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Model Solution of some questions announced earlier
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1st Question

We consider the coupon collecting problem with n coupons.
(a) Prove that it takes n

∑n
k=1

1
k days on expectation to collect all coupons.

(b) Deduce that the probability it takes more than n log n+ cn days is at most e−c .
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1st Question, Part a) (Solution)

Let T be the random variable describing the number of days until a copy from
each of the n coupons has been seen. Further, let Ti be the first day after
which exactly i different coupons has been seen.

Formally:

Let Z1,Z2, . . . ∈ [n] be the sequence of drawn coupons

Ti := min
{

t ≥ 0 : | ∪t
s=1 Zs| = i

}
, (T0 = 0, T1 = 1 and Tn = T ).

Then, using a telescoping sum and linearity of expectations,

E [T ] = E [Tn − T0 ] = E

[
n∑

k=1

(Tk − Tk−1)

]
=

n∑
k=1

E [Tk − Tk−1 ] .

The random variable Tk − Tk−1 counts the waiting time between the day
having k − 1 coupons (for the first time) and the day having k coupons (for the
first time). This random variable has a geometric distribution with parameter
(i.e., success probability) n−(k−1)

n , and thus E [Tk − Tk−1 ] =
n

n−(k−1) . Thus,

E [T ] =
n∑

k=1

n
n − (k − 1)

= n ·
n∑

k=1

1
n − (k − 1)

= n ·
n∑

k=1

1
k
≈ n ln n.
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1st Question, Part b) (Solution)

For the second part of the question, consider any coupon i ∈ [n] and let
τ := n ln n + cn. Then the waiting time Zi := min {t ≥ 1 : Zt = i} until this
coupon is obtained has a geometric distribution with parameter 1/n.

Therefore,

P [Yi > τ ] =

(
1− 1

n

)τ
=

(
1− 1

n

)n ln n+cn

≤ exp (− ln n − c) =
1
n
· e−c ,

where the second inequality used 1− x ≤ e−x which holds for any x ∈ R.

Now by the Union Bound and definition of T and Zi ,

P [T > τ ] = P

[
n⋃

i=1

{Yi > τ}

]
≤

n∑
i=1

P [Zi > τ ]

= n · 1
n
· e−c = e−c .
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1st Question (Additional Remark: Applying Chebyshev) 1/2

We can also apply Chebyshev to the sum of geometric random variables
used in Part a)

Here we rely on the variance being additive for independent variables:

V [T ] = V

[
n∑

k=1

Tk − Tk−1

]

=
n∑

k=1

V [Tk − Tk−1 ]

=
n∑

k=1

1− n−(k−1)
n

( n−(k−1)
n )2

≤ n2 ·
n∑

k=1

1
n − (k − 1)2

≤ n2 ·
∞∑

k=1

1
k2

≤ n2 · π
2

6
.
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1st Question (Additional Remark: Applying Chebyshev) 2/2

We derived V [T ] ≤ n2 · π
2

6 .

We also computed E [T ] = n ·
∑n

k=1
1
k ≈ n log n.

Applying Chebyshev with λ = n
√
log n yields:

P
[
|T − E [T ] | ≥ n

√
log n

]
≤ V [T ]

(n
√
log n)2

≤ π2

6 log n

n→∞→ 0.

This implies concentration of T ; the distribution of the upper tail drops
sharply from 1 to 0:

1

0.5

0

n
lo
g

n
−

n√
lo
g

n

n
lo
g

n

n
lo
g

n
+

n√
lo
g

n

t

P [T > t ]
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2nd Question

Let X1,X2, . . . ,Xn be n independent geometric random variables, each with
parameter p (so E [Xi ] = 1/p for each i = 1, 2, . . . , n). Derive a Chernoff
bound for X :=

∑n
i=1 Xi .
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2nd Question (Solution)

First Approach: Use recipe for Chernoff Bounds by bounding E
[

etXi
]

(a
bit technical, since the random variable Xi has unbounded range)
Second Approach: Relate sum of geometric random variables to a sum of
Bernoulli random variables and apply one of the (nicer) Chernoff Bounds

Let X := X1 + · · ·+ Xn be the sum of n independent geometric random variables
with E [X ] = n/p.
We wish to upper bound, for any δ > 0,

P [X > (1 + δ)E [X ] ] .

How can we express this event in terms of a sum of Bernoulli variables?

