Randomised Algorithms

Lecture 11-12: Spectral Graph Theory and Clustering

Thomas Sauerwald (tms41@cam.ac.uk)

Lent 2022

Introduction to (Spectral) Graph Theory and Clustering

Matrices, Spectrum and Structure

A Simplified Clustering Problem

Conductance, Cheeger's Inequality and Spectral Clustering

Illustrations of Spectral Clustering and Extension to Non-Regular Graphs

Relating Spectrum to Mixing Times

Outlook: Glimpse at Image Segmentation (non-examinable)

Source: Wikipedia

Seven Bridges at Königsberg 1737

Graphs Nowadays: Clustering

Graphs Nowadays: Clustering

Graphs Nowadays: Clustering

Goal: Use spectrum of graphs (unstructured data) to extract clustering (communities) or other structural information.

- Applications of Graph Clustering
 - Community detection
 - Group webpages according to their topics
 - Find proteins performing the same function within a cell
 - Image segmentation
 - Identify bottlenecks in a network
 - • •

- Applications of Graph Clustering
 - Community detection
 - Group webpages according to their topics
 - Find proteins performing the same function within a cell
 - Image segmentation
 - Identify bottlenecks in a network
 - . . .
- Unsupervised learning method

(there is no ground truth (usually), and we cannot learn from mistakes!)

- Applications of Graph Clustering
 - Community detection
 - Group webpages according to their topics
 - Find proteins performing the same function within a cell
 - Image segmentation
 - Identify bottlenecks in a network

• . . .

- Unsupervised learning method (there is no ground truth (usually), and we cannot learn from mistakes!)
- Different formalisations for different applications

- Applications of Graph Clustering
 - Community detection
 - Group webpages according to their topics
 - Find proteins performing the same function within a cell
 - Image segmentation
 - Identify bottlenecks in a network

• • • •

- Unsupervised learning method (there is no ground truth (usually), and we cannot learn from mistakes!)
- Different formalisations for different applications
 - Geometric Clustering: partition points in a Euclidean space
 - k-means, k-medians, k-centres, etc.

- Applications of Graph Clustering
 - Community detection
 - Group webpages according to their topics
 - Find proteins performing the same function within a cell
 - Image segmentation
 - Identify bottlenecks in a network

• . . .

Unsupervised learning method

(there is no ground truth (usually), and we cannot learn from mistakes!)

- Different formalisations for different applications
 - Geometric Clustering: partition points in a Euclidean space
 - k-means, k-medians, k-centres, etc.
 - Graph Clustering: partition vertices in a graph
 - modularity, conductance, min-cut, etc.

- Applications of Graph Clustering
 - Community detection
 - Group webpages according to their topics
 - Find proteins performing the same function within a cell
 - Image segmentation
 - Identify bottlenecks in a network

• . . .

Unsupervised learning method

(there is no ground truth (usually), and we cannot learn from mistakes!)

- Different formalisations for different applications
 - Geometric Clustering: partition points in a Euclidean space
 - k-means, k-medians, k-centres, etc.
 - Graph Clustering: partition vertices in a graph
 - modularity, conductance, min-cut, etc.

Graphs and Matrices

- Connectivity
- Bipartiteness
- Number of triangles
- Graph Clustering
- Graph isomorphism
- Maximum Flow
- Shortest Paths
- . . .

Matrices

/0	1	0	1\
1	0	1	0
0	1	0	1
1	0	1	0/

- Eigenvalues
- Eigenvectors
- Inverse
- Determinant
- Matrix-powers
- . . .

Graphs

- Connectivity
- Bipartiteness
- Number of triangles
- Graph Clustering
- Graph isomorphism
- Maximum Flow
- Shortest Paths
- . . .

Matrices

/0	1	0	1\
1	0	1	0
0	1	0	1
1	0	1	0/

- Eigenvalues
- Eigenvectors
- Inverse
- Determinant
- Matrix-powers
- . . .

Introduction to (Spectral) Graph Theory and Clustering

Matrices, Spectrum and Structure

A Simplified Clustering Problem

Conductance, Cheeger's Inequality and Spectral Clustering

Illustrations of Spectral Clustering and Extension to Non-Regular Graphs

Relating Spectrum to Mixing Times

Outlook: Glimpse at Image Segmentation (non-examinable)

Adjacency Matrix

Adjacency matrix Let G = (V, E) be an undirected graph. The adjacency matrix of G is the n by n matrix **A** defined as $\mathbf{A}_{u,v} = \begin{cases} 1 & \text{if } \{u, v\} \in E \\ 0 & \text{otherwise.} \end{cases}$

Adjacency Matrix

Adjacency Matrix

Properties of **A**:

- The sum of elements in each row/column *i* equals the degree of the corresponding vertex *i*, deg(*i*)
- Since G is undirected, A is symmetric

Eigenvalues and Eigenvectors -

Let $\mathbf{M} \in \mathbb{R}^{n \times n}$, $\lambda \in \mathbb{C}$ is an eigenvalue of \mathbf{M} if and only if there exists $x \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ such that

$$\mathbf{M}\mathbf{X} = \lambda \mathbf{X}.$$

We call x an eigenvector of **M** corresponding to the eigenvalue λ .

Eigenvalues and Eigenvectors ______

Let $\mathbf{M} \in \mathbb{R}^{n \times n}$, $\lambda \in \mathbb{C}$ is an eigenvalue of \mathbf{M} if and only if there exists $x \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ such that

$$\mathbf{M}\mathbf{X} = \lambda \mathbf{X}.$$

We call x an eigenvector of **M** corresponding to the eigenvalue λ .

Graph Spectrum -

Let **A** be the adjacency matrix of a d-regular graph G with n vertices.

- Eigenvalues and Eigenvectors

Let $\mathbf{M} \in \mathbb{R}^{n \times n}$, $\lambda \in \mathbb{C}$ is an eigenvalue of \mathbf{M} if and only if there exists $x \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ such that

$$\mathbf{M}\mathbf{X} = \lambda \mathbf{X}.$$

We call x an eigenvector of **M** corresponding to the eigenvalue λ .

Graph Spectrum Graph Spectrum Let A be the adjacency matrix of a *d*-regular graph *G* with *n* vertices. Then, A has *n* real eigenvalues $\lambda_1 \leq \cdots \leq \lambda_n$ and *n* corresponding orthonormal eigenvectors f_1, \ldots, f_n . These eigenvalues associated with their multiplicities constitute the spectrum of *G*. - Eigenvalues and Eigenvectors

Let $\mathbf{M} \in \mathbb{R}^{n \times n}$, $\lambda \in \mathbb{C}$ is an eigenvalue of \mathbf{M} if and only if there exists $x \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ such that

$$\mathbf{M}\mathbf{X} = \lambda \mathbf{X}.$$

We call x an eigenvector of **M** corresponding to the eigenvalue λ .

Graph Spectrum Graph Spectrum Let **A** be the adjacency matrix of a *d*-regular graph *G* with *n* vertices. Then, **A** has *n* real eigenvalues $\lambda_1 \leq \cdots \leq \lambda_n$ and *n* corresponding orthonormal eigenvectors f_1, \ldots, f_n . These eigenvalues associated with their multiplicities constitute the spectrum of *G*.

For symmetric matrices: algebraic multiplicity = geometric multiplicity

Exercise: What are the Eigenvalues and Eigenvectors?

Exercise: What are the Eigenvalues and Eigenvectors?

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

Exercise 1

Exercise: What are the Eigenvalues and Eigenvectors?

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

Exercise 1

Solution:

- The three eigenvalues are $\lambda_1 = \lambda_2 = -1, \lambda_3 = 2$.
- The three eigenvectors are (for example):

$$f_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \quad f_2 = \begin{pmatrix} -\frac{1}{2} \\ 1 \\ -\frac{1}{2} \end{pmatrix}, \quad f_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

Laplacian Matrix

Laplacian Matrix _____

Let G = (V, E) be a *d*-regular undirected graph. The (normalised) Laplacian matrix of G is the *n* by *n* matrix L defined as

$$\mathbf{L} = \mathbf{I} - \frac{1}{d}\mathbf{A},$$

where **I** is the $n \times n$ identity matrix.

Laplacian Matrix

Laplacian Matrix _____

Let G = (V, E) be a *d*-regular undirected graph. The (normalised) Laplacian matrix of G is the *n* by *n* matrix L defined as

$$\mathbf{L} = \mathbf{I} - \frac{1}{d}\mathbf{A},$$

where **I** is the $n \times n$ identity matrix.

$$\begin{array}{c|ccccc} 1 & -1/2 & 0 & -1/2 \\ \hline \\ 1 & &$$

Laplacian Matrix

Let G = (V, E) be a *d*-regular undirected graph. The (normalised) Laplacian matrix of G is the *n* by *n* matrix L defined as

$$\mathbf{L} = \mathbf{I} - \frac{1}{d}\mathbf{A},$$

where **I** is the $n \times n$ identity matrix.

Laplacian Matrix ——

$$\begin{array}{c|ccccc} 1 & -1/2 & 0 & -1/2 \\ \hline \\ 4 & \hline \\ 4 & \hline \\ \end{array} \right) \qquad \qquad \mathbf{L} = \begin{pmatrix} 1 & -1/2 & 0 & -1/2 \\ -1/2 & 1 & -1/2 & 0 \\ 0 & -1/2 & 1 & -1/2 \\ -1/2 & 0 & -1/2 & 1 \end{pmatrix}$$

Properties of L:

- The sum of elements in each row/column equals zero
- L is symmetric

Relating Spectrum of Adjacency Matrix and Laplacian Matrix

Correspondence between Adjacency and Laplacian Matrix -

A and L have the same eigenvectors.
Correspondence between Adjacency and Laplacian Matrix -

A and L have the same eigenvectors.

Proof:

Correspondence between Adjacency and Laplacian Matrix -

A and L have the same eigenvectors.

Proof:

• Let λ and f be an eigenvalue and eigenvector of **A**, i.e., $\mathbf{A} \cdot f = \lambda \cdot f$.

Correspondence between Adjacency and Laplacian Matrix -

A and L have the same eigenvectors.

Proof:

- Let λ and f be an eigenvalue and eigenvector of **A**, i.e., $\mathbf{A} \cdot f = \lambda \cdot f$.
- Then:

Correspondence between Adjacency and Laplacian Matrix -

A and L have the same eigenvectors.

Proof:

- Let λ and f be an eigenvalue and eigenvector of **A**, i.e., $\mathbf{A} \cdot f = \lambda \cdot f$.
- Then:

$$\mathbf{L} \cdot f = \left(\mathbf{I} - \frac{1}{d}\mathbf{A}\right) \cdot f$$

Correspondence between Adjacency and Laplacian Matrix -

A and L have the same eigenvectors.

