choose smallest $k \geq 2$ so that the spectral gap $\lambda_{k+1}-\lambda_{k}$ is "large"
- In the latter example $\lambda=\{0,0.20,0.22,0.43,0.45, \ldots\} \Longrightarrow k=3$.
- In the former example $\lambda=\{0,0.15,0.37,0.40,0.43, \ldots\} \Longrightarrow k=2$.
- For $k=2$ use sweep-cut extract clusters. For $k \geq 3$ use embedding in k-dimensional space and apply k-means (geometric clustering)

Summary (1/2): Graph Structure vs. Matrix Spectrum

Summary (2/2): Spectral Clustering

Spectral Embedding onto Line
Compute Sweep Cuts

- Given any graph (adjacency matrix)
- Graph Spectrum (computable in poly-time)
- λ_{2} (relates to connectivity)
- λ_{n} (relates to bipartiteness)
- Cheeger's Inequality
- relates λ_{2} to conductance
- unbounded approximation ratio
- effective in practice

Outline

Introduction to (Spectral) Graph Theory and Clustering

Matrices, Spectrum and Structure

A Simplified Clustering Problem

Conductance, Cheeger's Inequality and Spectral Clustering

Illustrations of Spectral Clustering and Extension to Non-Regular Graphs

Relating Spectrum to Mixing Times

Outlook: Glimpse at Image Segmentation (non-examinable)

Relation between Clustering and Mixing

- Which graph has a "cluster-structure"?

Relation between Clustering and Mixing

- Which graph has a "cluster-structure"?
- Which graph mixes faster?

Convergence of Random Walk

Recall: If the underlying graph G is connected, undirected and d-regular, then the random walk converges towards the stationary distribution $\pi=(1 / n, \ldots, 1 / n)$, which satisfies $\pi \mathbf{P}=\pi$.

Convergence of Random Walk

Recall: If the underlying graph G is connected, undirected and d-regular, then the random walk converges towards the stationary distribution $\pi=(1 / n, \ldots, 1 / n)$, which satisfies $\pi \mathbf{P}=\pi$.

Here all vector multiplications (including eigenvectors) will always be from the left!

Convergence of Random Walk

Recall: If the underlying graph G is connected, undirected and d-regular, then the random walk converges towards the stationary distribution $\pi=(1 / n, \ldots, 1 / n)$, which satisfies $\pi \mathbf{P}=\pi$.

Here all vector multiplications (including eigenvectors) will always be from the left!

Lemma

Consider a lazy random walk on a connected, undirected and d-regular graph. Then for any initial distribution x,

$$
\left\|x \mathbf{P}^{t}-\pi\right\|_{2} \leq \lambda^{t}
$$

with $1=\lambda_{1}>\lambda_{2} \geq \cdots \geq \lambda_{n}$ as eigenvalues and $\lambda:=\max \left\{\left|\lambda_{2}\right|,\left|\lambda_{n}\right|\right\}$.

Convergence of Random Walk

Recall: If the underlying graph G is connected, undirected and d-regular, then the random walk converges towards the stationary distribution $\pi=(1 / n, \ldots, 1 / n)$, which satisfies $\pi \mathbf{P}=\pi$.

Here all vector multiplications (including eigenvectors) will always be from the left!

Lemma

Consider a lazy random walk on a connected, undirected and d-regular graph. Then for any initial distribution x,

$$
\left\|x \mathbf{P}^{t}-\pi\right\|_{2} \leq \lambda^{t}
$$

with $1=\lambda_{1}>\lambda_{2} \geq \cdots \geq \lambda_{n}$ as eigenvalues and $\lambda:=\max \left\{\left|\lambda_{2}\right|,\left|\lambda_{n}\right|\right\}$.

$$
\text { due to laziness, } \lambda_{n} \geq 0
$$

Convergence of Random Walk

Recall: If the underlying graph G is connected, undirected and d-regular, then the random walk converges towards the stationary distribution $\pi=(1 / n, \ldots, 1 / n)$, which satisfies $\pi \mathbf{P}=\pi$.

Here all vector multiplications (including eigenvectors) will always be from the left!