Hint: Imagine writing out all the outcomes of the n geometric variables as a single
binary string (1 = success, 0 = fail)

Y1,Y2, . . . ,Yk , with k := (1 + δ)n/p are Bernoulli random variables (coin flips),
and Y :=

∑k
i=1 Yi has less than n successes:

P [X > (1 + δ)E [X ] ] = P [Y < n ]

= P [Y < kp − (kp − n) ]

= P
[

Y < (1−
kp − n

kp
) · E [Y ]

]
≤ exp

(
−

1
2

(
kp − n

kp

)2
kp

)
≤ exp

(
−

1
2

δ2n
(1 + δ)

)
.

Example Class 1 © Thomas Sauerwald 9



2nd Question (Solution)

First Approach: Use recipe for Chernoff Bounds by bounding E
[

etXi
]

(a
bit technical, since the random variable Xi has unbounded range)
Second Approach: Relate sum of geometric random variables to a sum of
Bernoulli random variables and apply one of the (nicer) Chernoff Bounds

Let X := X1 + · · ·+ Xn be the sum of n independent geometric random variables
with E [X ] = n/p.
We wish to upper bound, for any δ > 0,

P [X > (1 + δ)E [X ] ] .

How can we express this event in terms of a sum of Bernoulli variables?

Hint: Imagine writing out all the outcomes of the n geometric variables as a single
binary string (1 = success, 0 = fail)

Y1,Y2, . . . ,Yk , with k := (1 + δ)n/p are Bernoulli random variables (coin flips),
and Y :=

∑k
i=1 Yi has less than n successes:

P [X > (1 + δ)E [X ] ] = P [Y < n ]

= P [Y < kp − (kp − n) ]

= P
[

Y < (1−
kp − n

kp
) · E [Y ]

]
≤ exp

(
−

1
2

(
kp − n

kp

)2
kp

)
≤ exp

(
−

1
2

δ2n
(1 + δ)

)
.

Example Class 1 © Thomas Sauerwald 9



2nd Question (Solution)

First Approach: Use recipe for Chernoff Bounds by bounding E
[

etXi
]

(a
bit technical, since the random variable Xi has unbounded range)
Second Approach: Relate sum of geometric random variables to a sum of
Bernoulli random variables and apply one of the (nicer) Chernoff Bounds

Let X := X1 + · · ·+ Xn be the sum of n independent geometric random variables
with E [X ] = n/p.

We wish to upper bound, for any δ > 0,
P [X > (1 + δ)E [X ] ] .

How can we express this event in terms of a sum of Bernoulli variables?

Hint: Imagine writing out all the outcomes of the n geometric variables as a single
binary string (1 = success, 0 = fail)

Y1,Y2, . . . ,Yk , with k := (1 + δ)n/p are Bernoulli random variables (coin flips),
and Y :=

∑k
i=1 Yi has less than n successes:

P [X > (1 + δ)E [X ] ] = P [Y < n ]

= P [Y < kp − (kp − n) ]

= P
[

Y < (1−
kp − n

kp
) · E [Y ]

]
≤ exp

(
−

1
2

(
kp − n

kp

)2
kp

)
≤ exp

(
−

1
2

δ2n
(1 + δ)

)
.

Example Class 1 © Thomas Sauerwald 9



2nd Question (Solution)

First Approach: Use recipe for Chernoff Bounds by bounding E
[

etXi
]

(a
bit technical, since the random variable Xi has unbounded range)
Second Approach: Relate sum of geometric random variables to a sum of
Bernoulli random variables and apply one of the (nicer) Chernoff Bounds

Let X := X1 + · · ·+ Xn be the sum of n independent geometric random variables
with E [X ] = n/p.
We wish to upper bound, for any δ > 0,

P [X > (1 + δ)E [X ] ] .

How can we express this event in terms of a sum of Bernoulli variables?

Hint: Imagine writing out all the outcomes of the n geometric variables as a single
binary string (1 = success, 0 = fail)

Y1,Y2, . . . ,Yk , with k := (1 + δ)n/p are Bernoulli random variables (coin flips),
and Y :=

∑k
i=1 Yi has less than n successes:

P [X > (1 + δ)E [X ] ] = P [Y < n ]

= P [Y < kp − (kp − n) ]

= P
[

Y < (1−
kp − n

kp
) · E [Y ]

]
≤ exp

(
−

1
2

(
kp − n

kp

)2
kp

)
≤ exp

(
−

1
2

δ2n
(1 + δ)

)
.

