
Quantum Computing (CST Part II)
Lecture 11: Application 2 of QFT / QPE: Quantum Chemistry

Feynman’s 1982 conjecture, that quantum computers
can be programmed to simulate any local
quantum system, is shown to be correct.

Seth Lloyd
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Quantum simulation

Suppose we want to know the state, |ψt〉 of a quantum system at a time,
t in the future, given its Hamiltonian, H and its current state, |ψ0〉, then
we must solve the Schrödinger equation:

|ψt〉 = e−iHt |ψ0〉

Note that this is a time-invariant Hamiltonian, and rather than explicitly
stating the normalisation by Planck’s constant, we have instead implicitly
incorporated it into the Hamiltonian itself.

For the purposes of this lecture, it suffices to take the Taylor series as the
definition of an exponentiated matrix:

eA =

∞∑
n=0

An

n!

where A0 is the identity.
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Quantum simulation (continued)

One helpful property of many real quantum systems of interest is that
they can be decomposed:

H =

K∑
k=1

Hk

where K is sufficiently small, and the physical nature of the system is
such that each Hk can be exponentiated (this is because the physical
system is dominated by “local” few-body interactions). So we have that:

|ψt〉 = e−iHt |ψ0〉 = e−i
∑

k Hkt |ψ0〉

However, notice we are dealing with matrix exponentiation, and in
general:

e−i
∑

k Hkt 6=
∏
k

e−iHkt

so it appears that we cannot directly use the fact that each Hk can
individually be exponentiated efficiently.
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Trotterisation

However, Hk can still be useful for simulating the quantum system,
because of the Trotter formula, which is at the heart of quantum
simulation:

lim
n→∞

(
e−iH1t/ne−iH2t/n

)n
= e−i(H1+H2)t

To see this, consider that, by definition:

e−iH1t/n =I − 1

n
iH1t+O

(
1

n2

)
=⇒ e−iH1t/ne−iH2t/n =I − 1

n
i(H1 + H2)t+O

(
1

n2

)
=⇒

(
e−iH1t/ne−iH2t/n

)n
=I +

n∑
l=1

(
n
l

)
1

nl
(−i(H1 + H2)t)l +O

(
1

n

)
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Proof of the Trotter formula (continued)
Noticing that:(
n
l

)
1

nl
=

n!

l!(n− l)!

1

nl
=

n(n− 1)(n− 2) · · · (n− l + 1)

nl

1

l!
=

1

l!

(
1 +O

(
1

n

))
We get that:

lim
n→∞

(
e−iH1t/ne−iH2t/n

)n
=I + lim

n→∞

n∑
l=1

(−i(H1 +H2)t)
l

l!

(
1 +O

(
1

n

))

= lim
n→∞

n∑
l=0

(−i(H1 +H2)t)
l

l!

=e−i(H1+H2)t

Following analysis similar to that above, with a small finite time ∆t, we
get that:

e−i(H1+H2)∆t = e−iH1∆te−iH2∆t +O(∆t2)

Therefore, if we divide up the duration of the evolution into sufficiently
short intervals, we can accurately approximate the overall evolution by
evolving each Hk in turn.
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Quantum simulation algorithm

For simulating |ψ̃t〉 ≈ |ψt〉 = e−iHt |ψ0〉:

1. Initialise |ψ̃0〉 = |ψ0〉; j = 0

2. |ψ̃j+1〉 ← U∆t |ψ̃j〉
3. j ← j + 1; if j∆t < t goto step 2

4. Output |ψ̃t〉 = |ψ̃j〉

Where H =
∑K
k=1 Hk, and:

U∆t = e−iH1∆te−iH2∆t · · · e−iHK∆t

for ∆t chosen to be suitably small to achieve the overall desired accuracy.

The previous assertion that each “Hk can be exponentiated efficiently”
can be taken to mean that each unitary Uk = e−iHk∆t can be
implemented with only a polynomial (in the number of qubits) number of
gates.
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Quantum simulation: a solution in search of a problem?

As Feynman asserted, simulation of quantum systems is classically
intractable in a fundamental way: because of entanglement it may take
an exponential amount of classical memory to even represent the state.
So the significance of the discovery of efficient quantum simulation on
quantum computers should not be understated. However, from an
algorithmic point of view, this really only corresponds to the middle of
the double-necked bottle:

quantum 
simulation

In order to find useful application, we need to use quantum simulation to
solve a problem with a compact input and output.
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Quantum chemistry

Quantum chemistry provides one such application of quantum simulation,
the general set-up being:

A system Hamiltonian, Hs is encoded as a qubit Hamiltonian Hq.

An important property in computational chemistry is the ground
state energy, E0:

E0 = min
|ψ〉
〈ψ|Hq |ψ〉

which denotes the measurement of an observable.

As E0 is simply a number, it is clearly a “compact” output. We will
see how quantum simulation and quantum phase estimation
together enable us to find ground states.
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Projective measurements and observables

In quantum mechanics projective measurements are usually used in the
context of measuring observables. An observable is a Hermitian operator,
say H, which has spectral decomposition:

H =
∑
i

λi |ei〉 〈ei| ,

where λi is the eigenvalue corresponding to eigenvector |ei〉 (we let λi be
ordered from smallest to largest) and we let Pi = |ei〉 〈ei| denote the
projector onto the ith eigenspace. As projectors are always such that
P †i Pi = Pi, we get that the probability of measuring the ith eigenvector
as (when measuring some arbitrary state |ψ〉):

p(i) = 〈ψ|Pi |ψ〉 .
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Projective measurements and observables (cont.)