Lemma

Consider a lazy random walk on a connected, undirected and d-regular graph. Then for any initial distribution x,

$$
\left\|x \mathbf{P}^{t}-\pi\right\|_{2} \leq \lambda^{t}
$$

with $1=\lambda_{1}>\lambda_{2} \geq \cdots \geq \lambda_{n}$ as eigenvalues and $\lambda:=\max \left\{\left|\lambda_{2}\right|,\left|\lambda_{n}\right|\right\}$. \Rightarrow This implies for $t=\mathcal{O}\left(\frac{\log n}{\log (1 / \lambda)}\right)=\mathcal{O}\left(\frac{\log n}{1-\lambda}\right)$,

$$
\left\|x \mathbf{P}^{t}-\pi\right\|_{t v} \leq \frac{1}{4}
$$

due to laziness, $\lambda_{n} \geq 0$

Proof of Lemma

Proof of Lemma

- Express x in terms of the orthonormal basis of $\mathbf{P}, v_{1}=\pi, v_{2}, \ldots, v_{n}$:

Proof of Lemma

- Express x in terms of the orthonormal basis of $\mathbf{P}, v_{1}=\pi, v_{2}, \ldots, v_{n}$:

$$
x=\sum_{i=1}^{n} \alpha_{i} v_{i}
$$

Proof of Lemma

- Express x in terms of the orthonormal basis of $\mathbf{P}, v_{1}=\pi, v_{2}, \ldots, v_{n}$:

$$
x=\sum_{i=1}^{n} \alpha_{i} v_{i}
$$

- Since x is a probability vector and all $v_{i} \geq 2$ are orthogonal to $\pi, \alpha_{1}=1$.

Proof of Lemma

- Express x in terms of the orthonormal basis of $\mathbf{P}, v_{1}=\pi, v_{2}, \ldots, v_{n}$:

$$
x=\sum_{i=1}^{n} \alpha_{i} v_{i}
$$

- Since x is a probability vector and all $v_{i} \geq 2$ are orthogonal to $\pi, \alpha_{1}=1$.

$$
\|x \mathbf{P}-\pi\|_{2}^{2}
$$

Proof of Lemma

- Express x in terms of the orthonormal basis of $\mathbf{P}, v_{1}=\pi, v_{2}, \ldots, v_{n}$:

$$
x=\sum_{i=1}^{n} \alpha_{i} v_{i}
$$

- Since x is a probability vector and all $v_{i} \geq 2$ are orthogonal to $\pi, \alpha_{1}=1$.

$$
\Rightarrow \quad\|x \mathbf{P}-\pi\|_{2}^{2}=\left\|\left(\sum_{i=1}^{n} \alpha_{i} v_{i}\right) \mathbf{P}-\pi\right\|_{2}^{2}
$$

Proof of Lemma

- Express x in terms of the orthonormal basis of $\mathbf{P}, v_{1}=\pi, v_{2}, \ldots, v_{n}$:

$$
x=\sum_{i=1}^{n} \alpha_{i} v_{i}
$$

- Since x is a probability vector and all $v_{i} \geq 2$ are orthogonal to $\pi, \alpha_{1}=1$.

$$
\begin{aligned}
\Rightarrow \quad\|x \mathbf{P}-\pi\|_{2}^{2} & =\left\|\left(\sum_{i=1}^{n} \alpha_{i} v_{i}\right) \mathbf{P}-\pi\right\|_{2}^{2} \\
& =\left\|\pi+\sum_{i=2}^{n} \alpha_{i} \lambda_{i} v_{i}-\pi\right\|_{2}^{2}
\end{aligned}
$$

Proof of Lemma

- Express x in terms of the orthonormal basis of $\mathbf{P}, v_{1}=\pi, v_{2}, \ldots, v_{n}$:

$$
x=\sum_{i=1}^{n} \alpha_{i} v_{i}
$$

- Since x is a probability vector and all $v_{i} \geq 2$ are orthogonal to $\pi, \alpha_{1}=1$.

$$
\begin{aligned}
\Rightarrow \quad\|x \mathbf{P}-\pi\|_{2}^{2} & =\left\|\left(\sum_{i=1}^{n} \alpha_{i} v_{i}\right) \mathbf{P}-\pi\right\|_{2}^{2} \\
& =\left\|\pi+\sum_{i=2}^{n} \alpha_{i} \lambda_{i} v_{i}-\pi\right\|_{2}^{2} \\
& =\left\|\sum_{i=2}^{n} \alpha_{i} \lambda_{i} v_{i}\right\|_{2}^{2}
\end{aligned}
$$

