Randomised Algorithms

Example Class 1

Thomas Sauerwald（tms41＠cam．ac．uk）

Plan

Schedule:

- Example Class 1 (today)
- Example Class 2 (10 February)
- Demo on Linear/Integer Programming applied to TSP (17 February)
- More Example Classes (3 more slots in February, 3 in March)
- Homework with Feedback?

Structure of Example Classes:

- Model Solution of some questions announced earlier
- Q \& A
- (suggestions?)

1st Question

- We consider the coupon collecting problem with n coupons.
(a) Prove that it takes $n \sum_{k=1}^{n} \frac{1}{k}$ days on expectation to collect all coupons.
(b) Deduce that the probability it takes more than $n \log n+c n$ days is at most e^{-c}.

1st Question, Part a) (Solution)

Let T be the random variable describing the number of days until a copy from each of the n coupons has been seen. Further, let T_{i} be the first day after which exactly i different coupons has been seen. Formally:

- Let $Z_{1}, Z_{2}, \ldots \in[n]$ be the sequence of drawn coupons
- $T_{i}:=\min \left\{t \geq 0:\left|\cup_{s=1}^{t} Z_{s}\right|=i\right\},\left(T_{0}=0, T_{1}=1\right.$ and $\left.T_{n}=T\right)$.

Then, using a telescoping sum and linearity of expectations,

$$
\mathbf{E}[T]=\mathbf{E}\left[T_{n}-T_{0}\right]=\mathbf{E}\left[\sum_{k=1}^{n}\left(T_{k}-T_{k-1}\right)\right]=\sum_{k=1}^{n} \mathbf{E}\left[T_{k}-T_{k-1}\right] .
$$

The random variable $T_{k}-T_{k-1}$ counts the waiting time between the day having $k-1$ coupons (for the first time) and the day having k coupons (for the first time). This random variable has a geometric distribution with parameter (i.e., success probability) $\frac{n-(k-1)}{n}$, and thus $\mathbf{E}\left[T_{k}-T_{k-1}\right]=\frac{n}{n-(k-1)}$. Thus,

$$
\mathbf{E}[T]=\sum_{k=1}^{n} \frac{n}{n-(k-1)}=n \cdot \sum_{k=1}^{n} \frac{1}{n-(k-1)}=n \cdot \sum_{k=1}^{n} \frac{1}{k} \approx n \ln n .
$$

1st Question, Part b) (Solution)

For the second part of the question, consider any coupon $i \in[n]$ and let $\tau:=n \ln n+c n$. Then the waiting time $Z_{i}:=\min \left\{t \geq 1: Z_{t}=i\right\}$ until this coupon is obtained has a geometric distribution with parameter $1 / n$.

Therefore,

$$
\begin{aligned}
\mathbf{P}\left[Y_{i}>\tau\right] & =\left(1-\frac{1}{n}\right)^{\tau} \\
& =\left(1-\frac{1}{n}\right)^{n \ln n+c n} \\
& \leq \exp (-\ln n-c)=\frac{1}{n} \cdot e^{-c},
\end{aligned}
$$

where the second inequality used $1-x \leq e^{-x}$ which holds for any $x \in \mathbb{R}$.
Now by the Union Bound and definition of T and Z_{i},

$$
\begin{aligned}
\mathbf{P}[T>\tau]=\mathbf{P}\left[\bigcup_{i=1}^{n}\left\{Y_{i}>\tau\right\}\right] & \leq \sum_{i=1}^{n} \mathbf{P}\left[Z_{i}>\tau\right] \\
& =n \cdot \frac{1}{n} \cdot e^{-c}=e^{-c} .
\end{aligned}
$$

