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Lecture 1 (Introduction, Randomised Max-Cut and Coupon Collecting)

The question highlighted are those discussed in the Example Classes.

1. We consider the coupon collecting problem with n coupons.

a) Prove that it takes n
∑n

k=1
1
k days on expectation to collect all coupons.

b) Deduce that the probability it takes more than n log n+ cn days is at most e−c.

2. (a bit difficult.) Consider the following, continuous-time version of the Coupon Collecting
Problem. We are collecting coupons in parallel so that the waiting time of each coupon is an
independent exponential random variable with parameter 1/pi (and expectation pi). Further,
assume

∑n
i=1 pi = 1. Hence it is possible to get several coupons on the same day but it is

also possible to get no coupon).

a) What is the expected time until all n coupons have been seen?

b) Which answer do you get if p1 = p2 = · · · = pn = 1/n?

Hint: For a continuous, non-negative random variable Y , it holds that:

E [Y ] :=

∫ ∞
t=0

P [Y > t ] dt.

3. Can you find a deterministic polynomial-time algorithm for the MAX-CUT problem with
approximation ratio 1/2? [We will get back to this question a bit later when learning how to
derandomise algorithms.]

4. Consider the randomised algorithm for MAX-CUT. Using Markov’s inequality, prove a lower
bound on the probability that the solution returns a cut with at least |E|/4 edges.

5. Consider the randomised algorithm for MAX-CUT. Using Chebyshev’s inequality, prove that
the algorithm returns a cut with at least |E|/2 −

√
C · |E| edges with probability at least

1− 1/C.
Hint: Before applying Chebyshev’s inequality, analyse and upper bound the second moment
E
[
e(S, Sc)2

]
.
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6. A matching in a graph is a set of edges without common vertices. In the Maximum Bipartite
Matching problem, we are given a bipartite graph G(L ∪ R,E) (without multiple edges),
and we want to find a matching of maximum cardinality. Consider the following simple
randomised algorithm for this problem: Each edge is selected independently with probability
p. All edges that have common endpoints are discarded. To keep the analysis easier, let us
assume that the bipartite graph has |L| = |R| = n and that every vertex has degree 3.

(a) What is the expected cardinality of the matching returned by the algorithm as a function
of p?

(b) Find the value of p that maximises the expected cardinality of the matching. What is
the expected cardinality of the matching in this case?

(c) Assume now the graph is regular of degree d > 3, not necessarily constant. Would you
choose a constant value of p or a value that depends on d and/or n? Explain your choice.

Lecture 2-3 (Concentration and Chernoff Bounds)

1. Compare the Central Limit Theorem to Chernoff bounds. What are the advantages and
disadvantages of Chernoff bounds?

2. Let X1, X2, . . . , Xn be n independent geometric random variables, each with parameter p (so
E [Xi ] = 1/p for each i = 1, 2, . . . , n). Derive a Chernoff bound for X :=

∑n
i=1Xi.

3. (This is from the textbook [Mitzenmacher & Upfal]). The following extension of the Cher-
noff bound is often implicitly assumed to be true. Here we will prove this formally. Let
X1, X2, . . . , Xn be n independent Bernoulli random variables. Let X :=

∑n
i=1Xi and µ =

E [X ]. Choose any µL and µH such that µL 6 µ 6 µH . Then, for any δ > 0,

P [X > (1 + δ)µH ] 6

(
eδ

(1 + δ)1+δ

)µH
.

Similarly, for any δ > 0,

P [X 6 (1− δ)µL ] 6

(
eδ

(1− δ)1−δ

)µL
.

4. Consider again the randomised quick sort algorithm that selects a pivot uniformly at random.
Derive a formula for the expected number of comparisons.

5. Using the concentration result for quick sort in class, prove that it implies a bound of
O(n log n) for the expected number of comparisons.

6. We form a random graph G on n = 4k vertices by starting with 4 even sized vertex classes
V0, . . . , V3 and placing an edge between x ∈ Vi and y ∈ Vj with probability |i−j|4 .

(a) Show that E [ |E(G)| ] = 5n2/32

2



Exercises Randomised Algorithms Version from 7.3.2022

(b) Using the Chernoff bound for X :=
∑n

i=1Xi, where the Xi are independent Bernoulli
random variables

P [X 6 (1− δ)µ ] 6

(
e−δ

(1− δ)(1−δ)

)µ
,

give an estimate on how large must n be to ensure that it has at least n2/8 edges with
probability at least 1/2?