Proof of Lemma

- Express x in terms of the orthonormal basis of $\mathbf{P}, v_{1}=\pi, v_{2}, \ldots, v_{n}$:

$$
x=\sum_{i=1}^{n} \alpha_{i} v_{i}
$$

- Since x is a probability vector and all $v_{i} \geq 2$ are orthogonal to $\pi, \alpha_{1}=1$.

$$
\Rightarrow \begin{aligned}
\Rightarrow x \mathbf{P}-\pi \|_{2}^{2} & =\left\|\left(\sum_{i=1}^{n} \alpha_{i} v_{i}\right) \mathbf{P}-\pi\right\|_{2}^{2} \\
& =\left\|\pi+\sum_{i=2}^{n} \alpha_{i} \lambda_{i} v_{i}-\pi\right\|_{2}^{2} \\
& =\left\|\sum_{i=2}^{n} \alpha_{i} \lambda_{i} v_{i}\right\|_{2}^{2} \\
& =\sum_{i=2}^{\text {since the } v_{i} ’ s}\left\|\alpha_{i} \lambda_{i} v_{i}\right\|_{2}^{2}
\end{aligned}
$$

Proof of Lemma

- Express x in terms of the orthonormal basis of $\mathbf{P}, v_{1}=\pi, v_{2}, \ldots, v_{n}$:

$$
x=\sum_{i=1}^{n} \alpha_{i} v_{i}
$$

- Since x is a probability vector and all $v_{i} \geq 2$ are orthogonal to $\pi, \alpha_{1}=1$.

$$
\Rightarrow \begin{aligned}
\|x \mathbf{P}-\pi\|_{2}^{2} & =\left\|\left(\sum_{i=1}^{n} \alpha_{i} v_{i}\right) \mathbf{P}-\pi\right\|_{2}^{2} \\
& =\left\|\pi+\sum_{i=2}^{n} \alpha_{i} \lambda_{i} v_{i}-\pi\right\|_{2}^{2} \\
\begin{array}{c}
\text { since the } v_{i}^{\prime} \text { 's } \\
\text { are orthogonal }
\end{array} & =\left\|\sum_{i=2}^{n} \alpha_{i} \lambda_{i} v_{i}\right\|_{2}^{2} \\
& =\sum_{i=2}^{n}\left\|\alpha_{i} \lambda_{i} v_{i}\right\|_{2}^{2} \begin{array}{c}
\text { since the } v_{i}^{\prime} \text { 's } \\
\text { are orthogonal }
\end{array} \\
& \leq \lambda^{2} \sum_{i=2}^{n}\left\|\alpha_{i} v_{i}\right\|_{2}^{2}=\lambda^{2}\left\|\sum_{i=2}^{n} \alpha_{i} v_{i}\right\|_{2}^{2}
\end{aligned}
$$

Proof of Lemma

- Express x in terms of the orthonormal basis of $\mathbf{P}, v_{1}=\pi, v_{2}, \ldots, v_{n}$:

$$
x=\sum_{i=1}^{n} \alpha_{i} v_{i}
$$

- Since x is a probability vector and all $v_{i} \geq 2$ are orthogonal to $\pi, \alpha_{1}=1$.

$$
\Rightarrow \begin{aligned}
&\|x \mathbf{P}-\pi\|_{2}^{2}=\left\|\left(\sum_{i=1}^{n} \alpha_{i} v_{i}\right) \mathbf{P}-\pi\right\|_{2}^{2} \\
&=\left\|\pi+\sum_{i=2}^{n} \alpha_{i} \lambda_{i} v_{i}-\pi\right\|_{2}^{2} \\
& \underbrace{}_{\begin{array}{c}
\text { since the } v_{i} \prime \\
\text { are orthogonal }
\end{array}}=\left\|_{i=2}^{n} \alpha_{i} \lambda_{i} v_{i}\right\|_{2}^{2} \\
&=\sum_{i=2}^{n}\left\|\alpha_{i} \lambda_{i} v_{i}\right\|_{2}^{2} \underbrace{\text { are orthogonal }}_{\text {since the } v_{i} \text { 's }} \\
& \leq \lambda^{2} \sum_{i=2}^{n}\left\|\alpha_{i} v_{i}\right\|_{2}^{2}=\lambda^{2} \sum_{i=2}^{n} \alpha_{i} v_{i}\left\|_{2}^{2}=\lambda^{2}\right\| x-\pi \|_{2}^{2}
\end{aligned}
$$