Example Class 1 © Thomas Sauerwald 9



2nd Question (Solution)

First Approach: Use recipe for Chernoff Bounds by bounding E
[

etXi
]

(a
bit technical, since the random variable Xi has unbounded range)
Second Approach: Relate sum of geometric random variables to a sum of
Bernoulli random variables and apply one of the (nicer) Chernoff Bounds

Let X := X1 + · · ·+ Xn be the sum of n independent geometric random variables
with E [X ] = n/p.
We wish to upper bound, for any δ > 0,

P [X > (1 + δ)E [X ] ] .

How can we express this event in terms of a sum of Bernoulli variables?

Hint: Imagine writing out all the outcomes of the n geometric variables as a single
binary string (1 = success, 0 = fail)
Y1,Y2, . . . ,Yk , with k := (1 + δ)n/p are Bernoulli random variables (coin flips),
and Y :=

∑k
i=1 Yi has less than n successes:

P [X > (1 + δ)E [X ] ] = P [Y < n ]

= P [Y < kp − (kp − n) ]

= P
[

Y < (1−
kp − n

kp
) · E [Y ]

]
≤ exp

(
−

1
2

(
kp − n

kp

)2
kp

)
≤ exp

(
−

1
2

δ2n
(1 + δ)

)
.

Example Class 1 © Thomas Sauerwald 9



2nd Question (Solution)

First Approach: Use recipe for Chernoff Bounds by bounding E
[

etXi
]

(a
bit technical, since the random variable Xi has unbounded range)
Second Approach: Relate sum of geometric random variables to a sum of
Bernoulli random variables and apply one of the (nicer) Chernoff Bounds

Let X := X1 + · · ·+ Xn be the sum of n independent geometric random variables
with E [X ] = n/p.
We wish to upper bound, for any δ > 0,

P [X > (1 + δ)E [X ] ] .

How can we express this event in terms of a sum of Bernoulli variables?
Hint: Imagine writing out all the outcomes of the n geometric variables as a single
binary string (1 = success, 0 = fail)

Y1,Y2, . . . ,Yk , with k := (1 + δ)n/p are Bernoulli random variables (coin flips),
and Y :=

∑k
i=1 Yi has less than n successes:

P [X > (1 + δ)E [X ] ] = P [Y < n ]

= P [Y < kp − (kp − n) ]

= P
[

Y < (1−
kp − n

kp
) · E [Y ]

]
≤ exp

(
−

1
2

(
kp − n

kp

)2
kp

)
≤ exp

(
−

1
2

δ2n
(1 + δ)

)
.

Example Class 1 © Thomas Sauerwald 9



2nd Question (Solution)

First Approach: Use recipe for Chernoff Bounds by bounding E
[

etXi
]

(a
bit technical, since the random variable Xi has unbounded range)
Second Approach: Relate sum of geometric random variables to a sum of
Bernoulli random variables and apply one of the (nicer) Chernoff Bounds

Let X := X1 + · · ·+ Xn be the sum of n independent geometric random variables
with E [X ] = n/p.
We wish to upper bound, for any δ > 0,

P [X > (1 + δ)E [X ] ] .

How can we express this event in terms of a sum of Bernoulli variables?
Hint: Imagine writing out all the outcomes of the n geometric variables as a single
binary string (1 = success, 0 = fail)
Y1,Y2, . . . ,Yk , with k := (1 + δ)n/p are Bernoulli random variables (coin flips),
and Y :=

∑k
i=1 Yi has less than n successes:

P [X > (1 + δ)E [X ] ] = P [Y < n ]

= P [Y < kp − (kp − n) ]

= P
[

Y < (1−
kp − n

kp
) · E [Y ]

]
≤ exp

(
−

1
2

(
kp − n

kp

)2
kp

)
≤ exp

(
−

1
2

δ2n
(1 + δ)

)
.

Example Class 1 © Thomas Sauerwald 9



2nd Question (Solution based on First Approach 1/2)

First note that if Xi is geometric with parameter p, then

E
[

etXi
]

=
∞∑

k=1

etk p(1−p)k−1 = pet
∞∑

k=1

et(k−1)(1−p)k−1 =
pet

1− et (1− p)
=

p
e−t − 1 + p

,

assuming t is chosen so that et (1− p) < 1 (later, we will choose a t satisfying
t < p which implies this inequality)
Using e−t ≥ −t + 1,

E
[

etXi
]
≤

p
p − t

=

(
1−

t
p

)−1
.