7. Design a randomised algorithm for the following problem. The input consists of an n × n
matrix A with entries in {0, 1} and a vector x of length n with entries in the real interval
[0, 1]. The goal is to return a vector y of length n with entries in {0, 1} such that

max
i=1,...,n

|(Ax)i − (Ay)i| 6 2
√
n log n

with probability at least 1− n−2.
Hint: Your algorithm should have the property that for any 1 6 i, j 6 n, E [Ai,j · yj ] =
Ai,jxj .

8. Consider an undirected, regular graph with degree d, i.e., every vertex has exactly d neigh-
bours. Apply the Method of Bounded Differences in order to prove concentration for the
randomised MAX-CUT algorithm. What is the problem of applying it to an arbitrary graph?

9. In this exercise, you will analyse the balls-into-bins problem for the case m > 2n log n.

(a) Let Xm
i be the load of bin i ∈ [n] after m balls and X = maxi∈[n]X

m
i . Prove that for

α > 0, E
[
eαX

m
i
]
6 e

m
n
·(eα−1).

(b) Consider 0 < α < 1. Using that 1 < 1 + α+ α2 and Markov’s inequality, show that

P
[
Xm
i <

m

n
+

2 log n

α
+
m

n
· α
]
> 1− n−2.

(c) By a suitable choice of α, deduce that w.h.p. X < m
n + 8 ·

√
m
n log n.

10. Let X be a Poisson random variable of mean µ. Prove that

E
[
eλX

]
= eµ(eλ−1)

and deduce that for any δ > 0,

P [X > (1 + δ)µ ] 6

(
eδ

(1 + δ)1+δ

)µ
.

Lecture 4-5 (Markov Chains)

1. Consider the riffle operation. Given two decks of cards A and B with a and b cards, at each
step, the next card is chosen from A with probability a

a+b and otherwise from B. Prove that
when starting with n cards in total, drawing n cards using the above operation results into a
uniform distribution over all permutations such that the subsequences of cards in A (and in
B, respectively) are ordered increasingly.
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2. Prove that a random walk on a graph is periodic if the graph G is bipartite. Extension: Can
you also prove that the random walk is aperiodic if G is not bipartite?

3. Let Xn be the sum of n independent rolls of a fair die. Show that, for any k > 2,

lim
n→∞

P [Xn is divisible by k ] =
1

k
.

4. When the Uni-bus arrives outside the Computer Lab, the next bus arrives in 1, 2, . . . , 20
minutes with equal probability. You arrive at the bus stop without checking the schedule, at
some fixed time n.

(a) How could you model Xn, the number of minutes until the next bus when you arrive
at time n, as a Markov chain?

(b) Buses have been coming and going all day so we can assume the chain has mixed when
you arrive. What is the probability of waiting i minutes for a bus in relation to the
Chain?

(c) How long, on average, do you wait until the next bus arrives?

5. (See Slide 17, Lecture 4) Prove the following inequality for finite Markov chains: For any
initial distribution µ over Ω,

‖P tµ − π‖tv 6 max
x∈Ω
‖P tx − π‖tv.

6. Let P be a transition matrix of a Markov chain with state space Ω and µ and ν be two
probability distributions on Ω. Prove that

‖µP − νP‖tv 6 ‖µ− ν‖tv .

What does this imply for the total variation distance of a Markov chain from its stationary
distribution π?

7. What is the stationary distribution of the Ehrenfest Chain? Does the Ehrenfest Chain con-
verge to the stationary distribution?

8. Consider the Ehrenfest Markov Chain with state space Ω = [d] = {0, 1, . . . , d}, and assume
that the chain starts from state {0}. Can you express the Variation Distance of the Markov
chain via a random walk on the d-dimensional hypercube? Hint: Use some symmetry argu-
ment.

9. Consider the argument for analysing the mixing time of a random walk on a hypercube. In
order to formally prove an upper bound on the mixing time, first upper bound the probability
that after t := O(d2) steps all coupons are collected. Then use this to upper bound the
variation distance after t steps.
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10. Most Markov chains covered in this course never reach a stationary distribution exactly, but
only get arbitrarily close. Can you find an irreducible Markov chain with n states such that
for any starting state x there is an integer t such that P tx = π?

11. Verify that π(u) = deg(u)
2|E| is a stationary distribution of a simple random walk on a graph G.

Also show that this holds for a lazy random walk. Which properties of the graph G do you
need?

12. Prove the so-called “Essential Edge Lemma”, that is, for any undirected graph G = (V,E)
the hitting time satisfies h(u, v) 6 2|E| for any {u, v} ∈ E(G). (Note that this is slightly
weaker than h(u, v) + h(v, u) 6 2|E|, which was used in Lecture 5).

13. Analyse the cover time of a simple random walk on the complete graph (clique), i.e., the
graph where each pair of vertices is connected by an undirected edge.

