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A Simplified Clustering Problem
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Origin of Graph Theory

Leonhard Euler (1707-1783)

Seven Bridges at Königsberg 1737

Is there a tour which crosses
each bridge exactly once?
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Graphs Nowadays: Clustering

Goal: Use spectrum of graphs (unstructured data) to extract clustering
(communitites) or other structural information.
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Graph Clustering (applications)

Applications of Graph Clustering
Community detection
Group webpages according to their topics
Find proteins performing the same function within a cell
Image segmentation
Identify bottlenecks in a network
. . .

Unsupervised learning method
(there is no ground truth (usually), and we cannot learn from mistakes!)

Different formalisations for different applications

Geometric Clustering: partition points in a Euclidean space

k -means, k -medians, k -centres, etc.

partition vertices in a graph

modularity, , min-cut, etc.
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Graphs and Matrices

Graphs

1 2

34

Connectivity

Bipartiteness

Number of triangles

Graph Clustering

Graph isomorphism

Maximum Flow

Shortest Paths

. . .

Matrices




0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0




Eigenvalues

Eigenvectors

Inverse

Determinant

Matrix-powers

. . .
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Outline

Introduction to (Spectral) Graph Theory and Clustering

Matrices, Spectrum and Structure

A Simplified Clustering Problem

Conductance, Cheeger’s Inequality and Spectral Clustering

Illustrations of Spectral Clustering and Extension to Non-Regular Graphs

Relating Spectrum to Mixing Times
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Adjacency Matrix

Let G = (V ,E) be an undirected graph. The adjacency matrix of G is
the n by n matrix A defined as

Au,v =

{
1 if {u, v} ∈ E
0 otherwise.

Adjacency matrix

1 2

34

A =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0


Properties of A:

The sum of elements in each row/column i equals the degree of the
corresponding vertex i , deg(i)

Since G is undirected, A is symmetric
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Eigenvalues and Graph Spectrum of A

Let M ∈ Rn×n, λ ∈ C is an eigenvalue of M if and only if there exists
x ∈ Rn \ {0} such that

Mx = λx .

We call x an eigenvector of M corresponding to the eigenvalue λ.

Eigenvalues and Eigenvectors

Let A be the adjacency matrix of a d-regular graph G with n vertices.

Then, A has n real eigenvalues λ1 ≤ · · · ≤ λn and n corresponding
orthonormal eigenvectors f1, . . . , fn. These eigenvalues associated with
their multiplicities constitute the spectrum of G.

Graph Spectrum

An undirected graph G is d-regular if every degree
is d , i.e., every vertex has exactly d connections.

For symmetric matrices: algebraic multiplicity = geometric multiplicity
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Exercise 1

Exercise: What are the Eigenvalues and Eigenvectors?

Bonus: Can you find a short-cut to det(A− λ · I)?

1

2 3

A =




0 1 1
1 0 1
1 1 0




Solution:

The three eigenvalues are λ1 = λ2 = −1, λ3 = 2.

The three eigenvectors are (for example):

f1 =




1
0
−1


 , f2 =



− 1

2
1
− 1

2


 , f3 =




1
1
1


 .
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Laplacian Matrix

Let G = (V ,E) be a d-regular undirected graph. The (normalised) Lapla-
cian matrix of G is the n by n matrix L defined as

L = I− 1
d

A,

where I is the n × n identity matrix.

Laplacian Matrix

1 2

34

L =


1 −1/2 0 −1/2
−1/2 1 −1/2 0

0 −1/2 1 −1/2
−1/2 0 −1/2 1


Properties of L:

The sum of elements in each row/column equals zero

L is symmetric

Clustering © Thomas Sauerwald Matrices, Spectrum and Structure 11



Laplacian Matrix

Let G = (V ,E) be a d-regular undirected graph. The (normalised) Lapla-
cian matrix of G is the n by n matrix L defined as

L = I− 1
d

A,

where I is the n × n identity matrix.

Laplacian Matrix

1 2

34

L =


1 −1/2 0 −1/2
−1/2 1 −1/2 0

0 −1/2 1 −1/2
−1/2 0 −1/2 1



Properties of L:

The sum of elements in each row/column equals zero

L is symmetric

Clustering © Thomas Sauerwald Matrices, Spectrum and Structure 11



Laplacian Matrix

Let G = (V ,E) be a d-regular undirected graph. The (normalised) Lapla-
cian matrix of G is the n by n matrix L defined as

L = I− 1
d

A,

where I is the n × n identity matrix.

Laplacian Matrix

1 2

34

L =


1 −1/2 0 −1/2
−1/2 1 −1/2 0

0 −1/2 1 −1/2
−1/2 0 −1/2 1


Properties of L:

The sum of elements in each row/column equals zero

L is symmetric

Clustering © Thomas Sauerwald Matrices, Spectrum and Structure 11



Relating Spectrum of Adjacency Matrix and Laplacian Matrix

A and L have the same eigenvectors.

Correspondence between Adjacency and Laplacian Matrix

Proof:

Let λ and f be an eigenvalue and eigenvector of A, i.e., A · f = λ · f .
Then:

L · f

=

(
I− 1

d
A
)
· f

= I · f − 1
d

A · f

= f − 1
d
λ · f

=

(
1− λ

d

)
· f .

Hence (1− λ
d , f ) is an eigenvalue and eigenvector pair of L.
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Eigenvalues and Graph Spectrum of L

Let M ∈ Rn×n, λ ∈ C is an eigenvalue of M if and only if there exists
x ∈ Rn \ {0} such that

Mx = λx .

We call x an eigenvector of M corresponding to the eigenvalue λ.

