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Plan

Schedule:
= Example Class 1 (today)
= Example Class 2 (10 February)
= Demo on Linear/Integer Programming applied to TSP (17 February)
= More Example Classes (3 more slots in February, 3 in March)
= Homework with Feedback?
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Plan

Schedule:
= Example Class 1 (today)
= Example Class 2 (10 February)
= Demo on Linear/Integer Programming applied to TSP (17 February)
= More Example Classes (3 more slots in February, 3 in March)
= Homework with Feedback?

Structure of Example Classes:
= Model Solution of some questions announced earlier
" Q&A
= (suggestions?)
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1st Question

= We consider the coupon collecting problem with n coupons.

(a) Prove thatittakes n>"7_, % days on expectation to collect all coupons.
(b) Deduce that the probability it takes more than nlog n+ cn days is at most e=°.
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1st Question, Part a) (Solution)

Let T be the random variable describing the number of days until a copy from
each of the n coupons has been seen. Further, let T; be the first day after
which exactly i different coupons has been seen.
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1st Question, Part a) (Solution)

Let T be the random variable describing the number of days until a copy from
each of the n coupons has been seen. Further, let T; be the first day after
which exactly i different coupons has been seen. Formally:

» Let Z1, 2, ... € [n] be the sequence of drawn coupons
* Ti=min{t>0:|U_ Z| =i}, (To=0,Ty =1and T, = 7).
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1st Question, Part a) (Solution)

Let T be the random variable describing the number of days until a copy from
each of the n coupons has been seen. Further, let T; be the first day after
which exactly i different coupons has been seen. Formally:

» Let Z1, 2, ... € [n] be the sequence of drawn coupons

* Ti=min{t>0:|U_ Z| =i}, (To=0,Ty =1and T, = 7).

Then, using a telescoping sum and linearity of expectations,

n

E[T]=E[T,— To] =E {Z(Tk—n_q} :znje[rk_TH],

k=1

The random variable Ty — Tx_1 counts the waiting time between the day
having kK — 1 coupons (for the first time) and the day having k coupons (for the
first time). This random variable has a geometric distribution with parameter

(i-e., success probability) ==, and thus E[ Tk — Ti—1] = 7== Thus,

n n

1
E[T]:Z%:n-zm:n- g ninn.

k=1 k=1
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1st Question, Part b) (Solution)

For the second part of the question, consider any coupon i € [n] and let
7 := nlnn+ cn. Then the waiting time Z; := min {t > 1: Z; = i} until this
coupon is obtained has a geometric distribution with parameter 1/n.
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1st Question, Part b) (Solution)

For the second part of the question, consider any coupon i € [n] and let
7 := nlnn+ cn. Then the waiting time Z; := min {t > 1: Z; = i} until this
coupon is obtained has a geometric distribution with parameter 1/n.

p[Y,->T]:(1_%)T

nlnn+cn
(-
n
—c

1
gexp(—lnn—c):ﬁ-e ,

Therefore,

where the second inequality used 1 — x < e™* which holds for any x € R.
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1st Question, Part b) (Solution)

For the second part of the question, consider any coupon i € [n] and let
7 := nlnn+ cn. Then the waiting time Z; := min {t > 1: Z; = i} until this
coupon is obtained has a geometric distribution with parameter 1/n.

P[Yi>7]= (1—1)
n
nlnn+cn
n
—c

1
gexp(—lnn—c):ﬁ-e ,

Therefore,

where the second inequality used 1 — x < e™* which holds for any x € R.

Now by the Union Bound and definition of T and Z,

P[T>T]:P|:O{Y,‘>T}
i=1

n
<> P[Z>7]
i=1
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1st Question (Additional Remark: Applying Chebyshev) 1/2

= We can also apply Chebyshev to the sum of geometric random variables
used in Part a)
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1st Question (Additional Remark: Applying Chebyshev) 1/2

= We can also apply Chebyshev to the sum of geometric random variables
used in Part a)

= Here we rely on the variance being additive for independent variables:
V[T]=V {Zrk— r“]
k=1

ZiV[Tk—qu]

k=1
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1st Question (Additional Remark: Applying Chebyshev) 2/2

- We derived V[T] < r?- =
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1st Question (Additional Remark: Applying Chebyshev) 2/2

- We derived V[T] < r?- =
* We also computed E[ T] = n->"}_, + ~ nlogn.
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1st Question (Additional Remark: Applying Chebyshev) 2/2

- We derived V[T] < r?- =
* We also computed E[ T] = n->"}_, + ~ nlogn.
= Applying Chebyshev with A = n/log n yields:
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1st Question (Additional Remark: Applying Chebyshev) 2/2

- We derived V[T] < r?- =

* We also computed E[ T] = n->"}_, + ~ nlogn.