Now returning to the recipe of deriving Chernoff bounds,

P [X ≥ (1 + δ)µ ] ≤ P
[

etX ≥ et(1+δ)µ
]
=

E
[

etX ]
et(1+δ)µ

=

(
1− t

p

)−n

et(1+δ)n/p

= exp

(
−t(1 + δ)n/p + n · (− ln(1−

t
p
))

)
,

and now choosing t = (1− 1
1+δ )p yields

P [X ≥ (1 + δ)µ ] ≤ exp (−n · (δ − ln(1 + δ))) .

This is slightly better than the previous bound, at least for large values of δ!
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2nd Question (Solution based on First Approach 2/2)

For the lower bound, one can derive similarly for t > 0 sufficiently small,

E
[

e−tX
]
≤
(

1 +
t
pi

)−1
.

Then following the recipe of the Chernoff bound,

P [X ≤ (1− δ)µ ] ≤ P
[

e−tX ≥ e−t(1+δ)µ
]
=

E
[

e−tX ]
e−t(1+δ)µ

=

(
1 + t

p

)−n

e−t(1+δ)n/p

= exp

(
t(1 + δ)n/p + n · (− ln(1 +

t
p
))

)
,

and now choosing t = ( 1
1−δ − 1)p yields

P [X ≤ (1− δ)µ ] ≤ exp (−n · (δ − ln(1− δ))) .
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3rd Question

Using the concentration result for QuickSort in class, prove that it implies a
bound of O(n log n) for the expected number of comparisons.

Recall: We proved for the number of comparisons H :=
∑n

i=1 Hi ,

P [H ≤ 24n log n ] ≥ 1− n−1.
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3rd Question (Solution)

Let H be the number of comparisons performed by Quicksort.

In the lectures, we proved that P [H > 24n log n ] ≤ n−1

From Part IA Algorithms, we know the fact that H ≤ n2.

Let us now bound E [H ]:

E [H ] =
n2∑

x=1

P [H = x ] · x

≤
24n log n∑

x=1

P [H = x ] · x +
n2∑

x=24n log n+1

P [H = x ] · x

≤ (24n log n) ·
24n log n∑

x=1

P [H = x ] + n2
n2∑

x=24n log n+1

P [H = x ]

= (24n log n) · P [X ≤ 24n log n ] + n2 · P [H > 24n log n ]

≤ (24n log n) · 1 + n2 · n−1

≤ 24n log n + n ≤ 25n log n.
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E [H ] =
n2∑

x=1

P [H = x ] · x

≤
24n log n∑

x=1

P [H = x ] · x +
n2∑

x=24n log n+1

P [H = x ] · x

≤ (24n log n) ·
24n log n∑

x=1

P [H = x ] + n2
n2∑

x=24n log n+1

P [H = x ]

= (24n log n) · P [X ≤ 24n log n ] + n2 · P [H > 24n log n ]

≤ (24n log n) · 1 + n2 · n−1

≤ 24n log n + n ≤ 25n log n.

Example Class 1 © Thomas Sauerwald 13



3rd Question (Solution)

Let H be the number of comparisons performed by Quicksort.

In the lectures, we proved that P [H > 24n log n ] ≤ n−1

From Part IA Algorithms, we know the fact that H ≤ n2.

Let us now bound E [H ]:

E [H ] =
n2∑

x=1

P [H = x ] · x

≤
24n log n∑

x=1

P [H = x ] · x +
n2∑

x=24n log n+1

P [H = x ] · x

≤ (24n log n) ·
24n log n∑

x=1

P [H = x ] + n2
n2∑

x=24n log n+1

P [H = x ]

= (24n log n) · P [X ≤ 24n log n ] + n2 · P [H > 24n log n ]

≤ (24n log n) · 1 + n2 · n−1

≤ 24n log n + n ≤ 25n log n.

Example Class 1 © Thomas Sauerwald 13



3rd Question (Solution)

Let H be the number of comparisons performed by Quicksort.

In the lectures, we proved that P [H > 24n log n ] ≤ n−1

From Part IA Algorithms, we know the fact that H ≤ n2.

Let us now bound E [H ]:

E [H ] =
n2∑

x=1

P [H = x ] · x

≤
24n log n∑

x=1

P [H = x ] · x +
n2∑

x=24n log n+1

P [H = x ] · x

≤ (24n log n) ·
24n log n∑

x=1

P [H = x ] + n2
n2∑

x=24n log n+1

P [H = x ]

= (24n log n) · P [X ≤ 24n log n ] + n2 · P [H > 24n log n ]

≤ (24n log n) · 1 + n2 · n−1

≤ 24n log n + n ≤ 25n log n.

