
Object Oriented
Programming
Professor Andrew Rice

October 2021

With thanks to Dr Robert Harle who designed this course and wrote the material.

i-2

Object Oriented Programming tries to help with scale
● Writing programs gets harder as

○ the program gets bigger
○ the team gets bigger

● Today's programs are massive
● Object Oriented Programming is a style of programming
● The intention is to make it easier for your programming to scale

i-3

This course mixes concepts and practical skills
● Understand general concepts and examples in Java or C++
● Acquire practical skills of your own in Java

i-4

Pre-recorded videos for the lecture content
One concept per video

I've suggested a schedule to watch them but you can do what suits you

Objectives
● these are things you should be able to do by the end of the video
● e.g. "Give an example that demonstrates that fields are static polymorphic"

Quiz questions
● self-check that you didn't fall asleep!
● don't worry about submitting your answers at the end (if that pops up)
● there's also a youtube playlist if you want to watch passively

i-5

Interactive Q&A sessions

i-6

● Two online sessions
○ Wednesday 17th November 10am-11am
○ Wednesday 1st December 10am-11am

● I will send out joining information
● Submit suggestions of what you would like to cover to the Q&A session

section on Moodle
● Be specific (and reasonable)!

Drop-in help sessions

i-7

● Two online sessions: 2-4pm
○ Thursday 18th November
○ Thursday 25th November

● More details to follow

Suggested supervision work
● Three supervisions recommended for this course
● Suggested work on the course website
● Your supervisor might choose to vary this

i-8

Practical exercises
● You can only learn practical skills by practising them
● Practical exercises included in the supervision work
● Automated tests are provided using 'chime'
● Optional: Daily Coding questions

i-9

Use the discussion forum on Moodle
● Do not post your code or give answers
● If you need to include your code then please include a link to chime instead
● Answer your own question if you resolve it!
● Do not email me directly

○ I get a lot of email
○ Let others learn from your question

i-10

Assessment is through exam and take-home test
Two questions (choose one) on Paper 1

● Only material in the videos, Q&A sessions and exercises is examinable
● You are expected to master it and be able to apply it to new circumstances
● Links to additional material in the videos are not examinable

Take-home programming test

● 26 April 2022, 9:00am – 28 April 2022, 9:00am
● Examples are available on the course website
● No automated tests are provided - convince yourself you are right!

i-11

Books
OOP Concepts

● Java: How to Program by Deitel & Deitel
● Thinking in Java by Eckels
● Java in a Nutshell (O' Reilly) if you already know another OOP language
● Java specification book: http://java.sun.com/docs/books/jls/
● Design Patterns by Gamma et al.

My favourites

● Effective Java by Joshua Bloch
● Java Puzzlers by Joshua Bloch (this one is just for fun)

i-12

Resources
Course web page

● Slides
● Links to practical work
● Code from the videos
● Sample tripos questions
● Suggested supervision work

http://www.cl.cam.ac.uk/teaching/current/OOProg/

i-13

Resources
Moodle site “Computer Science Paper 1 (1A)”

● Watch for course announcements
● Videos
● Quick quizzes

i-14

7DVNV�ZLWK�&KLPH
2EMHFWLYHV�

Ɣ &RPSOHWH�WKH�ZKROH�SURFHVV�RI�VROYLQJ�D�SUDFWLFDO�H[HUFLVH�RQ�&KLPH
Ɣ ,QWHUSUHW�D�WHVW�FRYHUDJH�VFRUH

4

Practical work is on chime.cl.cam.ac.uk

 Selection of exercises roughly mapped to

lectures

 I want to write more so let me know where

you see holes

 Attempt to get a bit closer to what you

would do in industry

 Git version control system

 Automated testing

13

Objectives

 To understand the workflow and tools to

complete a practical exercise

14

We’d like to use your code for research

 Research into teaching and learning is

important!

 We want your consent to use your code

and share it with others

 We will ‘anonymise’ it

 Consent is optional and it has no impact

on your grades or teaching if you do not

Demo: Log into chime and opt-in/opt-out

15

We use git over SSH for version control

 Same setup as github and

gitlab.developers.cam.ac.uk

 Generate an SSH key

 Put the public part of the key on chime

Demo: creating an SSH key and adding it

to chime

16

Practical exercises are linked online

 Go to the course webpages to find links to

the practical exercises

 Follow the link and start the task

Demo: starting a task

17

Software licensing and copyright

 Complicated area…

 The default is that if you write software you own

the copyright and other people can’t copy it

 We add licenses to make it clear what people can

and can’t do

 The initial code for the tasks is Apache 2

Licensed

 The system assumes your changes will be

licensed the same...but they don’t have to be

 Apache 2 License lets you do almost anything

 Except remove or change the license

Demo: licenses on your code

18

Using an IDE is recommended!

 I’ll use IntelliJ here but you can use

whatever you like

 You only need the (free) ‘community

edition’

 IntelliJ has built-in support for git but you

can use the command line or other tools if

you prefer

 Sourcetree on Mac is really nice

Demo: cloning your task into a new project

19

Maven is a build system for Java

 In the pre-arrival course you built your

code manually

 This doesn’t scale well

 Use a build system!

 There are many build systems for Java

 All of them have strengths and weaknesses

 We will use Maven in this course

Demo: Maven pom file and build

20

Be careful about what you check in

 Imagine you are working in a team on a

shared code base

 Other engineers don’t want your IDE

settings

 Or your temp files

 Or your class files

 Or personal information!!!

 We use .gitignore to tell git to ignore some

files

6LGH�HIIHFWV�DQG�YRLG
2EMHFWLYHV�

Ɣ :ULWH�D�PHWKRG�ZLWK�D�VLGH�HIIHFW
Ɣ :ULWH�D�PHWKRG�ZKLFK�GRHV�QRW�UHWXUQ�D�YDOXH

28

Types of Languages

 Declarative - specify what to do, not how
to do it. i.e.
 E.g. HTML describes what should appear on a web page,

and not how it should be drawn to the screen

 E.g. SQL statements such as “select * from table” tell a
program to get information from a database, but not how to
do so

 Imperative – specify both what and how

 E.g. “triple x“ might be a declarative instruction that you
want the variable x tripled in value. Imperatively we would
have “x=x*3” or “x=x+x+x”

29

Top 20 Languages 2016

30

Top 20 Languages 2016 (Cont)

31

Top 20 Languages 2016 (Cont Cont)

32

Top 20 Languages 2016 (Cont Cont Cont)

33

ML as a Functional Language

 Functional languages are a subset of declarative
languages

 ML is a functional language

 It may appear that you tell it how to do everything, but
you should think of it as providing an explicit example
of what should happen

 The compiler may optimise i.e. replace your
implementation with something entirely different but
100% equivalent.

let rec factorial n =
 match n with
 | 0 -> 1
 | 1 -> 1
 | n -> n * (factorial (n – 1));

34

Function Side Effects

 Functions in imperative languages can use or
alter larger system state → procedures

Maths:m(x,y) = xy

ML: fun m(x,y) = x*y;

Java:

int y = 7;

int m(int x) {

y=y+1;

return x*y;

}

Side e(ect

35

void Procedures

 A void procedure returns nothing:

int count=0;

void addToCount() {

 count=count+1;

}

Void is not quite the

same as unit in ML

count+=1 count++ ++count

&RQWURO�IORZ
2EMHFWLYHV�

Ɣ 8VH�LI��IRU��ZKLOH��GR�ZKLOH��UHFXUVLRQ��FDVH��EUHDN�DQG�ODEHOV�LQ�\RXU�RZQ�
SURJUDPV

36

Control Flow: Looping

for(ini#alisa#on; termina#on; increment)

while(boolean_expression)

for (int i=0; i<8; i++) …

int j=0; for(; j<8; j++) …

for(int k=7;k>=0; j--) ...

int i=0; while (i<8) { i++; …}

int j=7; while (j>=0) { j--; ...}

Demo: prin9ng the numbers

from 1 to 10

38

Control Flow: Branching I

 Branching statements interrupt the current control flow

 return

 Used to return from a function at any point

boolean linearSearch(int[] xs, int v) {

 for (int i=0;i<xs.length; i++) {

if (xs[i]==v) return true;

 }

 return false;

}

39

Control Flow: Branching II

 Branching statements interrupt the current control flow

 break

 Used to jump out of a loop

boolean linearSearch(int[] xs, int v) {

 boolean found=false;

 for (int i=0;i<xs.length; i++) {

if (xs[i]==v) {

found=true;

break; // stop looping

}

 }

 return found;

}

40

Control Flow: Branching III

 Branching statements interrupt the current control flow

 continue

 Used to skip the current iteration in a loop

void printPositives(int[] xs) {

 for (int i=0;i<xs.length; i++) {

if (xs[i]<0) continue;

System.out.println(xs[i]);

 }

}

,PPXWDEOH�YDOXHV��UHWXUQLQJ�DQG�SULQWLQJ
2EMHFWLYHV�

Ɣ :ULWH�D�IXQFWLRQ�WKDW�UHWXUQV�D�UHVXOW�
Ɣ :ULWH�D�IXQFWLRQ�WKDW�SULQWV�D�UHVXOW
Ɣ 6WRUH�WKH�UHVXOW�RI�DQ�DVVLJQPHQW�H[SUHVVLRQ
Ɣ ,GHQWLI\�VWDWHPHQWV�DQG�H[SUHVVLRQV�LQ�-DYD

41

Immutable to Mutable Data

- val x=5;

> val x = 5 : int

- x=7;

> val it = false : bool

- val x=9;

> val x = 9 : int

int x=5;

x=7;

int x=9;

for(int i=0;i<10;i++) {

 System.out.println(i);

}

Java

ML

ML is a language of expressions

Java is a language of statements and expressions

Evaluates to the value 7 with type int

Does not evaluate to a value and has no type

Demo: returning vs prin9ng

3ULPLWLYH�W\SHV
2EMHFWLYHV�

Ɣ /LVW�WKH�SULPLWLYH�W\SHV�DQG�WKH�UDQJH�RI�GDWD�WKH\�VWRUH
Ɣ ,GHQWLI\�ZKHQ�D�FDVW�LV�D�ZLGHQLQJ�RU�D�QDUURZLQJ�WUDQVIRUPDWLRQ
Ɣ *LYH�DQ�H[DPSOH�RI�KRZ�GDWD�FDQ�EH�ORVW�WKURXJK�D�QDUURZLQJ�WUDQVIRUPDWLRQ

42

Types and Variables

 Java and C++ have limited forms of type inference

 The high-level language has a series of primitive (built-in)
types that we use to signify what’s in the memory
 The compiler then knows what to do with them

 E.g. An “int” is a primitive type in C, C++, Java and many
languages. In Java it is a 32-bit signed integer.