Proof:

• Let λ and f be an eigenvalue and eigenvector of **A**, i.e., $\mathbf{A} \cdot f = \lambda \cdot f$.

Then:

$$\mathbf{L} \cdot f = \left(\mathbf{I} - \frac{1}{d}\mathbf{A}\right) \cdot f$$
$$= \mathbf{I} \cdot f - \frac{1}{d}\mathbf{A} \cdot f$$

Correspondence between Adjacency and Laplacian Matrix -

A and L have the same eigenvectors.

Proof:

• Let λ and f be an eigenvalue and eigenvector of **A**, i.e., $\mathbf{A} \cdot f = \lambda \cdot f$.

Then:

$$\mathbf{L} \cdot f = \left(\mathbf{I} - \frac{1}{d}\mathbf{A}\right) \cdot f$$
$$= \mathbf{I} \cdot f - \frac{1}{d}\mathbf{A} \cdot f$$
$$= f - \frac{1}{d}\lambda \cdot f$$

Correspondence between Adjacency and Laplacian Matrix -

A and L have the same eigenvectors.

Proof:

• Let λ and f be an eigenvalue and eigenvector of **A**, i.e., $\mathbf{A} \cdot f = \lambda \cdot f$.

Then:

$$\mathbf{L} \cdot f = \left(\mathbf{I} - \frac{1}{d}\mathbf{A}\right) \cdot f$$
$$= \mathbf{I} \cdot f - \frac{1}{d}\mathbf{A} \cdot f$$
$$= f - \frac{1}{d}\lambda \cdot f$$
$$= \left(1 - \frac{\lambda}{d}\right) \cdot f.$$

Correspondence between Adjacency and Laplacian Matrix -

A and L have the same eigenvectors.

Proof:

• Let λ and f be an eigenvalue and eigenvector of **A**, i.e., $\mathbf{A} \cdot f = \lambda \cdot f$.

Then:

$$\mathbf{L} \cdot \mathbf{f} = \left(\mathbf{I} - \frac{1}{d}\mathbf{A}\right) \cdot \mathbf{f}$$
$$= \mathbf{I} \cdot \mathbf{f} - \frac{1}{d}\mathbf{A} \cdot \mathbf{f}$$
$$= \mathbf{f} - \frac{1}{d}\lambda \cdot \mathbf{f}$$
$$= \left(1 - \frac{\lambda}{d}\right) \cdot \mathbf{f}.$$

• Hence $(1 - \frac{\lambda}{d}, f)$ is an eigenvalue and eigenvector pair of L.


```
Graph Spectrum -
```

Let L be the Laplacian matrix of a *d*-regular graph *G* with *n* vertices. Then, L has *n* real eigenvalues $\lambda_1 \leq \cdots \leq \lambda_n$ and *n* corresponding orthonormal eigenvectors f_1, \ldots, f_n . - Lemma

Let **L** be the Laplacian matrix of an undirected, regular graph G = (V, E) with eigenvalues $\lambda_1 \leq \cdots \leq \lambda_n$.

- 1. $\lambda_1 = 0$ with eigenvector **1**
- 2. the multiplicity of the eigenvalue 0 is equal to the number of connected components in *G*

Let **L** be the Laplacian matrix of an undirected, regular graph G = (V, E)with eigenvalues $\lambda_1 \leq \cdots \leq \lambda_n$. 1. $\lambda_1 = 0$ with eigenvector **1**

- 2. the multiplicity of the eigenvalue 0 is equal to the number of connected components in *G*
- 3. $\lambda_n \leq 2$
- 4. $\lambda_n = 2$ iff there exists a bipartite connected component.

The proof of these properties is based on a powerful characterisation of eigenvalues/vectors!

Courant-Fischer Min-Max Formula Let **M** be an *n* by *n* symmetric matrix with eigenvalues $\lambda_1 \leq \cdots \leq \lambda_n$. Then, $\lambda_k = \min_{\substack{x^{(1)}, \dots, x^{(k)} \in \mathbb{R}^n \setminus \{\mathbf{0}\}, \ i \in \{1, \dots, k\}}} \max_{\substack{x^{(i)}^T \mathbf{M} x^{(i)} \\ \mathbf{X}^{(i)} \perp x^{(i)}}} \frac{\mathbf{M} x^{(i)}}{\mathbf{X}^{(i)}}.$ The eigenvectors corresponding to $\lambda_1, \dots, \lambda_k$ minimise such expression. Courant-Fischer Min-Max Formula Let **M** be an *n* by *n* symmetric matrix with eigenvalues $\lambda_1 \leq \cdots \leq \lambda_n$. Then, $\lambda_k = \min_{\substack{x^{(1)}, \dots, x^{(k)} \in \mathbb{R}^n \setminus \{\mathbf{0}\}, \\ x^{(i)} \perp x^{(j)}}} \max_{i \in \{1, \dots, k\}} \frac{x^{(i)^T} \mathbf{M} x^{(i)}}{x^{(i)^T} x^{(i)}}.$ The eigenvectors corresponding to $\lambda_1, \dots, \lambda_k$ minimise such expression.

$$\lambda_1 = \min_{x \in \mathbb{R}^n \setminus \{\mathbf{0}\}} \frac{x^T \mathbf{M} x}{x^T x}$$

minimised by an eigenvector f_1 for λ_1

Courant-Fischer Min-Max Formula Let **M** be an *n* by *n* symmetric matrix with eigenvalues $\lambda_1 \leq \cdots \leq \lambda_n$. Then, $\lambda_k = \min_{\substack{x^{(1)}, \dots, x^{(k)} \in \mathbb{R}^n \setminus \{0\}, \\ x^{(i)} \perp x^{(j)}}} \max_{i \in \{1, \dots, k\}} \frac{x^{(i)^T} \mathbf{M} x^{(i)}}{x^{(i)^T} x^{(i)}}.$ The eigenvectors corresponding to $\lambda_1, \dots, \lambda_k$ minimise such expression.

$$\lambda_1 = \min_{x \in \mathbb{R}^n \setminus \{\mathbf{0}\}} \frac{x^T \mathbf{M} x}{x^T x}$$

minimised by an eigenvector f_1 for λ_1

$$\lambda_{2} = \min_{\substack{x \in \mathbb{R}^{n} \setminus \{\mathbf{0}\} \\ x \perp f_{1}}} \frac{x^{T} \mathbf{M} x}{x^{T} x}$$

minimised by f2

Courant-Fischer Min-Max Formula Let **M** be an *n* by *n* symmetric matrix with eigenvalues $\lambda_1 \leq \cdots \leq \lambda_n$. Then, $\lambda_k = \min_{\substack{x^{(1)}, \dots, x^{(k)} \in \mathbb{R}^n \setminus \{0\}, \\ x^{(i)} \perp x^{(i)}}} \max_{\substack{i \in \{1, \dots, k\} \\ x^{(i)} \top x^{(i)}}} \frac{x^{(i)}^T \mathbf{M} x^{(i)}}{x^{(i)} T x^{(i)}}.$ The eigenvectors corresponding to $\lambda_1, \dots, \lambda_k$ minimise such expression.

$$\lambda_1 = \min_{x \in \mathbb{R}^n \setminus \{\mathbf{0}\}} \frac{x^T \mathbf{M} x}{x^T x}$$

minimised by an eigenvector f_1 for λ_1

$$\lambda_{2} = \min_{\substack{x \in \mathbb{R}^{n} \setminus \{\mathbf{0}\}\\x \perp f_{1}}} \frac{x^{T} \mathbf{M} x}{x^{T} x}$$

minimised by f_{2}

Courant-Fischer Min-Max Formula Let **M** be an *n* by *n* symmetric matrix with eigenvalues $\lambda_1 \leq \cdots \leq \lambda_n$. Then, $\lambda_k = \min_{\substack{x^{(1)}, \dots, x^{(k)} \in \mathbb{R}^n \setminus \{0\}, \\ x^{(i)} \perp x^{(i)}}} \max_{\substack{i \in \{1, \dots, k\} \\ x^{(i)} \top x^{(i)}}} \frac{x^{(i)}^T \mathbf{M} x^{(i)}}{x^{(i)} T x^{(i)}}.$ The eigenvectors corresponding to $\lambda_1, \dots, \lambda_k$ minimise such expression.

$$\lambda_1 = \min_{x \in \mathbb{R}^n \setminus \{\mathbf{0}\}} \frac{x^T \mathbf{M} x}{x^T x}$$

minimised by an eigenvector f_1 for λ_1

$$\lambda_{2} = \min_{\substack{x \in \mathbb{R}^{n} \setminus \{\mathbf{0}\}\\x \perp f_{1}}} \frac{x^{T} \mathbf{M} x}{x^{T} x}$$

minimised by f_{2}

Quadratic Forms of the Laplacian

- Lemma -

Let **L** be the Laplacian matrix of a *d*-regular graph G = (V, E) with *n* vertices. For any $x \in \mathbb{R}^n$,

$$x^T \mathsf{L} x = \sum_{\{u,v\}\in E} \frac{(x_u - x_v)^2}{d}.$$

Quadratic Forms of the Laplacian

- Lemma -

Let **L** be the Laplacian matrix of a *d*-regular graph G = (V, E) with *n* vertices. For any $x \in \mathbb{R}^n$,

$$x^T \mathbf{L} x = \sum_{\{u,v\}\in E} \frac{(x_u - x_v)^2}{d}.$$

Proof:

$$\begin{aligned} x^T \mathbf{L} x &= x^T \left(\mathbf{I} - \frac{1}{d} \mathbf{A} \right) x = x^T x - \frac{1}{d} x^T \mathbf{A} x \\ &= \sum_{u \in V} x_u^2 - \frac{2}{d} \sum_{\{u,v\} \in E} x_u x_v \\ &= \frac{1}{d} \sum_{\{u,v\} \in E} (x_u^2 + x_v^2 - 2x_u x_v) \\ &= \sum_{\{u,v\} \in E} \frac{(x_u - x_v)^2}{d}. \end{aligned}$$

Introduction to (Spectral) Graph Theory and Clustering

Matrices, Spectrum and Structure

A Simplified Clustering Problem

Conductance, Cheeger's Inequality and Spectral Clustering

Illustrations of Spectral Clustering and Extension to Non-Regular Graphs

Relating Spectrum to Mixing Times

Outlook: Glimpse at Image Segmentation (non-examinable)

Exercise: What are the Eigenvectors with Eigenvalue 0 of L?