Eigenvalues and eigenvectors

Let L be the Laplacian matrix of a d-regular graph G with n vertices.
Then, L has n real eigenvalues λ1 ≤ · · · ≤ λn and n corresponding
orthonormal eigenvectors f1, . . . , fn.

Graph Spectrum
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Useful Facts of Graph Spectrum

Let L be the Laplacian matrix of an undirected, regular graph G = (V ,E)
with eigenvalues λ1 ≤ · · · ≤ λn.

1. λ1 = 0 with eigenvector 1
2. the multiplicity of the eigenvalue 0 is equal to the number of

connected components in G

3. λn ≤ 2

4. λn = 2 iff there exists a bipartite connected component.

Lemma

The proof of these properties is based on a
powerful characterisation of eigenvalues/vectors!
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A Min-Max Characterisation of Eigenvalues and Eigenvectors

Let M be an n by n symmetric matrix with eigenvalues λ1 ≤ · · · ≤ λn.
Then,

λk = min
x(1),...,x(k)∈Rn\{0},

x(i)⊥x(j)

max
i∈{1,...,k}

x (i)T
Mx (i)

x (i)T x (i)
.

The eigenvectors corresponding to λ1, . . . , λk minimise such expression.

Courant-Fischer Min-Max Formula

λ1 = min
x∈Rn\{0}

xT Mx
xT x

minimised by an eigenvector f1 for λ1

λ2 = min
x∈Rn\{0}

x⊥f1
xT x

minimised by f2
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x∈Rn\{0}

xT Mx
xT x

minimised by an eigenvector f1 for λ1

λ2 = min
x∈Rn\{0}

x⊥f1
xT x

minimised by f2
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Quadratic Forms of the Laplacian

Let L be the Laplacian matrix of a d-regular graph G = (V ,E) with n
vertices. For any x ∈ Rn,

xT Lx =
∑

{u,v}∈E

(xu − xv )2

d
.

Lemma

Proof:

xT Lx = xT
(

I− 1
d

A
)

x = xT x − 1
d

xT Ax

=
∑

u∈V

x2
u −

2
d

∑

{u,v}∈E

xuxv

=
1
d

∑

{u,v}∈E

(x2
u + x2

v − 2xuxv )

=
∑

{u,v}∈E

(xu − xv )2

d
.
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Visualising a Graph

Question: How can we visualize a complicated object like an unknown
graph with many vertices in low-dimensional space?

A Larger Example

Algorithms and ML: Examples of Spectral Clustering 3

Embedding onto Line

Coordinates given by x

Algorithms and ML: Examples of Spectral Clustering 5

λ2 = 1
d · min

x∈Rn\{0}
x⊥f1

∑
{u,v}∈E (xu−xv )

2

‖x‖2
2

The coordinates in the vector x indicate how similar/dissimilar vertices
are. Edges between dissimilar vertices are penalised quadratically.
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Outline

Introduction to (Spectral) Graph Theory and Clustering

Matrices, Spectrum and Structure

A Simplified Clustering Problem

Conductance, Cheeger’s Inequality and Spectral Clustering

Illustrations of Spectral Clustering and Extension to Non-Regular Graphs

Relating Spectrum to Mixing Times

Outlook: Glimpse at Image Segmentation (non-examinable)
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A Simplified Clustering Problem

Partition the graph into connected components so that any pair of ver-
tices in the same component is connected, but vertices in different com-
ponents are not.

We could obviously solve this easily using DFS/BFS, but
let’s see how we can tackle this using the spectrum of L!
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Exercise 2

Exercise: What are the Eigenvectors with Eigenvalue 0 of L?

1

2 3

4 5

7 6

A =



0 1 1 0 0 0 0
1 0 1 0 0 0 0
1 1 0 0 0 0 0
0 0 0 0 1 0 1
0 0 0 1 0 1 0
0 0 0 0 1 0 1
0 0 0 1 0 1 0



L =



1 − 1
2 − 1

2 0 0 0 0
− 1

2 1 − 1
2 0 0 0 0

− 1
2 − 1

2 1 0 0 0 0
0 0 0 1 − 1

2 0 − 1
2

0 0 0 − 1
2 1 − 1

2 0
0 0 0 0 − 1

2 1 − 1
2

0 0 0 − 1
2 0 − 1

2 1



Solution:
The two smallest eigenvalues are λ1 = λ2 = 0.
The corresponding two eigenvectors are:

f1 =



1
1
1
0
0
0
0


, f2 =



0
0
0
1
1
1
1



Thus we can easily solve the simpli-
fied clustering problem by computing
the eigenvectors with eigenvalue 0

Next section: A fine-grained approach works
even if the clusters are sparsely connected!
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1
1
1
1
1
1
1


, f2 =



−1/3
−1/3
−1/3
1/4
1/4
1/4
1/4


)
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Useful Facts of Graph Spectrum (Proof of 2)

Let us generalise and formalise the example before!

Proof of 2 (multiplicity of 0 equals the no. of connected components):

1. (“=⇒” cc(G) ≤ mult(0)). We will show:
G has exactly k connected comp. C1, . . . ,Ck ⇒ λ1 = · · · = λk = 0

Take χCi
∈ {0, 1}n such that χCi

(u) = 1u∈Ci
for all u ∈ V

Clearly, the χCi
’s are orthogonal

χT
Ci

LχCi
= 1

d ·
∑
{u,v}∈E (χCi

(u)− χCi
(v))2 = 0 ⇒ λ1 = · · · = λk = 0

2. (“⇐=” cc(G) ≥ mult(0)). We will show:
λ1 = · · · = λk = 0 ⇒ G has at least k connected comp. C1, . . . ,Ck

there exist f1, . . . , fk orthonormal such that
∑
{u,v}∈E (fi (u)− fi (v))2 = 0

⇒ f1, . . . , fk constant on connected components
as f1, . . . , fk are pairwise orthogonal, G must have k different connected
components.
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Graph Clustering

Partition the graph into pieces (clusters) so that vertices in the same
piece have, on average, more connections among each other than with
vertices in other clusters

Let us for simplicity focus on the case of two clusters!
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Conductance

Let G = (V ,E) be a d-regular and undirected graph and ∅ 6= S ( V .
The conductance (edge expansion) of S is

φ(S) :=
e(S,Sc)

d · |S|

Moreover, the conductance (edge expansion) of the graph G is

φ(G) := min
S⊆V : 1≤|S|≤n/2

φ(S)

Conductance

NP-hard to compute!