 A variable is a name used in the code to refer to a specific
instance of a type
 x,y,z are variables above

 They are all of type int

var x = 512;

int y = 200;

int z = x+y;

43

E.g. Primitive Types in Java

 “Primi9ve” types are the built in ones.

 They are building blocks for more complicated types that we will be

looking at soon.

 boolean – 1 bit (true, false)

 char – 16 bits

 byte – 8 bits as a signed integer (-128 to 127)

 short – 16 bits as a signed integer

 int – 32 bits as a signed integer

 long – 64 bits as a signed integer

 Hoat – 32 bits as a Hoa9ng point number

 double – 64 bits as a Hoa9ng point number

Widening

Vs

Narrowing

Demo: int → byte overHow

2YHUORDGLQJ�DQG�SURWR\SHV
2EMHFWLYHV�

Ɣ 6WDWH�WKH�UXOHV�LQ�-DYD�IRU�RYHUORDGLQJ
Ɣ 5HFRJQLVH�WKH�WHUPV��SURWRW\SH�DQG�VLJQDWXUH

44

Overloading Functions

 Same function name

 Different arguments

 Possibly different return type

 But not just a different return type

int myfun(int a, int b) {…}

Hoat myfun(Hoat a, Hoat b) {…}

double myfun(double a, double b) {...}

int myfun(int a, int b) {…}

Hoat myfun(int a, int b) {…} x

45

Function Prototypes

 Functions are made up of a prototype and
a body

 Prototype specifies the function name,
arguments and possibly return type

 Body is the actual function code

fun myfun(a,b) = …;

int myfun(int a, int b) {...}

2EMHFWV�DQG�&ODVVHV
2EMHFWLYHV�

Ɣ :ULWH�D�FODVV�FRQWDLQLQJ�VRPH�VWDWH�DQG�EHKDYLRXU
Ɣ &UHDWH�D�QHZ�LQVWDQFH�RI�D�FODVV

46

Custom Types

type 'a seq =

 | Nil

 | Cons of 'a * (unit -> 'a seq);

public class Vector3D {

 Hoat x;

 Hoat y;

 Hoat z;

}

47

State and Behaviour

type 'a seq =

 | Nil

 | Cons of 'a * (unit -> 'a seq);

fun hd (Cons(x,_)) = x;

48

State and Behaviour

type 'a seq =

 | Nil

 | Cons of 'a * (unit -> 'a seq);

fun hd (Cons(x,_)) = x;

public class Vector3D {

 Hoat x;

 Hoat y;

 Hoat z;

 void add(Hoat vx, Hoat vy, Hoat vz) {

 x=x+vx;

 y=y+vy;

 z=z+vz;

 }

}

STATE

BEHAVIOUR

49

Loose Terminology (again!)

Behaviour

Func9ons

Methods

Procedures

State

Fields

Instance Variables

Proper9es

Variables

Members

50

Classes, Instances and Objects

 Classes can be seen as templates for representing
various concepts

 We create instances of classes in a similar way.
e.g.

makes two instances of class MyCoolClass.

 An instance of a class is called an object

MyCoolClass m = new MyCoolClass();

MyCoolClass n = new MyCoolClass();

51

Defining a Class

public class Vector3D {

 Hoat x;

 Hoat y;

 Hoat z;

 void add(Hoat vx, Hoat vy, Hoat vz) {

 x=x+vx;

 y=y+vy;

 z=z+vz;

 }

}

&RQVWUXFWRUV
2EMHFWLYHV�

Ɣ :ULWH�D�FODVV�ZLWK�RYHUORDGHG�FRQVWUXFWRUV
Ɣ ([SODLQ�KRZ�D�GHIDXOW�FRQVWUXFWRU�LQLWLDOLVHV�ILHOGV

52

Constructors

 You will have noticed that the RHS looks rather like a function
call, and that's exactly what it is.

 It's a method that gets called when the object is constructed,
and it goes by the name of a constructor (it's not rocket
science). It maps to the datatype constructors you saw in ML.

 We use constructors to initialise the state of the class in a
convenient way

 A constructor has the same name as the class

 A constructor has no return type

MyObject m = new MyObject();

53

Constructors with Arguments

public class Vector3D {

 Hoat x;

 Hoat y;

 Hoat z;

 Vector3D(*oat xi, *oat yi, *oat zi) {

 x=xi;

 y=yi;

 z=zi;

 }

 // ...

}

Vector3D v = new Vector3D(1.f,0.f,2.f);

You can use ‘this’ to disambiguate names

if needed: e.g. this.x = xi;

54

Overloaded Constructors

public class Vector3D {

 Hoat x;

 Hoat y;

 Hoat z;

 Vector3D(*oat xi, *oat yi, *oat zi) {

 x=xi;

 y=yi;

 z=zi;

 }

 Vector3D() {

 x=0.f;

 y=0.f;

 z=0.f;

 }

 // ...

}

Vector3D v = new Vector3D(1.f,0.f,2.f);

Vector3D v2 = new Vector3D();

55

Default Constructor

public class Vector3D {

 Hoat x;

 Hoat y;

 Hoat z;

}

Vector3D v = new Vector3D();

 No constructor provided

 So blank one generated with
no arguments

If you don’t ini9alise a Zeld it

gets set to the ‘zero’ value for

that type (don’t do this)

If you provide any constructor

then the default will not be

generated

Is Even?
Objectives:

● Choose a good name for a unit test
● Write a unit test with Arrange, Act, Assert structure
● Pause a program using a breakpoint in IntelliJ
● Use Step-Over and Step-Into controls to walk through a paused program

6WDWLF�DQG�LQVWDQFH
2EMHFWLYHV�

Ɣ :ULWH�D�FODVV�ZKLFK�FRXQWV�KRZ�PDQ\�LQVWDQFHV�KDYH�EHHQ�FUHDWHG�RI�LW
Ɣ *LYH�DQ�H[DPSOH�RI�D�JRRG�XVH�RI�D�VWDWLF�PHWKRG
Ɣ *LYH�DQ�H[DPSOH�RI�D�JRRG�XVH�RI�DQ�LQVWDQFH�PHWKRG
Ɣ *LYH�DQ�H[DPSOH�RI�D�JRRG�XVH�RI�D�VWDWLF�ILHOG�DQG�DQ�LQVWDQFH�ILHOG

58

Class-Level Data and Functionality I

 A static field is created only once in the program's execution,
despite being declared as part of a class

public class ShopItem {

 Hoat mVATRate;

 sta9c Hoat sVATRate;

}

One of these created every

9me a new ShopItem is

instan9ated. Nothing keeps

them all in sync.

Only one of these created ever. Every

ShopItem object references it.

sta9c => associated with the class

instance => associated with the object

59

Class-Level Data and Functionality II

 Shared between
instances

 Space efficient

17.5

0.2

0.2

0.2

17.5

0.2

public class Whatever {

 public sta9c void main(String[] args) {

 ...

 }

}

 Also static methods:

instance Zeld

(one per object)

sta9c Zeld

(one per class)

sta9c Zelds are good for

constants. otherwise use

with care.

60

Why use Static Methods?
 Easier to debug (only depends on static state)

 Self documenting

 Groups related methods in a Class without requiring an object

public class Math {

 public Hoat sqrt(Hoat x) {…}

 public double sin(Hoat x) {…}

 public double cos(Hoat x) {…}

}

…

Math mathobject = new Math();

mathobject.sqrt(9.0);

...

public class Math {

 public sta9c Hoat sqrt(Hoat x) {…}

 public sta9c Hoat sin(Hoat x) {…}

 public sta9c Hoat cos(Hoat x) {…}

}

…

Math.sqrt(9.0);

...

vs

,GHQWLI\LQJ�FODVVHV
2EMHFWLYHV�

Ɣ ,GHQWLI\�SRWHQWLDO�FODVVHV�DQG�PHWKRGV�LQ�D�SUREOHP�VWDWHPHQW

61

What Not to Do

 Your ML has doubtless been one big file where
you threw together all the functions and value
declarations

 Lots of C programs look like this :-(

 We could emulate this in OOP by having one
class and throwing everything into it

 We can do (much) better

62

Identifying Classes

 We want our class to be a grouping of conceptually-
related state and behaviour

 One popular way to group is using grammar

 Noun → Object

 Verb → Method

“A quiz program that asks questions

and checks the answers are correct”

80/
2EMHFWLYHV�

Ɣ ,GHQWLI\�VWDWH�DQG�EHKDYLRXU�LQ�D�FODVV�LQ�D�80/�FODVV�GLDJUDP
Ɣ ,GHQWLI\�
KDV�D
�UHODWLRQVKLSV�EHWZHHQ�FODVVHV�LQ�D�80/�FODVV�GLDJUDP
Ɣ ([SODLQ�D�80/�FODVV�GLDJUDP�LQ�ZRUGV�DQG�YLFH�YHUVD

63

UML: Representing a Class Graphically

Ques9on

- prompt : String

- solu9on: String

+ ask() : void

+ check(answer : String) : boolean Behaviour

State

“+” means

public access

“-” means

private access

64

The has-a Association

Quiz Ques9on1 0...*

 Arrow going left to right says “a Quiz has zero or more
questions”

 Arrow going right to left says “a Question has exactly 1 Quiz”

 What it means in real terms is that the Quiz class will contain
a variable that somehow links to a set of Question objects,
and a Question will have a variable that references a Quiz
object.

 Note that we are only linking classes: we don't start drawing
arrows to primitive types.