= Applying Chebyshev with A = n+/log n yields:
P[IT-E[T]]>nViogn] < L < T

(nylogn)2 ~ 6logn

2
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1st Question (Additional Remark: Applying Chebyshev) 2/2

- We derived V[T] < r?- =
* We also computed E[ T] = n->"}_, + ~ nlogn.
= Applying Chebyshev with A = n/log n yields:
2
P[\T—E[Tnzn\/@] < VTl ™ nopeg

(nylogn)2 ~ 6logn

= This implies concentration of T; the distribution of the upper tail drops
sharply from 1 to 0:
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1st Question (Additional Remark: Applying Chebyshev) 2/2

- We derived V[T] < r?- =
* We also computed E[ T] = n->"}_, + ~ nlogn.
= Applying Chebyshev with A = n/log n yields:
2
P[\T—E[Tnzn\/@] < VTl ™ nopeg

(nylogn)2 ~ 6logn

= This implies concentration of T; the distribution of the upper tail drops
sharply from 1 to 0:

P[T>t]
1

0.5+

0

nlogn — n/logn ——
nlogn ——
nlog n+ n+/logn —
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2nd Question

Let X1, X2, ..., X, be nindependent geometric random variables, each with
parameter p (so E[Xi] = 1/pforeachi=1,2,..., n). Derive a Chernoff
bound for X :=>"7, X;.
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2nd Question (Solution)

» First Approach: Use recipe for Chernoff Bounds by bounding E [ e™] (a
bit technical, since the random variable X; has unbounded range)

= Second Approach: Relate sum of geometric random variables to a sum of
Bernoulli random variables and apply one of the (nicer) Chernoff Bounds
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2nd Question (Solution)

» First Approach: Use recipe for Chernoff Bounds by bounding E [ e™] (a
bit technical, since the random variable X; has unbounded range)

= Second Approach: Relate sum of geometric random variables to a sum of
Bernoulli random variables and apply one of the (nicer) Chernoff Bounds
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2nd Question (Solution)

» First Approach: Use recipe for Chernoff Bounds by bounding E [ e™] (a
bit technical, since the random variable X; has unbounded range)

= Second Approach: Relate sum of geometric random variables to a sum of
Bernoulli random variables and apply one of the (nicer) Chernoff Bounds

= Let X := X; + -+ + X be the sum of nindependent geometric random variables
with E[ X] = n/p.
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2nd Question (Solution)

» First Approach: Use recipe for Chernoff Bounds by bounding E [ e™] (a
bit technical, since the random variable X; has unbounded range)

Second Approach: Relate sum of geometric random variables to a sum of
Bernoulli random variables and apply one of the (nicer) Chernoff Bounds

= Let X := X; + -+ + X be the sum of nindependent geometric random variables
with E[X] = n/p.
= We wish to upper bound, for any 6 > 0,
P[X>(1+d0E[X]].
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2nd Question (Solution)

First Approach: Use recipe for Chernoff Bounds by bounding E [ %] (a
bit technical, since the random variable X; has unbounded range)

Second Approach: Relate sum of geometric random variables to a sum of
Bernoulli random variables and apply one of the (nicer) Chernoff Bounds

Let X := X; + - - - + Xp be the sum of nindependent geometric random variables
with E[X] = n/p.
We wish to upper bound, for any § > 0,

P[X>(1+d0E[X]].

How can we express this event in terms of a sum of Bernoulli variables?
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2nd Question (Solution)

First Approach: Use recipe for Chernoff Bounds by bounding E [ %] (a
bit technical, since the random variable X; has unbounded range)

Second Approach: Relate sum of geometric random variables to a sum of
Bernoulli random variables and apply one of the (nicer) Chernoff Bounds

Let X := X; + - - - + Xp be the sum of nindependent geometric random variables
with E[ X] = n/p.
We wish to upper bound, for any § > 0,
P[X>(1+d0E[X]].
How can we express this event in terms of a sum of Bernoulli variables?