Proof of Lemma

- Express x in terms of the orthonormal basis of $\mathbf{P}, v_{1}=\pi, v_{2}, \ldots, v_{n}$:

$$
x=\sum_{i=1}^{n} \alpha_{i} v_{i}
$$

- Since x is a probability vector and all $v_{i} \geq 2$ are orthogonal to $\pi, \alpha_{1}=1$.

$$
\begin{aligned}
\Rightarrow\|x \mathbf{P}-\pi\|_{2}^{2} & =\left\|\left(\sum_{i=1}^{n} \alpha_{i} v_{i}\right) \mathbf{P}-\pi\right\|_{2}^{2} \\
& =\left\|\pi+\sum_{i=2}^{n} \alpha_{i} \lambda_{i} v_{i}-\pi\right\|_{2}^{2} \\
\underbrace{}_{\begin{array}{c}
\text { since the } v_{i} \prime \\
\text { are orthogonal }
\end{array}} & =\left\|\sum_{i=2}^{n} \alpha_{i} \lambda_{i} v_{i}\right\|_{2}^{2} \\
& =\sum_{i=2}^{n}\left\|\alpha_{i} \lambda_{i} v_{i}\right\|_{2}^{2} \underbrace{}_{\substack{\text { since the } v_{i} \text { 's } \\
\text { are orthogonal }}} \\
& \leq \lambda^{2} \sum_{i=2}^{n}\left\|\alpha_{i} v_{i}\right\|_{2}^{2}=\lambda^{2} \sum_{i=2}^{n} \alpha_{i} v_{i}\left\|_{2}^{2}=\lambda^{2}\right\| x-\pi \|_{2}^{2}
\end{aligned}
$$

- Hence $\left\|x \mathbf{P}^{t}-\pi\right\|_{2}^{2}$

Proof of Lemma

- Express x in terms of the orthonormal basis of $\mathbf{P}, v_{1}=\pi, v_{2}, \ldots, v_{n}$:

$$
x=\sum_{i=1}^{n} \alpha_{i} v_{i}
$$

- Since x is a probability vector and all $v_{i} \geq 2$ are orthogonal to $\pi, \alpha_{1}=1$.

$$
\begin{aligned}
\Rightarrow\|x \mathbf{P}-\pi\|_{2}^{2} & =\left\|\left(\sum_{i=1}^{n} \alpha_{i} v_{i}\right) \mathbf{P}-\pi\right\|_{2}^{2} \\
& =\left\|\pi+\sum_{i=2}^{n} \alpha_{i} \lambda_{i} v_{i}-\pi\right\|_{2}^{2} \\
\begin{array}{c}
\text { since the } v_{i} \text { 's } \\
\text { are orthogonal }
\end{array} & =\left\|\sum_{i=2}^{n} \alpha_{i} \lambda_{i} v_{i}\right\|_{2}^{2} \\
& =\sum_{i=2}^{n}\left\|\alpha_{i} \lambda_{i} v_{i}\right\|_{2}^{2} \underbrace{\text { are orthogonal }}_{\text {since the } v_{i} \text { 's }} \\
& \leq \lambda^{2} \sum_{i=2}^{n}\left\|\alpha_{i} v_{i}\right\|_{2}^{2}=\lambda^{2} \sum_{i=2}^{n} \alpha_{i} v_{i}\left\|_{2}^{2}=\lambda^{2}\right\| x-\pi \|_{2}^{2}
\end{aligned}
$$

- Hence $\left\|x \mathbf{P}^{t}-\pi\right\|_{2}^{2} \leq \lambda^{2 t} \cdot\|x-\pi\|_{2}^{2}$

Proof of Lemma

- Express x in terms of the orthonormal basis of $\mathbf{P}, v_{1}=\pi, v_{2}, \ldots, v_{n}$:

$$
x=\sum_{i=1}^{n} \alpha_{i} v_{i}
$$

- Since x is a probability vector and all $v_{i} \geq 2$ are orthogonal to $\pi, \alpha_{1}=1$.