1

2

3

4

5

6

7
8

φ(S) =

5
9

φ(G) ∈ [0, 1] and φ(G) = 0 iff G is
disconnected

If G is a complete graph, then
e(S,V \ S) = |S| · (n − |S|) and
φ(G) ≈ 1/2.
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λ2 versus Conductance (1/2)

1

2 3

4 5

7 6

φ(G) = 0 ⇔

G is disconnected

⇔ λ2(G) = 0

What is the relationship between φ(G)
and λ2(G) for connected graphs?
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λ2 versus Conductance (2/2)

1D Grid

λ2 ∼ n−2

φ ∼ n−1

2D Grid

λ2 ∼ n−1

φ ∼ n−1/2

3D Grid

λ2 ∼ n−2/3

φ ∼ n−1/3

Binary Tree

λ2 ∼ n−1

φ ∼ n−1

Random Graph (Expanders)

λ2 = Θ(1)

φ = Θ(1)

Hypercube

λ2 ∼ (log n)−1

φ ∼ (log n)−1
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Relating λ2 and Conductance

Let G be a d-regular undirected graph and λ1 ≤ · · · ≤ λn be the eigenval-
ues of its Laplacian matrix. Then,

λ2

2
≤ φ(G) ≤

√
2λ2.

Cheeger’s inequality

Spectral Clustering:

1. Compute the eigenvector x corresponding to λ2

2. Order the vertices so that x1 ≤ x2 ≤ · · · ≤ xn (embed V on R)

3. Try all n − 1 sweep cuts of the form ({1, 2, . . . , k}, {k + 1, . . . , n})
and return the one with smallest conductance

It returns cluster S ⊆ V such that φ(S) ≤
√

2λ2

≤ 2
√
φ(G)

no constant factor worst-case guarantee, but usually works well in
practice (see examples later!)

very fast: can be implemented in O(|E | log |E |) time
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2. Order the vertices so that x1 ≤ x2 ≤ · · · ≤ xn (embed V on R)

3. Try all n − 1 sweep cuts of the form ({1, 2, . . . , k}, {k + 1, . . . , n})
and return the one with smallest conductance

It returns cluster S ⊆ V such that φ(S) ≤
√

2λ2

≤ 2
√
φ(G)

no constant factor worst-case guarantee, but usually works well in
practice (see examples later!)

very fast: can be implemented in O(|E | log |E |) time
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Proof of Cheeger’s Inequality (non-examinable)

Proof (of the easy direction):

By the Courant-Fischer Formula,

λ2 = min
x∈Rn

x 6=0,x⊥1

xT Lx
xT x

=
1
d
· min

x∈Rn

x 6=0,x⊥1

∑
u∼v (xu − xv )2

∑
u x2

u
.

Optimisation Problem: Embed vertices on a line

such that sum of squared distances is minimised

Let S ⊆ V be the subset for which φ(G) is minimised. Define y ∈ Rn by:

yu =

{
1
|S| if u ∈ S,
− 1
|V\S| if u ∈ V \ S.

Since y ⊥ 1, it follows that

λ2 ≤
1
d
·
∑

u∼v (yu − yv )2

∑
u y2

u
=

1
d
·
|E(S,V \ S)| · ( 1

|S| + 1
|V\S| )

2

1
|S| + 1

|V\S|

=
1
d
· |E(S,V \ S)| ·

(
1
|S| +

1
|V \ S|

)

≤ 1
d
· 2 · |E(S,V \ S)|

|S| = 2 · φ(G).
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Introduction to (Spectral) Graph Theory and Clustering

Matrices, Spectrum and Structure

A Simplified Clustering Problem

Conductance, Cheeger’s Inequality and Spectral Clustering
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Relating Spectrum to Mixing Times
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Illustration on a small Example

A =




0 0 1 1 0 0 1 0
0 0 0 0 1 1 1 0
1 0 0 1 0 0 0 1
1 0 1 0 0 0 1 0
0 1 0 0 0 1 0 1
0 1 0 0 1 0 0 1
1 1 0 1 0 0 0 0
0 0 1 0 1 1 0 0




L =




1 0 − 1
3 − 1

3 0 0 − 1
3 0

0 1 0 0 − 1
3 − 1

3 − 1
3 0

− 1
3 0 1 − 1

3 0 0 0 − 1
3

− 1
3 0 − 1

3 1 0 0 − 1
3 0

0 − 1
3 0 0 1 − 1

3 0 − 1
3

0 − 1
3 0 0 − 1

3 1 0 − 1
3

− 1
3 − 1

3 0 − 1
3 0 0 1 0

0 0 − 1
3 0 − 1

3 − 1
3 0 1




1

2
3

4

5

6
7

8

λ2 = 1−
√

5/3 ≈ 0.25

v = (−0.425,+0.263,−0.263,−0.425,+0.425,+0.425,−0.263,+0.263)T

4 7

2 51 3

8 6

x−0.425−0.263 0 +0.263+0.425
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Illustration on a small Example
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Illustration on a small Example
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Illustration on a small Example
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Illustration on a small Example
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Illustration on a small Example
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Illustration on a small Example
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Illustration on a small Example
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Illustration on a small Example
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Illustration on a small Example
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


0 0 1 1 0 0 1 0
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Illustration on a small Example
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Illustration on a small Example
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Illustration on a small Example
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Let us now look at an example of a non-regular graph!
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The Laplacian Matrix (General Version)

The (normalised) Laplacian matrix of G = (V ,E ,w) is the n by n matrix

L = I− D−1/2AD−1/2

where D is a diagonal n×n matrix s.t. Duu = deg(u) =
∑
{u,v}∈E w(u, v),

and A is the weighted adjacency matrix of G.