Exercise 2 Exercise: What are the Eigenvectors with Eigenvalue 0 of L? $\mathbf{A} = \begin{pmatrix} 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \end{pmatrix}$ $\mathbf{L} = \begin{pmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} & 0 & 0 & 0 \\ -\frac{1}{2} & 1 & -\frac{1}{2} & 0 & 0 & 0 \\ -\frac{1}{2} & -\frac{1}{2} & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & -\frac{1}{2} & 0 \\ 0 & 0 & 0 & -\frac{1}{2} & 1 & -\frac{1}{2} \\ 0 & 0 & 0 & 0 & -\frac{1}{2} & 1 \\ \end{pmatrix}$ 0 0 $-\frac{1}{2}$ 0 6 2 3 7 $-\frac{1}{2}$ 0 0

Exercise: What are the Eigenvectors with Eigenvalue 0 of L?

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ \end{pmatrix}$$

$$\mathbf{L} = \begin{pmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} & 0 & 0 & 0 & 0 \\ -\frac{1}{2} & 1 & -\frac{1}{2} & 0 & 0 & 0 & 0 \\ -\frac{1}{2} & -\frac{1}{2} & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & -\frac{1}{2} & 0 & -\frac{1}{2} \\ 0 & 0 & 0 & 0 & -\frac{1}{2} & 1 & -\frac{1}{2} \\ 0 & 0 & 0 & 0 & -\frac{1}{2} & 1 & -\frac{1}{2} \\ 0 & 0 & 0 & 0 & -\frac{1}{2} & 0 & -\frac{1}{2} & 1 \end{pmatrix}$$

Solution:

2

3

- The two smallest eigenvalues are λ₁ = λ₂ = 0.
- The corresponding two eigenvectors are:

$$f_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad f_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

Exercise: What are the Eigenvectors with Eigenvalue 0 of L?

Solution:

2

- The two smallest eigenvalues are λ₁ = λ₂ = 0.
- The corresponding two eigenvectors are:

$$f_1 = \begin{pmatrix} 1\\1\\0\\0\\0\\0 \end{pmatrix}, \quad f_2 = \begin{pmatrix} 0\\0\\0\\1\\1\\1\\1 \end{pmatrix} (\text{ or } f_1 = \begin{pmatrix} 1\\1\\1\\1\\1\\1 \end{pmatrix}, \quad f_2 = \begin{pmatrix} -1/3\\-1/3\\-1/3\\1/4\\1/4\\1/4\\1/4 \end{pmatrix})$$

Clustering © Thomas Sauerwald

A Simplified Clustering Problem

 $\begin{array}{c}
 0 \\
 0 \\
 -\frac{1}{2} \\
 0
 \end{array}$

 $-\frac{1}{2}$

Exercise: What are the Eigenvectors with Eigenvalue 0 of L?

0

1
Exercise 2 Exercise: What are the Eigenvectors with Eigenvalue 0 of L? $\mathbf{A} = \begin{pmatrix} 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \end{pmatrix}$ $\mathbf{L} = \begin{pmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} & 0 & 0 & 0 \\ -\frac{1}{2} & 1 & -\frac{1}{2} & 0 & 0 & 0 \\ -\frac{1}{2} & -\frac{1}{2} & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & -\frac{1}{2} & 0 & -\frac{1}{2} \\ 0 & 0 & 0 & 0 & -\frac{1}{2} & 1 & -\frac{1}{2} \\ 0 & 0 & 0 & 0 & -\frac{1}{2} & 1 & -\frac{1}{2} \end{pmatrix}$ 6 2 3 Solution: • The two smallest eigenvalues are $\lambda_1 = \lambda_2 = 0$. Thus we can easily solve the simpli-The corresponding two eigenvectors are: fied clustering problem by computing the eigenvectors with eigenvalue 0 $f_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \quad f_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$ Next section: A fine-grained approach works even if the clusters are sparsely connected!

Let us generalise and formalise the example before!

Let us generalise and formalise the example before!

Proof of 2 (multiplicity of 0 equals the no. of connected components):

Let us generalise and formalise the example before!

Proof of 2 (multiplicity of 0 equals the no. of connected components):

1. (" \Longrightarrow " $cc(G) \le mult(0)$). We will show: G has exactly k connected comp. $C_1, \ldots, C_k \Rightarrow \lambda_1 = \cdots = \lambda_k = 0$

Let us generalise and formalise the example before!

Proof of 2 (multiplicity of 0 equals the no. of connected components):

1. (" \Longrightarrow " $cc(G) \le mult(0)$). We will show: *G* has exactly *k* connected comp. $C_1, \ldots, C_k \Rightarrow \lambda_1 = \cdots = \lambda_k = 0$ Take $\chi_{C_i} \in \{0, 1\}^n$ such that $\chi_{C_i}(u) = \mathbf{1}_{u \in C_i}$ for all $u \in V$

Let us generalise and formalise the example before!

Proof of 2 (multiplicity of 0 equals the no. of connected components):

1. (" \Longrightarrow " $cc(G) \le mult(0)$). We will show: *G* has exactly *k* connected comp. $C_1, \ldots, C_k \Rightarrow \lambda_1 = \cdots = \lambda_k = 0$

- Take $\chi_{C_i} \in \{0,1\}^n$ such that $\chi_{C_i}(u) = \mathbf{1}_{u \in C_i}$ for all $u \in V$
- Clearly, the χ_{C_i} 's are orthogonal

Let us generalise and formalise the example before!

Proof of 2 (multiplicity of 0 equals the no. of connected components):

- 1. (" \Longrightarrow " $cc(G) \le mult(0)$). We will show: G has exactly k connected comp. $C_1, \ldots, C_k \Rightarrow \lambda_1 = \cdots = \lambda_k = 0$
 - Take $\chi_{C_i} \in \{0,1\}^n$ such that $\chi_{C_i}(u) = \mathbf{1}_{u \in C_i}$ for all $u \in V$
 - Clearly, the χ_{C_i} 's are orthogonal

Let us generalise and formalise the example before!

Proof of 2 (multiplicity of 0 equals the no. of connected components):

- 1. (" \Longrightarrow " $cc(G) \le mult(0)$). We will show: *G* has exactly *k* connected comp. $C_1, \ldots, C_k \Rightarrow \lambda_1 = \cdots = \lambda_k = 0$ ^a Take $\chi_{C_i} \in \{0, 1\}^n$ such that $\chi_{C_i}(u) = \mathbf{1}_{u \in C_i}$ for all $u \in V$
 - Clearly, the χ_{C_i} 's are orthogonal

•
$$\chi_{C_i}^T \mathbf{L} \chi_{C_i} = \frac{1}{d} \cdot \sum_{\{u,v\} \in E} (\chi_{C_i}(u) - \chi_{C_i}(v))^2 = 0 \Rightarrow \lambda_1 = \cdots = \lambda_k = 0$$

2. (" \Leftarrow " $cc(G) \ge mult(0)$). We will show:

Let us generalise and formalise the example before!

Proof of 2 (multiplicity of 0 equals the no. of connected components):

 ("⇒)" *cc*(*G*) ≤ mult(0)). We will show: *G* has exactly *k* connected comp. *C*₁,..., *C_k* ⇒ λ₁ = ··· = λ_k = 0

 Take χ_{Ci} ∈ {0,1}ⁿ such that χ_{Ci}(u) = 1_{u∈Ci} for all u ∈ V

 Clearly, the χ_{Ci}'s are orthogonal

2. (" \Leftarrow " $cc(G) \ge mult(0)$). We will show: $\lambda_1 = \cdots = \lambda_k = 0 \implies G$ has at least *k* connected comp. C_1, \ldots, C_k

Let us generalise and formalise the example before!

Proof of 2 (multiplicity of 0 equals the no. of connected components):

- 1. (" \Longrightarrow " $cc(G) \le mult(0)$). We will show: *G* has exactly *k* connected comp. $C_1, \ldots, C_k \Rightarrow \lambda_1 = \cdots = \lambda_k = 0$ • Take $\chi_{C_i} \in \{0, 1\}^n$ such that $\chi_{C_i}(u) = \mathbf{1}_{u \in C_i}$ for all $u \in V$
 - Clearly, the χ_{C_i} 's are orthogonal

•
$$\chi_{C_i}^T \mathbf{L} \chi_{C_i} = \frac{1}{d} \cdot \sum_{\{u,v\} \in E} (\chi_{C_i}(u) - \chi_{C_i}(v))^2 = 0 \Rightarrow \lambda_1 = \cdots = \lambda_k = 0$$

2. (" \Leftarrow " $cc(G) \ge mult(0)$). We will show:

 $\lambda_1 = \cdots = \lambda_k = 0 \implies G$ has at least *k* connected comp. C_1, \ldots, C_k

• there exist f_1, \ldots, f_k orthonormal such that $\sum_{\{u,v\}\in E} (f_i(u) - f_i(v))^2 = 0$

Let us generalise and formalise the example before!

Proof of 2 (multiplicity of 0 equals the no. of connected components):

- 1. (" \Longrightarrow " $cc(G) \le mult(0)$). We will show: *G* has exactly *k* connected comp. $C_1, \ldots, C_k \Rightarrow \lambda_1 = \cdots = \lambda_k = 0$ • Take $\chi_{C_i} \in \{0, 1\}^n$ such that $\chi_{C_i}(u) = \mathbf{1}_{u \in C_i}$ for all $u \in V$
 - Clearly, the χ_{C_i} 's are orthogonal

•
$$\chi_{C_i}^T \mathbf{L} \chi_{C_i} = \frac{1}{d} \cdot \sum_{\{u,v\} \in E} (\chi_{C_i}(u) - \chi_{C_i}(v))^2 = 0 \Rightarrow \lambda_1 = \cdots = \lambda_k = 0$$

2. (" \Leftarrow " $cc(G) \ge mult(0)$). We will show:

 $\lambda_1 = \cdots = \lambda_k = 0 \implies G$ has at least *k* connected comp. C_1, \ldots, C_k

• there exist f_1, \ldots, f_k orthonormal such that $\sum_{\{u,v\} \in E} (f_i(u) - f_i(v))^2 = 0$

• \Rightarrow f_1, \ldots, f_k constant on connected components

Let us generalise and formalise the example before!

Proof of 2 (multiplicity of 0 equals the no. of connected components):

- 1. (" \Longrightarrow " $cc(G) \le mult(0)$). We will show: *G* has exactly *k* connected comp. $C_1, \ldots, C_k \Rightarrow \lambda_1 = \cdots = \lambda_k = 0$ Take $\chi_{C_i} \in \{0, 1\}^n$ such that $\chi_{C_i}(u) = \mathbf{1}_{u \in C_i}$ for all $u \in V$
 - Clearly, the χ_{C_i} 's are orthogonal

•
$$\chi_{C_i}^T \mathbf{L} \chi_{C_i} = \frac{1}{d} \cdot \sum_{\{u,v\} \in E} (\chi_{C_i}(u) - \chi_{C_i}(v))^2 = 0 \Rightarrow \lambda_1 = \cdots = \lambda_k = 0$$

2. (" \Leftarrow " $cc(G) \ge mult(0)$). We will show:

 $\lambda_1 = \cdots = \lambda_k = 0 \implies G$ has at least *k* connected comp. C_1, \ldots, C_k

- there exist f_1, \ldots, f_k orthonormal such that $\sum_{\{u,v\} \in E} (f_i(u) f_i(v))^2 = 0$
- \Rightarrow f_1, \ldots, f_k constant on connected components
- as *f*₁,..., *f_k* are pairwise orthogonal, *G* must have *k* different connected components.

