
Basics/1

Prolog basics

Programming in Prolog
Ian Lewis

Alastair Beresford, Andy RiceComputer Laboratory Basics/2

Imperative Programming

/* to compute the sum of the list, go
 through the list adding each value
 to the accumulator */

int sum(int[] list) {
int result = 0;
for(int i=0; i<list.length; ++i) {

result += list[i];
}
return result;

}

Basics/3

Functional Programming

(* The sum of the empty list is zero
 and the sum of the list with head
 h and tail t is h plus the sum of
 the tail *)

fun sum([]) = 0
 | sum(h::t) = h + sum(t);

Basics/4

Logic Programming

% the sum of the empty list is zero
sum([],0).

% the sum of the list with head H and
% tail T is N if the sum of the list T
% is M and N is M + H
sum([H|T],N) :- sum(T,M), N is M+H.

This is a declarative reading of a program
- it describes the result not the procedure

Basics/5

Prolog basics: Learning goals
● Identify programming styles
● Structure of a Prolog program
● Types of Prolog term
● Unifying terms

Basics/6

Prolog Programs Answer Questions

Facts + Rules

Questions Answers

Basics/7

Prolog's database can answer
simple questions

> prolog
?- [user].
|: milestone(rousell,1972).
|: milestone(warren,1983).
|: milestone(swiprolog,1987).
|: milestone(yourcourse,2012).
|: % user://1 compiled 0.01 sec, 764 bytes
Yes
?- milestone(warren,1983).
Yes
?- milestone(swiprolog,X).
X=1987
Yes
?- milestone(yourcourse,2000).
No
?- halt.

......................or maybe swipl on your system
.............get ready to enter a new program

........................type [CTRL]-D when done

...ask it a question
....................................the answer is “yes”
....................................let it find an answer
....................................the answer is 1987

...ask it a question
......................................the answer is “no”
......................................exit the interpreter

Basics/8

The program is composed of facts
and queries

> prolog
?- [user].
|: milestone(rousell,1972).
|: milestone(warren,1983).
|: milestone(swiprolog,1987).
|: milestone(yourcourse,2012).
|: % user://1 compiled 0.01 sec, 764 bytes
Yes
?- milestone(warren,1983).
Yes
?- milestone(swiprolog,X).
X=1987
Yes
?- milestone(yourcourse,2000).
No
?- halt.

Basics/9

We will usually write programs to a
source file on disk

> cat milestone.pl
milestone(rousell,1972).
milestone(warren,1983).
milestone(swiprolog,1987).
milestone(yourcourse,2012).

> prolog
?- [milestone].
?- milestone(warren,1983).
Yes
?- milestone(X,Y).
X = rousell
Y = 1972 ;

X= warren
Y = 1983
Yes
?- halt.

.................enter your program in a text file

.......................it must have a .pl extension

...........instruct prolog to load the program

..find answers

............you type a semi-colon (;) for more

you press enter when you've had enough

Basics/10

Terms can be
Constants,Compounds or Variables

Constants

Compound

Variables

Basics/11

Unification is Prolog's fundamental
operation

● Atoms unify if they are identical

● Variables unify with anything

● Compound terms unify if their top function
symbols and arities match and all parameters
unify recursively

Basics/12

Which of these unify?
Question 1

?
1 a with a
2 a with b
3 a with A
4 a with B
5 tree(l,r) with A
6 tree(l,r) with tree(B,C)
7 tree(A,r) with tree(l,C)
8 tree(A,r) with tree(A,B)
9 A with a(A)
10 a with a(A)

Basics/13

Prolog basics: Learning goals
● Identify programming styles
● Structure of a Prolog program
● Types of Prolog term
● Unifying terms

Zebra/1

Solving a logic puzzle

Programming in Prolog
Ian LewisComputer Laboratory

Zebra/2

Zebra Puzzle

Who drinks water? Who owns the zebra?

1. There are five houses.
2. The Englishman lives in the red house.
3. The Spaniard owns the dog.
4. Coffee is drunk in the green house.
5. The Ukrainian drinks tea.
6. The green house is immediately to the right of the ivory house.
7. The Old Gold smoker owns snails.
8. Kools are smoked in the yellow house.
9. Milk is drunk in the middle house.
10. The Norwegian lives in the first house.
11. The man who smokes Chesterfields lives in the house next to the man with the fox.
12. Kools are smoked in the house next to the house where the horse is kept.
13. The Lucky Strike smoker drinks orange juice.
14. The Japanese smokes Parliaments.
15. The Norwegian lives next to the blue house.

Zebra/3

Solving a logic puzzle: Learning
goals

● Try out the presented solution
● Understand the rationale behind it
● Develop an informal intuition about how Prolog

finds the answer
● We don't expect you yet to be able to solve

these problems yourself

Zebra/4

Model the situation

Represent each house with the term:

Represent the row of houses as follows:

Zebra/5

Identifying types of term

What sort of a term is:

house(Nationality,Pet,Smokes,Drinks,Colour)

1 number
2 atom
3 compound
4 variable

Question 1

?

Zebra/6

Question 2

Identifying types of term

What sort of a term is:

Nationality

1 number
2 atom
3 compound
4 variable

?

Zebra/7

What sort of a term is:

(H1,H2,H3,H4,H5)

1 number
2 atom
3 compound
4 variable

Question 3

Identifying types of term?

Zebra/8

Define house-existence facts

Zebra/9

Which queries return 'true'?

1 exists(dog,(fly,spider,bird,cat,dog)).
2 exists(dog,(fly,spider,bird,cat)).
3 exists(dog).
4 exists(house(english,red),

(house(spanish,green),
house(french,orange),
house(dutch,yellow),
house(german,blue),
house(english,_)).

Question 4

?

Zebra/10

Define facts for 'to the right of'

6. The green house is immediately to the right of the ivory house.

Zebra/11

Facts for the middle and first house

9. Milk is drunk in the middle house.

10. The Norwegian lives in the first house.

Zebra/12

More facts
11. The man who smokes Chesterfields lives in the house next to the man with

the fox.
nextTo(A,B,(A,B,_,_,_)).
nextTo(A,B,(_,A,B,_,_)).
nextTo(A,B,(_,_,A,B,_)).
nextTo(A,B,(_,_,_,A,B)).
nextTo(A,B,(B,A,_,_,_)).
nextTo(A,B,(_,B,A,_,_)).
nextTo(A,B,(_,_,B,A,_)).
nextTo(A,B,(_,_,_,B,A)).