1st Question (Additional Remark: Applying Chebyshev) 1/2

- We can also apply Chebyshev to the sum of geometric random variables used in Part a)
- Here we rely on the variance being additive for independent variables:

$$
\begin{aligned}
\mathbf{V}[T] & =\mathbf{V}\left[\sum_{k=1}^{n} T_{k}-T_{k-1}\right] \\
& =\sum_{k=1}^{n} \mathbf{V}\left[T_{k}-T_{k-1}\right] \\
& =\sum_{k=1}^{n} \frac{1-\frac{n-(k-1)}{n}}{\left(\frac{n-(k-1)}{n}\right)^{2}} \\
& \leq n^{2} \cdot \sum_{k=1}^{n} \frac{1}{n-(k-1)^{2}} \\
& \leq n^{2} \cdot \sum_{k=1}^{\infty} \frac{1}{k^{2}} \\
& \leq n^{2} \cdot \frac{\pi^{2}}{6}
\end{aligned}
$$

1st Question (Additional Remark: Applying Chebyshev) 2/2

- We derived $\mathbf{V}[T] \leq n^{2} \cdot \frac{\pi^{2}}{6}$.
- We also computed $\mathbf{E}[T]=n \cdot \sum_{k=1}^{n} \frac{1}{k} \approx n \log n$.
- Applying Chebyshev with $\lambda=n \sqrt{\log n}$ yields:

$$
\mathbf{P}[|T-\mathbf{E}[T]| \geq n \sqrt{\log n}] \leq \frac{\mathbf{V}[T]}{(n \sqrt{\log n})^{2}} \leq \frac{\pi^{2}}{6 \log n} \xrightarrow{n \rightarrow \infty} 0 .
$$

- This implies concentration of T; the distribution of the upper tail drops sharply from 1 to 0 :

2nd Question

Let $X_{1}, X_{2}, \ldots, X_{n}$ be n independent geometric random variables, each with parameter p (so $\mathbf{E}\left[X_{i}\right]=1 / p$ for each $i=1,2, \ldots, n$). Derive a Chernoff bound for $X:=\sum_{i=1}^{n} X_{i}$.

2nd Question (Solution)

- First Approach: Use recipe for Chernoff Bounds by bounding $\mathbf{E}\left[e^{t X_{i}}\right]$ (a bit technical, since the random variable X_{i} has unbounded range)
- Second Approach: Relate sum of geometric random variables to a sum of Bernoulli random variables and apply one of the (nicer) Chernoff Bounds
- Let $X:=X_{1}+\cdots+X_{n}$ be the sum of n independent geometric random variables with $\mathbf{E}[X]=n / p$.
- We wish to upper bound, for any $\delta>0$,

$$
\mathbf{P}[X>(1+\delta) \mathbf{E}[X]]
$$

- How can we express this event in terms of a sum of Bernoulli variables?

Hint: Imagine writing out all the outcomes of the n geometric variables as a single binary string ($1=$ success, $0=$ fail $)$

- $Y_{1}, Y_{2}, \ldots, Y_{k}$, with $k:=(1+\delta) n / p$ are Bernoulli random variables (coin flips), and $Y:=\sum_{i=1}^{k} Y_{i}$ has less than n successes:

$$
\begin{aligned}
\mathbf{P}[X>(1+\delta) \mathbf{E}[X]] & =\mathbf{P}[Y<n] \\
& =\mathbf{P}[Y<k p-(k p-n)] \\
& =\mathbf{P}\left[Y<\left(1-\frac{k p-n}{k p}\right) \cdot \mathbf{E}[Y]\right] \\
& \leq \exp \left(-\frac{1}{2}\left(\frac{k p-n}{k p}\right)^{2} k p\right) \leq \exp \left(-\frac{1}{2} \frac{\delta^{2} n}{(1+\delta)}\right) .
\end{aligned}
$$

2nd Question (Solution based on First Approach 1/2)