Let us generalise and formalise the example before!

Proof of 2 (multiplicity of 0 equals the no. of connected components):

- 1. (" \Longrightarrow " $cc(G) \le mult(0)$). We will show: *G* has exactly *k* connected comp. $C_1, \ldots, C_k \Rightarrow \lambda_1 = \cdots = \lambda_k = 0$ • Take $\chi_{C_i} \in \{0, 1\}^n$ such that $\chi_{C_i}(u) = \mathbf{1}_{u \in C_i}$ for all $u \in V$
 - Clearly, the χ_{C_i} 's are orthogonal

•
$$\chi_{C_i}^T \mathbf{L} \chi_{C_i} = \frac{1}{d} \cdot \sum_{\{u,v\} \in E} (\chi_{C_i}(u) - \chi_{C_i}(v))^2 = 0 \Rightarrow \lambda_1 = \cdots = \lambda_k = 0$$

2. (" \Leftarrow " $cc(G) \ge mult(0)$). We will show:

 $\lambda_1 = \cdots = \lambda_k = 0 \Rightarrow G$ has at least k connected comp. C_1, \ldots, C_k

- there exist f_1, \ldots, f_k orthonormal such that $\sum_{\{u,v\} \in E} (f_i(u) f_i(v))^2 = 0$
- \Rightarrow f_1, \ldots, f_k constant on connected components
- as *f*₁,..., *f_k* are pairwise orthogonal, *G* must have *k* different connected components.

Introduction to (Spectral) Graph Theory and Clustering

Matrices, Spectrum and Structure

A Simplified Clustering Problem

Conductance, Cheeger's Inequality and Spectral Clustering

Illustrations of Spectral Clustering and Extension to Non-Regular Graphs

Relating Spectrum to Mixing Times

Outlook: Glimpse at Image Segmentation (non-examinable)

Graph Clustering

Partition the graph into **pieces (clusters)** so that vertices in the same piece have, on average, more connections among each other than with vertices in other clusters

Graph Clustering

Partition the graph into **pieces (clusters)** so that vertices in the same piece have, on average, more connections among each other than with vertices in other clusters

Graph Clustering

Partition the graph into **pieces (clusters)** so that vertices in the same piece have, on average, more connections among each other than with vertices in other clusters

Conductance -

Let G = (V, E) be a *d*-regular and undirected graph and $\emptyset \neq S \subsetneq V$. The conductance (edge expansion) of *S* is

$$\phi(\mathcal{S}) := rac{e(\mathcal{S},\mathcal{S}^c)}{d \cdot |\mathcal{S}|}$$

Conductance -

Let G = (V, E) be a *d*-regular and undirected graph and $\emptyset \neq S \subsetneq V$. The conductance (edge expansion) of *S* is

$$\phi(S) := \frac{e(S, S^c)}{d \cdot |S|}$$

$$\phi(G) := \min_{S \subseteq V: \ 1 \le |S| \le n/2} \phi(S)$$

Conductance

Let G = (V, E) be a *d*-regular and undirected graph and $\emptyset \neq S \subsetneq V$. The conductance (edge expansion) of *S* is

$$\phi(S) := \frac{e(S, S^c)}{d \cdot |S|}$$

$$\phi(G) := \min_{S \subseteq V: \ 1 \le |S| \le n/2} \phi(S)$$

Conductance

Let G = (V, E) be a *d*-regular and undirected graph and $\emptyset \neq S \subsetneq V$. The conductance (edge expansion) of *S* is

$$\phi(S) := \frac{e(S, S^c)}{d \cdot |S|}$$

$$\phi(G) := \min_{S \subseteq V: \ 1 \le |S| \le n/2} \phi(S)$$

Conductance

Let G = (V, E) be a *d*-regular and undirected graph and $\emptyset \neq S \subsetneq V$. The conductance (edge expansion) of *S* is

$$\phi(S) := \frac{e(S, S^c)}{d \cdot |S|}$$

$$\phi(G) := \min_{S \subseteq V: \ 1 \le |S| \le n/2} \phi(S)$$

Conductance

Let G = (V, E) be a *d*-regular and undirected graph and $\emptyset \neq S \subsetneq V$. The conductance (edge expansion) of *S* is

$$\phi(S) := rac{e(S, S^c)}{d \cdot |S|}$$

Moreover, the conductance (edge expansion) of the graph G is

$$\phi(G) := \min_{S \subseteq V: \ 1 \le |S| \le n/2} \phi(S)$$

•
$$\phi(S) = \frac{5}{9}$$

 φ(G) ∈ [0, 1] and φ(G) = 0 iff G is
 disconnected

Conductance

Let G = (V, E) be a *d*-regular and undirected graph and $\emptyset \neq S \subsetneq V$. The conductance (edge expansion) of *S* is

$$\phi(S) := rac{e(S, S^c)}{d \cdot |S|}$$

$$\phi(G) := \min_{S \subseteq V: \ 1 \le |S| \le n/2} \phi(S)$$

- $\phi(S) = \frac{5}{9}$
- φ(G) ∈ [0, 1] and φ(G) = 0 iff G is disconnected
- If G is a complete graph, then $e(S, V \setminus S) = |S| \cdot (n - |S|)$ and $\phi(G) \approx 1/2$.

G is disconnected

G is disconnected

$\phi(G) = 0 \iff G$ is disconnected

 $\phi(G) = 0 \iff G \text{ is disconnected } \Leftrightarrow \lambda_2(G) = 0$

 $\phi(G) = 0 \iff G \text{ is disconnected } \Leftrightarrow \lambda_2(G) = 0$

What is the relationship between $\phi(G)$ and $\lambda_2(G)$ for **connected** graphs?

λ_2 versus Conductance (2/2)

λ_2 versus Conductance (2/2)

Clustering © Thomas Sauerwald

Conductance, Cheeger's Inequality and Spectral Clustering

Relating λ_2 and Conductance

Cheeger's inequality -

Let *G* be a *d*-regular undirected graph and $\lambda_1 \leq \cdots \leq \lambda_n$ be the eigenvalues of its Laplacian matrix. Then,

$$rac{\lambda_2}{2} \leq \phi(G) \leq \sqrt{2\lambda_2}.$$

Relating λ_2 and Conductance

Cheeger's inequality -

Let *G* be a *d*-regular undirected graph and $\lambda_1 \leq \cdots \leq \lambda_n$ be the eigenvalues of its Laplacian matrix. Then,

$$rac{\lambda_2}{2} \leq \phi(G) \leq \sqrt{2\lambda_2}.$$

Spectral Clustering:

Relating λ_2 and Conductance

Cheeger's inequality -

Let *G* be a *d*-regular undirected graph and $\lambda_1 \leq \cdots \leq \lambda_n$ be the eigenvalues of its Laplacian matrix. Then,

$$rac{\lambda_2}{2} \leq \phi(G) \leq \sqrt{2\lambda_2}.$$

Spectral Clustering:

1. Compute the eigenvector *x* corresponding to λ_2

Cheeger's inequality -

Let *G* be a *d*-regular undirected graph and $\lambda_1 \leq \cdots \leq \lambda_n$ be the eigenvalues of its Laplacian matrix. Then,

$$rac{\lambda_2}{2} \leq \phi(G) \leq \sqrt{2\lambda_2}.$$

Spectral Clustering:

- 1. Compute the eigenvector x corresponding to λ_2
- 2. Order the vertices so that $x_1 \leq x_2 \leq \cdots \leq x_n$ (embed *V* on \mathbb{R})
Let *G* be a *d*-regular undirected graph and $\lambda_1 \leq \cdots \leq \lambda_n$ be the eigenvalues of its Laplacian matrix. Then,

$$rac{\lambda_2}{2} \leq \phi(G) \leq \sqrt{2\lambda_2}.$$

Spectral Clustering:

- 1. Compute the eigenvector x corresponding to λ_2
- 2. Order the vertices so that $x_1 \leq x_2 \leq \cdots \leq x_n$ (embed *V* on \mathbb{R})
- 3. Try all n 1 sweep cuts of the form $(\{1, 2, ..., k\}, \{k + 1, ..., n\})$ and return the one with smallest conductance

Let *G* be a *d*-regular undirected graph and $\lambda_1 \leq \cdots \leq \lambda_n$ be the eigenvalues of its Laplacian matrix. Then,

$$rac{\lambda_2}{2} \leq \phi(G) \leq \sqrt{2\lambda_2}.$$

Spectral Clustering:

- 1. Compute the eigenvector x corresponding to λ_2
- 2. Order the vertices so that $x_1 \leq x_2 \leq \cdots \leq x_n$ (embed *V* on \mathbb{R})
- 3. Try all n 1 sweep cuts of the form $(\{1, 2, ..., k\}, \{k + 1, ..., n\})$ and return the one with smallest conductance
- It returns cluster $S \subseteq V$ such that $\phi(S) \leq \sqrt{2\lambda_2}$

Let *G* be a *d*-regular undirected graph and $\lambda_1 \leq \cdots \leq \lambda_n$ be the eigenvalues of its Laplacian matrix. Then,

$$rac{\lambda_2}{2} \leq \phi(G) \leq \sqrt{2\lambda_2}.$$

Spectral Clustering:

- 1. Compute the eigenvector x corresponding to λ_2
- 2. Order the vertices so that $x_1 \leq x_2 \leq \cdots \leq x_n$ (embed *V* on \mathbb{R})
- 3. Try all n 1 sweep cuts of the form $(\{1, 2, ..., k\}, \{k + 1, ..., n\})$ and return the one with smallest conductance

• It returns cluster $S \subseteq V$ such that $\phi(S) \leq \sqrt{2\lambda_2} \leq 2\sqrt{\phi(G)}$

Let *G* be a *d*-regular undirected graph and $\lambda_1 \leq \cdots \leq \lambda_n$ be the eigenvalues of its Laplacian matrix. Then,

$$rac{\lambda_2}{2} \leq \phi(G) \leq \sqrt{2\lambda_2}.$$

Spectral Clustering:

- 1. Compute the eigenvector x corresponding to λ_2
- 2. Order the vertices so that $x_1 \leq x_2 \leq \cdots \leq x_n$ (embed *V* on \mathbb{R})
- 3. Try all n 1 sweep cuts of the form $(\{1, 2, ..., k\}, \{k + 1, ..., n\})$ and return the one with smallest conductance
- It returns cluster $S \subseteq V$ such that $\phi(S) \leq \sqrt{2\lambda_2} \leq 2\sqrt{\phi(G)}$
- no constant factor worst-case guarantee, but usually works well in practice (see examples later!)