Hint: Imagine writing out all the outcomes of the n geometric variables as a single
binary string (1 = success, 0 = fail)
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2nd Question (Solution)

First Approach: Use recipe for Chernoff Bounds by bounding E [ %] (a
bit technical, since the random variable X; has unbounded range)

Second Approach: Relate sum of geometric random variables to a sum of
Bernoulli random variables and apply one of the (nicer) Chernoff Bounds

Let X := X; + - - - + Xp be the sum of nindependent geometric random variables
with E[ X] = n/p.
We wish to upper bound, for any § > 0,
P[X>1+6E[X]].
How can we express this event in terms of a sum of Bernoulli variables?
Hint: Imagine writing out all the outcomes of the n geometric variables as a single
binary string (1 = success, 0 = fail)
Y1, Yo, ..., Yk, with k := (1 + 6)n/p are Bernoulli random variables (coin flips),
and Y := ZL Y; has less than n successes:
P[X>(1+0E[X]]=P[Y <n]
=P[Y <kp—(kp—n)]

kp—n
) ElY]]

1 (kp—n\?2 1 62n
S exp <_2( pkp ) kp) <exp<_2(1+5)>’

:P{Y<(1—
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2nd Question (Solution based on First Approach 1/2)

= First note that if X; is geometric with parameter p, then

e[
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2nd Question (Solution based on First Approach 1/2)

= First note that if X; is geometric with parameter p, then

E [etX,'] _ i etkp(1_p)k—1
k=1
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2nd Question (Solution based on First Approach 1/2)

= First note that if X; is geometric with parameter p, then

E [etX,'] _ ietkp(1_p)k—1 _ petiet(k—1)(1_p)k—1
k=1 k=1
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2nd Question (Solution based on First Approach 1/2)

= First note that if X; is geometric with parameter p, then

1X; _oo tk k—1 _ o= (k1 k—1 _ pe'
E[e ]—Ee p(1-p) fpe;e( J(1-p)k! =

1—el(1-p)
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2nd Question (Solution based on First Approach 1/2)

= First note that if X; is geometric with parameter p, then

1X; _oo tk k—1 _ o= (k1 k—1 _ pe' P
E[e ]—Ee p(1-p) fpe;e( J(1-p)k! =

1T_el(l-p) el—1+p
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2nd Question (Solution based on First Approach 1/2)

= First note that if X; is geometric with parameter p, then

] _ — _tk k—1 _ o= (k1 k—1 _ pe' P
E[e ]—Ee p(1-p) fpe;e( J(1-p)k! =

1T_el(l-p) el—1+p

assuming t is chosen so that ef(1 — p) < 1 (later, we will choose a t satisfying
t < p which implies this inequality)
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2nd Question (Solution based on First Approach 1/2)

= First note that if X; is geometric with parameter p, then

] _ — _tk k—1 _ o= (k1 k—1 _ pe' P
E[e ]—Ee p(1-p) fpe;e( J(1-p)k! =

1T_el(l-p) el—1+p

assuming t is chosen so that ef(1 — p) < 1 (later, we will choose a t satisfying
t < p which implies this inequality)

= Usinge— !> —t+1,
-1
E[e] SL:Q,E) .
p—t P
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2nd Question (Solution based on First Approach 1/2)

= First note that if X; is geometric with parameter p, then

1X; _oo tk k—1 _ o= (k1 k—1 _ pe' P
E[e ]—Ee p(1-p) fpe;e( J(1-p)k! =

1T_el(l-p) el—1+p

assuming t is chosen so that ef(1 — p) < 1 (later, we will choose a t satisfying
t < p which implies this inequality)

= Usinge— !> —t+1,
-1
E[e] SL:Q,E) .
p—t P

= Now returning to the recipe of deriving Chernoff bounds,
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2nd Question (Solution based on First Approach 1/2)

= First note that if X; is geometric with parameter p, then

1X; _oo tk k—1 _ o= (k1 k—1 _ pe' P
E[e ]—Ee p(1-p) fpe;e( J(1-p)k! =

1T_el(l-p) el—1+p

assuming t is chosen so that ef(1 — p) < 1 (later, we will choose a t satisfying
t < p which implies this inequality)