Zebra/13

Express the puzzle as a query

1 exists(house(british,_,_,_,red),Houses),
2 exists(house(spanish,dog,_,_,_),Houses),
3 exists(house(_,_,_,coffee,green),Houses),
4 exists(house(ukranian,_,_,tea,_),Houses),
5 rightOf(house(_,_,_,_,green),house(_,_,_,_,ivory),Houses),
6 exists(house(_,snail,oldgold,_,_),Houses),
7 exists(house(_,_,kools,_,yellow),Houses),
8 middleHouse(house(_,_,_,milk,_),Houses),
9 firstHouse(house(norwegian,_,_,_,_),Houses),
10 nextTo(house(_,_,chesterfields,_,_),house(_,fox,_,_,_),Houses),
11 nextTo(house(_,_,kools,_,_),house(_,horse,_,_,_),Houses),
12 exists(house(_,_,luckystrike,orangejuice,_),Houses),
13 exists(house(japanese,_,parliaments,_,_),Houses),
14 nextTo(house(norwegian,_,_,_,_),house(_,_,_,_,blue),Houses),
15 exists(house(WaterDrinker,_,_,water,_),Houses),
16 exists(house(ZebraOwner,zebra,_,_,_),Houses).

Zebra/14

1 exists(house(british,_,_,_,red),Houses),
2 exists(house(spanish,dog,_,_,_),Houses),
3 exists(house(_,_,_,coffee,green),Houses),
4 exists(house(ukranian,_,_,tea,_),Houses),
5 rightOf(house(_,_,_,_,green),house(_,_,_,_,ivory),Houses),
6 exists(house(_,snail,oldgold,_,_),Houses),
7 exists(house(_,_,kools,_,yellow),Houses),
8 middleHouse(house(_,_,_,milk,_),Houses),
9 firstHouse(house(norwegian,_,_,_,_),Houses),
10 nextTo(house(_,_,chesterfields,_,_),house(_,fox,_,_,_),Houses),
11 nextTo(house(_,_,kools,_,_),house(_,horse,_,_,_),Houses),
12 exists(house(_,_,luckystrike,orangejuice,_),Houses),
13 exists(house(japanese,_,parliaments,_,_),Houses),
14 nextTo(house(norwegian,_,_,_,_),house(_,_,_,_,blue),Houses),
15 exists(house(WaterDrinker,_,_,water,_),Houses),
16 exists(house(ZebraOwner,zebra,_,_,_),Houses).

Finding clues
Question 5

?

The clue 'The Ukranian drinks Tea' is at line:
Zebra/15

1 exists(house(british,_,_,_,red),Houses),
2 exists(house(spanish,dog,_,_,_),Houses),
3 exists(house(_,_,_,coffee,green),Houses),
4 exists(house(ukranian,_,_,tea,_),Houses),
5 rightOf(house(_,_,_,_,green),house(_,_,_,_,ivory),Houses),
6 exists(house(_,snail,oldgold,_,_),Houses),
7 exists(house(_,_,kools,_,yellow),Houses),
8 middleHouse(house(_,_,_,milk,_),Houses),
9 firstHouse(house(norwegian,_,_,_,_),Houses),
10 nextTo(house(_,_,chesterfields,_,_),house(_,fox,_,_,_),Houses),
11 nextTo(house(_,_,kools,_,_),house(_,horse,_,_,_),Houses),
12 exists(house(_,_,luckystrike,orangejuice,_),Houses),
13 exists(house(japanese,_,parliaments,_,_),Houses),
14 nextTo(house(norwegian,_,_,_,_),house(_,_,_,_,blue),Houses),
15 exists(house(WaterDrinker,_,_,water,_),Houses),
16 exists(house(ZebraOwner,zebra,_,_,_),Houses).

Finding clues
Question 6

?

The clue 'The Spaniard owns the dog' is at line:

Zebra/16

1 exists(house(british,_,_,_,red),Houses),
2 exists(house(spanish,dog,_,_,_),Houses),
3 exists(house(_,_,_,coffee,green),Houses),
4 exists(house(ukranian,_,_,tea,_),Houses),
5 rightOf(house(_,_,_,_,green),house(_,_,_,_,ivory),Houses),
6 exists(house(_,snail,oldgold,_,_),Houses),
7 exists(house(_,_,kools,_,yellow),Houses),
8 middleHouse(house(_,_,_,milk,_),Houses),
9 firstHouse(house(norwegian,_,_,_,_),Houses),
10 nextTo(house(_,_,chesterfields,_,_),house(_,fox,_,_,_),Houses),
11 nextTo(house(_,_,kools,_,_),house(_,horse,_,_,_),Houses),
12 exists(house(_,_,luckystrike,orangejuice,_),Houses),
13 exists(house(japanese,_,parliaments,_,_),Houses),
14 nextTo(house(norwegian,_,_,_,_),house(_,_,_,_,blue),Houses),
15 exists(house(WaterDrinker,_,_,water,_),Houses),
16 exists(house(ZebraOwner,zebra,_,_,_),Houses).

Finding clues
Question 7

?

The clue 'Milk is drunk in the middle house' is at line:
Zebra/17

You can include queries in your
source file

● Normal lines in the source file define new
clauses

● Lines beginning with :- (colon followed by
hyphen) are queries that Prolog will execute
immediately

● Use the print() query to print the results

Zebra/18

Zebra Puzzle

> prolog
?- [zebra].
norwegian
japanese
% zebra compiled 0.00 sec, 6,384 bytes
Yes
?- halt.

We use print(WaterDrinker),
print(ZebraOwner) in our query
for this output

Zebra/19

Solving a logic puzzle: Learning
goals

● Try out the presented solution
● Understand the rationale behind it
● Develop an informal intuition about how Prolog

finds the answer
● We don't expect you yet to be able to solve

these problems yourself

Rules/1

Prolog Rules

Programming in Prolog
Ian LewisComputer Laboratory Rules/2

The Zebra solution with facts could
be improved

nextTo(A,B,(A,B,_,_,_)).
nextTo(A,B,(_,A,B,_,_)).
nextTo(A,B,(_,_,A,B,_)).
nextTo(A,B,(_,_,_,A,B)).
nextTo(A,B,(B,A,_,_,_)).
nextTo(A,B,(_,B,A,_,_)).
nextTo(A,B,(_,_,B,A,_)).
nextTo(A,B,(_,_,_,B,A)).

Rules/3

Prolog Rules: Learning goals
● Syntax for rules
● Relation to First Order Logic
● Recursion

Rules/4

Rules have a head which is true if
the body is true

rule(X,Y) :- part1(X), part2(X,Y).

Read this as: “rule(X,Y) is true if part1(X) is true and
part2(X,Y) is true”

Rules/5

Variables can be internal to a rule

rule2(X) :- thing(X,Z), thang(Z).

Read this as “rule2(X) is true if there is a Z such that
thing(X,Z) is true and thang(Z) is true”

Rules/6

Rules can be recursive

rule3(ground).
rule3(In) :- anotherRule(In,Out), rule3(Out).