14. Consider a path Pn with vertex set {0, 1, . . . , n} for even n. Can you determine the cover
time? Bonus-Question (a bit hard): What is the cover time of a cycle Cn?

Hint: What is the worst-case start vertex which maximises the time until all vertices are
visited?

15. Prove rigorously the claim made in lecture that the expected time for RAND 2-SAT to find
a given solution is at most the hitting time h(0, n) of the random walk on a path.

16. (a bit tricky.) For any regular graph G = (V,E), derive an upper bound on the cover time
based on the mixing time t := tmix(1/n) which is O(n log n · t).

Lecture 6-7 (Linear Programming)

1. [CLRS: 29.1-5] Convert the following LP into slack form. Also state the set of basic and
non-basic variables.

maximise 2x1 − 6x3

subject to

x1 + x2 − x3 6 7

3x1 − x2 > 8

−x1 + 2x2 + 2x3 > 0

x1, x2, x3 > 0

2. [CLRS: 29.1-6] Show that the following LP is infeasible:

maximise 3x1 − 2x2

subject to

x1 + x2 6 2

−2x1 − 2x2 6 −10

x1, x2 > 0

5



Exercises Randomised Algorithms Version from 7.3.2022

3. [CLRS: 29.1-7] Show that the following LP is unbounded:

maximise x1 − x2

subject to

−2x1 + x2 6 −1

−x1 − 2x2 6 −2

x1, x2 > 0

4. Consider the linear program for the shortest path problem from s to t.

a) What happens if there is a negative-weight cycle?

b) Prove that, if there are no negative-weight cycles, the optimal solution dt of the linear
program equals the correct distance dt.

c) How would your formulate the single-source shortest path problem as a linear program?

5. Prove that the set of feasible solutions of a linear program forms a convex set. Recall a set S
is convex if for every x, y ∈ S, λx+ (1− λ)y ∈ S for all λ ∈ [0, 1].

6. Find a linear program which has more than one optimal solution.

7. [CLRS: 29.1-8] Suppose we have general linear program (not necessarily in standard or slack
form) with n variables and m constraints, and suppose we convert it into standard form.
Given an upper bound on the number of variables and constraints in the resulting linear
program. (By constraint we do not count non-negativity constraints)

8. [CLRS: 29.1-9] Give an example of a linear program for which the feasible region is not
bounded, but the optimal objective value is finite.

9. [CLRS: 29.3-6] Solve the following linear program using Simplex:

maximise 5x1 − 3x2

subject to

x1 − x2 6 1

2x1 + x2 6 2

x1, x2 > 0

10. [CLRS: 29.5-5] Solve the following linear program using Simplex:

maximise x1 + 3x2

subject to

x1 − x2 6 1

2x1 + x2 6 2

x1, x2 > 0
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CLRS3 Show that when the main loop of Simplex is run by Initialize-Simplex, it can never return
“unbounded”.

11. Consider the Simplex algorithm with the pivot-rule of always picking as entering variable
the one with the largest coefficient in the objective function:

z = 3 + 3
4x1 − 20x2 + 1

2x3 − 6x4

x5 = 0 − 1
4x1 + 8x2 + x3 − 9x4

x6 = 0 − 1
2x1 + 12x2 + 1

2x3 − 3x4

x7 = 1 − x3

Prove that on this instance, the Simplex algorithms runs into a cycle and does not terminate.

Note: Verifying this by hand is a bit tedious, so you may also consider to write a small
program or use other tools.

Lecture 9-10 (Randomised Approximation Algorithms)

1. Consider a CNF formula where each clause has at least 4 literals. Design a randomised
approximation algorithm and analyse its approximation ratio.

2. Apply the derandomisation trick based on conditional expectation for the randomised 2-
approximation algorithm for MAX-CUT. Can you interpret the resulting algorithm?

3. Apply the derandomisation approach based conditional expectation to the MAX-CNF prob-
lem.

4. Prove that the greedy algorithm for the Unweighted Vertex Cover problem achieves an ap-
proximation ratio of 2. Bonus-Question: What is the problem behind the “more natural”
greedy approach where instead of both endpoints of an uncovered edge, we only include one
of the two endpoints into our cover?

5. Consider an instance of the unweighted SET-COVER problem with the condition that no
element x ∈ X appears in more than k many subsets. Design an approximation algorithm
based on deterministic rounding which achieves an approximation ratio of at most O(k).

6. Consider the randomised approximation algorithm for the weighted SET-COVER problem.
Translate the algorithm from the course into one based on non-linear randomised rounding
such that, given the LP solution y, we directly round this LP solution to get a solution y
which covers all elements with probability 1− 1/n.