1 2

34

16

9

7

9
L =




1 −16/25 0 −9/20
−16/25 1 −9/20 0

0 −9/20 1 −7/16
−9/20 0 −7/16 1




Luv = w(u,v)√
dudv

for u 6= v

L is symmetric

If G is d-regular, L = I− 1
d · A.
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The Laplacian Matrix (General Version)

The (normalised) Laplacian matrix of G = (V ,E ,w) is the n by n matrix
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where D is a diagonal n×n matrix s.t. Duu = deg(u) =
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The Laplacian Matrix (General Version)

The (normalised) Laplacian matrix of G = (V ,E ,w) is the n by n matrix

L = I− D−1/2AD−1/2

where D is a diagonal n×n matrix s.t. Duu = deg(u) =
∑
{u,v}∈E w(u, v),

and A is the weighted adjacency matrix of G.
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If G is d-regular, L = I− 1
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Clustering © Thomas Sauerwald Illustrations of Spectral Clustering and Extension to Non-Regular Graphs 32



Conductance and Spectral Clustering (General Version)

Let G = (V ,E ,w) and ∅ ( S ( V . The conductance (edge expansion)
of S is

φ(S) :=
w(S,Sc)

min{vol(S), vol(Sc)} ,

where w(S,Sc) :=
∑

u∈S,v∈Sc w(u, v) and vol(S) :=
∑

u∈S d(u).
Moreover, the conductance (edge expansion) of G is

φ(G) := min
∅6=S(V

φ(S).

Conductance (General Version)

Spectral Clustering (General Version):

1. Compute the eigenvector x corresponding to λ2 and y = D−1/2x .

2. Order the vertices so that y1 ≤ y2 ≤ · · · ≤ yn (embed V on R)

3. Try all n − 1 sweep cuts of the form ({1, 2, . . . , k}, {k + 1, . . . , n})
and return the one with smallest conductance
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Stochastic Block Model and 1D-Embedding

G = (V ,E) with clusters S1,S2 ⊆ V , 0 ≤ q < p ≤ 1

P [ {u, v} ∈ E ] =

{
p if u, v ∈ Si ,
q if u ∈ Si , v ∈ Sj , i 6= j .

Stochastic Block Model

Here:

|S1| = 80,
|S2| = 120

p = 0.08

q = 0.01

Number of Vertices: 200
Number of Edges: 919
Eigenvalue 1 : -1.1968431479565368e-16
Eigenvalue 2 : 0.1543784937248489
Eigenvalue 3 : 0.37049909753568877
Eigenvalue 4 : 0.39770640242147404
Eigenvalue 5 : 0.4316114413430584
Eigenvalue 6 : 0.44379221120189777
Eigenvalue 7 : 0.4564011652684181
Eigenvalue 8 : 0.4632911204500282
Eigenvalue 9 : 0.474638606357877
Eigenvalue 10 : 0.4814019607292904
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Drawing the 2D-Embedding
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Spectral Clustering
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Best Solution found by Spectral Clustering

Step
0 100 200

1

0.5

0

Φ Cut Edges

300

200

100

• Step: 78

• Threshold: −0.0268

• Partition Sizes: 78/122

• Cut Edges: 84

• Conductance: 0.1448
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Clustering induced by Blocks

• Step: 1

• Threshold: 0

• Partition Sizes: 80/120

• Cut Edges: 88

• Conductance: 0.1486
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Additional Example: Stochastic Block Models with 3 Clusters

Graph G = (V ,E) with clusters
S1,S2,S3 ⊆ V ; 0 ≤ q < p ≤ 1

P [ {u, v} ∈ E ] =

{
p u, v ∈ Si

q u ∈ Si , v ∈ Sj , i 6= j

|V | = 300, |Si | = 100
p = 0.08, q = 0.01.

Spectral embedding Output of Spectral Clustering
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Choosing the Cluster Number k

If k is unknown:
small λk means there exist k sparsely connected subsets in the graph
(recall: λ1 = . . . = λk = 0 means there are k connected components)

large λk+1 means all these k subsets have “good” inner-connectivity
properties

⇒ choose smallest k ≥ 2 so that the spectral gap λk+1 − λk is “large”

In the latter example λ = {0, 0.20, 0.22, 0.43, 0.45, . . . } =⇒ k = 3.

In the former example λ = {0, 0.15, 0.37, 0.40, 0.43, . . . } =⇒ k = 2.

For k = 2 use sweep-cut extract clusters. For k ≥ 3 use embedding in
k -dimensional space and apply k -means (geometric clustering)
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Summary (1/2): Graph Structure vs. Matrix Spectrum

G bipartite

G connected

independent set

vertex coloring

conductance

maximum cut

. . .

eigenvalues
λ1
λ2
λn

eigenvectors

spectral expansion

. . .