Rules/7

Which materials are valuable?

1 gold
2 bauxite
3 bronze
4 copper

Question 1

?
material(gold).
material(aluminium).
process(bauxite,alumina).
process(alumina,aluminium).
process(copper,bronze).
valuable(X) :- material(X).
valuable(X) :- process(X,Y),valuable(Y).

Rules/8

Rules are just a First Order Logic
statement

“rule2(X) is true if there is a Z such that thing(X,Z) is
true and thang(Z) is true”

Rules/9

Improving on nextTo

nextTo(A,B,(A,B,_,_,_)).
nextTo(A,B,(_,A,B,_,_)).
nextTo(A,B,(_,_,A,B,_)).
nextTo(A,B,(_,_,_,A,B)).
nextTo(A,B,(B,A,_,_,_)).
nextTo(A,B,(_,B,A,_,_)).
nextTo(A,B,(_,_,B,A,_)).
nextTo(A,B,(_,_,_,B,A)).

Rules/10

Prolog Rules: Learning goals
● Syntax for rules
● Relation to First Order Logic
● Recursion

Lists/1

Lists

Programming in Prolog
Ian LewisComputer Laboratory Lists/2

Our Zebra puzzle solution only
works for 5 houses

● We would need to rewrite the whole program to
change it

● The problem is (H1,H2,H3,H4,H5)
● What we really need is a list....

Lists/3

Lists: Learning goals
● Syntax for lists in Prolog
● Understand how Prolog finds the answer to a

simple recursive query
● Use the Prolog debugger

Lists/4

Support for lists is built in to Prolog

Notated with square brackets e.g. [1,2,3,4]

The empty list is denoted []

Use a pipe symbol to refer to the tail of a list
e.g. [H|T] and [1|T] and [1,2,3|T]

Lists/5

We can write a rule to find the last
element of a list

last([H],H).
last([_|T],H) :- last(T,H).

Lists/6

last([H],H).
last([_|T],H) :- last(T,H).

Lists/7

You can use 'trace' to follow
execution

?- [last].
% last compiled 0.01 sec, 604 bytes

Yes
?- trace,last([1,2],A).
 Call: (8) last([1, 2], _G187) ? creep
 Call: (9) last([2], _G187) ? creep
 Exit: (9) last([2], 2) ? creep
 Exit: (8) last([1, 2], 2) ? creep

A = 2
Yes

Press enter to “creep”
to the next level

Press s to skip and
jump straight to
the result of the call

Lists/8

Question
last([H],H).
last([_|T],H) :- last(T,H).

Question 1

?

What happens if I ask: last([],X). ?

1 pattern-match exception
2 Prolog says no
3 Prolog says yes, X = []
4 Prolog says yes, X = ???

Lists/9

Lists: Learning goals
● Syntax for lists in Prolog
● Understand how Prolog finds the answer to a

simple recursive query
● Use the Prolog debugger

Arithmetic/1

Arithmetic

Programming in Prolog
Ian LewisComputer Laboratory

Arithmetic/2

Counting would be useful

last([H],H).
last([_|T],H) :- last(T,H).

What about if we want to know how many elements
there are?

Arithmetic/3

Arithmetic: Learning goals
● How to do arithmetic in Prolog
● More execution tracing
● Space efficiency and Last Call Optimisation

Arithmetic/4

Arithmetic equality != Unification

?- A = 1+2.
A = 1+2
Yes

?- 1+2 = 3.
No

Equals (=) in Prolog means “unifies with”
Arithmetic/5

Arithmetic equality != Unification

?- A = money+power.
A = money+power
Yes

Plus (+) just forms a compound term e.g. +(1,2)

Arithmetic/6

Use the “is” operator

The “is” operator tells prolog to evaluate the right-
hand expression numerically and unify with the left

?- A is 1+2.
A = 3
Yes

?- A is money+power.
ERROR: Arithmetic: `money/0' is not a function

Arithmetic/7

?- A is B+2.
ERROR: Arguments are not sufficiently

instantiated

?- 3 is B+2.
ERROR: Arguments are not sufficiently

instantiated

The right hand side must be a
ground term (no variables)

Arithmetic/8

Expressing expressions

What is the result of the query: A is +(*(3,2),4) ?

1 Error - Not an arithmetic expression
2 10
3 18
4 20

Question 1

?

Arithmetic/9

We can now compute the list length

len([],0).
len([_|T],N) :- len(T,M), N is M+1.

Arithmetic/10

O(N) stack space
len([],0).
len([_|T],N) :- len(T,M),N is M+1.

Arithmetic/11

Use an accumulator for O(1) space

len2([],Acc,Acc).
len2([_|T],Acc,R) :- B is Acc + 1,

len2(T,B,R).

len2(List,R) :- len2(List,0,R).

Arithmetic/12

O(1) stack space
len2([],Acc,Acc).
len2([_|T],Acc,R) :-
 B is Acc + 1,len2(T,B,R).

Arithmetic/13

Last Call Optimisation
● This technique is applied by the prolog

interpreter
● The last clause of the rule is executed as a

branch – we can forget that we were ever
interested in the head

● We can only do this if the rule is determinate up
to that point

Arithmetic/14

Validate with a “test to destruction”
● The debugger would interfere with LCO
● Test to see if we run out of stack

– Generate a big list
– Show that len2 works
– Show that len runs out of space

Arithmetic/15

Arithmetic: Learning goals
● How to do arithmetic in Prolog
● More execution tracing
● Space efficiency and Last Call Optimisation

Backtracking/1

Backtracking

Programming in Prolog
Ian LewisComputer Laboratory Backtracking/2

Some queries have more than one
answer

> cat milestone.pl
milestone(rousell,1972).
milestone(warren,1983).
milestone(swiprolog,1987).
milestone(yourcourse,2012).

> prolog
?- [milestone].
?- milestone(warren,1983).
Yes
?- milestone(X,Y).
X = rousell
Y = 1972 ;

X= warren
Y = 1983
Yes
?- halt.

.................enter your program in a text file

.......................it must have a .pl extension

...........instruct prolog to load the program

..find answers

............you type a semi-colon (;) for more

you press enter when you've had enough

Backtracking/3

Backtracking: Learning goals
● Rules to 'take' an item from a list
● Understand how Prolog searches for the next

answer using 'choice points'
● How backtracking can cause our programs to

misbehave

Backtracking/4

Repeatedly remove an element from
a list

take([1,2,3],A,B) should give...

Backtracking/5

Use backtracking to 'take' each
element from the list in turn

take([H|T],H,T).
take([H|T],R,[H|S]) :- take(T,R,S).