If we get the ith eigenvector from the measurement, then we interpret
the measurement outcome as obtaining a numerical value equal to the
ith eigenvalue. This leads to the notion of measuring the expectation of
an observable on some state |ψ〉:

E|ψ〉(H) =
∑
i

λi p(i)

=
∑
i

λi 〈ψ|Pi |ψ〉

= 〈ψ|

(∑
i

λiPi

)
|ψ〉

= 〈ψ|

(∑
i

λi |ei〉 〈ei|

)
|ψ〉

= 〈ψ|H |ψ〉
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Ground state energy
Recall from Lecture 2 that the eigenvectors of a Hermitian operator form
an orthonormal basis. Therefore we can write out an arbitrary state |ψ〉
as a superposition over this basis.

|ψ〉 =
∑
i

ai |ei〉

Thus we can see that:

〈ψ|H |ψ〉 =

(∑
i

a∗i 〈ei|

)(∑
i

λi |ei〉 〈ei|

)(∑
i

ai |ei〉

)
=
∑
i

|ai|2λi

Noting that
∑
i |ai|2 = 1, we can see that this is minimised when a0 = 1

(recalling that we have ordered λi from smallest to largest).

So the ground state is obtained when |ψ〉 = |e0〉, and the ground state
energy itself is equal to λ0 – the smallest eigenvalue of H, that is

E0 = λ0
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Using quantum phase estimation to find the ground state
Finding the ground state energy is a computationally hard problem in
general. Quantum phase estimation can be used to find the ground state
energy of a Hamiltonian H. First, we define the unitary:

U = e2πiH

Which we use in the QPE algorithm, for now we treat the contents of the
second register as an arbitrary state expressed as a superposition over the
basis formed by the eigenstates of H:

|ψ〉 =
∑
i

ai |ei〉

𝜓

H0

0

0

𝜓 𝑈20

H

H

𝑈21 𝑈2𝑡−1

First 
register
t qubits

Second
register

QFT†
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Using QPE to find the ground state (cont.)
It is important to note that the eigenvectors of H are also the
eigenvectors of U = e2πiH:

U |ei〉 = e2πiH |ei〉

=

∞∑
k=0

1

k!
(2πi)kHk |ei〉

=

∞∑
k=0

1

k!
(2πi)kλki |ei〉

= e2πiλi |ei〉

i.e., the eigenvalue of U corresponding to |ei〉 is e2πiλi . So the state
before the inverse QFT is:

1√
2t

∑
i

ai

2t−1∑
j=0

e2πiλij |j〉 |ei〉

And thus the state after the inverse QFT is:∑
i

ai |λ̃i〉 |ei〉
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Notes on using QPE to find the ground state

λ̃i is a t-bit approximation of the eigenvalue λi.

There is a |a0|2 probability of collapsing into the desired state |e0〉
(and so obtaining an estimate of λ0 = E0). This in turn tells us that
we should prepare the initial state such that its sufficiently
dominated by |e0〉. There are various ways to do this, and later in
the course we will study one of them: adiabatic state preparation.

Noting that U2j

= (e2πiH)2j

= e2πiH2j

we can see that each
controlled unitary is a time evolution of U , and thus we can use the
quantum simulation algorithm to achieve these.

Overall we have a quantum algorithm that is asymptotically
efficient: that is, it only requires a circuit of depth which is
polynomial in the number of qubits. However, in practise the circuit
depth is prohibitive for near-term quantum computers.
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Near-term quantum chemistry

Performing QPE for quantum chemistry requires a full-scale fault-tolerant
quantum computer, however even in the absence of such a device the
principle that quantum simulation on classical computers is intractable
still holds. Therefore much current research concerns hybrid
quantum-classical algorithms which aim to execute only shallow-depth
quantum circuits, in which an unmanageable amount of error is not
expected to occur.

The most famous and promising of these hybrid algorithms is the
variational quantum eigensolver.
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The variational quantum eigensolver

VQE addresses the problem of ground state energy evaluation directly,
and relies on the Rayleigh-Ritz variational principle:

〈ψ(θ)|H |ψ(θ)〉 ≥ E0

where |ψ(θ)〉 is a quantum state parameterised by θ. This implies we can
find the ground state energy by finding the value of parameters that
minimise 〈ψ(θ)|H |ψ(θ)〉.

VQE then iterates the following:

1. Run a shallow-depth quantum circuit U(θ) : |0〉 → |ψ(θ)〉 to prepare
|ψ(θ)〉.

2. Projectively measure to get E(θ) = 〈ψ(θ)|H |ψ(θ)〉.
3. Perform classical optimisation to update the parameter values θ.

After sufficiently many iterations VQE converges on E(θ) ≈ E0.
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An illustration of VQE
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Here we can see that the quantum circuit takes the form of a
parameterised quantum circuit (PQC), or variational quantum circuit.
There are many forms of PQC, in this sketch we show one where
entangling CNOT gates are interspersed with parameterised rotation
gates. PQCs are sometimes described as quantum analogues of neural
networks, and are also used in quantum machine learning.
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Summary

In this lecture we have covered:

Quantum simulation, including Trotterisation.

Quantum phase estimation for ground state energy estimation in
quantum chemistry.

The variational quantum eigensolver: a near-term quantum
chemistry algorithm.
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