Demo: implement quiz

Implementing quiz
Objectives:

● Use simple classes with constructors, static and final fields to solve a problem

(QFDSVXODWLRQ
2EMHFWLYHV�

Ɣ 'HILQH�HQFDSVXODWLRQ
Ɣ *LYH�DQ�H[DPSOH�RI�HQFDSVXODWLRQ�LQ�-DYD

65

Anatomy of an OOP Program (Java)

public class MyFancyClass {

public int someNumber;

public String someText;

public void someMethod() {

}

public sta9c void main(String[] args) {

MyFancyClass c = new

MyFancyClass();

}

}

Class name

Class state (proper9es that an

object has such as colour or size)

Class behaviour (ac9ons an

object can do)

'Magic' start point for

the program (named

main by conven9on)

Create an object of type

MyFancyClass in memory

Create a reference to a

MyFancyClass object and call

it c

Access modiZer

66

OOP Concepts

 OOP provides the programmer with a
number of important concepts:

 Modularity

 Code Re-Use

 Encapsulation

 Inheritance (lecture 5)

 Polymorphism (lecture 6)

 Let's look at these more closely...

67

Modularity and Code Re-Use

 You've long been taught to break down complex
problems into more tractable sub-problems.

 Each class represents a sub-unit of code that (if
written well) can be developed, tested and updated
independently from the rest of the code.

 Indeed, two classes that achieve the same thing
(but perhaps do it in different ways) can be swapped
in the code

 Properly developed classes can be used in other
programs without modification.

68

Encapsulation I

class Student {

 int age;

};

void main() {

 Student s = new Student();

 s.age = 21;

 Student s2 = new Student();

 s2.age=-1;

 Student s3 = new Student();

 s3.age=10055;

}

69

Encapsulation II

class Student {

 private int age;

 boolean setAge(int a) {

 if (a>=0 && a<130) {

age=a;

return true;

 }

 return false;

 }

 int getAge() {return age;}

}

void main() {

 Student s = new Student();

 s.setAge(21);

}

70

Encapsulation III

class Loca9on {

 private Hoat x;

 private Hoat y;

 Hoat getX() {return x;}

 Hoat getY() {return y;}

 void setX(Hoat nx) {x=nx;}

 void setY(Hoat ny) {y=ny;}

}

class Loca9on {

 private Vector2D v;

 Hoat getX() {return v.getX();}

 Hoat getY() {return v.getY();}

 void setX(Hoat nx) {v.setX(nx);}

 void setY(Hoat ny) {v.setY(ny);}

}

Encapsula9on =

1) hiding internal state

2) bundling methods with state

$FFHVV�PRGLILHUV
2EMHFWLYHV�

Ɣ 'HILQH�WKH�DFFHVV�PRGLILHUV��SXEOLF��SDFNDJH��SURWHFWHG��SULYDWH
Ɣ *LYH�DQ�H[DPSOH�RI�KRZ�SULYDWH�UHIHUV�WR�WKH�FODVV�QRW�WKH�LQVWDQFH

71

Access Modifiers

Everyone Subclass Same
package
(Java)

Same
Class

private X

package
(Java)

X X

protected X X X

public X X X X

Surprising!

,PPXWDELOLW\
2EMHFWLYHV�

Ɣ ([SODLQ�ZK\�LPPXWDELOLW\�LV�D�XVHIXO�SURSHUW\
Ɣ %XLOG�DQ�LPPXWDEOH�FODVV�XVLQJ�SULYDWH�ILHOGV�DQG�FRS\LQJ�SDUDPHWHUV�ZKHQ�

UHTXLUHG
Ɣ 'HWHUPLQH�ZKHWKHU�DQ�REMHFW�LV�LPPXWDEOH�RU�QRW�

72

Immutability

 Everything in ML was immutable (ignoring the
reference stuff). Immutability has a number of
advantages:

 Easier to construct, test and use

 Can be used in concurrent contexts

 Allows lazy instantiation

 We can use our access modifiers to create
immutable classes

 If you mark a variable or field as ‘final’ then it can’t
be changed after initalisation

Demo: NotImmutable

3DUDPHWHULVHG�FODVVHV
2EMHFWLYHV�

Ɣ &RQWUDVW�-DYD�JHQHULFV�ZLWK�0/�SDUDPHWULF�SRO\PRUSKLVP
Ɣ &UHDWH�LQVWDQFHV�RI�JHQHULF�FODVVHV
Ɣ ,PSOHPHQW�\RXU�RZQ�JHQHULF�FODVV
Ɣ 'HPRQVWUDWH�WKH�LPSDFW�RI�W\SH�HUDVXUH�RQ�D�JHQHULF�FODVV

73

Parameterised Classes

 ML's polymorphism allowed us to specify functions that could
be applied to multiple types

 In Java, we can achieve something similar through Generics;
C++ through templates

 Classes are defined with placeholders (see later lectures)

 We fill them in when we create objects using them

> fun self(x)=x;

val self = fn : 'a -> 'a

LinkedList<Integer> = new LinkedList<Integer>()

LinkedList<Double> = new LinkedList<Double>()

Fun fact: iden9ty is the only

func9on in ML with type ‘a → ‘a

74

Creating Parameterised Types

 These just require a placeholder type

class Vector3D<T> {

 private T x;

 private T y;

 T getX() {return x;}

 T getY() {return y;}

 void setX(T nx) {x=nx;}

 void setY(T ny) {y=ny;}

}

75

Generics use type-erasure

class Vector3D<T> {

 private T x;

 private T y;

 T getX() {return x;}

 T getY() {return y;}

 void setX(T nx) {x=nx;}

 void setY(T ny) {y=ny;}

}

Vector3D<Integer> v =

 new Vector3D<>();

Integer x = v.getX();

v.setX(4);

class Vector3D {

 private Object x;

 private Object y;

 Object getX() {return x;}

 Object getY() {return y;}

 void setX(Object nx) {x=nx;}

 void setY(Object ny) {y=ny;}

}

Vector3D v = new Vector3D();

Integer x = (Integer)v.getX();

v.setX((Object)4);

a_er type

checking

this

compiles

to

------>

The call stack and the heap
Objectives:

● Draw a memory diagram of stack allocation for chars, ints, longs and pointers
● Contrast the stack and the heap
● Demonstrate the evaluation of a recursive function on a memory diagram

Call stack

Heap

100

104

108

112

116

120

124

128

132

136

140

144

148

152

156

160

164

168

Address
(usually written
in hexadecimal)
e.g. 0x07C

Each row is a ‘word’

Each cell is a ‘byte’

32-bit architecture
=> 4 bytes to a word

2

100

104

108

112

116

120

124

128

132

136

140

144

148

152

156

160

164

168

void f(int x) {
 char c = 'a';
 long l = 1234;
 int i = 10;
}

f(4);

 1
 2
 3
 4
 5
 6
 7>>

This example is in C/C++3

100

104

108

112

116

120

124

128

132

136

140

144

148

152

156

160

164

168

void f(int x) {
 char c = 'a';
 long l = 1234;
 int i = 10;
}

f(4);

 1
 2
 3
 4
 5
 6
 7

>>
x
c
l

i

4 0 0 0

4

100

104

108

112

116

120

124

128

132

136

140

144

148

152

156

160

164

168

void f(int x) {
 char c = 'a';
 long l = 1234;
 int i = 10;
}

f(4);

 1
 2
 3
 4
 5
 6
 7

>>

x
c
l

i

4
97

0 0 0
. . .

5

100

104

108

112

116

120

124

128

132

136

140

144

148

152

156

160

164

168

void f(int x) {
 char c = 'a';
 long l = 1234;
 int i = 10;
}

f(4);

 1
 2
 3
 4
 5
 6
 7

>>

x
c
l

i

4
97

0 0 0
. . .

210 4 0 0
0000

1234 is bigger than one byte

1234 & 0xFF = 210
1234 >> 8 = 4

6

100

104

108

112

116

120

124

128

132

136

140

144

148

152

156

160

164

168

void f(int x) {
 char c = 'a';
 long l = 1234;
 int i = 10;
}

f(4);

 1
 2
 3
 4
 5
 6
 7

>>

x
c
l

i

4
97

0 0 0
. . .

210 4 0 0
0000

10 000

7

100

104

108

112

116

120

124

128

132

136

140

144

148

152

156

160

164

168

void f(int x) {
 char c = 'a';
 long l = 1234;
 int i = 10;
}

f(4);

 1
 2
 3
 4
 5
 6
 7

>>

x
c
l

i

4
‘a’

1234

10

8

100

104

108

112

116

120

124

128

132

136

140

144

148

152

156

160

164

168

 1
 2
 3
 4
 5
 6
 7

i
j
k
p

1
2void f() {

 int i = 1;
 int j = 2;
 int k = 3;
 int* p = &i;
 int* q = &k;
}

q

3
100
108

* on a LHS means
‘its a pointer’

& on a RHS means
‘take the address of’

9

100

104

108

112

116

120

124

128

132

136

140

144

148

152

156

160

164

168

 1
 2
 3
 4
 5
 6
 7
 8

i
j
k
p

1
2void f() {

 int i = 1;
 int j = 2;
 int k = 3;
 int* p = &i;
 int* q = &k;
 int* r = p + 1;
}

q

3
100
108
104 r

We can do arithmetic on
pointers (based on the
datatype size)

10

100

104

108

112

116

120

124

128

132

136

140

144

148

152

156

160

164

168

 1
 2
 3
 4
 5
 6
 7
 8

i
j
k
p

1
2void f() {

 int i = 1;
 int j = 2;
 int k = 3;
 int* p = &i;
 int* q = &k;
 int* r = p + 1;
 int l = *r;
}

q

3
100
108
104 r

* on the RHS means
‘dereference’ i.e. follow
the pointer.

l2

11

100

104

108

112

116

120

124

128

132

136

140

144

148

152

156

160

164

168

 1
 2
 3
 4
 5
 6
 7
 8
 9
10

i
j
k
p

1
2void f() {

 int i = 1;
 int j = 2;
 int k = 3;
 int* p = &i;
 int* q = &k;
 int* r = p + 1;
 int l = *r;
 int m = *(q + 1);
}

q

3
100
108
104 r

l2

Nothing will stop you
making mistakes!