Backtracking/6

Executing take
take([H|T],H,T).
take([H|T],R,[H|S]) :- take(T,R,S).

Backtracking/7

Backtracking take
take([H|T],H,T).
take([H|T],R,[H|S]) :- take(T,R,S).

Backtracking/8

Backtracking take again
take([H|T],H,T).
take([H|T],R,[H|S]) :- take(T,R,S).

Backtracking/9

Prolog backtracks by recording
'choice points'

● Choice points are locations in the search where
we could take another option

● If there are no choice points left then don't offer
the user any more answers

Backtracking/10

'backwards' len
Question 1

? len([],0).
len([_|T],N) :- len(T,M), N is M+1.

What is the result of the query len(A,2). ?

1 Error due uninstantiated arithmetic expression
2 A = [_,_]
3 Query runs forever
4 Error due to invalid arguments

Backtracking/11

'backwards' len
len([],0).
len([_|T],N) :- len(T,M), N is M+1.

Backtracking/12

Backtracking len
Question 2

? len([],0).
len([_|T],N) :- len(T,M), N is M+1.

What happens if we ask len(A,2). for a second answer
(press ';') ?

1 Error due uninstantiated arithmetic expression
2 A = [_,_]
3 Query runs forever
4 Error due to invalid arguments

Backtracking/13

Backtracking len
len([],0).
len([_|T],N) :- len(T,M), N is M+1.

Backtracking/14

Backtracking: Learning goals
● Rules to 'take' an item from a list
● Understand how Prolog searches for the next

answer using 'choice points'
● How backtracking can cause our programs to

misbehave

GenerateAndTest/1

Generate and test

Programming in Prolog
Ian LewisComputer Laboratory GenerateAndTest/2

We're going to solve more puzzles
● The Zebra puzzle was pretty easy
● Apply our knowledge of lists and backtracking

GenerateAndTest/3

Generate and Test: Learning goals
● New clauses for permutations of a list
● Solving problems with generate-and-test

GenerateAndTest/4

Recall the 'take' predicate

take([H|T],H,T).
take([H|T],R,[H|S]) :- take(T,R,S).

GenerateAndTest/5

We can use 'take' to generate
permutations of a list

perm([],[]).
perm(L,[H|T]) :- take(L,H,R),perm(R,T).

GenerateAndTest/6

'Dutch national flag' can be viewed
as a permutations question

[red,white,blue,white,red]

[red,red,white,white,blue]

Take a list and re-order such that red precedes white precedes blue

GenerateAndTest/7

'Dutch national flag' can be viewed
as a permutations question

flag(In,Out) :- perm(In,Out),
checkColours(Out).

GenerateAndTest/8

Check that the colours are in order

● checkRed should be true
– if Head = red & checkRed(Tail)
– or if checkWhite(List)

● checkWhite should be true
– if Head = white & checkWhite(Tail)
– or if checkBlue(List)

● checkBlue should be true

GenerateAndTest/9

Which is a correct 'checkRed'
Question 1

?

1 checkRed(L) :- Head = red,
checkRed(Tail); checkWhite(Tail).

2 checkRed(L) :- Head = red, checkRed(Tail).
checkRed(L) :- checkWhite(Tail).

3 checkRed([H|T]) :- H = red, checkRed(T).
checkRed(L) :- checkWhite(L).

4 checkRed([red|T]) :- checkRed(T).
checkRed(L) :- checkWhite(L).

GenerateAndTest/10

This is an example of Generate and
Test

1) Generate a solution
2) Test if its valid
3) If not valid then backtrack to next solution

GenerateAndTest/11

Which part of the flag solution is
'Generate'?

Question 2

?

flag(In,Out) :- perm(In,Out),
checkColours(Out).

1 flag(In,Out)
2 perm(In,Out)
3 checkColours(Out)
4 No part of the solution is 'Generate'

GenerateAndTest/12,,, ,

Place 8 Queens so that none can
take any other

1 5 8 6 3 7 2 4[, , ,]

♛

♛

♛

♛

♛

♛

♛

♛

GenerateAndTest/13

Generate and Test works for 8
Queens too

8queens(R) :- perm([1,2,3,4,5,6,7,8],R),
checkDiagonals(R).

(You can use X =\= Y which will succeed if X is not equal to Y)

GenerateAndTest/14

Anagrams

Load the dictionary into the prolog database e.g.:
word([a,a,r,d,v,a,r,k]).

Generate permutations of the input word and test if
they are words from the dictionary

or
Generate words from the dictionary and test if they

are a permutation!

GenerateAndTest/15

Generate and Test: Learning goals
● New clauses for permutations of a list
● Solving problems with generate-and-test

Symbolic/1

Symbolic evaluation

Programming in Prolog
Ian LewisComputer Laboratory

Symbolic/2

Backtracking 'broke' len(A,3)
● One might argue we used it outside of its

specification
● Bad backtracking can occur in legitimate

programs too
● How can we fix it?

Symbolic/3

Symbolic evaluation – Learning
goals

● New clauses for symbolic evaluation of
arithmetic

● Understand why they cause a backtracking
problem

● Know one strategy to fix it

Symbolic/4

Symbolic Evaluation

Let's write some Prolog rules to evaluate
symbolic arithmetic expressions such as

plus(1,mult(4,5))

eval(plus(A,B),C) :- eval(A,A1), eval(B,B1), C is A1 + B1.
eval(mult(A,B),C) :- eval(A,A1), eval(B,B1), C is A1 * B1.
eval(A,A).

Symbolic/5

Question 1

? eval(plus(A,B),C) :-
eval(A,A1), eval(B,B1),C is A1+B1.

eval(mult(A,B),C) :-
eval(A,A1), eval(B,B1),C is A1*B1.

eval(A,A).

How many times is eval(A,A) satisfied in the evaluation
of eval(plus(1,mult(4,5)),X)

1 3 times
2 0 times
3 1 time
4 4 times

Symbolic/6

Search tree
eval(plus(A,B),C) :-

eval(A,A1), eval(B,B1),C is A1+B1.
eval(mult(A,B),C) :-

eval(A,A1), eval(B,B1),C is A1*B1.
eval(A,A).

Symbolic/7

Backtracking
eval(plus(A,B),C) :-

eval(A,A1), eval(B,B1),C is A1+B1.
eval(mult(A,B),C) :-

eval(A,A1), eval(B,B1),C is A1*B1.
eval(A,A).

Symbolic/8

Eliminate spurious solutions by
making your clauses orthogonal

● The problem occurs because we have too
many choice points

● Instead make sure that only one clause
matches

eval(plus(A,B),C) :-
eval(A,A1), eval(B,B1),C is A1+B1.

eval(mult(A,B),C) :-
eval(A,A1), eval(B,B1),C is A1*B1.

eval(gnd(A),A).