= Usinge— !> —t+1,
-1
E[e] SL:Q,E) .
p—t P

= Now returning to the recipe of deriving Chernoff bounds,
E [erx]
et(1+3)p

PIX>(1+6)u] <P [eX > elton] =
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2nd Question (Solution based on First Approach 1/2)

= First note that if X; is geometric with parameter p, then

1X; _oo tk k—1 _ o= (k1 k—1 _ pe' P
E[e ]—Ee p(1-p) fpe;e( J(1-p)k! =

1T_el(l-p) el—1+p

assuming t is chosen so that ef(1 — p) < 1 (later, we will choose a t satisfying
t < p which implies this inequality)

= Usinge— !> —t+1,
—1
E[et)(/‘]gip :(1—£) .
p—t p
= Now returning to the recipe of deriving Chernoff bounds,
E [erx]
et(1+3)p
—n
t
(1-%)

et(1+8)n/p

PIX>(1+6)u] <P [eX > elton] =
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2nd Question (Solution based on First Approach 1/2)

= First note that if X; is geometric with parameter p, then

1X; _oo tk k—1 _ o= (k1 k—1 _ pe' P
E[e ]—Ee p(1-p) fpe;e( J(1-p)k! =

1T_el(l-p) el—1+p

assuming t is chosen so that ef(1 — p) < 1 (later, we will choose a t satisfying
t < p which implies this inequality)

= Usinge— !> —t+1,
—1
E[e’xf] §L=<1*£) :
p—t p
= Now returning to the recipe of deriving Chernoff bounds,
E [erx]
et(1+3)p

(-9

— et(1+d)n/p

= exp (—1(1 +dé)n/p+n-(—In(1 — é))) )

PIX>(1+6)u] <P [eX > elton] =
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2nd Question (Solution based on First Approach 1/2)

= First note that if X; is geometric with parameter p, then

] _ — _tk k—1 _ o= (k1 k—1 _ pe' P
E[e ]—Ee p(1-p) fpe;e( J(1-p)k! =

1T_el(l-p) el—1+p

assuming t is chosen so that ef(1 — p) < 1 (later, we will choose a t satisfying
t < p which implies this inequality)

= Usinge— !> —t+1,
-1
E[e] SL:Q,E) .
p—t P

= Now returning to the recipe of deriving Chernoff bounds,
E [erx]
et(1+3)p

(-9

— et(1+d)n/p

= exp (—1(1 +dé)n/p+n-(—In(1 — é))) )

PIX>(1+6)u] <P [eX > elton] =

and now choosing t = (1 — ﬂ?)p yields
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2nd Question (Solution based on First Approach 1/2)

= First note that if X; is geometric with parameter p, then

] _ — _tk k—1 _ o= (k1 k—1 _ pe' P
E[e ]—Ee p(1-p) fpe;e( J(1-p)k! =

1T_el(l-p) el—1+p

assuming t is chosen so that ef(1 — p) < 1 (later, we will choose a t satisfying
t < p which implies this inequality)

= Usinge— !> —t+1,
-1
E[e] SL:Q,E) .
p—t P

= Now returning to the recipe of deriving Chernoff bounds,
E [erx]
et(1+3)p

(-9

— et(1+d)n/p

= exp (—1(1 +dé)n/p+n-(—In(1 — é))) )

PIX>(1+6)u] <P [eX > elton] =

and now choosing t = (1 — ﬂ?)p yields
P[X > (1+06)u] <exp(—n-(5—In(1+0))).
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2nd Question (Solution based on First Approach 1/2)

= First note that if X; is geometric with parameter p, then

] _ — _tk k—1 _ o= (k1 k—1 _ pe' P
E[e ]—Ee p(1-p) fpe;e( J(1-p)k! =

1T_el(l-p) el—1+p

assuming t is chosen so that ef(1 — p) < 1 (later, we will choose a t satisfying
t < p which implies this inequality)

= Usinge— !> —t+1,
-1
E[e] SL:Q,E) .
p—t P

= Now returning to the recipe of deriving Chernoff bounds,
E [erx]
et(1+3)p

(-9

— et(1+d)n/p

= exp (—[(1 +dé)n/p+n-(—In(1 — é))) )