m100

12

100

104

108

112

116

120

124

128

132

136

140

144

148

152

156

160

164

168

 1
 2
 3
 4
 5
 6
 7
 8
 9

p
160
160

int len() {
 char[] c = new[]
 {'a','b','\0'};
 char* p = c;
}

In C++ you can choose whether
you want to allocate on the stack
or the heap

‘a’
‘b’
‘\0’

c

p

13

Items on the stack exist only for the duration of your function call

Items on the heap exist until they are deleted

14

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

>> static int sum() {
 int s = sum(3);
 return s;
}

static int sum(int n) {
 if (n == 0) {
 return 0;
 }
 int m = sum(n - 1);
 int r = m + n;
 return r;
}

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

>> sum()static int sum() {
 int s = sum(3);
 return s;
}

static int sum(int n) {
 if (n == 0) {
 return 0;
 }
 int m = sum(n - 1);
 int r = m + n;
 return r;
}

s

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

>>
static int sum() {
 int s = sum(3);
 return s;
}

static int sum(int n) {
 if (n == 0) {
 return 0;
 }
 int m = sum(n - 1);
 int r = m + n;
 return r;
}

s
sum()

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

>>

sum()static int sum() {
 int s = sum(3);
 return s;
}

static int sum(int n) {
 if (n == 0) {
 return 0;
 }
 int m = sum(n - 1);
 int r = m + n;
 return r;
}

s

sum(3) 2 return
3 arg1

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

>>

sum()static int sum() {
 int s = sum(3);
 return s;
}

static int sum(int n) {
 if (n == 0) {
 return 0;
 }
 int m = sum(n - 1);
 int r = m + n;
 return r;
}

s

sum(3) 2 return
3 n

m
r

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

>>

sum()static int sum() {
 int s = sum(3);
 return s;
}

static int sum(int n) {
 if (n == 0) {
 return 0;
 }
 int m = sum(n - 1);
 int r = m + n;
 return r;
}

s

sum(3) 2 return
3 n

m
r

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

>>

sum()static int sum() {
 int s = sum(3);
 return s;
}

static int sum(int n) {
 if (n == 0) {
 return 0;
 }
 int m = sum(n - 1);
 int r = m + n;
 return r;
}

s

sum(3) 2 return
3 n

m
r

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

>>

sum()static int sum() {
 int s = sum(3);
 return s;
}

static int sum(int n) {
 if (n == 0) {
 return 0;
 }
 int m = sum(n - 1);
 int r = m + n;
 return r;
}

s

sum(3) 2 return
3 n

m
r

sum(2) 10 return
2 arg1

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

>>

sum()static int sum() {
 int s = sum(3);
 return s;
}

static int sum(int n) {
 if (n == 0) {
 return 0;
 }
 int m = sum(n - 1);
 int r = m + n;
 return r;
}

s

sum(3) 2 return
3 n

m
r

sum(2) 10 return
2 n

r
m

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

>>

sum()static int sum() {
 int s = sum(3);
 return s;
}

static int sum(int n) {
 if (n == 0) {
 return 0;
 }
 int m = sum(n - 1);
 int r = m + n;
 return r;
}

s

sum(3) 2 return
3 n

m
r

sum(2) 10 return
2 n

r
m

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

>>

sum()static int sum() {
 int s = sum(3);
 return s;
}

static int sum(int n) {
 if (n == 0) {
 return 0;
 }
 int m = sum(n - 1);
 int r = m + n;
 return r;
}

s

sum(3) 2 return
3 n

m
r

sum(2) 10 return
2 n

r
m

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

>>

sum()static int sum() {
 int s = sum(3);
 return s;
}

static int sum(int n) {
 if (n == 0) {
 return 0;
 }
 int m = sum(n - 1);
 int r = m + n;
 return r;
}

s

sum(3) 2 return
3 n

m
r

sum(2) 10 return
2 n

r
m

sum(1) 10 return
1 arg1

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

>>

sum()static int sum() {
 int s = sum(3);
 return s;
}

static int sum(int n) {
 if (n == 0) {
 return 0;
 }
 int m = sum(n - 1);
 int r = m + n;
 return r;
}

s

sum(3) 2 return
3 n

m
r

sum(2) 10 return
2 n

r
m

sum(1) 10 return
1 n

r
m

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

>>

sum()static int sum() {
 int s = sum(3);
 return s;
}

static int sum(int n) {
 if (n == 0) {
 return 0;
 }
 int m = sum(n - 1);
 int r = m + n;
 return r;
}

s

sum(3) 2 return
3 n

m
r

sum(2) 10 return
2 n

r
m

sum(1) 10 return
1 n

r
m

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

>>

sum()static int sum() {
 int s = sum(3);
 return s;
}

static int sum(int n) {
 if (n == 0) {
 return 0;
 }
 int m = sum(n - 1);
 int r = m + n;
 return r;
}

s

sum(3) 2 return
3 n

m
r

sum(2) 10 return
2 n

r
m

sum(1) 10 return
1 n

r
m

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

>>

sum()static int sum() {
 int s = sum(3);
 return s;
}

static int sum(int n) {
 if (n == 0) {
 return 0;
 }
 int m = sum(n - 1);
 int r = m + n;
 return r;
}

s

sum(3) 2 return
3 n

m
r

sum(2) 10 return
2 n

r
m

sum(1) 10 return
1 n

sum(0) 10
0 arg1

return

r
m

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

>>

sum()static int sum() {
 int s = sum(3);
 return s;
}

static int sum(int n) {
 if (n == 0) {
 return 0;
 }
 int m = sum(n - 1);
 int r = m + n;
 return r;
}

s

sum(3) 2 return
3 n

m
r

sum(2) 10 return
2 n

r
m

sum(1) 10 return
1 n

sum(0) 10
0 n

return

m
r

r
m

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

>>

sum()static int sum() {
 int s = sum(3);
 return s;
}

static int sum(int n) {
 if (n == 0) {
 return 0;
 }
 int m = sum(n - 1);
 int r = m + n;
 return r;
}

s

sum(3) 2 return
3 n

m
r

sum(2) 10 return
2 n

r
m

sum(1) 10 return
1 n

sum(0) 10
0 n

return

m
r

r
m

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

>>

sum()static int sum() {
 int s = sum(3);
 return s;
}

static int sum(int n) {
 if (n == 0) {
 return 0;
 }
 int m = sum(n - 1);
 int r = m + n;
 return r;
}

s

sum(3) 2 return
3 n

m
r

sum(2) 10 return
2 n

r
m

sum(1) 10 return
1 n

sum(0) 10
0 n

return

m
r

r
m

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

>>

sum()static int sum() {
 int s = sum(3);
 return s;
}

static int sum(int n) {
 if (n == 0) {
 return 0;
 }
 int m = sum(n - 1);
 int r = m + n;
 return r;
}

s

sum(3) 2 return
3 n

m
r

sum(2) 10 return
2 n

r
m

sum(1) 10 return
1 n

sum(0) 10
0 n

return

m
r

r
m

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

>>

sum()static int sum() {
 int s = sum(3);
 return s;
}

static int sum(int n) {
 if (n == 0) {
 return 0;
 }
 int m = sum(n - 1);
 int r = m + n;
 return r;
}

s

sum(3) 2 return
3 n

m
r

sum(2) 10 return
2 n

r
m

sum(1) 10 return
1 n

sum(0) 10
0 n

return

m
r

r
m

Return the value 0 and then

execute instruc9on 10

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

>>

sum()static int sum() {
 int s = sum(3);
 return s;
}

static int sum(int n) {
 if (n == 0) {
 return 0;
 }
 int m = sum(n - 1);
 int r = m + n;
 return r;
}

s

sum(3) 2 return
3 n

m
r

sum(2) 10 return
2 n

r
m

sum(1) 10 return
1 n

r
m

0

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

>>

sum()static int sum() {
 int s = sum(3);
 return s;
}

static int sum(int n) {
 if (n == 0) {
 return 0;
 }
 int m = sum(n - 1);
 int r = m + n;
 return r;
}

s

sum(3) 2 return
3 n

m
r

sum(2) 10 return
2 n

r
m

sum(1) 10 return
1 n

r
m

0
1

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

>>

sum()static int sum() {
 int s = sum(3);
 return s;
}

static int sum(int n) {
 if (n == 0) {
 return 0;
 }
 int m = sum(n - 1);
 int r = m + n;
 return r;
}

s

sum(3) 2 return
3 n

m
r

sum(2) 10 return
2 n

r
m

sum(1) 10 return
1 n

r
m

0
1

Return the value 1 and then

execute instruc9on 10

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

>>

sum()static int sum() {
 int s = sum(3);
 return s;
}

static int sum(int n) {
 if (n == 0) {
 return 0;
 }
 int m = sum(n - 1);
 int r = m + n;
 return r;
}

s

sum(3) 2 return
3 n

m
r

sum(2) 10 return
2 n

r
m1

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

>>

sum()static int sum() {
 int s = sum(3);
 return s;
}

static int sum(int n) {
 if (n == 0) {
 return 0;
 }
 int m = sum(n - 1);
 int r = m + n;
 return r;
}

s

sum(3) 2 return
3 n

m
r

sum(2) 10 return
2 n

r
m1

3

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

>>

sum()static int sum() {
 int s = sum(3);
 return s;
}

static int sum(int n) {
 if (n == 0) {
 return 0;
 }
 int m = sum(n - 1);
 int r = m + n;
 return r;
}

s

sum(3) 2 return
3 n

m
r

sum(2) 10 return
2 n

r
m1

3

Return the value 3 and then

execute instruc9on 10

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

>>

sum()static int sum() {
 int s = sum(3);
 return s;
}

static int sum(int n) {
 if (n == 0) {
 return 0;
 }
 int m = sum(n - 1);
 int r = m + n;
 return r;
}

s

sum(3) 2 return
3 n

m
r

3

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

>>

sum()static int sum() {
 int s = sum(3);
 return s;
}

static int sum(int n) {
 if (n == 0) {
 return 0;
 }
 int m = sum(n - 1);
 int r = m + n;
 return r;
}

s

sum(3) 2 return
3 n

m
r

3
6

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

>>

sum()static int sum() {
 int s = sum(3);
 return s;
}

static int sum(int n) {
 if (n == 0) {
 return 0;
 }
 int m = sum(n - 1);
 int r = m + n;
 return r;
}

s

sum(3) 2 return
3 n

m
r

3
6

Return the value 6 and then

execute instruc9on 2

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

>>

sum()static int sum() {
 int s = sum(3);
 return s;
}

static int sum(int n) {
 if (n == 0) {
 return 0;
 }
 int m = sum(n - 1);
 int r = m + n;
 return r;
}

s6

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

>>

sum()static int sum() {
 int s = sum(3);
 return s;
}

static int sum(int n) {
 if (n == 0) {
 return 0;
 }
 int m = sum(n - 1);
 int r = m + n;
 return r;
}

s6

Return the value 6 and then

execute whatever called us

References and pointers
Objectives:

● Compare pointers and references in Java
● Declare an unassigned reference
● Describe what happens when you call 'new' in Java

In Java primitive types go on the stack

Everything else goes on the heap

16

 1
 2
 3
 4
 5

This example is in Java

static void test() {
 int i = 3;
 int[] a = new int[] {1,2};
 String s = "a";
}

3 i
a
s

1
2

<array stuff>

<addr>
<addr>

<string stuff>
‘a’

Java delete’s for us
automatically. This is
called Garbage Collection

17

 1
 2
 3
 4
 5

static void test() {
 int i = 3;
 int[] a = new int[] {1,2};
 String s = "a";
}

‘a’ and ‘s’ are references. These are like
pointers but you can’t do arithmetic
on them.