Let *G* be a *d*-regular undirected graph and $\lambda_1 \leq \cdots \leq \lambda_n$ be the eigenvalues of its Laplacian matrix. Then,

$$rac{\lambda_2}{2} \leq \phi(G) \leq \sqrt{2\lambda_2}.$$

Spectral Clustering:

- 1. Compute the eigenvector x corresponding to λ_2
- 2. Order the vertices so that $x_1 \leq x_2 \leq \cdots \leq x_n$ (embed *V* on \mathbb{R})
- 3. Try all n 1 sweep cuts of the form $(\{1, 2, ..., k\}, \{k + 1, ..., n\})$ and return the one with smallest conductance
- It returns cluster $S \subseteq V$ such that $\phi(S) \leq \sqrt{2\lambda_2} \leq 2\sqrt{\phi(G)}$
- no constant factor worst-case guarantee, but usually works well in practice (see examples later!)
- very fast: can be implemented in $O(|E| \log |E|)$ time

Proof (of the easy direction):

Proof (of the easy direction):

By the Courant-Fischer Formula,

$$\lambda_2 = \min_{\substack{x \in \mathbb{R}^n \\ x \neq 0, x \perp 1}} \frac{x^T \mathbf{L} x}{x^T x}$$

Proof (of the easy direction):

By the Courant-Fischer Formula,

$$\lambda_2 = \min_{\substack{x \in \mathbb{R}^n \\ x \neq 0, x \perp 1}} \frac{x^T \mathbf{L} x}{x^T x} = \frac{1}{d} \cdot \min_{\substack{x \in \mathbb{R}^n \\ x \neq 0, x \perp 1}} \frac{\sum_{u \sim v} (x_u - x_v)^2}{\sum_u x_u^2}.$$

• Let $S \subseteq V$ be the subset for which $\phi(G)$ is minimised. Define $y \in \mathbb{R}^n$ by:

$$y_u = \begin{cases} \frac{1}{|S|} & \text{if } u \in S, \\ -\frac{1}{|V \setminus S|} & \text{if } u \in V \setminus S. \end{cases}$$

Proof (of the easy direction):
• By the Courant-Fischer Formula,

$$\lambda_{2} = \min_{\substack{x \in \mathbb{R}^{n} \\ x \neq 0, x \perp 1}} \frac{x^{T} L x}{x^{T} x} = \frac{1}{d} \cdot \min_{\substack{x \in \mathbb{R}^{n} \\ x \neq 0, x \perp 1}} \frac{\sum_{u \sim v} (x_{u} - x_{v})^{2}}{\sum_{u} x_{u}^{2}}.$$

• Let $S \subseteq V$ be the subset for which $\phi(G)$ is minimised. Define $y \in \mathbb{R}^n$ by:

$$y_u = \begin{cases} \frac{1}{|S|} & \text{if } u \in S, \\ -\frac{1}{|V \setminus S|} & \text{if } u \in V \setminus S. \end{cases}$$

Since $y \perp 1$, it follows that

$$\begin{split} \lambda_2 &\leq \frac{1}{d} \cdot \frac{\sum_{u \sim v} (y_u - y_v)^2}{\sum_u y_u^2} = \frac{1}{d} \cdot \frac{|E(S, V \setminus S)| \cdot \left(\frac{1}{|S|} + \frac{1}{|V \setminus S|}\right)^2}{\frac{1}{|S|} + \frac{1}{|V \setminus S|}} \\ &= \frac{1}{d} \cdot |E(S, V \setminus S)| \cdot \left(\frac{1}{|S|} + \frac{1}{|V \setminus S|}\right) \\ &\leq \frac{1}{d} \cdot \frac{2 \cdot |E(S, V \setminus S)|}{|S|} = 2 \cdot \phi(G). \quad \Box \end{split}$$

Introduction to (Spectral) Graph Theory and Clustering

Matrices, Spectrum and Structure

A Simplified Clustering Problem

Conductance, Cheeger's Inequality and Spectral Clustering

Illustrations of Spectral Clustering and Extension to Non-Regular Graphs

Relating Spectrum to Mixing Times

Outlook: Glimpse at Image Segmentation (non-examinable)

$$\mathbf{A} = \begin{pmatrix} 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 0 \end{pmatrix} \quad \mathbf{L} = \begin{pmatrix} 1 & 0 & -\frac{1}{3} & -\frac{1}{3} & 0 & 0 & -\frac{1}{3} & 0 \\ 0 & -\frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} & 0 & 0 & -\frac{1}{3} & 0 \\ -\frac{1}{3} & 0 & -\frac{1}{3} & -\frac{1}{3} & 0 & 0 & 0 & -\frac{1}{3} & 0 \\ 0 & -\frac{1}{3} & 0 & 0 & 1 & -\frac{1}{3} & 0 & 0 & -\frac{1}{3} & 0 \\ 0 & -\frac{1}{3} & 0 & 0 & 1 & -\frac{1}{3} & 0 & -\frac{1}{3} & 0 & -\frac{1}{3} \\ -\frac{1}{3} & -\frac{1}{3} & 0 & 0 & 1 & -\frac{1}{3} & 0 & 0 & 1 \\ -\frac{1}{3} & -\frac{1}{3} & 0 & -\frac{1}{3} & 0 & 0 & 1 & 0 \\ 0 & 0 & -\frac{1}{3} & 0 & -\frac{1}{3} & 0 & 0 & 1 & 0 \\ 0 & 0 & -\frac{1}{3} & 0 & -\frac{1}{3} & 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{A} = \begin{pmatrix} 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 0 \end{pmatrix} \qquad \mathbf{L} = \begin{pmatrix} 1 & 0 & -\frac{1}{3} & -\frac{1}{3} & 0 & 0 & -\frac{1}{3} & 0 \\ 0 & -\frac{1}{3} & 0 & -\frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} & 0 \\ -\frac{1}{3} & 0 & -\frac{1}{3} & 1 & 0 & 0 & -\frac{1}{3} \\ 0 & -\frac{1}{3} & 0 & 0 & 1 & -\frac{1}{3} & 0 & -\frac{1}{3} \\ 0 & -\frac{1}{3} & 0 & 0 & 1 & -\frac{1}{3} & 0 & -\frac{1}{3} \\ -\frac{1}{3} & -\frac{1}{3} & 0 & 0 & 1 & -\frac{1}{3} \\ 0 & 0 & -\frac{1}{3} & 0 & -\frac{1}{3} & 0 & 0 \\ 0 & 0 & -\frac{1}{3} & 0 & -\frac{1}{3} & 0 & 0 \\ 0 & 0 & -\frac{1}{3} & 0 & -\frac{1}{3} & -\frac{1}{3} & 0 & 1 \end{pmatrix}$$

$$\mathbf{A} = \begin{pmatrix} 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 0 \end{pmatrix} \qquad \mathbf{L} = \begin{pmatrix} 1 & 0 & -\frac{1}{3} & -\frac{1}{3} & 0 & 0 & -\frac{1}{3} & 0 \\ 0 & -\frac{1}{3} & 0 & -\frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} & 0 \\ -\frac{1}{3} & 0 & -\frac{1}{3} & 1 & 0 & 0 & -\frac{1}{3} \\ 0 & -\frac{1}{3} & 0 & 0 & 1 & -\frac{1}{3} & 0 & -\frac{1}{3} \\ 0 & -\frac{1}{3} & 0 & 0 & 1 & -\frac{1}{3} & 0 & -\frac{1}{3} \\ -\frac{1}{3} & -\frac{1}{3} & 0 & 0 & 1 & -\frac{1}{3} \\ 0 & 0 & -\frac{1}{3} & 0 & -\frac{1}{3} & 0 & 0 \\ 0 & 0 & -\frac{1}{3} & 0 & -\frac{1}{3} & 0 & 0 \\ 0 & 0 & -\frac{1}{3} & 0 & -\frac{1}{3} & -\frac{1}{3} & 0 & 1 \end{pmatrix}$$

$$\mathbf{A} = \begin{pmatrix} 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 0 \end{pmatrix} \qquad \mathbf{L} = \begin{pmatrix} 1 & 0 & -\frac{1}{3} & -\frac{1}{3} & 0 & 0 & -\frac{1}{3} & 0 \\ 0 & -\frac{1}{3} & 0 & -\frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} & 0 \\ -\frac{1}{3} & 0 & -\frac{1}{3} & 1 & 0 & 0 & -\frac{1}{3} \\ 0 & -\frac{1}{3} & 0 & 0 & 1 & -\frac{1}{3} & 0 & -\frac{1}{3} \\ 0 & -\frac{1}{3} & 0 & 0 & 1 & -\frac{1}{3} & 0 & -\frac{1}{3} \\ -\frac{1}{3} & -\frac{1}{3} & 0 & 0 & 1 & -\frac{1}{3} \\ 0 & 0 & -\frac{1}{3} & 0 & -\frac{1}{3} & 0 & 0 \\ 0 & 0 & -\frac{1}{3} & 0 & -\frac{1}{3} & 0 & 0 \\ 0 & 0 & -\frac{1}{3} & 0 & -\frac{1}{3} & -\frac{1}{3} & 0 & 1 \end{pmatrix}$$

Let us now look at an example of a non-regular graph!

The (normalised) Laplacian matrix of G = (V, E, w) is the *n* by *n* matrix

$$L = I - D^{-1/2} A D^{-1/2}$$

where **D** is a diagonal $n \times n$ matrix s.t. $\mathbf{D}_{uu} = deg(u) = \sum_{\{u,v\} \in E} w(u, v)$, and **A** is the weighted adjacency matrix of *G*.

The (normalised) Laplacian matrix of G = (V, E, w) is the *n* by *n* matrix

$$L = I - D^{-1/2} A D^{-1/2}$$

where **D** is a diagonal $n \times n$ matrix s.t. $\mathbf{D}_{uu} = deg(u) = \sum_{\{u,v\} \in E} w(u, v)$, and **A** is the weighted adjacency matrix of *G*.

The (normalised) Laplacian matrix of G = (V, E, w) is the *n* by *n* matrix

$$L = I - D^{-1/2} A D^{-1/2}$$

where **D** is a diagonal $n \times n$ matrix s.t. $\mathbf{D}_{uu} = deg(u) = \sum_{\{u,v\} \in E} w(u, v)$, and **A** is the weighted adjacency matrix of *G*.