PIX>(1+6)u] <P [eX > elton] =

and now choosing t = (1 — ﬂ?)p yields
P[X > (1+8)u] <exp(—n- (6 —In(1+5))).
(This is slightly better than the previous bound, at least for large values of 6!)
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2nd Question (Solution based on First Approach 2/2)

= For the lower bound, one can derive similarly for t > 0 sufficiently small,

e[e]< (1)

1
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2nd Question (Solution based on First Approach 2/2)

= For the lower bound, one can derive similarly for t > 0 sufficiently small,
£\
e[le]<(1+5)
Pi
= Then following the recipe of the Chernoff bound,
E [e—tX]

—tX —t(1+48 _
P[XS“*‘S)#]SP[e > e ! )#]—m
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2nd Question (Solution based on First Approach 2/2)

= For the lower bound, one can derive similarly for t > 0 sufficiently small,

£\
e[le]<(1+5)

Pi

= Then following the recipe of the Chernoff bound,

E [e—tX]

eft(‘H»(S)u,

0
(1+7)

e—t(1+d)n/p

PIX<(1-0)u]<P[e™ > o7 (Mo ]
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2nd Question (Solution based on First Approach 2/2)

= For the lower bound, one can derive similarly for t > 0 sufficiently small,

£\
e[le]<(1+5)

Pi

= Then following the recipe of the Chernoff bound,

E [e—tX]

eft(‘H»(S)u,

0
_(1+3)

T~ e—t(1+d)n/p

t
= exp (t(1 +o)n/p+n-(—In(1+ B))) )

PIX<(1-0)u]<P[e™ > o7 (Mo ]
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2nd Question (Solution based on First Approach 2/2)

= For the lower bound, one can derive similarly for t > 0 sufficiently small,

e[e]< (1)

= Then following the recipe of the Chernoff bound,

E[e %]
e—t(1+d)n

NEDS
= e on/p

t
= exp (t(1 +o)n/p+n-(—In(1+ B))) )

PIX<(1-0)u]<P[e™ > o7 (Mo ]

and now choosing t = (1 — 1)p yields
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2nd Question (Solution based on First Approach 2/2)

= For the lower bound, one can derive similarly for t > 0 sufficiently small,

e[e]< (1)

= Then following the recipe of the Chernoff bound,

E [e—tX]
e—t(1+d)n

_(+5)
= e on/p

t
= exp (t(1 +o)n/p+n-(—In(1+ B))) )

PIX<(1-6)u] <P [em™ > et ] —

and now choosing t = (1 — 1)p yields

PIX < (1-8)ul<exp(—n-(5-In(1-0)).
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3rd Question

Using the concentration result for QuickSort in class, prove that it implies a
bound of O(nlog n) for the expected number of comparisons.
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3rd Question

Using the concentration result for QuickSort in class, prove that it implies a
bound of O(nlog n) for the expected number of comparisons.

Recall: We proved for the number of comparisons H := >, Hj,

P[H <24nlogn] >1—-n"".
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3rd Question (Solution)

= Let H be the number of comparisons performed by Quicksort.
= In the lectures, we proved that P[H > 24nlogn] < n~'

Example Class 1 © Thomas Sauerwald



3rd Question (Solution)

= Let H be the number of comparisons performed by Quicksort.

= In the lectures, we proved that P[H > 24nlogn] < n~'

= From Part IA Algorithms, we know the fact that H < .
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3rd Question (Solution)

1

In the lectures, we proved that P[H > 24nlogn] < n~
From Part IA Algorithms, we know the fact that H < .
Let us now bound E[ H]:

2

E[H]:HZP[H:X]~X

Let H be the number of comparisons performed by Quicksort.
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3rd Question (Solution)

Let H be the number of comparisons performed by Quicksort.
In the lectures, we proved that P[H > 24nlogn] < n~"

From Part IA Algorithms, we know the fact that H < ne.

Let us now bound E[ H]:

E[H]:HZP[H:X]~X

24nlogn n?