Symbolic/9

Symbolic evaluation – Learning
goals

● New clauses for symbolic evaluation of
arithmetic

● Understand why they cause a backtracking
problem

● Know one strategy to fix it

Cut/1

Cut!

Programming in Prolog
Ian LewisComputer Laboratory Cut/2

We controlled backtracking by
limiting choice points

● We did this with eval/2 by making the clauses
orthogonal

● 'cut' gives us an alternative mechanism

Cut/3

Cut! - Learning goals
● Understand how the cut operator changes the

search tree
● Recognise different types of cut

Cut/4

Cut tells Prolog to commit to its
choice

eval(plus(A,B),C) :- !, eval(A,A1), eval(B,B1), C is A1 + B1.
eval(mult(A,B),C) :- !, eval(A,A1), eval(B,B1), C is A1 * B1.
eval(A,A).

Cut/5

Search tree
eval(plus(A,B),C) :- !,

eval(A,A1), eval(B,B1),C is A1+B1.
eval(mult(A,B),C) :- !,

eval(A,A1), eval(B,B1),C is A1*B1.
eval(A,A).

Cut/6

Cut closes choice points

Cut/7

What does split/3 do?
Question 1

?

split([],[],[]).
split([H|T],[H|L],R) :- H < 5, split(T,L,R).
split([H|T],L,[H|R]) :- H >= 5, split(T,L,R).

Cut/8

Cut can appear in the middle of a
rule

split([],[],[]).
split([H|T],[H|L],R) :- H < 5, !, split(T,L,R).
split([H|T],L,[H|R]) :- H >= 5, !, split(T,L,R).

This is a green cut – it just helps execution go faster

Cut/9

What is the logical meaning of
these clauses?

Question 2

?

p :- a,b.
p :- c.

1 p ⇔ (a ∧ b) ∨ c
2 p ⇔ a ∧ b ∧ c
3 p ⇔ (a ∧ b) ∨ (¬a ∧ c)
4 p ⇔ a ∧ (b ∨ c)

Cut/10

What is the logical meaning of
these clauses?

Question 3

?

p :- a,!,b.
p :- c.

1 p ⇔ (a ∧ b) ∨ c
2 p ⇔ a ∧ b ∧ c
3 p ⇔ (a ∧ b) ∨ (¬a ∧ c)
4 p ⇔ a ∧ (b ∨ c)

Cut/11

Cut! - Learning goals
● Understand how the cut operator changes the

search tree
● Recognise different types of cut

Negation/1

Negation

Programming in Prolog
Ian LewisComputer Laboratory

Negation/2

Pruning the search tree gives us
more expressive power

● cut lets us control backtracking by removing
choice points

● this opens up a whole range of new programs
(and problems)

Negation/3

Negation – Learning goals
● How to use cut to implement negation-by-failure
● Understand the dangers

Negation/4

What does this do?
Question 1

?

a :- !,1=2.

1 unifies 1 with 2
2 throws an exception
3 always succeeds
4 always fails

Negation/5

What does this do?
Question 2

?

a(A,A) :- !,fail.
a(_,_).

1 unifies the two arguments
2 succeeds if the arguments unify
3 succeeds if the arguments don't unify
4 always fails

Negation/6

Pay attention to whether the
unification is undone

● Clauses such as 'fail' and 'isDifferent' can cause
us to backtrack in unusual ways

● This will undo any variable bindings along the
way

Negation/7

We can now implement 'not' using
negation-by-failure

not(A) :- A,!,fail.
not(_).

You may also write not(A) as \+A

Negation/8

What sort of cut is this?
Question 3

?

not(A) :- A,!,fail.
not(_).

1 red
2 amber
3 green

Negation/9

'not' is based on the closed world
assumption

Everything that is true in the “world” is stated (or
can be derived from) the clauses in the program.

Negation/10

A simple negation example

goodFood(theWrestlers).
goodFood(midsummerHouse).
expensive(midsummerHouse).

bargain(R) :- goodFood(R),not(expensive(R)).

Negation/11

Negation query
Question 4

?

What happens if we ask bargain(R). ?

1 R = theWrestlers (and then no more results)
2 R = theWrestlers and then loop forever
3 R = theWrestlers, R = midsummerHouse
4 False

goodFood(theWrestlers).
goodFood(midsummerHouse).
expensive(midsummerHouse).
bargain(R) :- goodFood(R),

not(expensive(R)).

Negation/12

A simple negation mistake

goodFood(theWrestlers).
goodFood(midsummerHouse).
expensive(midsummerHouse).

bargain(R) :- not(expensive(R)), goodFood(R).

The query bargain(R) now fails immediately

Negation/13

When using negation remember the
quantifiers

● expensive(R)

● not(expensive(R))

Negation/14

Negation – Learning goals
● How to use cut to implement negation-by-failure
● Understand the dangers

Databases/1

Databases

Programming in Prolog
Ian LewisComputer Laboratory

Databases/2

We used cut to build negation
● This produces some more complicated

behaviour
● Practice....

Databases/3

Databases – Learning goals
● Understand how Prolog clauses map onto

relations
● Get a basic idea of relational databases and

SQL

Databases/4

Relational databases allow us to
store and query structured data

● Structured Query Language (SQL) is the
standard way to interact with a relational
database

● Much more detail in a later course

Databases/5

Databases – Learning goals
● Understand how Prolog clauses map onto

relations
● Get a basic idea of relational databases and

SQL

Countdown/1

Playing Countdown

Programming in Prolog
Ian LewisComputer Laboratory Countdown/2

Let's look at another generate and
test problem

● We've already visited Dutch National Flag, 8-
Queens and Anagrams

● Time for another example

Countdown/3

Playing Countdown – Learning
Goals

● How to encode a search-based game into
Prolog

● See an example of Generate and Test which
doesn't use 'perm'

Countdown/4

Countdown Numbers
● Select 6 of 24 number tiles

– large numbers: 25,50,75,100
– small numbers: 1,2,3...10 (two of each)

● Contestant chooses how many large and small
● Randomly chosen 3-digit target number
● Get as close as possible using each of the 6 numbers at

most once and the operations of addition, subtraction,
multiplication and division

● No floats or fractions allowed

Countdown/5

Countdown Numbers
● To see the game in progress have a look on

YouTube.
● I recommend James Martin's numbers game

from 1997...

Countdown/6

Countdown Numbers
● Strategy – generate and test

– maintain a list of symbolic arithmetic terms
– initially this list consists of ground terms e.g.:

[25,50,75,100,6,3]
– if the head of the list evaluates to the total then

succeed
– otherwise pick two of the elements, combine them

using one of the available arithmetic operations, put
the result on the head of the list, and repeat

Countdown/7

Will this strategy terminate?
Question 1

?