“Guess” suitable (approximate) Eigenvector

“tricky” (non-linear)

Cheeger’s Inequality

Expander Mixing Lemma

Graph Structure Matrix Spectrum
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Summary (2/2): Spectral Clustering

Illustration on a (very) small Example

A =

0
BBBBBBBBBB@

0 0 1 1 0 0 1 0
0 0 0 0 1 1 1 0
1 0 0 1 0 0 0 1
1 0 1 0 0 0 1 0
0 1 0 0 0 1 0 1
0 1 0 0 1 0 0 1
1 1 0 1 0 0 0 0
0 0 1 0 1 1 0 0

1
CCCCCCCCCCA

M =

0
BBBBBBBBBB@

0 0 1
3

1
3 0 0 1

3 0
0 0 0 0 1

3
1
3

1
3 0

1
3 0 0 1

3 0 0 0 1
3

1
3 0 1

3 0 0 0 1
3 0

0 1
3 0 0 0 1

3 0 1
3

0 1
3 0 0 1

3 0 0 1
3

1
3

1
3 0 1

3 0 0 0 0
0 0 1

3 0 1
3

1
3 0 0

1
CCCCCCCCCCA

1

2
3

4

5

6
7

8

�2 =
p

5/3 ⇡ 0.75

v = (�0.425, +0.263,�0.263,�0.425, +0.425, +0.425,�0.263, +0.263)T

4 7

2 51 3

8 6

x�0.425�0.263 0 +0.263+0.425

1

4

3

7

52

8 6
Sweep: 2

Edge Expansion: 0.666

Clustering Demos T.S. 2

Clustering Demos T.S. 6

A Larger Example: Sweep Cut

Threshold: 0.00
Partition Sizes: 201 / 200
Cut Edges / Total Edges: 53 / 2601
Edge Expansion: 0.021

Clustering Demos T.S. 7

Spectral Embedding onto Line
Compute Sweep Cuts

Given any graph (adjacency matrix)
Graph Spectrum (computable in poly-time)

λ2 (relates to connectivity)
λn (relates to bipartiteness)
. . .

Cheeger’s Inequality
relates λ2 to conductance
unbounded approximation ratio
effective in practice

minx∈Rn\{0}
x⊥1

∑
u∼v (xu−xv )

2∑
u x2

u
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Outline

Introduction to (Spectral) Graph Theory and Clustering

Matrices, Spectrum and Structure

A Simplified Clustering Problem

Conductance, Cheeger’s Inequality and Spectral Clustering

Illustrations of Spectral Clustering and Extension to Non-Regular Graphs

Relating Spectrum to Mixing Times

Outlook: Glimpse at Image Segmentation (non-examinable)
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Relation between Clustering and Mixing

Which graph has a “cluster-structure”?

Which graph mixes faster?
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Convergence of Random Walk

Recall: If the underlying graph G is connected, undirected and
d-regular, then the random walk converges towards the station-
ary distribution π = (1/n, . . . , 1/n), which satisfies πP = π.

Here all vector multiplications (including eigenvectors) will always be from the left!

Consider a lazy random walk on a connected, undirected and d-regular
graph. Then for any initial distribution x ,

∥∥∥xPt − π
∥∥∥

2
≤ λt ,

with 1 = λ1 > λ2 ≥ · · · ≥ λn as eigenvalues and λ := max{|λ2|, |λn|}.

⇒ This implies for t = O
(

log n
log(1/λ)

)
= O

(
log n
1−λ

)
,

∥∥∥xPt − π
∥∥∥

tv
≤ 1

4
.

Lemma

due to laziness, λn ≥ 0
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Proof of Lemma

Express x in terms of the orthonormal basis of P, v1 = π, v2, . . . , vn:

x =
n∑

i=1

αi vi .

Since x is a probability vector and all vi ≥ 2 are orthogonal to π, α1 = 1.
⇒

‖xP− π‖2
2 =

∥∥∥( n∑
i=1

αi vi

)
P− π

∥∥∥2

2

=
∥∥∥π +

n∑
i=2

αiλi vi − π
∥∥∥2

2

=
∥∥∥ n∑

i=2

αiλi vi

∥∥∥2

2

=
n∑

i=2

‖αiλi vi‖2
2

≤ λ2
n∑

i=2

‖αi vi‖2
2 = λ2

∥∥∥∥∥
n∑

i=2

αi vi

∥∥∥∥∥
2

2

= λ2 ‖x − π‖2
2

Hence ‖xPt − π‖2
2

≤ λ2t · ‖x − π‖2
2 ≤ λ

2t · 1.

since the vi ’s
are orthogonal

since the vi ’s
are orthogonal

‖x − π‖2
2 + ‖π‖2

2 = ‖x‖2
2 ≤ 1

Clustering © Thomas Sauerwald Relating Spectrum to Mixing Times 46



Proof of Lemma

Express x in terms of the orthonormal basis of P, v1 = π, v2, . . . , vn:

x =
n∑

i=1

αi vi .

Since x is a probability vector and all vi ≥ 2 are orthogonal to π, α1 = 1.
⇒

‖xP− π‖2
2 =

∥∥∥( n∑
i=1

αi vi

)
P− π

∥∥∥2

2

=
∥∥∥π +

n∑
i=2

αiλi vi − π
∥∥∥2

2

=
∥∥∥ n∑

i=2

αiλi vi

∥∥∥2

2

=
n∑

i=2

‖αiλi vi‖2
2

≤ λ2
n∑

i=2

‖αi vi‖2
2 = λ2

∥∥∥∥∥
n∑

i=2

αi vi

∥∥∥∥∥
2

2

= λ2 ‖x − π‖2
2

Hence ‖xPt − π‖2
2

≤ λ2t · ‖x − π‖2
2 ≤ λ

2t · 1.

since the vi ’s
are orthogonal

since the vi ’s
are orthogonal

‖x − π‖2
2 + ‖π‖2

2 = ‖x‖2
2 ≤ 1

Clustering © Thomas Sauerwald Relating Spectrum to Mixing Times 46



Proof of Lemma

Express x in terms of the orthonormal basis of P, v1 = π, v2, . . . , vn:

x =
n∑

i=1

αi vi .