- $\mathbf{L}_{uv} = \frac{w(u,v)}{\sqrt{d_u d_v}}$ for $u \neq v$
- L is symmetric
- If G is d-regular, $\mathbf{L} = \mathbf{I} \frac{1}{d} \cdot \mathbf{A}$.
Conductance and Spectral Clustering (General Version)

Conductance (General Version) Let G = (V, E, w) and $\emptyset \subsetneq S \subsetneq V$. The conductance (edge expansion) of S is $\phi(S) := \frac{w(S, S^c)}{\min\{\operatorname{vol}(S), \operatorname{vol}(S^c)\}},$ where $w(S, S^c) := \sum_{u \in S, v \in S^c} w(u, v)$ and $\operatorname{vol}(S) := \sum_{u \in S} d(u)$. Moreover, the conductance (edge expansion) of G is $\phi(G) := \min_{\emptyset \neq S \subsetneq V} \phi(S).$

Conductance and Spectral Clustering (General Version)

Conductance (General Version) Let G = (V, E, w) and $\emptyset \subsetneq S \subsetneq V$. The conductance (edge expansion) of S is $\phi(S) := \frac{w(S, S^c)}{\min\{\operatorname{vol}(S), \operatorname{vol}(S^c)\}},$ where $w(S, S^c) := \sum_{u \in S, v \in S^c} w(u, v)$ and $\operatorname{vol}(S) := \sum_{u \in S} d(u)$. Moreover, the conductance (edge expansion) of G is $\phi(G) := \min_{\emptyset \neq S \subsetneq V} \phi(S).$

Spectral Clustering (General Version):

Conductance (General Version) Let G = (V, E, w) and $\emptyset \subsetneq S \subsetneq V$. The conductance (edge expansion) of S is $\phi(S) := \frac{w(S, S^c)}{\min\{\operatorname{vol}(S), \operatorname{vol}(S^c)\}},$ where $w(S, S^c) := \sum_{u \in S, v \in S^c} w(u, v)$ and $\operatorname{vol}(S) := \sum_{u \in S} d(u).$ Moreover, the conductance (edge expansion) of G is $\phi(G) := \min_{\emptyset \neq S \subsetneq V} \phi(S).$

Spectral Clustering (General Version):

1. Compute the eigenvector *x* corresponding to λ_2 and $y = \mathbf{D}^{-1/2} x$.

Conductance (General Version) Let G = (V, E, w) and $\emptyset \subsetneq S \subsetneq V$. The conductance (edge expansion) of S is $\phi(S) := \frac{w(S, S^c)}{\min\{\operatorname{vol}(S), \operatorname{vol}(S^c)\}},$ where $w(S, S^c) := \sum_{u \in S, v \in S^c} w(u, v)$ and $\operatorname{vol}(S) := \sum_{u \in S} d(u)$. Moreover, the conductance (edge expansion) of G is $\phi(G) := \min_{\emptyset \neq S \subsetneq V} \phi(S).$

Spectral Clustering (General Version):

- 1. Compute the eigenvector *x* corresponding to λ_2 and $y = \mathbf{D}^{-1/2} x$.
- 2. Order the vertices so that $y_1 \leq y_2 \leq \cdots \leq y_n$ (embed *V* on \mathbb{R})

Conductance (General Version) Let G = (V, E, w) and $\emptyset \subsetneq S \subsetneq V$. The conductance (edge expansion) of S is $\phi(S) := \frac{w(S, S^c)}{\min\{\operatorname{vol}(S), \operatorname{vol}(S^c)\}},$ where $w(S, S^c) := \sum_{u \in S, v \in S^c} w(u, v)$ and $\operatorname{vol}(S) := \sum_{u \in S} d(u)$. Moreover, the conductance (edge expansion) of G is $\phi(G) := \min_{\emptyset \neq S \subsetneq V} \phi(S).$

Spectral Clustering (General Version):

- 1. Compute the eigenvector *x* corresponding to λ_2 and $y = \mathbf{D}^{-1/2} x$.
- 2. Order the vertices so that $y_1 \leq y_2 \leq \cdots \leq y_n$ (embed *V* on \mathbb{R})
- 3. Try all n 1 sweep cuts of the form $(\{1, 2, ..., k\}, \{k + 1, ..., n\})$ and return the one with smallest conductance

Stochastic Block Model
$$G = (V, E)$$
 with clusters $S_1, S_2 \subseteq V, 0 \le q
 $P[\{u, v\} \in E] = \begin{cases} p & \text{if } u, v \in S_i, \\ q & \text{if } u \in S_i, v \in S_j, i \ne j. \end{cases}$$

Stochastic Block Model

$$G = (V, E)$$
 with clusters $S_1, S_2 \subseteq V, 0 \leq q
 $P[\{u, v\} \in E] = \begin{cases} p & \text{if } u, v \in S_i, \\ q & \text{if } u \in S_i, v \in S_j, i \neq j. \end{cases}$
Here:
 $|S_1| = 80, |S_2| = 120$
 $p = 0.08$
 $q = 0.01$$

Stochastic Block Model

$$G = (V, E)$$
 with clusters $S_1, S_2 \subseteq V, 0 \le q
 $\mathbf{P}[\{u, v\} \in E] = \begin{cases} p & \text{if } u, v \in S_i, \\ q & \text{if } u \in S_i, v \in S_j, i \ne j. \end{cases}$$

Here:

• $|S_1| = 80,$ $|S_2| = 120$

$$p = 0.08$$

Number of	Verti	ces	s: 200
Number of	Edges	:	919
Eigenvalue	1	:	-1.1968431479565368e-16
Eigenvalue	2	:	0.1543784937248489
Eigenvalue	3	:	0.37049909753568877
Eigenvalue	4	:	0.39770640242147404
Eigenvalue	5	:	0.4316114413430584
Eigenvalue	6	:	0.44379221120189777
Eigenvalue	7	:	0.4564011652684181
Eigenvalue	8	:	0.4632911204500282
Eigenvalue	9	:	0.474638606357877
Eigenvalue	10	:	0.4814019607292904

Stochastic Block Model
$$G = (V, E)$$
 with clusters $S_1, S_2 \subseteq V, 0 \le q
 $\mathbf{P}[\{u, v\} \in E] = \begin{cases} p & \text{if } u, v \in S_i, \\ q & \text{if } u \in S_i, v \in S_j, i \ne j. \end{cases}$$

Here:

• $|S_1| = 80,$ $|S_2| = 120$

$$n = 0.08$$

Number of	Verti	ces	s: 200
Number of	Edges	:	919
Eigenvalue	1	:	-1.1968431479565368e-16
Eigenvalue	2	:	0.1543784937248489
Eigenvalue	3	:	0.37049909753568877
Eigenvalue	4	:	0.39770640242147404
Eigenvalue	5	:	0.4316114413430584
Eigenvalue	6	:	0.44379221120189777
Eigenvalue	7	:	0.4564011652684181
Eigenvalue	8	:	0.4632911204500282
Eigenvalue	9	:	0.474638606357877
Eigenvalue	10	:	0.4814019607292904

Drawing the 2D-Embedding

Spectral Clustering

Best Solution found by Spectral Clustering

Clustering induced by Blocks

- Step: 1
- Threshold: 0
- Partition Sizes: 80/120
- Cut Edges: 88
- Conductance: 0.1486

Graph
$$G = (V, E)$$
 with clusters
 $S_1, S_2, S_3 \subseteq V; \quad 0 \le q
 $\mathbf{P}[\{u, v\} \in E] = \begin{cases} p & u, v \in S_i \\ q & u \in S_i, v \in S_j, i \ne j \end{cases}$$

Additional Example: Stochastic Block Models with 3 Clusters

Graph
$$G = (V, E)$$
 with clusters
 $S_1, S_2, S_3 \subseteq V; \quad 0 \le q
 $\mathbf{P}[\{u, v\} \in E] = \begin{cases} p & u, v \in S_i \\ q & u \in S_i, v \in S_j, i \ne j \end{cases}$
 $|V| = 300, |S_i| = 100$
 $p = 0.08, q = 0.01.$$

Additional Example: Stochastic Block Models with 3 Clusters

Graph
$$G = (V, E)$$
 with clusters
 $S_1, S_2, S_3 \subseteq V; \quad 0 \le q
 $\mathbf{P}[\{u, v\} \in E] = \begin{cases} p & u, v \in S_i \\ q & u \in S_i, v \in S_j, i \ne j \end{cases}$
 $|V| = 300, |S_i| = 100$
 $p = 0.08, q = 0.01.$$

Spectral embedding

Additional Example: Stochastic Block Models with 3 Clusters

Graph
$$G = (V, E)$$
 with clusters
 $S_1, S_2, S_3 \subseteq V; \quad 0 \le q
$$\mathbf{P}[\{u, v\} \in E] = \begin{cases} p & u, v \in S_i \\ q & u \in S_i, v \in S_j, i \ne j \end{cases}$$

$$|V| = 300, |S_i| = 100$$

$$p = 0.08, q = 0.01$$$

Spectral embedding

Output of Spectral Clustering

If k is unknown:

small λ_k means there exist k sparsely connected subsets in the graph (recall: λ₁ = ... = λ_k = 0 means there are k connected components)

If k is unknown:

- small λ_k means there exist k sparsely connected subsets in the graph (recall: λ₁ = ... = λ_k = 0 means there are k connected components)
- large λ_{k+1} means all these k subsets have "good" inner-connectivity properties

If k is unknown:

- small λ_k means there exist k sparsely connected subsets in the graph (recall: λ₁ = ... = λ_k = 0 means there are k connected components)
- large λ_{k+1} means all these *k* subsets have "good" inner-connectivity properties
- \Rightarrow choose smallest $k \ge 2$ so that the spectral gap $\lambda_{k+1} \lambda_k$ is "large"

- If k is unknown:
 - small λ_k means there exist k sparsely connected subsets in the graph (recall: $\lambda_1 = \ldots = \lambda_k = 0$ means there are k connected components)
 - large λ_{k+1} means all these k subsets have "good" inner-connectivity properties

 \Rightarrow choose smallest $k \ge 2$ so that the spectral gap $\lambda_{k+1} - \lambda_k$ is "large"

• In the latter example $\lambda = \{0, 0.20, 0.22, 0.43, 0.45, ...\} \implies k = 3.$

- If k is unknown:
 - small λ_k means there exist k sparsely connected subsets in the graph (recall: $\lambda_1 = \ldots = \lambda_k = 0$ means there are k connected components)
 - large λ_{k+1} means all these k subsets have "good" inner-connectivity properties

 \Rightarrow choose smallest $k \ge 2$ so that the spectral gap $\lambda_{k+1} - \lambda_k$ is "large"

- In the latter example $\lambda = \{0, 0.20, 0.22, 0.43, 0.45, ...\} \implies k = 3.$
- In the former example $\lambda = \{0, 0.15, 0.37, 0.40, 0.43, \dots\} \implies k = 2.$

- If k is unknown:
 - small λ_k means there exist k sparsely connected subsets in the graph (recall: λ₁ = ... = λ_k = 0 means there are k connected components)
 - large λ_{k+1} means all these k subsets have "good" inner-connectivity properties

 \Rightarrow choose smallest $k \ge 2$ so that the spectral gap $\lambda_{k+1} - \lambda_k$ is "large"

- In the latter example $\lambda = \{0, 0.20, 0.22, 0.43, 0.45, ...\} \implies k = 3.$
- In the former example $\lambda = \{0, 0.15, 0.37, 0.40, 0.43, ...\} \implies k = 2.$
- For k = 2 use sweep-cut extract clusters. For k ≥ 3 use embedding in k-dimensional space and apply k-means (geometric clustering)

- Given any graph (adjacency matrix)
- Graph Spectrum (computable in poly-time)
 - λ₂ (relates to connectivity)
 - λ_n (relates to bipartiteness)

- Cheeger's Inequality
 - relates \(\lambda_2\) to conductance
 - unbounded approximation ratio
 - effective in practice

Introduction to (Spectral) Graph Theory and Clustering

Matrices, Spectrum and Structure

A Simplified Clustering Problem

Conductance, Cheeger's Inequality and Spectral Clustering

Illustrations of Spectral Clustering and Extension to Non-Regular Graphs

Relating Spectrum to Mixing Times

Outlook: Glimpse at Image Segmentation (non-examinable)

Which graph has a "cluster-structure"?