When you say s.toUpperCase() you are ‘dereferencing’
s and calling the method toUpperCase on it.

18

References in C++ are a completely different concept!

19

 1
 2
 3
 4
 5

This example is in C++

3 istatic void test() {
 int i = 3;
 int* k = &i;
 int& j = i;
}

>>

20

 1
 2
 3
 4
 5

3 istatic void test() {
 int i = 3;
 int* k = &i;
 int& j = i;
}

>>
k<addr>

21

 1
 2
 3
 4
 5

3 i,jstatic void test() {
 int i = 3;
 int* k = &i;
 int& j = i;
}

>>

k<addr>

& on the LHS means
‘reference’

22

Recap for Java

● Primitive types on the stack

● Everything else on the heap

● References are values on the stack that ‘point’ to
somewhere on the heap

● References are like pointers but you can’t do artithmetic
on them

● Java references are not much like C++ references

23

110

Distinguishing References and Pointers

Pointers References
in Java

Can be unassigned
(null)

Yes Yes

Can be assigned to
established object

Yes Yes

Can be assigned to an
arbitrary chunk of
memory

Yes No

Can be tested for validity No Yes

Can perform arithmetic Yes No

111

References in Java

 Declaring unassigned

 Defining/assigning

SomeClass ref = null; // explicit

SomeClass ref2; // implicit

// Assign

SomeClass ref = new ClassRef();

// Reassign to alias something else

ref = new ClassRef();

// Reference the same thing as another reference

SomeClass ref2 = ref;

$UJXPHQW�SDVVLQJ
2EMHFWLYHV�

Ɣ 'HILQH�SDVV�E\�YDOXH
Ɣ 'HPRQVWUDWH�WKH�GLIIHUHQFH�LQ�VLGH�HIIHFWV�IRU�SDVVLQJ�SULPLWLYH�W\SHV�DQG�

UHIHUHQFHV�DV�YDOXHV

114

Argument Passing

 Pass-by-value. Copy the value into a new one in
the stack

void test(int x) {...}

int y=3;

test(y);

void test(Object o) {…}

Object p = new Object();

test(p);

The value passed here is the

reference to the object.

When run the test method’s

argument o is copy of the reference

p that points to the same object

Inheritance
Objectives:

● Define specialisation, generalisation, sub-class, super-class,
code-inheritance, type-inheritance

● State the Liskov Substitution Principle
● Give an example of the Liskov Substitution Principle
● Draw inheritance relationships on a UML class diagram

116

Inheritance I

class Student {

 private int age;

 private String name;

 private int grade;

 ...

}

class Lecturer {

 private int age;

 private String name;

 private int salary;

 …

}

 There is a lot of duplication here

 Conceptually there is a hierarchy that we're

not really representing

 Both Lecturers and Students are people

(no, really).

 We can view each as a kind of

specialisation of a general person

 They have all the properties of a person

 But they also have some extra stuff

specific to them

Demo: expression evaluator

117

Inheritance II

class Person {

 protected int age;

 protected String name;

 ...

}

class Student extends Person {

 private int grade;

 ...

}

class Lecturer extends Person {

 private int salary;

 ...

}

 We create a base class (Person)

and add a new notion: classes can

inherit properties from it

 Both state, functionality and type

 We say:

 Person is the superclass of

Lecturer and Student

 Lecturer and Student subclass

Person

‘extends’ in Java gives you both code- and type-inheritance

Note: Java is a nomina*ve type language (rather than a structurally

typed one)

If you mark a class ‘Znal’ then it can’t be extended and ‘Znal’ methods

can’t be overridden

118

Liskov Substitution Principle

 If S is a subtype of T then objects of type T
may be replaced with objects of type S

 Student is a subtype of Person so
anywhere I can have a Person I can have
a Student instead

119

Representing Inheritance Graphically

exam_score

Student

salary

Lecturer

name

age

Person
Also known as an “is-a” rela9on

As in “Student is-a Person”

S
p

e
c
ia

l is
e

G
e

n
e

r
a

li
s
e

name and age

inherited if not

private

&DVWLQJ
2EMHFWLYHV�

Ɣ $SSO\�ZLGHQLQJ�DQG�QDUURZLQJ�WR�REMHFWV�ZLWK�D�VXE�W\SLQJ�UHODWLRQVKLS
Ɣ *LYH�DQ�H[DPSOH�RI�KRZ�QDUURZLQJ�PLJKW�IDLO�DQG�VXFFHHG�DW�UXQ�WLPH

120

Casting

 Many languages support type casting
between numeric types

 With inheritance it is reasonable to type
cast an object to any of the types above it
in the inheritance tree...

int i = 7;

Hoat f = (Hoat) i; // f==7.0

double d = 3.2;

int i2 = (int) d; // i2==3

121

Widening

 Student is-a Person

 Hence we can use a Student object
anywhere we want a Person object

 Can perform widening conversions
(up the tree)

Person

Student

Student s = new Student()

Person p = s;

public void print(Person p) {...}

Student s = new Student();

print(s);

Implicit widening

122

Narrowing

 Narrowing conversions move down
the tree (more specific)

 Need to take care...

Person

Student

Person p = new Person();

Student s = (Student) p;

FAILS at run9me. Not enough info

In the real object to represent

a Student

public void print(Person p) {

 Student s = (Student) p;

}

Student s = new Student();

print(s);

OK because underlying object

really is a Student

,QKHULWLQJ�ILHOGV�DQG�PHWKRGV
2EMHFWLYHV�

Ɣ *LYH�DQ�H[DPSOH�RI�KRZ�SXEOLF��SDFNDJH��SURWHFWHG�DQG�SULYDWH�PRGLILHUV�
DIIHFW�LQKHULWDQFH

Ɣ *LYH�DQ�H[DPSOH�RI�ILHOG�VKDGRZLQJ
Ɣ *LYH�DQ�H[DPSOH�GLVWLQJXLVKLQJ�EHWZHHQ�RYHUULGLQJ�DQG�RYHUORDGLQJ�D�PHWKRG

123

Fields and Inheritance

class Person {

 public String name;

 protected int age;

 private double height;

}

class Student extends Person {

 public void do_something() {

 name=”Bob”;

 age=70;

 height=1.70;

 }

}

Student inherits this as a public

variable and so can access it

Student inherits this as a

protected variable and so can

access it

Student inherits this but as a

private variable and so cannot

access it directly

This line doesn’t compile

124

Fields and Inheritance: Shadowing

class A { public int x; }

class B extends A {

 public int x;

}

class C extends B {

 public int x;

 public void ac9on() {

 // Ways to set the x in C

 x = 10;

 this.x = 10;

 // Ways to set the x in B

 super.x = 10;

 ((B)this).x = 10;

 // Ways to set the x in A

 ((A)this.x = 10;

 }

}

‘this’ is a reference to the current object

‘super’ is a reference to the parent object

all classes extend Object (capital O)

if you write ‘class A {}’ you actually get

‘class extends Object {}’

Object a = new A(); // subs9tu9on principle

Don’t write code like this. No-one will

understand you!

125

Methods and Inheritance: Overriding

 We might want to require that every Person can dance. But the way
a Lecturer dances is not likely to be the same as the way a Student
dances...

class Person {

 public void dance() {

 jiggle_a_bit();

 }

}

class Student extends Person {

 public void dance() {

 body_pop();

 }

}

class Lecturer extends Person {

 public void dance(int dura9on) {...}

}

Person deZnes an

original implementa9on

of dance()

Lecturer inherits the

original implementa9on

and jiggles

Student overrides the

original

Know the di(erence: overriding vs overloading

Lecturer overloads the

inherited dance()

method

Expression evaluator
Objectives:

● State the purpose and effect of the @Override annotation
● Give an example of customising how an object is printed by overriding

toString

$EVWUDFW�FODVVHV�DQG�DEVWUDFW�PHWKRGV
2EMHFWLYHV�

Ɣ 'HILQH�DQ�DEVWUDFW�PHWKRG
Ɣ 6WDWH�WKH�UXOHV�SHUWDLQLQJ�WR�DEVWUDFW�FODVVHV
Ɣ 'UDZ�D�DEVWUDFW�FODVV�DQG�PHWKRG�RQ�D�80/�FODVV�GLDJUDP

126

Abstract Methods

 Sometimes we want to force a class to implement a method
but there isn't a convenient default behaviour

 An abstract method is used in a base class to do this

 It has no implementation whatsoever

class abstract Person {

 public abstract void dance();

}

class Student extends Person {

 public void dance() {

 body_pop();

 }

}

class Lecturer extends Person {

 public void dance() {

 jiggle_a_bit();

 }

}

127

Abstract Classes

 Note that I had to declare the class abstract too. This is
because it has a method without an implementation so
we can't directly instantiate a Person.