Since x is a probability vector and all vi ≥ 2 are orthogonal to π, α1 = 1.
⇒

‖xP− π‖2
2 =

∥∥∥( n∑
i=1

αi vi

)
P− π

∥∥∥2

2

=
∥∥∥π +

n∑
i=2

αiλi vi − π
∥∥∥2

2

=
∥∥∥ n∑

i=2

αiλi vi

∥∥∥2

2

=
n∑

i=2

‖αiλi vi‖2
2

≤ λ2
n∑

i=2

‖αi vi‖2
2 = λ2

∥∥∥∥∥
n∑

i=2

αi vi

∥∥∥∥∥
2

2

= λ2 ‖x − π‖2
2

Hence ‖xPt − π‖2
2

≤ λ2t · ‖x − π‖2
2 ≤ λ

2t · 1.

since the vi ’s
are orthogonal

since the vi ’s
are orthogonal

‖x − π‖2
2 + ‖π‖2

2 = ‖x‖2
2 ≤ 1

Clustering © Thomas Sauerwald Relating Spectrum to Mixing Times 46



Proof of Lemma

Express x in terms of the orthonormal basis of P, v1 = π, v2, . . . , vn:

x =
n∑

i=1

αi vi .

Since x is a probability vector and all vi ≥ 2 are orthogonal to π, α1 = 1.

⇒

‖xP− π‖2
2 =

∥∥∥( n∑
i=1

αi vi

)
P− π

∥∥∥2

2

=
∥∥∥π +

n∑
i=2

αiλi vi − π
∥∥∥2

2

=
∥∥∥ n∑

i=2

αiλi vi

∥∥∥2

2

=
n∑

i=2

‖αiλi vi‖2
2

≤ λ2
n∑

i=2

‖αi vi‖2
2 = λ2

∥∥∥∥∥
n∑

i=2

αi vi

∥∥∥∥∥
2

2

= λ2 ‖x − π‖2
2

Hence ‖xPt − π‖2
2

≤ λ2t · ‖x − π‖2
2 ≤ λ

2t · 1.

since the vi ’s
are orthogonal

since the vi ’s
are orthogonal

‖x − π‖2
2 + ‖π‖2

2 = ‖x‖2
2 ≤ 1

Clustering © Thomas Sauerwald Relating Spectrum to Mixing Times 46



Proof of Lemma

Express x in terms of the orthonormal basis of P, v1 = π, v2, . . . , vn:

x =
n∑

i=1

αi vi .

Since x is a probability vector and all vi ≥ 2 are orthogonal to π, α1 = 1.
⇒

‖xP− π‖2
2

=
∥∥∥( n∑

i=1

αi vi

)
P− π

∥∥∥2

2

=
∥∥∥π +

n∑
i=2

αiλi vi − π
∥∥∥2

2

=
∥∥∥ n∑

i=2

αiλi vi

∥∥∥2

2

=
n∑

i=2

‖αiλi vi‖2
2

≤ λ2
n∑

i=2

‖αi vi‖2
2 = λ2

∥∥∥∥∥
n∑

i=2

αi vi

∥∥∥∥∥
2

2

= λ2 ‖x − π‖2
2

Hence ‖xPt − π‖2
2

≤ λ2t · ‖x − π‖2
2 ≤ λ

2t · 1.

since the vi ’s
are orthogonal

since the vi ’s
are orthogonal

‖x − π‖2
2 + ‖π‖2

2 = ‖x‖2
2 ≤ 1

Clustering © Thomas Sauerwald Relating Spectrum to Mixing Times 46



Proof of Lemma

Express x in terms of the orthonormal basis of P, v1 = π, v2, . . . , vn:

x =
n∑

i=1

αi vi .

Since x is a probability vector and all vi ≥ 2 are orthogonal to π, α1 = 1.
⇒

‖xP− π‖2
2 =

∥∥∥( n∑
i=1

αi vi

)
P− π

∥∥∥2

2

=
∥∥∥π +

n∑
i=2

αiλi vi − π
∥∥∥2

2

=
∥∥∥ n∑

i=2

αiλi vi

∥∥∥2

2

=
n∑

i=2

‖αiλi vi‖2
2

≤ λ2
n∑

i=2

‖αi vi‖2
2 = λ2

∥∥∥∥∥
n∑

i=2

αi vi

∥∥∥∥∥
2

2

= λ2 ‖x − π‖2
2

Hence ‖xPt − π‖2
2

≤ λ2t · ‖x − π‖2
2 ≤ λ

2t · 1.

since the vi ’s
are orthogonal

since the vi ’s
are orthogonal

‖x − π‖2
2 + ‖π‖2

2 = ‖x‖2
2 ≤ 1

Clustering © Thomas Sauerwald Relating Spectrum to Mixing Times 46



Proof of Lemma

Express x in terms of the orthonormal basis of P, v1 = π, v2, . . . , vn:

x =
n∑

i=1

αi vi .