Example Class 1 © Thomas Sauerwald 13



3rd Question (Solution)

Let H be the number of comparisons performed by Quicksort.

In the lectures, we proved that P [H > 24n log n ] ≤ n−1

From Part IA Algorithms, we know the fact that H ≤ n2.

Let us now bound E [H ]:

E [H ] =
n2∑

x=1

P [H = x ] · x

≤
24n log n∑

x=1

P [H = x ] · x +
n2∑

x=24n log n+1

P [H = x ] · x

≤ (24n log n) ·
24n log n∑

x=1

P [H = x ] + n2
n2∑

x=24n log n+1

P [H = x ]

= (24n log n) · P [X ≤ 24n log n ] + n2 · P [H > 24n log n ]

≤ (24n log n) · 1 + n2 · n−1

≤ 24n log n + n ≤ 25n log n.

Example Class 1 © Thomas Sauerwald 13



4th Question

Design a randomised algorithm for the following problem. The input consists
of an n × n matrix A with entries in {0, 1} and a vector x of length n with
entries in the real interval [0, 1]. The goal is to return a vector y of length n
with entries in {0, 1} such that

max
i=1,...,n

|(Ax)i − (Ay)i | ≤ 2
√

n log n

with probability at least 1− 2 · n−2.
Hint: Your algorithm should have the property that for any 1 ≤ i, j ≤ n,
E [Ai,j · yj ] = Ai,jxj .
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4th Question (Example)

A =

0 1 0
1 1 0
0 0 1

 , x =

 1
0.5

0.25



A · x =

0 1 0
1 1 0
0 0 1

 ·
 0.8

0.5
0.25

 =

 0.5
1.3
0.25


Now take an integral vector:

y =

1
1
0



⇒ A · y =

0 1 0
1 1 0
0 0 1

 ·
1

1
0

 =

1
2
0



The largest gap between any coordinate in A · x and A · y is |1.3− 2| = 0.7.
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4th Question (Solution)

For any 1 ≤ j ≤ n, let Yj be a Bernoulli distribution with parameter xj ∈ [0, 1]. Note
E [Yi ] = xi , and thus E

[
Aij Yj

]
= Ai,j xj .

Further, for any row i define

Z = Z (i) := (AY )i − (AX)i =
n∑

j=1

Aij (Yj − xj ).

We will check that |Z | > 2
√

n log n with sufficiently small probability. First

P
[

Z > 2
√

n log n
]
= P

 n∑
j=1

Aij Yj ≥
n∑

j=1

Aij xj + 2
√

n log n


and note that

∑n
j=1 Aij Yj is the sum of m =

∑n
j=1 Aij independent Bernoulli’s.

Using the nice version of Chernoff Bounds (additive form), we have

P

 n∑
j=1

Aij Yj ≥
n∑

j=1

Aij xj + 2
√

n log n

 ≤ exp

(
−8

n log n
m

)
≤ exp(−8 log n) =

1
n8
.

That is P
[

Z >
√

n log n
]
≤ n−8.

Applying the same argument we get P
[

Z < −
√

n log n
]
≤ n−8 and thus

P
[
|Z | >

√
n log n

]
< 2n−8 by the Union Bound.

Finally, applying Union Bound over all i = 1, . . . , n yields

P
[

max
i=1,...,n

|(AY )i − (AX)i | >
√

n log n
]
≤ n · 2n−8 < n−2.
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We will check that |Z | > 2
√

n log n with sufficiently small probability. First

P
[

Z > 2
√

n log n
]
= P

 n∑
j=1

Aij Yj ≥
n∑

j=1

Aij xj + 2
√

n log n


and note that

∑n
j=1 Aij Yj is the sum of m =

∑n
j=1 Aij independent Bernoulli’s.

Using the nice version of Chernoff Bounds (additive form), we have

P

 n∑
j=1

Aij Yj ≥
n∑

j=1

Aij xj + 2
√

n log n

 ≤ exp

(
−8

n log n
m

)
≤ exp(−8 log n) =

1
n8
.

That is P
[

Z >
√

n log n
]
≤ n−8.

Applying the same argument we get P
[

Z < −
√

n log n
]
≤ n−8 and thus

P
[
|Z | >

√
n log n

]
< 2n−8 by the Union Bound.

Finally, applying Union Bound over all i = 1, . . . , n yields

P
[

max
i=1,...,n

|(AY )i − (AX)i | >
√

n log n
]
≤ n · 2n−8 < n−2.
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