> P[H=x]-x+ >  P[H=x]-x
x=1

x=24nlog n+1

IN
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3rd Question (Solution)

Let H be the number of comparisons performed by Quicksort.
In the lectures, we proved that P[H > 24nlogn] < n~"

From Part IA Algorithms, we know the fact that H < ne.

Let us now bound E[ H]:

E[H]:HZP[H:X]~X

24nlogn n?

< > P[H=x]-x+ > P[H=x]-x
x=1 x=24nlog n+1
24nlog n n?
< (24nlogn)- > P[H=x]+nr" > P[H=x]
x=1 x=24nlog n+1
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3rd Question (Solution)

Let H be the number of comparisons performed by Quicksort.
In the lectures, we proved that P[H > 24nlogn] < n~"

From Part IA Algorithms, we know the fact that H < ne.

Let us now bound E[ H]:

E[H]:HZP[H:X]~X

24nlogn n?

< > P[H=x]-x+ > P[H=x]-x
x=1 x=24nlog n+1
24nlog n n?
< (24nlogn)- > P[H=x]+nr" > P[H=x]
x=1 x=24nlog n+1

= (24nlogn)-P[X < 24nlogn]+ n*-P[H > 24nlog n]
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3rd Question (Solution)

Let H be the number of comparisons performed by Quicksort.
In the lectures, we proved that P[H > 24nlogn] < n~"

From Part IA Algorithms, we know the fact that H < ne.

Let us now bound E[ H]:

E[H]:nZP[H:x]~x

24nlogn n?
< > P[H=x]-x+ > P[H=x]-x
x=1 x=24nlog n+1
24nlog n n?
< (24nlogn)- > P[H=x]+nr" > P[H=x]
x=1 x=24nlog n+1

= (24nlogn)-P[X < 24nlogn]+ n*-P[H > 24nlog n]

< (24nlogn)-1+n*-n~"
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3rd Question (Solution)

Let H be the number of comparisons performed by Quicksort.
In the lectures, we proved that P[H > 24nlogn] < n~
From Part IA Algorithms, we know the fact that H < ne.
Let us now bound E[ H]:

1

E[H]:nZP[H:x]~x

2

24nlogn n
< > P[H=x]-x+ > P[H=x]-x
x=1 x=24nlog n+1
24nlog n n?
< (24nlogn)- > P[H=x]+nr" > P[H=x]
x=1 x=24nlog n+1

= (24nlogn)-P[X < 24nlogn]+ n*-P[H > 24nlog n]

(24nlogn)-1+n*-n~"

<
< 24nlogn+ n < 25nlogn.
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4th Question

Design a randomised algorithm for the following problem. The input consists
of an n x n matrix A with entries in {0, 1} and a vector x of length n with
entries in the real interval [0, 1]. The goal is to return a vector y of length n
with entries in {0, 1} such that

_max [(Ax); — (Ay)il <2v/nlogn
i=1,...,n

with probability at least 1 — 2 - n~2.

Hint: Your algorithm should have the property that forany 1 <i,j < n,
E[Ai - y] = Aijx.
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4th Question (Example)
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4th Question (Example)

1 0 1

1 0], x=1| 05

o 1 0.25
0 0.8 0.5
0|-{05] =113
1 0.25 0.25

Now take an integral vector:

1
y=11 = A y=
0
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4th Question (Example)

Now take an integral vector:

1 0 10
y=|1 = Ay=1(|11 0]-
0 0 0 1

1
1
0
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4th Question (Example)

Now take an integral vector:

1 0 10
y=|1 = Ay=1(|11 0]-
0 0 0 1
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4th Question (Example)

Now take an integral vector:

) - G0

The largest gap between any coordinatein A-xand A-yis|1.3 - 2| =0.7.
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4th Question (Solution)

= Forany 1 <j < n, let Y; be a Bernoulli distribution with parameter x; € [0, 1]. Note
E[ Y,] = X;, and thus E [A,]Y]] = A,'J'Xj.
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4th Question (Solution)

= Forany 1 <j < n, let Y; be a Bernoulli distribution with parameter x; € [0, 1]. Note
E[Y;] = x;, and thus E [ A;Y;] = A; jx;. Further, for any row i define

Z = Z(i) = (AY); — (AX); = D _ Aj(Yj — x).
j=1
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= Forany 1 <j < n, let Y; be a Bernoulli distribution with parameter x; € [0, 1]. Note
E[Y;] = x;, and thus E [ A;Y;] = A; jx;. Further, for any row i define