1 It will always terminate
2 It will always terminate if there is a correct solution
3 It will not terminate if there are no solutions
4 It will always be quicker than a person

Countdown/8

Countdown Numbers
● Prerequisites

– eval(A,B) – true if the symbolic expression A
evaluates to B

– choose(N,L,R,S) – true if R is the result of
choosing N items from L and S is the remaining
items left in L

– arithop(A,B,C) – true if C is a valid combination of
A and B

● e.g. arithop(A,B,plus(A,B)).

Countdown/9

Helper predicates for symbolic
evaluation

isGreater(A,B) :- eval(A,Av), eval(B,Bv), Av>Bv.
notOne(A) :- eval(A,Av), Av =\= 1.
isFactor(A,B) :- eval(A,Av), eval(B,Bv),

0 is Bv rem Av.

Countdown/10

Countdown Numbers
%%% arith_op(+A, +B, -C)
%%% unify C with a valid binary operation of expressions A and B
arithop(A,B,plus(A,B)).
% no negative numbers allowed
arithop(A,B,minus(A,B)) :- isGreater(A,B).
arithop(A,B,minus(B,A)) :- isGreater(B,A).
% don't allow mult by 1
arithop(A,B,mult(A,B)) :- notOne(A), notOne(B).
% dont allow div by 1 and no fractions allowed
arithop(A,B,div(A,B)) :- notOne(B), isFactor(B,A).
arithop(A,B,div(B,A)) :- notOne(A), isFactor(A,B).

Countdown/11

Countdown Numbers

countdown([Soln|_],Target,Soln) :-
eval(Soln,Target).

countdown(L,Target,Soln) :-
choose(2,L,[A,B],R),
arithop(A,B,C),
countdown([C|R],Target,Soln).

Countdown/12

Which part of the program is
'generate'

Question 2

?

countdown([Soln|_],Target,Soln) :-
eval(Soln,Target).

countdown(L,Target,Soln) :-
choose(2,L,[A,B],R),
arithop(A,B,C),
countdown([C|R],Target,Soln).

1

2
3
4

Countdown/13

Closest Solution

If there are no solutions we want to find the closest
solution
solve2([Soln|_],Target,Soln,D) :- eval(Soln,R), diff(Target,R,D).
solve2(L,Target,Soln,D) :- choose(2,L,[A,B],R),

arithop(A,B,C),
solve2([C|R],Target,Soln,D).

closest(L,Target,Soln,D) :- range(0,100,D), solve2(L,Target,Soln,D).

This is iterative deepening

Countdown/14

Playing Countdown – Learning
Goals

● How to encode a search-based game into
Prolog

● See an example of Generate and Test which
doesn't use 'perm'

GraphSearch/1

Graph Search

Programming in Prolog
Ian LewisComputer Laboratory GraphSearch/2

Generate and test is not the only
approach...

GraphSearch/3

Graph Search – Learning goals
● Recognise a graph search problem
● Understand how to encode this in Prolog
● Searching cyclic graphs
● Know the basic building blocks of the graph

pattern

GraphSearch/4

Solving a maze requires a graph
search

GraphSearch/5

Each opening is a vertex

GraphSearch/6

Edges connect adjacent openings

GraphSearch/7

We have now abstracted the graph
from the problem

GraphSearch/8

We can encode the graph as Prolog
facts

start(a).
finish(u).

route(a,g).
route(g,l).
route(l,s).
...
travel(A,A).
travel(A,C) :- route(A,B),travel(B,C).

solve :- start(A),finish(B), travel(A,B).

GraphSearch/9

We need to remember the route too

travellog(A,A,[]).
travellog(A,C,[A-B|Steps]) :-

route(A,B), travellog(B,C,Steps).

solve(L) :- start(A), finish(B), travellog(A,B,L).

GraphSearch/10

What happens if our graph has a loop?

GraphSearch/11

Which new opening would
create a cycle in the graph?

Question 1

?

GraphSearch/12

Cyclic Graphs

route(q,v).
route(v,d).

GraphSearch/13

Avoiding revisiting any node will
beat the cycle

travelsafe(A,A,_).
travelsafe(A,C,Closed) :-

route(A,B),
 \+member(B,Closed),
travelsafe(B,C,[B|Closed]).

GraphSearch/14

Graph searching fits a general
pattern

route(a,g).
route(g,l).
route(l,s).
...
travel(A,A).
travel(A,C) :- route(A,B),travel(B,C).

solve :- start(A),finish(B), travel(A,B).

GraphSearch/15

State space representation is
important

● Maze searching is a straight-forward mapping
● Other problems are not so obvious
● Choose a representation with as little

redundancy as possible
● This will shorten your rules for which transitions

are possible

GraphSearch/16

Missionaries and Cannibals

3 Missionaries 3 Cannibals 1 boat

The boat carries 2 people
If the Cannibals outnumber the Missionaries they will eat them
Get them all from one side of the river to the other?

GraphSearch/17

Towers of Hanoi

GraphSearch/18

Graph Search – Learning goals
● Recognise a graph search problem
● Understand how to encode this in Prolog
● Searching cyclic graphs
● Know the basic building blocks of the graph

pattern

Difference/1

Difference Lists

Programming in Prolog
Ian LewisComputer Laboratory Difference/2

Appending two lists

append([],L,L).
append([X|T],L,[X|R]) :- append(T,L,R).

Difference/3

Difference lists – Learning goals
● How to append normal lists
● Difference list append and how to derive it
● Why they are called difference lists
● How to write an empty difference list

Difference/4

We'd like to append without copying

1 :: (2 :: (3 :: []))

4 :: (5 :: (6 :: []))

Difference/5

We'd like to append without copying

1 :: (2 :: (3 :: A))

4 :: (5 :: (6 :: B))

Difference/6

Prolog syntax
Question 1

?

What is the Prolog syntax for

1 :: (2 :: (3 :: A))

1 [1,2,3,A]
2 ::(1,::(2,::(3,A))
3 [1,2,3|A]
4 There is no way to express this

Difference/7

Reimplementing append

app(L1,T1,L2,T2,L3,T3) :- ….