- First note that if X_{i} is geometric with parameter p, then
$\mathbf{E}\left[e^{t X_{i}}\right]=\sum_{k=1}^{\infty} e^{t k} p(1-p)^{k-1}=p e^{t} \sum_{k=1}^{\infty} e^{t(k-1)}(1-p)^{k-1}=\frac{p e^{t}}{1-e^{t}(1-p)}=\frac{p}{e^{-t}-1+p}$,
assuming t is chosen so that $e^{t}(1-p)<1$ (later, we will choose a t satisfying
$t<p$ which implies this inequality)
- Using $e^{-t} \geq-t+1$,

$$
\mathbf{E}\left[e^{t X_{i}}\right] \leq \frac{p}{p-t}=\left(1-\frac{t}{p}\right)^{-1}
$$

- Now returning to the recipe of deriving Chernoff bounds,

$$
\begin{aligned}
\mathbf{P}[X \geq(1+\delta) \mu] \leq \mathbf{P}\left[e^{t X} \geq e^{t(1+\delta) \mu}\right] & =\frac{\mathbf{E}\left[e^{t X}\right]}{e^{t(1+\delta) \mu}} \\
& =\frac{\left(1-\frac{t}{p}\right)^{-n}}{e^{t(1+\delta) n / p}} \\
& =\exp \left(-t(1+\delta) n / p+n \cdot\left(-\ln \left(1-\frac{t}{p}\right)\right)\right)
\end{aligned}
$$

and now choosing $t=\left(1-\frac{1}{1+\delta}\right) p$ yields

$$
\mathbf{P}[X \geq(1+\delta) \mu] \leq \exp (-n \cdot(\delta-\ln (1+\delta)))
$$

This is slightly better than the previous bound, at least for large values of δ !

2nd Question (Solution based on First Approach 2/2)

- For the lower bound, one can derive similarly for $t>0$ sufficiently small,

$$
\mathbf{E}\left[e^{-t X}\right] \leq\left(1+\frac{t}{p_{i}}\right)^{-1}
$$

- Then following the recipe of the Chernoff bound,

$$
\begin{aligned}
\mathbf{P}[X \leq(1-\delta) \mu] \leq \mathbf{P}\left[e^{-t X} \geq e^{-t(1+\delta) \mu}\right] & =\frac{\mathbf{E}\left[e^{-t X}\right]}{e^{-t(1+\delta) \mu}} \\
& =\frac{\left(1+\frac{t}{p}\right)^{-n}}{e^{-t(1+\delta) n / p}} \\
& =\exp \left(t(1+\delta) n / p+n \cdot\left(-\ln \left(1+\frac{t}{p}\right)\right)\right)
\end{aligned}
$$

and now choosing $t=\left(\frac{1}{1-\delta}-1\right) p$ yields

$$
\mathbf{P}[X \leq(1-\delta) \mu] \leq \exp (-n \cdot(\delta-\ln (1-\delta)))
$$

3rd Question

Using the concentration result for QuickSort in class, prove that it implies a bound of $O(n \log n)$ for the expected number of comparisons.

Recall: We proved for the number of comparisons $H:=\sum_{i=1}^{n} H_{i}$,

$$
\mathbf{P}[H \leq 24 n \log n] \geq 1-n^{-1} .
$$

3rd Question (Solution)

- Let H be the number of comparisons performed by Quicksort.
- In the lectures, we proved that $\mathbf{P}[H>24 n \log n] \leq n^{-1}$
- From Part IA Algorithms, we know the fact that $H \leq n^{2}$.
- Let us now bound E [H]:

$$
\begin{aligned}
\mathbf{E}[H] & =\sum_{x=1}^{n^{2}} \mathbf{P}[H=x] \cdot x \\
& \leq \sum_{x=1}^{24 n \log n} \mathbf{P}[H=x] \cdot x+\sum_{x=24 n \log n+1}^{n^{2}} \mathbf{P}[H=x] \cdot x \\
& \leq(24 n \log n) \cdot \sum_{x=1}^{24 n \log n} \mathbf{P}[H=x]+n^{2} \sum_{x=24 n \log n+1}^{n^{2}} \mathbf{P}[H=x] \\
& =(24 n \log n) \cdot \mathbf{P}[X \leq 24 n \log n]+n^{2} \cdot \mathbf{P}[H>24 n \log n] \\
& \leq(24 n \log n) \cdot 1+n^{2} \cdot n^{-1} \\
& \leq 24 n \log n+n \leq 25 n \log n .
\end{aligned}
$$