Since x is a probability vector and all vi ≥ 2 are orthogonal to π, α1 = 1.
⇒

‖xP− π‖2
2 =

∥∥∥( n∑
i=1

αi vi

)
P− π

∥∥∥2

2

=
∥∥∥π +

n∑
i=2

αiλi vi − π
∥∥∥2

2

=
∥∥∥ n∑

i=2

αiλi vi

∥∥∥2

2

=
n∑

i=2

‖αiλi vi‖2
2

≤ λ2
n∑

i=2

‖αi vi‖2
2 = λ2

∥∥∥∥∥
n∑

i=2

αi vi

∥∥∥∥∥
2

2

= λ2 ‖x − π‖2
2

Hence ‖xPt − π‖2
2

≤ λ2t · ‖x − π‖2
2 ≤ λ

2t · 1.

since the vi ’s
are orthogonal

since the vi ’s
are orthogonal

‖x − π‖2
2 + ‖π‖2

2 = ‖x‖2
2 ≤ 1

Clustering © Thomas Sauerwald Relating Spectrum to Mixing Times 46



Proof of Lemma

Express x in terms of the orthonormal basis of P, v1 = π, v2, . . . , vn:

x =
n∑

i=1

αi vi .

Since x is a probability vector and all vi ≥ 2 are orthogonal to π, α1 = 1.
⇒

‖xP− π‖2
2 =

∥∥∥( n∑
i=1

αi vi

)
P− π

∥∥∥2

2

=
∥∥∥π +

n∑
i=2

αiλi vi − π
∥∥∥2

2

=
∥∥∥ n∑

i=2

αiλi vi

∥∥∥2

2

=
n∑

i=2

‖αiλi vi‖2
2

≤ λ2
n∑

i=2

‖αi vi‖2
2 = λ2

∥∥∥∥∥
n∑

i=2

αi vi

∥∥∥∥∥
2

2

= λ2 ‖x − π‖2
2

Hence ‖xPt − π‖2
2

≤ λ2t · ‖x − π‖2
2 ≤ λ

2t · 1.

since the vi ’s
are orthogonal

since the vi ’s
are orthogonal

‖x − π‖2
2 + ‖π‖2

2 = ‖x‖2
2 ≤ 1

Clustering © Thomas Sauerwald Relating Spectrum to Mixing Times 46



Proof of Lemma

Express x in terms of the orthonormal basis of P, v1 = π, v2, . . . , vn:

x =
n∑

i=1

αi vi .

Since x is a probability vector and all vi ≥ 2 are orthogonal to π, α1 = 1.
⇒

‖xP− π‖2
2 =

∥∥∥( n∑
i=1

αi vi

)
P− π

∥∥∥2

2

=
∥∥∥π +

n∑
i=2

αiλi vi − π
∥∥∥2

2

=
∥∥∥ n∑

i=2

αiλi vi

∥∥∥2

2

=
n∑

i=2

‖αiλi vi‖2
2

≤ λ2
n∑

i=2

‖αi vi‖2
2 = λ2

∥∥∥∥∥
n∑

i=2

αi vi

∥∥∥∥∥
2

2

= λ2 ‖x − π‖2
2

Hence ‖xPt − π‖2
2

≤ λ2t · ‖x − π‖2
2 ≤ λ

2t · 1.

since the vi ’s
are orthogonal

since the vi ’s
are orthogonal

‖x − π‖2
2 + ‖π‖2

2 = ‖x‖2
2 ≤ 1

Clustering © Thomas Sauerwald Relating Spectrum to Mixing Times 46



Proof of Lemma

Express x in terms of the orthonormal basis of P, v1 = π, v2, . . . , vn:

x =
n∑

i=1

αi vi .

Since x is a probability vector and all vi ≥ 2 are orthogonal to π, α1 = 1.
⇒

‖xP− π‖2
2 =

∥∥∥( n∑
i=1

αi vi

)
P− π

∥∥∥2

2

=
∥∥∥π +

n∑
i=2

αiλi vi − π
∥∥∥2

2

=
∥∥∥ n∑

i=2

αiλi vi

∥∥∥2

2

=
n∑

i=2

‖αiλi vi‖2
2

≤ λ2
n∑

i=2

‖αi vi‖2
2 = λ2

∥∥∥∥∥
n∑

i=2

αi vi

∥∥∥∥∥
2

2

= λ2 ‖x − π‖2
2

Hence ‖xPt − π‖2
2

≤ λ2t · ‖x − π‖2
2 ≤ λ

2t · 1.

since the vi ’s
are orthogonal

since the vi ’s
are orthogonal

‖x − π‖2
2 + ‖π‖2

2 = ‖x‖2
2 ≤ 1

Clustering © Thomas Sauerwald Relating Spectrum to Mixing Times 46



Proof of Lemma

Express x in terms of the orthonormal basis of P, v1 = π, v2, . . . , vn:

x =
n∑

i=1

αi vi .

Since x is a probability vector and all vi ≥ 2 are orthogonal to π, α1 = 1.
⇒

‖xP− π‖2
2 =

∥∥∥( n∑
i=1

αi vi

)
P− π

∥∥∥2

2

=
∥∥∥π +

n∑
i=2

αiλi vi − π
∥∥∥2

2

=
∥∥∥ n∑

i=2

αiλi vi

∥∥∥2

2

=
n∑

i=2

‖αiλi vi‖2
2

≤ λ2
n∑

i=2

‖αi vi‖2
2 = λ2

∥∥∥∥∥
n∑

i=2

αi vi

∥∥∥∥∥
2

2

= λ2 ‖x − π‖2
2

Hence ‖xPt − π‖2
2

≤ λ2t · ‖x − π‖2
2 ≤ λ

2t · 1.

since the vi ’s
are orthogonal

since the vi ’s
are orthogonal

‖x − π‖2
2 + ‖π‖2

2 = ‖x‖2
2 ≤ 1

Clustering © Thomas Sauerwald Relating Spectrum to Mixing Times 46



Proof of Lemma

Express x in terms of the orthonormal basis of P, v1 = π, v2, . . . , vn:

x =
n∑

i=1

αi vi .