$$
\begin{aligned}
\Rightarrow x \mathbf{P}-\pi \|_{2}^{2} & =\left\|\left(\sum_{i=1}^{n} \alpha_{i} v_{i}\right) \mathbf{P}-\pi\right\|_{2}^{2} \\
& =\left\|\pi+\sum_{i=2}^{n} \alpha_{i} \lambda_{i} v_{i}-\pi\right\|_{2}^{2} \\
\underbrace{}_{\begin{array}{c}
\text { since the } v_{i} ' s \\
\text { are orthogonal }
\end{array}}= & \left\|\sum_{i=2}^{n} \alpha_{i} \lambda_{i} v_{i}\right\|_{2}^{2} \\
& =\sum_{i=2}^{n}\left\|\alpha_{i} \lambda_{i} v_{i}\right\|_{2}^{2} \underbrace{\text { are orthogonal }}_{\text {since the } v_{i} ' s} \\
& \leq \lambda^{2} \sum_{i=2}^{n}\left\|\alpha_{i} v_{i}\right\|_{2}^{2}=\lambda^{2} \sum_{i=2}^{n} \alpha_{i} v_{i}\left\|_{2}^{2}=\lambda^{2}\right\| x-\pi \|_{2}^{2}
\end{aligned}
$$

- Hence $\left\|x \mathbf{P}^{t}-\pi\right\|_{2}^{2} \leq \lambda^{2 t} \cdot\|x-\pi\|_{2}^{2} \leq \lambda^{2 t} \cdot 1 . \quad\|x-\pi\|_{2}^{2}+\|\pi\|_{2}^{2}=\|x\|_{2}^{2} \leq 1$

Outline

Introduction to (Spectral) Graph Theory and Clustering

Matrices, Spectrum and Structure

A Simplified Clustering Problem

Conductance, Cheeger's Inequality and Spectral Clustering

Illustrations of Spectral Clustering and Extension to Non-Regular Graphs

Relating Spectrum to Mixing Times

Outlook: Glimpse at Image Segmentation (non-examinable)

Similarity graph

Given $X=\left\{x_{1}, \ldots, x_{n}\right\} \in \mathbb{R}^{d}$, construct $G=(V, E, w)$:

- $x_{i} \in X \mapsto v_{i} \in V$
- $E=\binom{v}{2}$
- $w\left(v_{i}, v_{j}\right)=\exp \left(-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{2 \sigma^{2}}\right)$ (Gaussian similarity function)

Similarity graph

Given $X=\left\{x_{1}, \ldots, x_{n}\right\} \in \mathbb{R}^{d}$, construct $G=(V, E, w)$:

- $x_{i} \in X \mapsto v_{i} \in V$
- $E=\binom{V}{2}$
- $w\left(v_{i}, v_{j}\right)=\exp \left(-\frac{\left\|x_{i}-x_{i}\right\|^{2}}{2 \sigma^{2}}\right)$ (Gaussian similarity function)

Remarks:

- $w\left(v_{i}, v_{j}\right)$ is large if x_{i} is close to x_{j}
- value of $\sigma \geq 0$ depends on the application (choose it by trial and error, usually $\sigma \in(0.05,10)$)
- large σ if, on average, pairwise nearest neighbours are far apart

Similarity graph

Given $X=\left\{x_{1}, \ldots, x_{n}\right\} \in \mathbb{R}^{d}$, construct $G=(V, E, w)$:

- $x_{i} \in X \mapsto v_{i} \in V$
- $E=\binom{V}{2}$
- $w\left(v_{i}, v_{j}\right)=\exp \left(-\frac{\left\|x_{i}-x_{i}\right\|^{2}}{2 \sigma^{2}}\right)$ (Gaussian similarity function)

Remarks:

- $w\left(v_{i}, v_{j}\right)$ is large if x_{i} is close to x_{j}
- value of $\sigma \geq 0$ depends on the application (choose it by trial and error, usually $\sigma \in(0.05,10)$)
- large σ if, on average, pairwise nearest neighbours are far apart

Problem: Since G is complete, from $\Theta(d n)$ to $\Theta\left(n^{2}\right)$ space.

Similarity graph

Given $X=\left\{x_{1}, \ldots, x_{n}\right\} \in \mathbb{R}^{d}$, construct $G=(V, E, w)$:

- $x_{i} \in X \mapsto v_{i} \in V$
- $E=\binom{V}{2}$
- $w\left(v_{i}, v_{j}\right)=\exp \left(-\frac{\left\|x_{i}-x_{i}\right\|^{2}}{2 \sigma^{2}}\right)$ (Gaussian similarity function)

Remarks:

- $w\left(v_{i}, v_{j}\right)$ is large if x_{i} is close to x_{j}
- value of $\sigma \geq 0$ depends on the application (choose it by trial and error, usually $\sigma \in(0.05,10)$)
- large σ if, on average, pairwise nearest neighbours are far apart