 All state and non-abstract methods are inherited as
normal by children of our abstract class

 Interestingly, Java allows a class to be declared abstract
even if it contains no abstract methods!

public abstract class Person {

 public abstract void dance();

}

128

Representing Abstract Classes

Student Lecturer

Person

+ dance()

+ dance()+ dance()

Italics indicate the class

or method is abstract

6XEW\SH�SRO\PRUSKLVP
2EMHFWLYHV�

Ɣ *LYH�DQ�H[DPSOH�ZKLFK�KDV�GLIIHUHQW�EHKDYLRXU�XQGHU�VWDWLF�RU�G\QDPLF�
SRO\PRUSKLVP

Ɣ *LYH�DQ�H[DPSOH�VKRZLQJ�KRZ�LQVWDQFHRI�DYRLGV�D�UXQWLPH�HUURU�ZKHQ�FDVWLQJ�
DQ�REMHFW�

131

Polymorphic Methods

 Assuming Person has a
dance() method, what should
happen here?

Student s = new Student();

Person p = (Person)s;

p.dance();

 General problem: when we refer to an object via a parent

type and both types implement a particular method: which

method should it run?

Demo: revisit expressions from last 9me

Polymorphism: values and variables can have more than one type

int eval(Expression e) {

}

can be Literal, Mult or Plus

132

Polymorphic Concepts I

 Static polymorphism

 Decide at compile-time

 Since we don't know what the true type of the
object will be, we just run the method based on
its static type

Student s = new Student();

Person p = (Person)s;

p.dance();

 Compiler says “p is of type Person”

 So p.dance() should do the default

dance() ac9on in Person

C++ can do this. Java cannot

133

Polymorphic Concepts II

 Dynamic polymorphism

 Run the method in the child

 Must be done at run-time since that's when we
know the child's type

 Also known as ‘dynamic dispatch’

Student s = new Student();

Person p = (Person)s;

p.dance();

 Compiler looks in memory and Znds

that the object is really a Student

 So p.dance() runs the dance() ac9on

in Student

C++ can do this when you choose, Java does it always

134

The Canonical Example I

 A drawing program that can draw circles,
squares, ovals and stars

 It would presumably keep a list of all the
drawing objects

 Option 1

 Keep a list of Circle objects, a list of
Square objects,...

 Iterate over each list drawing each
object in turn

 What has to change if we want to add
a new shape?

Circle

+ draw()

Square

Oval

Star

+ draw()

+ draw()

+ draw()

Demo

135

The Canonical Example II

 Option 2

 Keep a single list of Shape references

 Figure out what each object really is,
narrow the reference and then draw()

 What if we want to add a new shape?

Shape

Circle

+ draw()

Square

Oval

Star

+ draw()

+ draw()

+ draw()

for every Shape s in myShapeList

 if (s is really a Circle)

 Circle c = (Circle)s;

 c.draw();

 else if (s is really a Square)

 Square sq = (Square)s;

 sq.draw();

 else if...

Demo

136

The Canonical Example III

 Option 3 (Polymorphic)

 Keep a single list of Shape references

 Let the compiler figure out what to do
with each Shape reference

 What if we want to add a new shape?

Shape

- x_posi9on: int

- y_posi9on: int

+ draw()

Circle

+ draw()

Square

Oval

Star

+ draw()

+ draw()

+ draw()

For every Shape s in myShapeList

 s.draw();

Demo

137

Implementations

 Java

 All methods are dynamic polymorphic.

 Python

 All methods are dynamic polymorphic.

 C++

 Only functions marked virtual are dynamic polymorphic

 Polymorphism in OOP is an extremely important concept
that you need to make sure you understand...

Subtype polymorphism and fields
Objectives:

● Give an example that demonstrates that fields are static polymorphic

0XOWLSOH�LQKHULWDQFH
2EMHFWLYHV�

Ɣ *LYH�DQ�H[DPSOH�ZKHUH�PXOWLSOH�LQKHULWDQFH�PLJKW�EH�XVHIXO
Ɣ ([SODLQ�WKH�LVVXH�RI�LQKHULWLQJ�WZR�YHUVLRQV�RI�WKH�VDPH�PHWKRG�DQG�LWV�

UHVROXWLRQ
Ɣ *LYH�DQ�H[DPSOH�RI�WKH�GLDPRQG�LQKHULWDQFH�SUREOHP

138

Harder Problems

 Given a class Fish and a class DrawableEntity, how do we
make a BlobFish class that is a drawable fish?

Fish

DrawableEn9ty

BlobFish

FishDrawableEn9ty BlobFish

X Dependency

between two

independent

concepts

X Conceptually wrong

0..1 0..1

139

Multiple Inheritance

 If we multiple inherit, we capture
the concept we want

 BlobFish inherits from both and
is-a Fish and is-a DrawableEntity

 C++:

 But...

Fish DrawableEn9ty

BlobFish

+ swim() + draw()

+ swim()

+ draw()

class Fish {…}

class DrawableEn9ty {…}

class BlobFish : public Fish,

 public DrawableEn9ty {...}

140

Multiple Inheritance Problems

 What happens here? Which of
the move() methods is inherited?

 Have to add some grammar to
make it explicit

 C++:

 Yuk.

Fish DrawableEn9ty

BlobFish

+ move() + move()

????

BlobFish *bf = new BlobFish();

bf->Fish::move();

bf->DrawableEn9ty::move();

This is like Zeld shadowing e.g.

class A { class B extends A {

 int x; int x;

} }

141

Multiple Inheritance Problems

 What happens if Fish and
DrawableEntity extend the same
class?

 Do I get two copies?

Fish DrawableEn9ty

BlobFish

+ move() + move()

????

CountableEn9ty

+ freq: int

CountableEn9ty

+ freq: int

142

The diamond problem

Fish DrawableEn9ty

BlobFish

+ move() + move()

????

CountableEn9ty

+ freq: int

CountableEn9ty

+ freq: int

Fish DrawableEn9ty

BlobFish

+ move() + move()

????

CountableEn9ty

+ freq: int

or

143

Fixing with Abstraction

 Actually, this problem
goes away if one or more
of the conflicting
methods is abstract

Fish DrawableEn.ty

BlobFish

+ move() + move()

+ move()

,QWHUIDFHV
2EMHFWLYHV�

Ɣ ([SODLQ�ZK\�IXOO\�DEVWUDFW�FODVVHV�GR�QRW�LQFXU�WKH�FRPSOH[LWLHV�RI�PXOWLSOH�
LQKHULWDQFH

Ɣ *LYH�DQ�H[DPSOH�RI�WKH�GLIIHUHQFH�EHWZHHQ�FRGH�LQKHULWDQFH�DQG�
W\SH�LQKHULWDQFH

Ɣ *LYH�DQ�H[DPSOH�RI�GRLQJ�PXOWLSOH�W\SH�LQKHULWDQFH�LQ�-DYD
Ɣ *LYH�DQ�H[DPSOH�RI�UHVROYLQJ�DPELJXRXV�GHIDXOW�PHWKRGV

144

Java's Take on it: Interfaces

 Classes can have at most one parent. Period.

 But special 'classes' that are totally abstract can do
multiple inheritance – call these interfaces

<<interface>>

 Drivable

+ turn()

+ brake()

Car

<<interface>>

 Iden7&able

+ getIden7&er()

Bicycle

+ turn()

+ brake()

+ turn()

+ brake()

+ turn()

+ brake()

+ getIden9Zer()

interface Drivable {

 public void turn();

 public void brake();

}

interface Iden9Zable {

 public void getIden9Zer();

}

class Bicycle implements Drivable {

 public void turn() {...}

 public void brake() {… }

}

class Car implements Drivable, Iden9Zable {

 public void turn() {...}

 public void brake() {… }

 public void getIden9Zer() {...}

}

This is type

inheritance

(not code

inheritance)

adjec9ve

145

Interfaces have a load of implicit modifiers

interface Foo {
 int x = 1;
 int y();
}

interface Foo {
 public static final int x = 1;
 public int y();
}

means

146

Interfaces can have default methods

interface Foo {
 int x = 1;
 int y();
 default int yPlusOne() {
 return y() + 1;
 }
}

 Allows you to add new functionality without

breaking old code

 If you implement conflicting default methods

you have to provide your own

2EMHFW�LQLWLDOLVDWLRQ
2EMHFWLYHV�

Ɣ .QRZ�WKH�RUGHU�RI�LQLWLDOL]DWLRQ�IRU�REMHFWV
Ɣ ,PSOHPHQW�DQ�H[DPSOH�WR�VKRZ�WKH�RUGHU�LQ�ZKLFK�VWDWLF�ILHOGV��VWDWLF�

LQLWLDOLVHUV��LQVWDQFH�ILHOGV��FRQVWUXFWRUV�DQG�WKH�VXSHUFODVV�DUH�LQLWLDOLVHG
Ɣ 'HILQH�WKH�WHUP�
FRQVWUXFWRU�FKDLQLQJ

Ɣ *LYH�DQ�H[DPSOH�RI�H[SOLFLWO\�FDOOLQJ�WKH�VXSHU�FRQVWUXFWRU�RI�\RXU�FODVV

149

Creating Objects in Java

new MyObject()

Load

MyObject.class

Create

java.lang.Class

object

Allocate any

sta9c Zelds and run

sta9c ini9aliser

blocks

Allocate memory

for object

Run non-sta9c

ini9aliser blocks

Run constructor

Yes

No Is MyObject already loaded

in memory?

demo ObjectConstruc9on

demo InheritedConstruc9onsta9c ini9alisa9on is done

in textual order

151

Constructor Chaining

 When you construct an object of a type with parent
classes, we call the constructors of all of the parents
in sequence

Student s = new Student();

Animal

Person

Student

1. Call Animal()

2. Call Person()

3. Call Student()

152

Chaining without Default Constructors

 What if your classes have explicit constructors that take
arguments? You need to explicitly chain

 Use super in Java:

Person

Student

-mName : String

+Person(String name)

+Student()

public Person (String name) {

 mName=name;

}

public Student () {

 super(“Bob”);

}

Demo: NoDefaultConstructor

Object destruction and garbage collection
Objectives:

● Describe deterministic destruction and how it permits Resource Acquisition Is
Initialisation (RAII)

● Give an example of how try-with-resources can be used to guarantee the
release of resources

● Explain why finalizers cannot be used for releasing resources reliably
● Describe the mark-and-sweep algorithm
● Show how we can still 'leak' memory even with a garbage collector

153

Deterministic Destruction

 Objects are created, used and (eventually) destroyed. Destruction is very language-
specific

 Deterministic destuction is what you would expect

 Objects are deleted at predictable times

 Perhaps manually deleted (C++):

 Or auto-deleted when out of scope (C++):

void UseRawPointer()

{

 MyClass *mc = new MyClass();

 // ...use mc...

 delete mc;

}

void UseSmartPointer()

{

 MyClass mc;

 // ...use mc...