Z = Z(i) = (AY); — (AX); = D _ Aj(Yj — x).
j=1

= We will check that |Z| > 2+/nlog n with sufficiently small probability. First
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4th Question (Solution)

= Forany 1 <j < n, let Y; be a Bernoulli distribution with parameter x; € [0, 1]. Note
E[Y;] = x;, and thus E [ A;Y;] = A; jx;. Further, for any row i define

Z = Z(i) = (AY); — (AX); = D _ Aj(Yj — x).
j=1

= We will check that |Z| > 2+/nlog n with sufficiently small probability. First

n n
P[z>2y/nlogn| =P | 3" A;¥; > > Ajx+2y/nlogn
j=1 j=1
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4th Question (Solution)

= Forany 1 <j < n, let Y; be a Bernoulli distribution with parameter x; € [0, 1]. Note
E[Y;] = x;, and thus E [ A;Y;] = A; jx;. Further, for any row i define

n
Z =2Z(i):= (AY); — (AX); = ZA,-,-(Y,- - Xj).
j=1
= We will check that |Z| > 2+/nlog n with sufficiently small probability. First

n n
P[z>2y/nlogn| =P | 3" A;¥; > > Ajx+2y/nlogn
j=1 j=1

and note that 3> 4 A; Y} is the sum of m = 37" | A; independent Bernoullis.
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4th Question (Solution)

= Forany 1 <j < n, let Y; be a Bernoulli distribution with parameter x; € [0, 1]. Note
E[Y;] = x;, and thus E [ A;Y;] = A; jx;. Further, for any row i define

n
Z =2Z(i):= (AY); — (AX); = ZA,-,-(Y,- - Xj).
j=1
= We will check that |Z| > 2+/nlog n with sufficiently small probability. First

n n
P[z>2y/nlogn| =P | 3" A;¥; > > Ajx+2y/nlogn
j=1 j=1

and note that 3> 4 A; Y} is the sum of m = 37" | A; independent Bernoullis.
= Using the nice version of Chernoff Bounds (additive form), we have
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4th Question (Solution)

= Forany 1 <j < n, let Y; be a Bernoulli distribution with parameter x; € [0, 1]. Note
E[Y;] = x;, and thus E [A,,Y ] = A jx;. Further, for any row / define

Z = 20) = (AY), — (AX) = 3 A(Y) — x).
j=1
= We will check that |Z| > 2+/nlog n with sufficiently small probability. First

n n
P[z>2y/nlogn| =P [ZA,-,Y, > ZA,]-X/+2\/nlogn}
j=1 j=1

and note that 3> 4 A; Y} is the sum of m = 37" | A; independent Bernoullis.
= Using the nice version of Chernoff Bounds (additive form), we have

ZA,/Y > ZAUXI +2\/n|ogn:| < exp ( nlog > < exp(—8logn) = %
ThatisP [Z > \/nlog n] <ns.

= Applying the same argument we get P [ Z < —/nlog n] < n~8 and thus
P[|Z| > /nlogn] < 2n~8 by the Union Bound.
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4th Question (Solution)

Forany 1 <j < n, let Y; be a Bernoulli distribution with parameter x; € [0, 1]. Note
E[Y;] = x;, and thus E [A,,Y ] = A jx;. Further, for any row / define

Z = 20) = (AY), — (AX) = 3 A(Y) — x).
j=1
We will check that |Z| > 2+/nlog n with sufficiently small probability. First

n n
P[z>2y/nlogn| =P [ZA,-,Y, > ZA,]-X/+2\/nlogn}
j=1 j=1

and note that 3> 4 A; Y} is the sum of m = 37" | A; independent Bernoullis.
Using the nice version of Chernoff Bounds (additive form), we have

|:ZA,/Y > ZAUXI+2\/n|ogn:| <exp( nlog > < exp(—8logn) = %

Thatis P [Z > y/nlogn]| < n~%.

Applying the same argument we get P [ Z < —y/nlogn] < n~8 and thus
P[|Z| > /nlogn] < 2n~8 by the Union Bound.

Finally, applying Union Bound over all i = 1,..., nyields

.....
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