Since x is a probability vector and all vi ≥ 2 are orthogonal to π, α1 = 1.
⇒

‖xP− π‖2
2 =

∥∥∥( n∑
i=1

αi vi

)
P− π

∥∥∥2

2

=
∥∥∥π +

n∑
i=2

αiλi vi − π
∥∥∥2

2

=
∥∥∥ n∑

i=2

αiλi vi

∥∥∥2

2

=
n∑

i=2

‖αiλi vi‖2
2

≤ λ2
n∑

i=2

‖αi vi‖2
2 = λ2

∥∥∥∥∥
n∑

i=2

αi vi

∥∥∥∥∥
2

2

= λ2 ‖x − π‖2
2

Hence ‖xPt − π‖2
2

≤ λ2t · ‖x − π‖2
2 ≤ λ

2t · 1.

since the vi ’s
are orthogonal

since the vi ’s
are orthogonal

‖x − π‖2
2 + ‖π‖2

2 = ‖x‖2
2 ≤ 1

Clustering © Thomas Sauerwald Relating Spectrum to Mixing Times 46



Proof of Lemma

Express x in terms of the orthonormal basis of P, v1 = π, v2, . . . , vn:

x =
n∑

i=1

αi vi .

Since x is a probability vector and all vi ≥ 2 are orthogonal to π, α1 = 1.
⇒

‖xP− π‖2
2 =

∥∥∥( n∑
i=1

αi vi

)
P− π

∥∥∥2

2

=
∥∥∥π +

n∑
i=2

αiλi vi − π
∥∥∥2

2

=
∥∥∥ n∑

i=2

αiλi vi

∥∥∥2

2

=
n∑

i=2

‖αiλi vi‖2
2

≤ λ2
n∑

i=2

‖αi vi‖2
2 = λ2

∥∥∥∥∥
n∑

i=2

αi vi

∥∥∥∥∥
2

2

= λ2 ‖x − π‖2
2

Hence ‖xPt − π‖2
2 ≤ λ

2t · ‖x − π‖2
2

≤ λ2t · 1.

since the vi ’s
are orthogonal

since the vi ’s
are orthogonal

‖x − π‖2
2 + ‖π‖2

2 = ‖x‖2
2 ≤ 1

Clustering © Thomas Sauerwald Relating Spectrum to Mixing Times 46



Proof of Lemma

Express x in terms of the orthonormal basis of P, v1 = π, v2, . . . , vn:

x =
n∑

i=1

αi vi .

Since x is a probability vector and all vi ≥ 2 are orthogonal to π, α1 = 1.
⇒

‖xP− π‖2
2 =

∥∥∥( n∑
i=1

αi vi

)
P− π

∥∥∥2

2

=
∥∥∥π +

n∑
i=2

αiλi vi − π
∥∥∥2

2

=
∥∥∥ n∑

i=2

αiλi vi

∥∥∥2

2

=
n∑

i=2

‖αiλi vi‖2
2

≤ λ2
n∑

i=2

‖αi vi‖2
2 = λ2

∥∥∥∥∥
n∑

i=2

αi vi

∥∥∥∥∥
2

2

= λ2 ‖x − π‖2
2

Hence ‖xPt − π‖2
2 ≤ λ

2t · ‖x − π‖2
2 ≤ λ

2t · 1.

since the vi ’s
are orthogonal

since the vi ’s
are orthogonal

‖x − π‖2
2 + ‖π‖2

2 = ‖x‖2
2 ≤ 1

Clustering © Thomas Sauerwald Relating Spectrum to Mixing Times 46



Outline

Introduction to (Spectral) Graph Theory and Clustering

Matrices, Spectrum and Structure

A Simplified Clustering Problem

Conductance, Cheeger’s Inequality and Spectral Clustering

Illustrations of Spectral Clustering and Extension to Non-Regular Graphs

Relating Spectrum to Mixing Times

Outlook: Glimpse at Image Segmentation (non-examinable)
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Similarity graph

Given X = {x1, . . . , xn} ∈ Rd , construct G = (V ,E ,w):

xi ∈ X 7→ vi ∈ V

E =
(V

2

)

w(vi , vj ) = exp

(
− ‖xi−xj‖2

2σ2

)
(Gaussian similarity function)

Remarks:

w(vi , vj ) is large if xi is close to xj

value of σ ≥ 0 depends on the application (choose it by trial and error,
usually σ ∈ (0.05, 10))

large σ if, on average, pairwise nearest neighbours are far apart

Problem: Since G is complete, from Θ(dn) to Θ(n2) space.

Possible solution: r -nearest neighbour graph (vi ∼ vj iff xj is one of the
r -nearest neighbours of xi or vice versa)

From geometric to graph clustering!
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Example

Similarity graph: Gaussian with
σ = 0.1. Only edges with weight
≥ 0.01 shown.

1. Compute the eigenvector x corresponding to λ2 and y = D−1/2x .

2. Order the vertices so that y1 ≤ y2 ≤ · · · ≤ yn

3. Choose “sweep” cut ({1, 2, . . . , i}, {i + 1, . . . , n}) with smallest conductance

Spectral Clustering (variant for non-regular graphs)
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Image segmentation

Goal: identify different objects in an image

Construct similarity graph as follows:

A pixel p is characterised by its position in the image and by its RGB value

map pixel p in position (x , y) to a vector vp = (x , y , r , g, b)

construct similarity graph as explained earlier

Original image Output SC (Gaussian, σ = 10)

Clustering © Thomas Sauerwald Outlook: Glimpse at Image Segmentation (non-examinable) 50
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