} // mc deleted here

In C++ this means

create a new instance

of MyClass on the stack

using the default

constructor

154

Destructors

 Most OO languages have a notion of a destructor too

 Gets run when the object is destroyed

 Allows us to release any resources (open files, etc) or memory
that we might have created especially for the object

class FileReader {

 public:

 // Constructor

 FileReader() {

 f = fopen(“myZle”,”r”);

 }

 // Destructor

 ~FileReader() {

 fclose(f);

 }

 private :

 FILE *Zle;

}

int main(int argc, char ** argv) {

 FileReader f;

 // Use object here

 ...

} // object destructor called here

C++

This is called RAII = Resource Acquisi9on Is Ini9alisa9on

155

Non-Deterministic Destruction

 Deterministic destruction is easy to understand and seems simple
enough. But it turns out we humans are rubbish of keeping track of
what needs deleting when

 We either forget to delete (→ memory leak) or we delete multiple
times (→ crash)

 We can instead leave it to the system to figure out when to delete

 “Garbage Collection”

 The system somehow figures out when to delete and does it for us

 In reality it needs to be cautious and sure it can delete. This leads
to us not being able to predict exactly when something will be
deleted!!

 This is the Java approach!!

Demo: Finalizer

156

What about Destructors?

 Conventional destructors don’t make
sense in non-deterministic systems

 When will they run?

 Will they run at all??

 Instead we have finalisers: same concept
but they only run when the system deletes
the object (which may be never!)

 Java provides try-with-resources as an
alternative to RAII

Demo: TryWithResources

157

Garbage Collection

 So how exactly does garbage collection work? How can a
system know that something can be deleted?

 The garbage collector is a separate process that is constantly
monitoring your program, looking for things to delete

 Running the garbage collector is obviously not free. If your
program creates a lot objects, you will soon notice the collector
running

 Can give noticeable pauses to your program!

 But minimises memory leaks (it does not prevent them…)

 Keywords:

 ‘Stop the world’ - pause the program when collecting garbage

 ‘incremental’ - collect in multiple phases and let the program
run in the gaps

 ‘concurrent’ - no pauses in the program

Demo: Leak

158

Mark and sweep

 Start with a list of all references you can get to

 Follow all references recursively, marking each object

 Delete all objects that were not marked

object

object

object

object

x

y

z

object

object

Unreachable

so deleted

Genera9onal garbage collec9on: split

objects into short-lived and long-lived and

collect short-lived more frequently

%R[LQJ�DQG�8QER[LQJ
2EMHFWLYHV�

Ɣ 'HILQH�WKH�WHUPV�ER[LQJ�DQG�XQER[LQJ
Ɣ *LYH�DQ�H[DPSOH�RI�KRZ�DXWR�XQER[LQJ�FDQ�JLYH�ULVH�WR�XQH[SHFWHG�HUURUV

162

Boxing and unboxing

 Boxing: turn an int into an Integer

 Unboxing: turn an Integer into an int

 Java will do auto-boxing and unboxing

public void something(Integer I) {
 ...
}

int i = 4;
something(i);

public void other(int i) {
 …
}

Integer i = null;
other(i);

auto-boxing

auto-unboxing

(and a NPE)

&ROOHFWLRQV
2EMHFWLYHV�

Ɣ .QRZ�WKH�EDVLF�LQKHULWDQFH�VWUXFWXUH�RI�FROOHFWLRQV�LQFOXGLQJ�,WHUDEOH�DQG�
&ROOHFWLRQ�LQWHUIDFHV

Ɣ %H�DEOH�WR�XVH�6HWV��/LVWV��0DSV��4XHXHV
Ɣ +DYH�D�JHQHUDO�LGHD�RI�WKH�FRPSOH[LW\�RI�RSHUDWLRQV�RQ�GLIIHUHQW�

LPSOHPHQWDWLRQV�RI�WKH�FROOHFWLRQ�W\SHV

163

Java's Collections Framework

<<interface>>

Collec.on

<<interface>>

Collec.on

<<interface>>

Collec.on

<<interface>>

Iterable

 Important chunk of the class library

 A collection is some sort of grouping of things

(objects)

 Usually when we have some grouping we want

to go through it (“iterate over it”)

 The Collections framework has two main

interfaces: Iterable and Collection. They define

a set of operations that all classes in the

Collections framework support

 add(Object o), clear(), isEmpty(), etc.

Some9mes an opera9on doesn’t make sense – throw UnsupportedOpera9onError

164

Sets

<<interface>> Set

 A collection of elements with no duplicates that
represents the mathematical notion of a set

 TreeSet: objects stored in order

 HashSet: objects in unpredictable order but fast
to operate on (see Algorithms course)

A

B

C

Set<Integer> ts = new TreeSet<>();

ts.add(15);

ts.add(12);

ts.contains(7); // false

ts.contains(12); // true

ts.Zrst(); // 12 (sorted)

A form of type inference

TreeSet

SortedSet HashSet

Set

LinkedHashSet

Collec9on

Iterable

165

Lists

<<interface>> List

 An ordered collection of elements that may contain
duplicates

 LinkedLIst: linked list of elements

 ArrayList: array of elements (efficient access)

 Vector: Legacy, as ArrayList but threadsafe

A

B

C

B

List<Double> ll = new ArrayList<>();

ll.add(1.0);

ll.add(0.5);

ll.add(3.7);

ll.add(0.5);

ll.get(1); // get element 2 (==3.7)

LinkedList ArrayList

List

Vector

Collec9on

Iterable

legacy
good default

choice

166

Queues

<<interface>> Queue

 An ordered collection of elements that may contain
duplicates and supports removal of elements from the head
of the queue

 offer() to add to the back and poll() to take from the front

 LinkedList: supports the necessary functionality

 PriorityQueue: adds a notion of priority to the queue so more
important stuff bubbles to the top

A

B

C

B

Queue<Double> ll = new LinkedList<>();

ll.o(er(1.0);

ll.o(er(0.5);

ll.poll(); // 1.0

ll.poll(); // 0.5

167

Maps

<<interface>> Map

 Like dictionaries in ML

 Maps key objects to value objects

 Keys must be unique

 Values can be duplicated and
(sometimes) null.

 TreeMap: keys kept in order

 HashMap: Keys not in order, efficient
(see Algorithms)

K1

A

B

B

K3 K2

Map<String, Integer> tm = new TreeMap<String,Integer>();

tm.put(“A”,1);

tm.put(“B”,2);

tm.get(“A”); // returns 1

tm.get(“C”); // returns null

tm.contains(“G”); // false

168

+DVK�7DEOH
5HVL]DEOH�
$UUD\ %DODQFHG�7UHH /LQNHG�/LVW

+DVK�7DEOH���
/LQNHG�/LVW

6HW +DVK6HW 7UHH6HW /LQNHG+DVK6HW
/LVW $UUD\/LVW /LQNHG/LVW
'HTXH $UUD\'HTXH /LQNHG/LVW
0DS +DVK0DS 7UHH0DS /LQNHG+DVK0DS

JHW DGG FRQWDLQV QH[W UHPRYH���
LWHUDWRU�
UHPRYH

$UUD\/LVW 2��� 2��� 2�Q� 2��� 2�Q� 2�Q�
/LQNHG/LVW 2�Q� 2��� 2�Q� 2��� 2��� 2���

DGG FRQWDLQV QH[W
+DVK6HW 2��� 2��� 2�K�Q�
7UHH6HW 2�ORJ�Q� 2�ORJ�Q� 2�ORJ�Q�
/LQNHG+DVK6HW 2��� 2��� 2���

JHW FRQWDLQV.H\ QH[W
+DVK0DS 2��� 2��� 2�K�Q�
/LQNHG+DVK0DS 2��� 2��� 2���
7UHH0DS 2�ORJ�Q� 2�ORJ�Q� 2�ORJ�Q�

SHHN RIIHU SROO VL]H
/LQNHG/LVW 2��� 2�ORJ�Q� 2�ORJ�Q� 2���
$UUD\'HTXH 2��� 2��� 2��� 2���
3ULRULW\4XHXH 2��� 2�ORJ�Q� 2�ORJ�Q� 2���

6RXUFH��KWWSV���GRFV�RUDFOH�FRP�MDYDVH���GRFV�WHFKQRWHV�JXLGHV�FROOHFWLRQV�RYHUYLHZ�KWPO
6RXUFH��-DYD�*HQHULFV�DQG�&ROOHFWLRQV��SDJHV���������������������

Don’t just memorise these – think about how the datastructure works

169

Specific return type and general argument

 Should your method take a Set, a
SortedSet or a TreeSet?

 General rule of thumb:

 use the most general type possible for
parameters

 use the most specific type possible for return
values (without over committing your
implementation)

,WHUDWRUV
2EMHFWLYHV�

Ɣ ,WHUDWH�RYHU�D�FROOHFWLRQ�XVLQJ�D�IRU�ORRS��D�IRU�HDFK�ORRS�DQG�DQ�,WHUDWRU
Ɣ 'HILQH�WKH�FRQFHSW�RI�)DLO�)DVW�EHKDYLRXU
Ɣ *LYH�DQ�H[DPSOH�RI�PRGLI\LQJ�FROOHFWLRQ�VWUXFWXUH�XVLQJ�DQ�,WHUDWRU

170

Iteration

 for loop

 foreach loop (Java 5.0+)

LinkedList<Integer> list = new LinkedList<Integer>();

...

for (int i=0; i<list.size(); i++) {

 Integer next = list.get(i);

}

LinkedList list = new LinkedList();

...

for (Integer i : list) {

 ...

}

171

Iterators

 What if our loop changes the structure?