7. Consider a “random” instance of a 3-CNF instance. Given m clauses and n variables, each
clause is constructed by choosing 3 variables uniformly at random and without replacement
from {1, . . . , n}, and then negating each variable with probability 1/2 independently. Prove
that for any ε > 0, if m > c · n8/7, for some constant c = c(ε) > 0, then the formula is not
satisfiable with probability 1− ε.
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Hint: Make use of the following generalised birthday paradox for any integer k > 2. If m
balls are assigned to n bins chosen uniformly at random, then if m = Ω(n(k−1)/k), there will
be at least one bin which receives at least k balls with constant probability > 0.

Lecture 11-12 (Spectral Graph Theory and Clustering)

1. Compute the conductance of the complete graph with n vertices.

2. Compute the conductance of the cycle with n vertices.

3. (i) Prove that for every n > 2 there is an unweighted, undirected n-vertex graph with
conductance 1.

(ii) (Open-Ended Bonus Question): Can you characterise all graphs with that property?

4. Consider the transition matrix of a lazy random walks P̃ = (P + I)/2 on a d-regular graph
(here I is the n×n identity matrix and P is the transition matrix of a simple random walk).
Prove that all eigenvalues of P̃ are non-negative.
Hint: You may use the fact that the eigenvalues of P are between [0, 1] (note that this follows
from slide 14, where it is stated that the eigenvalues of L are between [0, 2]).

5. Prove that for any d-regular graph with n→∞ being large, the conductance satisfies Φ(G) 6
1/2 + o(1). Hint: Use the probabilistic method.

6. Let G be a connected, undirected graph and P be the transition matrix of a simple random
walk on G. Show that if −1 is a left eigenvalue of P , then the random walk is periodic.

Lecture 13 (Streaming Algorithms)

1. Consider the following streaming problem. There are n different packets labelled 1, 2, . . . , n
to be sent over a channel, and you know the value of n. Assuming that at most one packet
will not be sent, design a streaming algorithm using O(log n) space which is able to return
the ID of the lost packet (if there is any).

2. (Slide 9, Second Moment Analysis). If Xn is the counter of Morris’ Algorithm after n updates,
then prove that for every n > 0,

E
[

22·Xn ] =
3

2
n2 +

3

2
n+ 1.

3. [Slide 16, AMS]. Prove that by running Θ(log(1/δ)) independent copies of the algorithm and
returning the median, we obtain a (O(1), δ) approximation. Why do we return the median
and not the mean?

4. Consider a run of Morris’ Algorithm which includes n increments, where n → ∞ (see the
illustration on slide 11). What is the expected number of “crossings” between the estimate
Θn and the true count n?
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Lecture 14 (Weighted Majority)

1. Consider the online learning model with n experts. Show that for any deterministic algorithm

and for any integer T , there exists an input such that M (T ) > 2 ·mini∈[n]m
(T )
i . Hint: Try to

construct an instance with n = 2 experts.

2. Consider the deterministic weighted majority algorithm. Prove or disprove that the algorithm

always satisfies: M (T ) > mini∈[n]m
(T )
i .

3. In the experiments described on slide 11/12, there is an expert which is always wrong in
each round. Suggest a general adjustment of the weighted majority algorithm (ideally one
which works for both the deterministic and randomised version) that exploits the existence
of experts which always (or mostly) predict wrongly.

4. Consider the so-called “follow-the-leader” approach, which means that we are always follow-
ing the prediction of the best expert so far. Show that for any n > 2 there exists an input

such that M (T ) > (1− o(1))T , but for the best expert i ∈ [n], m
(T )
i 6 T/n.
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Selected Hints and Solution Notes

Lecture 1

(4) Apply Markov to |E| − e(S, Sc).

(6) Part a): p · (1− p)4 · |E|. Part b): p = 1/5, Part c): p = 1
2d−1 is the best choice.

Lecture 2-3

(4) Express the total number of comparisons X into a sum of indicator variables Xi,j which is
1 if the i-th smallest and j-th smallest element are compared. After some further steps, you
should be able to bound the expected number of comparisons from above by 2n lnn.

(9) Part c): One possible choice for α might be α =
√

2 · nm log n 6 1.

Lecture 4-5

(5) This is very similar to Question 6, which is covered in the example class.

(16) Divide the time into segments of length tmix(1/n) and then upper bound the probability that
a fixed vertex is visited after O(n log ntmix(1/n)) time.

Lecture 6-8

(9) The optimal solution is (x1, x2) = (1, 0) with objective value 5.

(10) The optimal solution is (x1, x2) = (34
3 ,

10
3 ) with objective value 64

3 .
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