4th Question

Design a randomised algorithm for the following problem. The input consists of an $n \times n$ matrix A with entries in $\{0,1\}$ and a vector x of length n with entries in the real interval $[0,1]$. The goal is to return a vector y of length n with entries in $\{0,1\}$ such that

$$
\max _{i=1, \ldots, n}\left|(A x)_{i}-(A y)_{i}\right| \leq 2 \sqrt{n \log n}
$$

with probability at least $1-2 \cdot n^{-2}$.
Hint: Your algorithm should have the property that for any $1 \leq i, j \leq n$, $\mathbf{E}\left[A_{i, j} \cdot y_{j}\right]=A_{i, j} x_{j}$.

4th Question (Example)

$$
\begin{gathered}
A=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad x=\left(\begin{array}{c}
1 \\
0.5 \\
0.25
\end{array}\right) \\
A \cdot x=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{c}
0.8 \\
0.5 \\
0.25
\end{array}\right)=\left(\begin{array}{c}
0.5 \\
1.3 \\
0.25
\end{array}\right)
\end{gathered}
$$

Now take an integral vector:

$$
y=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) \quad \Rightarrow \quad A \cdot y=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right)
$$

The largest gap between any coordinate in $A \cdot x$ and $A \cdot y$ is $|1.3-2|=0.7$.

4th Question (Solution)

- For any $1 \leq j \leq n$, let Y_{j} be a Bernoulli distribution with parameter $x_{j} \in[0,1]$. Note $\mathbf{E}\left[Y_{i}\right]=x_{i}$, and thus $\mathbf{E}\left[A_{i j} Y_{j}\right]=A_{i, j} x_{j}$. Further, for any row i define

$$
Z=Z(i):=(A Y)_{i}-(A X)_{i}=\sum_{j=1}^{n} A_{i j}\left(Y_{j}-x_{j}\right)
$$

- We will check that $|Z|>2 \sqrt{n \log n}$ with sufficiently small probability. First

$$
\mathbf{P}[Z>2 \sqrt{n \log n}]=\mathbf{P}\left[\sum_{j=1}^{n} A_{i j} Y_{j} \geq \sum_{j=1}^{n} A_{i j} x_{j}+2 \sqrt{n \log n}\right]
$$

and note that $\sum_{j=1}^{n} A_{i j} Y_{j}$ is the sum of $m=\sum_{j=1}^{n} A_{i j}$ independent Bernoulli's.

- Using the nice version of Chernoff Bounds (additive form), we have
$\mathbf{P}\left[\sum_{j=1}^{n} A_{i j} Y_{j} \geq \sum_{j=1}^{n} A_{i j} x_{j}+2 \sqrt{n \log n}\right] \leq \exp \left(-8 \frac{n \log n}{m}\right) \leq \exp (-8 \log n)=\frac{1}{n^{8}}$.
That is $\mathbf{P}[Z>\sqrt{n \log n}] \leq n^{-8}$.
- Applying the same argument we get $\mathbf{P}[Z<-\sqrt{n \log n}] \leq n^{-8}$ and thus $\mathbf{P}[|Z|>\sqrt{n \log n}]<2 n^{-8}$ by the Union Bound.
- Finally, applying Union Bound over all $i=1, \ldots, n$ yields

$$
\mathbf{P}\left[\max _{i=1, \ldots, n}\left|(A Y)_{i}-(A X)_{i}\right|>\sqrt{n \log n}\right] \leq n \cdot 2 n^{-8}<n^{-2}
$$