Difference/8

Reimplementing append

[l1
0
, l1

1
, l1

2
, l1

3
| T1]

[l2
0
, l2

1
, l2

2
, l2

3
 | T2]

app(L1,T1,L2,T2,L3,T3) :-

Difference/9

Reimplementing append

app(L1,T1,L2,T2,L3,T3) :- T1 = L2,
L3 = L1,
T3 = T2

Difference/10

Reimplementing append

app(L1,T1,T1,T2,L3,T3) :- T1 = T1,
L3 = L1,
T3 = T2

Difference/11

Reimplementing append

app(L1,T1,T1,T2,L3,T3) :- L3 = L1,
T3 = T2

Difference/12

Reimplementing append

app(L3,T1,T1,T2,L3,T3) :- L3 = L3,
T3 = T2

Difference/13

Reimplementing append

app(L3,T1,T1,T2,L3,T3) :- T3 = T2

Difference/14

Reimplementing append

app(L3,T1,T1,T3,L3,T3) :- T3 = T3

Difference/15

Reimplementing append

app(L3,T1,T1,T3,L3,T3).

Difference/16

Reimplementing append

app(A,B,B,C,A,C).

Difference/17

Reimplementing append

app(A-B,B-C,A-C).

Difference/18

These are commonly called
Difference Lists

[1,2,3|A]-A is:

[1,2,3|A] minus A = [1,2,3]

(I think this is just confusing)

Difference/19

Its just a convention

If you see A-B then you should imagine that you
actually have something of the form […..|B]-B

But its up to you to make sure that your program
preserves this....

Difference/20

Empty difference list
Question 2

?

How should you write an empty difference list?

1 []
2 []-[]
3 A-A
4 [A]

Difference/21

Consider append onto an empty list

dapp(A-B,B-C,A-C).

dapp(P-P,[1,2,3|Q]-Q,R-S).

vs

dapp([]-[],[1,2,3|Q]-Q,R-S).

Difference/22

Difference lists – Learning goals
● How to append normal lists
● Difference list append and how to derive it
● Why they are called difference lists
● How to write an empty difference list

DiffExample/1

Difference List Example

Programming in Prolog
Ian LewisComputer Laboratory DiffExample/2

We saw how to derive append for
difference lists

● The technique of substituting variables and then
simplifying them can be applied to many
difference list problems

DiffExample/3

Difference List Example – Learning
goals

● Translate a program into difference lists
● Simplify using substitution

DiffExample/4

Previous exam question

Define a procedure rotate(X,Y) where both X and Y are
represented by difference lists, and Y is formed by
rotating X to the left by one element.

1996-6-7

DiffExample/5

Write the answer first without
Difference Lists

Take the first element off the first list and append it to
the end

rotate([H|T],R) :- append(T,[H],R).

DiffExample/6

Rewrite with Difference Lists

rotate([H|T],R) :- append(T,[H],R).

becomes

rotate([H|T]-T1,R-S) :- append(T-T1,[H|A]-A,R-S).

DiffExample/7

Rename Variables To Get Rid Of
Append

rotate([H|T]-T1,R-S) :- append(T-T1,[H|A]-A,R-S).

DiffExample/8

The call to append/3 is now
redundant and we can remove it

% difference list append
append(A-B,B-C,A-C).

rotate([H|T]-[H|A],T-A) :-
append(T-[H|A],[H|A]-A,T-A).

DiffExample/9

Final Answer

rotate([H|T]-[H|A],T-A).

If you have code like this I suggest you comment
it really well!

DiffExample/10

Difference List Example – Learning
goals

● Translate a program into difference lists
● Simplify using substitution

EmptyDifference/1

Empty difference lists

Programming in Prolog
Ian LewisComputer Laboratory EmptyDifference/2

We've seen that the correct way to write an empty
difference list is A-A

This can cause problems sometimes

EmptyDifference/3

Empty difference lists – Learning
Goals

● Understand why the use of A-A can be
problematic

● Have a repertoire of options for fixing these
problems

EmptyDifference/4

We've looked at possible behaviours
for A = a(A)

EmptyDifference/5

What about A-A = [1,2,3|B]-B?

EmptyDifference/6

Example: length of a list

len([],0).
len([_|T],N) :- len(T,M), N is M+1.

EmptyDifference/7

Example: length of a list

lend(A-A,0).
lend([_|T]-T1,N) :- lend(T-T1,M), N is M+1.

EmptyDifference/8

Using len
Question 1

?

What is the result of:

lend([1,2,3|A]-A,B).

1 A = _, B = 3
2 Error: Arguments not sufficiently instantiated
3 A = infinite term, B = 0
4 false.

lend(A-A,0).
lend([_|T]-T1,N) :- lend(T-T1,M), N is M+1.

EmptyDifference/9

You might 'ground' the list

lend2([]-[],0).
lend2([_|T]-T1,N) :- lend2(T-T1,M), N is M+1.

EmptyDifference/10

Or force an occurs check

lend3(A-A1,0) :- unify_with_occurs_check(A,A1).
lend3([_|T]-T1,N) :- lend3(T-T1,M), N is M+1.

EmptyDifference/11

You can force SWIProlog to do this

:- set_prolog_flag(occurs_check,true).

EmptyDifference/12

Empty difference lists – Learning
Goals

● Understand why the use of A-A can be
problematic

● Have a repertoire of options for fixing these
problems

Sudoku/1

Playing Sudoku

Programming in Prolog
Ian LewisComputer Laboratory Sudoku/2

Playing Sudoku

Sudoku/3

Playing Sudoku – Learning goals
● Another example of how to encode a problem in

Prolog
● Understand how to improve performance by

controlling the search space

Sudoku/4

Make the problem easier

[A,B,4,D,
E,2,G,H,
I,J,1,L,
M,3,O,P]

Sudoku/5

range([]).
range([H|T]) :- range(1,5,H), range(T).

diff([A,B,C,D]) :- A =\= B, A =\= C, A =\= D,
B =\= C, B =\= D,
C =\= D.

rows([A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P]) :- diff([A,B,C,D]),diff([E,F,G,H]),
diff([I,J,K,L]),diff([M,N,O,P]).

cols([A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P]) :- diff([A,E,I,M]),diff([B,F,J,N]),
diff([C,G,K,O]),diff([D,H,L,P]).

box([A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P]) :- diff([A,B,E,F]),diff([C,D,G,H]),
diff([I,J,M,N]),diff([K,L,O,P]).

sudoku(L) :- range(L), rows(L), cols(L), box(L).

Sudoku/6

Solution strategy
Question 1

?

What strategy did we adopt to build our solution?

1 generate and test
2 graph search
3 ad-hoc program

Sudoku/7

Our program generates lots of
implausible answers

● The first call to range generates a board of all
1's

● We can do better by reducing the search space
● Use list permutations:

– all rows are a permutation of [1,2,3,4]
– all columns are a permutation of [1,2,3,4]
– all boxes are a permutation of [1,2,3,4]

Sudoku/8

diff(L) :- perm([1,2,3,4],L).

rows([A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P]) :- diff([A,B,C,D]),diff([E,F,G,H]),
diff([I,J,K,L]),diff([M,N,O,P]).

cols([A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P]) :- diff([A,E,I,M]),diff([B,F,J,N]),
diff([C,G,K,O]),diff([D,H,L,P]).

box([A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P]) :- diff([A,B,E,F]),diff([C,D,G,H]),
diff([I,J,M,N]),diff([K,L,O,P]).

sudoku(L) :- rows(L), cols(L), box(L).