Problem: Since G is complete, from $\Theta(d n)$ to $\Theta\left(n^{2}\right)$ space.
Possible solution: r-nearest neighbour graph ($v_{i} \sim v_{j}$ iff x_{j} is one of the r-nearest neighbours of x_{i} or vice versa)

Similarity graph

Given $X=\left\{x_{1}, \ldots, x_{n}\right\} \in \mathbb{R}^{d}$, construct $G=(V, E, w)$:

- $x_{i} \in X \mapsto v_{i} \in V$
- $E=\binom{V}{2}$
- $w\left(v_{i}, v_{j}\right)=\exp \left(-\frac{\left\|x_{i}-x_{i}\right\|^{2}}{2 \sigma^{2}}\right)$ (Gaussian similarity function)

Remarks:

- $w\left(v_{i}, v_{j}\right)$ is large if x_{i} is close to x_{j}
- value of $\sigma \geq 0$ depends on the application (choose it by trial and error, usually $\sigma \in(0.05,10)$)
- large σ if, on average, pairwise nearest neighbours are far apart

Problem: Since G is complete, from $\Theta(d n)$ to $\Theta\left(n^{2}\right)$ space.
Possible solution: r-nearest neighbour graph ($v_{i} \sim v_{j}$ iff x_{j} is one of the r-nearest neighbours of x_{i} or vice versa)

> From geometric to graph clustering!

Example

Example

Similarity graph: Gaussian with $\sigma=0.1$. Only edges with weight ≥ 0.01 shown.

Example

Similarity graph: Gaussian with $\sigma=0.1$. Only edges with weight ≥ 0.01 shown.

Spectral Clustering (variant for non-regular graphs)

1. Compute the eigenvector x corresponding to λ_{2} and $y=\mathbf{D}^{-1 / 2} x$.
2. Order the vertices so that $y_{1} \leq y_{2} \leq \cdots \leq y_{n}$
3. Choose "sweep" cut $(\{1,2, \ldots, i\},\{i+1, \ldots, n\})$ with smallest conductance

Example

Similarity graph: Gaussian with $\sigma=0.1$. Only edges with weight ≥ 0.01 shown.

Spectral Clustering (variant for non-regular graphs)

1. Compute the eigenvector x corresponding to λ_{2} and $y=\mathbf{D}^{-1 / 2} x$.
2. Order the vertices so that $y_{1} \leq y_{2} \leq \cdots \leq y_{n}$
3. Choose "sweep" cut $(\{1,2, \ldots, i\},\{i+1, \ldots, n\})$ with smallest conductance

Image segmentation

Goal: identify different objects in an image

Image segmentation

Goal: identify different objects in an image

Construct similarity graph as follows:

- A pixel p is characterised by its position in the image and by its RGB value
- map pixel p in position (x, y) to a vector $v_{p}=(x, y, r, g, b)$
- construct similarity graph as explained earlier

Image segmentation

Goal: identify different objects in an image
Construct similarity graph as follows:

- A pixel p is characterised by its position in the image and by its RGB value
- map pixel p in position (x, y) to a vector $v_{p}=(x, y, r, g, b)$
- construct similarity graph as explained earlier

Original image

Image segmentation

Goal: identify different objects in an image
Construct similarity graph as follows:

- A pixel p is characterised by its position in the image and by its RGB value
- map pixel p in position (x, y) to a vector $v_{p}=(x, y, r, g, b)$
- construct similarity graph as explained earlier

Original image

Output SC (Gaussian, $\sigma=10$)

References

國 Fan R．K．Chung．
Graph Theory in the Information Age．
Notices of the AMS，vol．57，no．6，pages 726－732， 2010.
蔦
Fan R．K．Chung．
Spectral Graph Theory．
Volume 92 of CBMS Regional Conference Series in Mathematics， 1997.
蔦
S．Hoory，N．Linial and A．Widgerson．
Expander Graphs and their Applications．
Bulletin of the AMS，vol．43，no．4，pages 439－561， 2006.
－Daniel Spielman
Chapter 16，Spectral Graph Theory
Combinatorial Scientific Computing
R
Luca Trevisan．
Lectures Notes on Expansion，Sparsest Cut，and Spectral Graph
Theory， 2016.
https：／／lucatrevisan．github．io／books／expanders－2016．pdf