- Which graph has a "cluster-structure"?
- Which graph mixes faster?

Recall: If the underlying graph *G* is connected, undirected and *d*-regular, then the random walk converges towards the stationary distribution $\pi = (1/n, ..., 1/n)$, which satisfies $\pi \mathbf{P} = \pi$.

Recall: If the underlying graph *G* is connected, undirected and *d*-regular, then the random walk converges towards the stationary distribution $\pi = (1/n, ..., 1/n)$, which satisfies $\pi \mathbf{P} = \pi$.

Here all vector multiplications (including eigenvectors) will always be from the left!

Recall: If the underlying graph *G* is connected, undirected and *d*-regular, then the random walk converges towards the stationary distribution $\pi = (1/n, ..., 1/n)$, which satisfies $\pi \mathbf{P} = \pi$.

Here all vector multiplications (including eigenvectors) will always be from the left!

Lemma

Consider a lazy random walk on a connected, undirected and *d*-regular graph. Then for any initial distribution x,

$$\left\| \mathbf{x}\mathbf{P}^{t} - \pi \right\|_{2} \leq \lambda^{t},$$

with $1 = \lambda_1 > \lambda_2 \ge \cdots \ge \lambda_n$ as eigenvalues and $\lambda := \max\{|\lambda_2|, |\lambda_n|\}$.

Recall: If the underlying graph *G* is connected, undirected and *d*-regular, then the random walk converges towards the stationary distribution $\pi = (1/n, ..., 1/n)$, which satisfies $\pi \mathbf{P} = \pi$.

Here all vector multiplications (including eigenvectors) will always be from the left!

Lemma

Consider a lazy random walk on a connected, undirected and *d*-regular graph. Then for any initial distribution x,

$$\left\| \mathbf{x}\mathbf{P}^{t}-\pi \right\|_{2}\leq\lambda^{t},$$

with $1 = \lambda_1 > \lambda_2 \ge \cdots \ge \lambda_n$ as eigenvalues and $\lambda := \max\{|\lambda_2|, |\lambda_n|\}$.

due to laziness,
$$\lambda_n \ge 0$$

Recall: If the underlying graph *G* is connected, undirected and *d*-regular, then the random walk converges towards the stationary distribution $\pi = (1/n, ..., 1/n)$, which satisfies $\pi \mathbf{P} = \pi$.

Here all vector multiplications (including eigenvectors) will always be from the left!

Lemma

Consider a lazy random walk on a connected, undirected and *d*-regular graph. Then for any initial distribution x,

$$\left\| \mathbf{x}\mathbf{P}^{t} - \pi \right\|_{2} \leq \lambda^{t},$$

with $1 = \lambda_1 > \lambda_2 \ge \cdots \ge \lambda_n$ as eigenvalues and $\lambda := \max\{|\lambda_2|, |\lambda_n|\}.$ \Rightarrow This implies for $t = \mathcal{O}(\frac{\log n}{\log(1/\lambda)}) = \mathcal{O}(\frac{\log n}{1-\lambda}),$ $\|x\mathbf{P}^t - \pi\|_{tv} \le \frac{1}{4}.$ due to laziness, $\lambda_n \ge 0$

Proof of Lemma

• Express x in terms of the orthonormal basis of **P**, $v_1 = \pi, v_2, \dots, v_n$:

Proof of Lemma

• Express x in terms of the orthonormal basis of **P**, $v_1 = \pi, v_2, \dots, v_n$:

$$x=\sum_{i=1}^n\alpha_iv_i.$$
• Express x in terms of the orthonormal basis of **P**, $v_1 = \pi, v_2, \dots, v_n$:

$$x=\sum_{i=1}^n\alpha_iv_i.$$

 \Rightarrow

• Express x in terms of the orthonormal basis of **P**, $v_1 = \pi, v_2, \dots, v_n$:

$$x=\sum_{i=1}^n \alpha_i v_i.$$

$$||x\mathbf{P} - \pi||_2^2$$

• Express x in terms of the orthonormal basis of **P**, $v_1 = \pi, v_2, \dots, v_n$:

$$x=\sum_{i=1}^n\alpha_iv_i.$$

$$\Rightarrow \qquad \|x\mathbf{P} - \pi\|_2^2 = \left\|\left(\sum_{i=1}^n \alpha_i \mathbf{v}_i\right)\mathbf{P} - \pi\right\|_2^2$$

• Express x in terms of the orthonormal basis of **P**, $v_1 = \pi, v_2, \dots, v_n$:

$$x=\sum_{i=1}^n\alpha_iv_i.$$

$$\Rightarrow \| \mathbf{x} \mathbf{P} - \pi \|_2^2 = \left\| \left(\sum_{i=1}^n \alpha_i \mathbf{v}_i \right) \mathbf{P} - \pi \right\|_2^2$$
$$= \left\| \pi + \sum_{i=2}^n \alpha_i \lambda_i \mathbf{v}_i - \pi \right\|_2^2$$

• Express x in terms of the orthonormal basis of **P**, $v_1 = \pi, v_2, \dots, v_n$:

$$x=\sum_{i=1}^n\alpha_iv_i.$$

$$\Rightarrow \| \mathbf{x} \mathbf{P} - \pi \|_{2}^{2} = \left\| \left(\sum_{i=1}^{n} \alpha_{i} \mathbf{v}_{i} \right) \mathbf{P} - \pi \right\|_{2}^{2}$$
$$= \left\| \pi + \sum_{i=2}^{n} \alpha_{i} \lambda_{i} \mathbf{v}_{i} - \pi \right\|_{2}^{2}$$
$$= \left\| \sum_{i=2}^{n} \alpha_{i} \lambda_{i} \mathbf{v}_{i} \right\|_{2}^{2}$$

• Express x in terms of the orthonormal basis of **P**, $v_1 = \pi, v_2, \dots, v_n$:

$$x=\sum_{i=1}^n\alpha_iv_i.$$

$$\Rightarrow \| x \mathbf{P} - \pi \|_{2}^{2} = \left\| \left(\sum_{i=1}^{n} \alpha_{i} \mathbf{v}_{i} \right) \mathbf{P} - \pi \right\|_{2}^{2}$$
$$= \left\| \pi + \sum_{i=2}^{n} \alpha_{i} \lambda_{i} \mathbf{v}_{i} - \pi \right\|_{2}^{2}$$
since the \mathbf{v}_{i} 's are orthogonal
$$= \left\| \sum_{i=2}^{n} \alpha_{i} \lambda_{i} \mathbf{v}_{i} \right\|_{2}^{2}$$
$$= \sum_{i=2}^{n} \| \alpha_{i} \lambda_{i} \mathbf{v}_{i} \|_{2}^{2}$$

• Express x in terms of the orthonormal basis of **P**, $v_1 = \pi, v_2, \dots, v_n$:

$$x=\sum_{i=1}^n\alpha_iv_i.$$

$$\Rightarrow \| x \mathbf{P} - \pi \|_{2}^{2} = \left\| \left(\sum_{i=1}^{n} \alpha_{i} v_{i} \right) \mathbf{P} - \pi \right\|_{2}^{2}$$
$$= \left\| \pi + \sum_{i=2}^{n} \alpha_{i} \lambda_{i} v_{i} - \pi \right\|_{2}^{2}$$
$$\text{since the } v_{i} \text{'s}$$
$$= \left\| \sum_{i=2}^{n} \alpha_{i} \lambda_{i} v_{i} \right\|_{2}^{2}$$
$$\text{since the } v_{i} \text{'s}$$
$$= \sum_{i=2}^{n} \| \alpha_{i} \lambda_{i} v_{i} \|_{2}^{2}$$
$$\text{since the } v_{i} \text{'s}$$
$$\text{are orthogonal}$$
$$\leq \lambda^{2} \sum_{i=2}^{n} \| \alpha_{i} v_{i} \|_{2}^{2} = \lambda^{2} \left\| \sum_{i=2}^{n} \alpha_{i} v_{i} \right\|_{2}^{2}$$

• Express x in terms of the orthonormal basis of **P**, $v_1 = \pi, v_2, \dots, v_n$:

$$x=\sum_{i=1}^n\alpha_iv_i.$$

$$\Rightarrow \| x \mathbf{P} - \pi \|_{2}^{2} = \left\| \left(\sum_{i=1}^{n} \alpha_{i} v_{i} \right) \mathbf{P} - \pi \right\|_{2}^{2}$$

$$= \left\| \pi + \sum_{i=2}^{n} \alpha_{i} \lambda_{i} v_{i} - \pi \right\|_{2}^{2}$$

$$\text{since the } v_{i} \text{'s}$$

$$= \left\| \sum_{i=2}^{n} \alpha_{i} \lambda_{i} v_{i} \right\|_{2}^{2}$$

$$\text{since the } v_{i} \text{'s}$$

$$= \sum_{i=2}^{n} \| \alpha_{i} \lambda_{i} v_{i} \|_{2}^{2}$$

$$\text{since the } v_{i} \text{'s}$$

$$\text{are orthogonal}$$

$$\leq \lambda^{2} \sum_{i=2}^{n} \| \alpha_{i} v_{i} \|_{2}^{2} = \lambda^{2} \left\| \sum_{i=2}^{n} \alpha_{i} v_{i} \right\|_{2}^{2} = \lambda^{2} \| x - \pi \|_{2}^{2}$$