Sudoku/9

Scale up in the obvious way to 3x3

Sudoku/10

Brute-force is impractically slow for
this problem

There are very many valid grids:
6670903752021072936960 ≈ 6.671 × 1021

See: http://www.afjarvis.staff.shef.ac.uk/sudoku/

Sudoku/11

We need a smarter solving strategy....

Sudoku/12

Playing Sudoku – Learning goals
● Another example of how to encode a problem in

Prolog
● Understand how to improve performance by

controlling the search space

Constraint/1

Constraint solving

Programming in Prolog
Ian LewisComputer Laboratory Constraint/2

The Sudoku search space was too
big

Constraint/3

Constraint solving – Learning goals
● Unification can be seen as a specific instance

of constraint solving
● Understand how constraint propagation works
● Be able to solve simple constraint problems

Constraint/4

Prolog programs can be viewed as
constraint satisfaction problems

Prolog is limited to the single equality constraint
that two terms must unify

We can generalise this to include other types of
constraint

This gives us Constraint Logic Programming
(and a means to solve Sudoku problems)

Constraint/5

Consider variables over domains
with constraints

Given:
the set of variables
the domains of each variable
constraints on these variables

Find:
an assignment of values to variables satisfying

the constraints

Constraint/6

Sudoku can be expressed as
constraints

Variables and Domains
A {1,2,3,4} B {1,2,3,4}
C {1,2,3,4} D {1,2,3,4}
E {1,2,3,4} F {1,2,3,4}
G {1,2,3,4} H {1,2,3,4}
I {1,2,3,4} J {1,2,3,4}
K {1,2,3,4} L {1,2,3,4}
M {1,2,3,4} N {1,2,3,4}
O {1,2,3,4} P {1,2,3,4}

Constraint/7

Express Sudoku as a Constraint
Graph

{1,2,3,4}
{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}
{1,2,3,4}{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

Constraint/8

Constraints: All variables in rows are
different

{1,2,3,4}
{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}
{1,2,3,4}{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

Constraint/9

Constraints: All variables in rows are
different

{1,2,3,4}
{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}
{1,2,3,4}{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

Constraint/10

Constraints: All variables in columns
are different

{1,2,3,4}
{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}
{1,2,3,4}{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

Constraint/11

Constraints: All variables in columns
are different

{1,2,3,4}
{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}
{1,2,3,4}{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

Constraint/12

Constraints: All variables in boxes
are different

{1,2,3,4}
{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}
{1,2,3,4}{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

Constraint/13

Constraints: All variables in boxes
are different

{1,2,3,4}
{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}
{1,2,3,4}{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

Constraint/14

All constraints

{1,2,3,4}
{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}
{1,2,3,4}{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

Constraint/15

Reduce domains according to initial
values

{1,2,3,4}
{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}
{1,2,3,4}{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

Constraint/16

{1,2,3,4}
{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}
{1,2,3,4}{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{X,X,X,4}*

{X,2,X,X}**{1,X,X,X}

*{X,X,3,X}

Update constraints connected to C

Constraint/17

Update constraints connected to F

{1,2,3,X}*
{1,2,3,X}*

{1,2,3,X}*

{1,2,3,4}

{1,2,3,X}*
{1,2,3,X}*{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

*{1,2,3,X}

{1,2,3,4}

{X,X,X,4}

{X,2,X,X}**{1,X,X,X}

*{X,X,3,X}

Constraint/18

Update constraints connected to K

{1,X,3,X}*
{1,X,3,X}*

{1,2,3,X}*

{1,X,3,4}*

{1,X,3,X}*
{1,X,3,X}*{1,2,3,4}

*{1,X,3,4}

{1,2,3,4}

{1,2,3,4}

*{1,2,3,X}

{1,2,3,4}

{X,X,X,4}

{X,2,X,X}**{1,X,X,X}

*{X,X,3,X}

Constraint/19

Update constraints connected to D

{1,X,3,X}*
{1,X,3,X}*

{1,2,3,X}*

{1,X,3,4}*

{X,X,3,X}*
{1,X,3,X}*{X,2,3,4}*

*{X,X,3,4}

*{X,2,3,4}

{1,2,3,4}

*{X,2,3,X}

{X,2,3,4}*

{X,X,X,4}

{X,2,X,X}**{1,X,X,X}

*{X,X,3,X}

Constraint/20

{3}
{1}

{2}

{4}

{3}
{1}{2}

{4}

{3}

{1}

{2}
{4}

{4}

{2}{1}

{3}

Eventually the algorithm will converge
and no further changes occur

Constraint/21

Outcome 1: Single valued domains

{3}
{1}

{2}
{4}

{3}
{1}{2}

{4}

{3}
{1}

{2}
{4}

{4}

{2}{1}

{3}

We have found a unique solution to the problem

Constraint/22

Outcome 2: Some empty domains

Our constraints are inconsistent – there is no solution
to this problem

Variables
A {1}
B {1,2}

 C {1,2}

Constraints
A ≠B, A ≠C, B ≠C

A

BC

{1}

{1,2}{1,2}

Constraint/23

Outcome 3: Some multivalued
domains

{3}
{1}

{2}

{4}

{1,2,3}
{1,2,3}{1,2}

{4}

{1,2,3}

{1,2}

{1,2}
{1,2,3,4}

{4}

{2}{1,2,3}

{3}

Not all combinations of the remaining possibilities
are global solutions

Constraint/24

Outcome 3: Hypothesise labellings

● To find global solutions from the narrowed
domains we hypothesise a solution in a domain
and propagate the changes

● Backtrack if something goes wrong

Constraint/25

Using CLP in Prolog
:- use_module(library(bounds)).

diff(L) :- L in 1..4, all_different(L).

rows([A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P]) :- diff([A,B,C,D]), diff([E,F,G,H]),
diff([I,J,K,L]), diff([M,N,O,P]).

cols([A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P]) :- diff([A,E,I,M]), diff([B,F,J,N]),
diff([C,G,K,O]), diff([D,H,L,P]).

box([A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P]) :- diff([A,B,E,F]), diff([C,D,G,H]),
diff([I,J,M,N]), diff([K,L,O,P]).

sudoku(L) :- rows(L), cols(L), box(L), label(L).

Constraint/26

Constraint solving – Learning goals
● Unification can be seen as a specific instance

of constraint solving
● Understand how constraint propagation works
● Be able to solve simple constraint problems