• Express x in terms of the orthonormal basis of **P**, $v_1 = \pi, v_2, \dots, v_n$:

$$x=\sum_{i=1}^n\alpha_iv_i.$$

$$\Rightarrow \| x \mathbf{P} - \pi \|_{2}^{2} = \left\| \left(\sum_{i=1}^{n} \alpha_{i} v_{i} \right) \mathbf{P} - \pi \right\|_{2}^{2}$$

$$= \left\| \pi + \sum_{i=2}^{n} \alpha_{i} \lambda_{i} v_{i} - \pi \right\|_{2}^{2}$$

$$\text{since the } v_{i} \text{'s}$$

$$= \left\| \sum_{i=2}^{n} \alpha_{i} \lambda_{i} v_{i} \right\|_{2}^{2}$$

$$\text{since the } v_{i} \text{'s}$$

$$= \sum_{i=2}^{n} \| \alpha_{i} \lambda_{i} v_{i} \|_{2}^{2}$$

$$\text{since the } v_{i} \text{'s}$$

$$\text{are orthogonal}$$

$$\leq \lambda^{2} \sum_{i=2}^{n} \| \alpha_{i} v_{i} \|_{2}^{2} = \lambda^{2} \left\| \sum_{i=2}^{n} \alpha_{i} v_{i} \right\|_{2}^{2} = \lambda^{2} \| x - \pi \|_{2}^{2}$$

$$\text{Hence } \| x \mathbf{P}^{t} - \pi \|_{2}^{2}$$

• Express x in terms of the orthonormal basis of **P**, $v_1 = \pi, v_2, \dots, v_n$:

$$x=\sum_{i=1}^n\alpha_iv_i.$$

$$\Rightarrow \| x \mathbf{P} - \pi \|_{2}^{2} = \left\| \left(\sum_{i=1}^{n} \alpha_{i} v_{i} \right) \mathbf{P} - \pi \right\|_{2}^{2}$$

$$= \left\| \pi + \sum_{i=2}^{n} \alpha_{i} \lambda_{i} v_{i} - \pi \right\|_{2}^{2}$$

$$\text{since the } v_{i} \text{'s}$$

$$= \left\| \sum_{i=2}^{n} \alpha_{i} \lambda_{i} v_{i} \right\|_{2}^{2}$$

$$\text{since the } v_{i} \text{'s}$$

$$= \sum_{i=2}^{n} \| \alpha_{i} \lambda_{i} v_{i} \|_{2}^{2}$$

$$\text{since the } v_{i} \text{'s}$$

$$\text{are orthogonal}$$

$$\leq \lambda^{2} \sum_{i=2}^{n} \| \alpha_{i} v_{i} \|_{2}^{2} = \lambda^{2} \left\| \sum_{i=2}^{n} \alpha_{i} v_{i} \right\|_{2}^{2} = \lambda^{2} \| x - \pi \|_{2}^{2}$$

$$\text{Hence } \| x \mathbf{P}^{t} - \pi \|_{2}^{2} \leq \lambda^{2t} \cdot \| x - \pi \|_{2}^{2}$$

• Express x in terms of the orthonormal basis of **P**, $v_1 = \pi, v_2, \dots, v_n$:

$$x=\sum_{i=1}^n\alpha_iv_i.$$

$$\Rightarrow \| x \mathbf{P} - \pi \|_{2}^{2} = \left\| \left(\sum_{i=1}^{n} \alpha_{i} v_{i} \right) \mathbf{P} - \pi \right\|_{2}^{2}$$

$$= \left\| \pi + \sum_{i=2}^{n} \alpha_{i} \lambda_{i} v_{i} - \pi \right\|_{2}^{2}$$

$$= \left\| \sum_{i=2}^{n} \alpha_{i} \lambda_{i} v_{i} - \pi \right\|_{2}^{2}$$
since the v_{i} 's are orthogonal
$$= \sum_{i=2}^{n} \| \alpha_{i} \lambda_{i} v_{i} \|_{2}^{2}$$
since the v_{i} 's are orthogonal
$$\leq \lambda^{2} \sum_{i=2}^{n} \| \alpha_{i} v_{i} \|_{2}^{2} = \lambda^{2} \left\| \sum_{i=2}^{n} \alpha_{i} v_{i} \right\|_{2}^{2} = \lambda^{2} \| x - \pi \|_{2}^{2}$$

$$= \text{Hence } \| x \mathbf{P}^{t} - \pi \|_{2}^{2} \leq \lambda^{2t} \cdot \| x - \pi \|_{2}^{2} \leq \lambda^{2t} \cdot 1.$$

$$= \| x - \pi \|_{2}^{2} = \| x \|_{2}^{2} = \| x \|_{2}^{2} \leq 1$$

Introduction to (Spectral) Graph Theory and Clustering

Matrices, Spectrum and Structure

A Simplified Clustering Problem

Conductance, Cheeger's Inequality and Spectral Clustering

Illustrations of Spectral Clustering and Extension to Non-Regular Graphs

Relating Spectrum to Mixing Times

Outlook: Glimpse at Image Segmentation (non-examinable)

Similarity graph

Given $X = \{x_1, \ldots, x_n\} \in \mathbb{R}^d$, construct G = (V, E, w):

•
$$x_i \in X \mapsto v_i \in V$$

• $E = \binom{V}{2}$
• $w(v_i, v_j) = \exp\left(-\frac{\|x_i - x_j\|^2}{2\sigma^2}\right)$ (Gaussian similarity function)

- $x_i \in X \mapsto v_i \in V$
- $E = \binom{V}{2}$

•
$$w(v_i, v_j) = \exp\left(-\frac{\|x_i - x_j\|^2}{2\sigma^2}\right)$$
 (Gaussian similarity function)

Remarks:

- w(v_i, v_j) is large if x_i is close to x_j
- value of $\sigma \ge 0$ depends on the application (choose it by trial and error, usually $\sigma \in (0.05, 10)$)
- large σ if, on average, pairwise nearest neighbours are far apart

- $x_i \in X \mapsto v_i \in V$
- $E = \binom{V}{2}$

•
$$w(v_i, v_j) = \exp\left(-\frac{\|x_i - x_j\|^2}{2\sigma^2}\right)$$
 (Gaussian similarity function)

Remarks:

- w(v_i, v_j) is large if x_i is close to x_j
- value of $\sigma \ge 0$ depends on the application (choose it by trial and error, usually $\sigma \in (0.05, 10)$)
- large σ if, on average, pairwise nearest neighbours are far apart

Problem: Since *G* is complete, from $\Theta(dn)$ to $\Theta(n^2)$ space.

- $x_i \in X \mapsto v_i \in V$
- $E = \binom{V}{2}$

•
$$w(v_i, v_j) = \exp\left(-\frac{\|x_i - x_j\|^2}{2\sigma^2}\right)$$
 (Gaussian similarity function)

Remarks:

- $w(v_i, v_j)$ is large if x_i is close to x_j
- value of $\sigma \ge 0$ depends on the application (choose it by trial and error, usually $\sigma \in (0.05, 10)$)
- large σ if, on average, pairwise nearest neighbours are far apart

Problem: Since *G* is complete, from $\Theta(dn)$ to $\Theta(n^2)$ space.

Possible solution: *r*-nearest neighbour graph ($v_i \sim v_j$ iff x_j is one of the *r*-nearest neighbours of x_i or vice versa)

- $x_i \in X \mapsto v_i \in V$
- $E = \binom{V}{2}$

•
$$w(v_i, v_j) = \exp\left(-\frac{\|x_i - x_j\|^2}{2\sigma^2}\right)$$
 (Gaussian similarity function)

Remarks:

- $w(v_i, v_j)$ is large if x_i is close to x_j
- value of $\sigma \ge 0$ depends on the application (choose it by trial and error, usually $\sigma \in (0.05, 10)$)
- large σ if, on average, pairwise nearest neighbours are far apart

Problem: Since *G* is complete, from $\Theta(dn)$ to $\Theta(n^2)$ space.

Possible solution: *r*-nearest neighbour graph ($v_i \sim v_j$ iff x_j is one of the *r*-nearest neighbours of x_i or vice versa)

From geometric to graph clustering!

Similarity graph: Gaussian with $\sigma = 0.1$. Only edges with weight > 0.01 shown.

Similarity graph: Gaussian with $\sigma = 0.1$. Only edges with weight ≥ 0.01 shown.

Spectral Clustering (variant for non-regular graphs) -

- 1. Compute the eigenvector *x* corresponding to λ_2 and $y = \mathbf{D}^{-1/2}x$.
- 2. Order the vertices so that $y_1 \leq y_2 \leq \cdots \leq y_n$
- 3. Choose "sweep" cut $(\{1, 2, ..., i\}, \{i + 1, ..., n\})$ with smallest conductance

Similarity graph: Gaussian with $\sigma = 0.1$. Only edges with weight ≥ 0.01 shown.

Spectral Clustering (variant for non-regular graphs) -

- 1. Compute the eigenvector *x* corresponding to λ_2 and $y = \mathbf{D}^{-1/2}x$.
- 2. Order the vertices so that $y_1 \leq y_2 \leq \cdots \leq y_n$
- 3. Choose "sweep" cut $(\{1, 2, ..., i\}, \{i + 1, ..., n\})$ with smallest conductance

Image segmentation

Goal: identify different objects in an image

Goal: identify different objects in an image

Construct similarity graph as follows:

- A pixel *p* is characterised by its position in the image and by its RGB value
- map pixel p in position (x, y) to a vector $v_p = (x, y, r, g, b)$
- construct similarity graph as explained earlier

Goal: identify different objects in an image

Construct similarity graph as follows:

- A pixel *p* is characterised by its position in the image and by its RGB value
- map pixel p in position (x, y) to a vector $v_p = (x, y, r, g, b)$
- construct similarity graph as explained earlier

Original image

Goal: identify different objects in an image

Construct similarity graph as follows:

- A pixel *p* is characterised by its position in the image and by its RGB value
- map pixel p in position (x, y) to a vector $v_p = (x, y, r, g, b)$
- construct similarity graph as explained earlier

Original image

Output SC (Gaussian, $\sigma = 10$)

References

Fan R.K. Chung. Graph Theory in the Information Age. Notices of the AMS, vol. 57, no. 6, pages 726–732, 2010.
Fan R.K. Chung. <u>Spectral Graph Theory</u> . Volume 92 of CBMS Regional Conference Series in Mathematics, 1997.
S. Hoory, N. Linial and A. Widgerson. Expander Graphs and their Applications. Bulletin of the AMS, vol. 43, no. 4, pages 439–561, 2006.
Daniel Spielman Chapter 16, <u>Spectral Graph Theory</u> Combinatorial Scientific Computing
Luca Trevisan. Lectures Notes on Expansion, Sparsest Cut, and Spectral Graph Theory, 2016. https://lucatrevisan.github.io/books/expanders-2016.pdf