 Java introduced the Iterator class

 Safe to modify structure

for (int i=0; i<list.size(); i++) {

 If (i==3) list.remove(i);

}

Iterator<Integer> it = list.iterator();

while(it.hasNext()) {Integer i = it.next();}

for (; it.hasNext();) {Integer i = it.next();}

while(it.hasNext()) {

 it.remove();

}

Demo: Fast fail behaviour

&RPSDULQJ�REMHFWV
2EMHFWLYHV�

Ɣ 8QGHUVWDQG�WKH�GLIIHUHQFH�EHWZHHQ�UHIHUHQFH�HTXDOLW\�DQG�YDOXH�HTXDOLW\
Ɣ %H�DZDUH�RI�WKH�
HTXDOV�FRQWUDFW
�DQG�JLYH�DQ�H[DPSOH�RI�RYHUULGLQJ�WKH�

HTXDOV�PHWKRG
Ɣ *LYH�DQ�H[DPSOH�RI�LPSOHPHQWLQJ�D�QDWXUDO�RUGHULQJ�RQ�D�FODVV�XVLQJ�WKH�

&RPSDUDEOH�LQWHUIDFH
Ɣ *LYH�DQ�H[DPSOH�RI�LPSOHPHQWLQJ�D�&RPSDUDWRU

172

Comparing Objects

 You often want to impose orderings on your
data collections

 For TreeSet and TreeMap this is automatic

 For other collections you may need to explicitly
sort

 For numeric types, no problem, but how do you
tell Java how to sort Person objects, or any
other custom class?

TreeMap<String, Person> tm = ...

LinkedList<Person> list = new LinkedList<Person>();

//...

Collec9ons.sort(list);

175

Comparing Primitives

> Greater Than

>= Greater than or equal to

== Equal to

!= Not equal to

< Less than

<= Less than or equal to

 Clearly compare the value of a primitive

 But what does (ref1==ref2) do??

 Test whether they point to the same object?

 Test whether the objects they point to have the same
state?

176

Reference Equality

 r1==r2, r1!=r2

 These test reference equality
 i.e. do the two references point ot the same chunk of

memory?

Person p1 = new Person(“Bob”);

Person p2 = new Person(“Bob”);

(p1==p2);

(p1!=p2);

(p1==p1);

False (references di(er)

True (references di(er)

True

177

Value Equality

 Use the equals() method in Object

 Default implementation just uses reference equality (==)
so we have to override the method

public EqualsTest {

 public int x = 8;

 @Override

 public boolean equals(Object o) {

 EqualsTest e = (EqualsTest)o;

 return (this.x==e.x);

 }

 public sta9c void main(String args[]) {

 EqualsTest t1 = new EqualsTest();

 EqualsTest t2 = new EqualsTest();

 System.out.println(t1==t2);

 System.out.println(t1.equals(t2));

 }

}
Demo: What’s wrong with equals

Learn the ‘equals’ contract

178

Java Quirk: hashCode()

 Object also gives classes hashCode()

 Code assumes that if equals(a,b) returns
true, then a.hashCode() is the same as
b.hashCode()

 So you should override hashCode() at the
same time as equals()

Learn the ‘hashcode’ contract

179

Comparable<T> Interface I

int compareTo(T obj);

 Part of the Collections Framework

 Doesn't just tell us true or false, but smaller, same, or
larger: useful for sorting.

 Returns an integer, r:
 r<0 This object is less than obj

 r==0 This object is equal to obj

 r>0 This object is greater than obj

180

Comparable<T> Interface II

public class Point implements Comparable<Point> {

 private Znal int mX;

 private Znal int mY;

 public Point (int, int y) { mX=x; mY=y; }

 // sort by y, then x

 public int compareTo(Point p) {

 if (mY>p.mY) return 1;

 else if (mY<p.mY) return -1;

 else {

 if (mX>p.mX) return 1;

 else if (mX<p.mX) return -1;

 else return 0.

 }

 }

}

// This will be sorted automa9cally by y, then x

Set<Point> list = new TreeSet<Point>();

implemen9ng Comparable

deZnes a natural ordering

for your class

ideally this should be

consistent with equals i.e.

x.compareTo(y) == 0 <=> x.equals(y)

must deZne a total order

Demo

181

Comparator<T> Interface I

int compare(T obj1, T obj2)

 Also part of the Collections framework and allows us
to specify a specific ordering for a particular job

 E.g. a Person might have natural ordering that sorts
by surname. A Comparator could be written to sort
by age instead...

182

Comparator<T> Interface II

public class Person implements Comparable<Person> {

 private String mSurname;

 private int mAge;

 public int compareTo(Person p) {

 return mSurname.compareTo(p.mSurname);

 }

}

public class AgeComparator implements Comparator<Person> {

 public int compare(Person p1, Person p2) {

 return (p1.mAge-p2.mAge);

 }

}

…

ArrayList<Person> plist = …;

…

Collec9ons.sort(plist); // sorts by surname

Collec9ons.sort(plist, new AgeComparator()); // sorts by age

delegate to the Zeld’s

compareTo method

183

Operator Overloading

 Some languages have a neat feature that allows
you to overload the comparison operators. e.g. in
C++

class Person {

 public:

 Int mAge

 bool operator==(Person &p) {

 return (p.mAge==mAge);

 };

 }

Person a, b;

b == a; // Test value equality

people argue about

whether this is good

or bad.

(Java won’t let you do it)

([FHSWLRQ�KDQGOLQJ
2EMHFWLYHV�

Ɣ &RQWUDVW�YDULRXV�DSSURDFKHV�IRU�HUURU�KDQGOLQJ��UHWXUQ�FRGHV��GHIHUUHG�HUURU�
KDQGOLQJ�DQG�H[FHSWLRQV

Ɣ *LYH�DQ�H[DPSOH�RI�D�JRRG�XVH�RI�D�FKHFNHG�RU�XQFKHFNHG�H[FHSWLRQV
Ɣ 5HDVRQ�DERXW�WKH�SURV�DQG�FRQV�RI�H[FHSWLRQV�DQG�WKHLU�EHVW�SUDFWLFH

184

Return Codes

 The traditional imperative way to handle errors is to
return a value that indicates success/failure/error

 Problems:

 Could ignore the return value

 Have to keep checking what the return values are meant to
signify, etc.

 The actual result often can't be returned in the same way

 Error handling code is mixed in with normal execution

public int divide(double a, double b) {

 if (b==0.0) return -1; // error

 double result = a/b;

 return 0; // success

}

…

if (divide(x,y)<0) System.out.println(“Failure!!”);

Go – returns a pair res, err

Haskell – Maybe type

185

Deferred Error Handling

 A similar idea (with the same issues) is to set some state in
the system that needs to be checked for errors.

 C++ does this for streams:

ifstream Zle("test.txt");

if (Zle.good())

{

 cout << "An error occurred opening the Zle" << endl;

}

186

Exceptions

 An exception is an object that can be thrown or raised by a
method when an error occurs and caught or handled by the
calling code

 Example usage:

try {

 double z = divide(x,y);

}

catch(DivideByZeroExcep9on d) {

 // Handle error here

}

187

Flow Control During Exceptions

 When an exception is thrown, any code left to run in the try
block is skipped

double z=0.0;

boolean failed=false;

try {

 z = divide(5,0);

 z = 1.0;

}

catch(DivideByZeroExcep9on d) {

 failed=true;

}

z=3.0;

System.out.println(z+” “+failed);

188

Throwing Exceptions

 An exception is an object that has Exception as an
ancestor

 So you need to create it (with new) before throwing

double divide(double x, double y) throws DivideByZeroExcep9on {

 if (y==0.0) throw new DivideByZeroExcep9on();

 else return x/y;

}

189

Multiple Handlers

 A try block can result in a range of different exceptions. We
test them in sequence

try {

 FileReader fr = new FileReader(“someZle”);

 Int r = fr.read();

}

catch(FileNoteFound fnf) {

 // handle Zle not found with FileReader

}

catch(IOExcep9on d) {

 // handle read() failed

}

190

finally

 With resources we often want to ensure
that they are closed whatever happens

try {

 fr,read();

 fr.close();

}

catch(IOExcep9on ioe) {

 // read() failed but we must s9ll close the FileReader

 fr.close();

}

191

finally II

 The finally block is added and will always
run (after any handler)

try {

 fr.read();

}

catch(IOExcep9on ioe) {

 // read() failed

}

Znally {

 fr.close();

}

Remember try-with-resources

192

Creating Exceptions

 Just extend Exception (or RuntimeException if you need it to
be unchecked). Good form to add a detail message in the
constructor but not required.

 You can also add more data to the exception class to provide
more info on what happened (e.g. store the numerator and
denominator of a failed division)

public class DivideByZero extends Excep9on {}

public class Computa9onFailed extends Excep9on {

 public Computa9onFailed(String msg) {

 super(msg);

 }

}

If your excep9on is caused

by another then chain

them - demo

Keyword: excep9on chaining

193

Exception Hierarchies

 You can use inheritance hierarchies

 And catch parent classes

public class MathExcep9on extends Excep9on {...}

public class InZniteResult extends MathExcep9on {…}

public class DivByZero extends MathExcep9on {…}

try {

 …

}

catch(InZniteResult ir) {

 // handle an inZnite result

}

catch(MathExcep9on me) {

 // handle any MathExcep9on or DivByZero

}

194

Checked vs Unchecked Exceptions

 Checked: must be handled or passed up.

 Used for recoverable errors

 Java requires you to declare checked exceptions that your
method throws

 Java requires you to catch the exception when you call the
function

 Unchecked: not expected to be handled. Used for
programming errors

 Extends RuntimeException

 Good example is NullPointerException

double somefunc() throws SomeExcep*on {}

196

Evil I: Exceptions for Flow Control

 At some level, throwing an exception is like a GOTO

 Tempting to exploit this

 This is not good. Exceptions are for exceptional circumstances
only

 Harder to read

 May prevent optimisations

try {

 for (int i=0; ; i++) {

 System.out.println(myarray[i]);

 }

}

catch (ArrayOutOfBoundsExcep9on ae) {

 // This is expected

}

197

Evil II: Blank Handlers

 Checked exceptions must be handled

 Constantly having to use try...catch blocks to do this can be
annoying and the temptation is to just gaffer-tape it for now

 ...but we never remember to fix it and we could easily be missing
serious errors that manifest as bugs later on that are extremely
hard to track down

try {

 FileReader fr = new FileReader(Zlename);

}

catch (FileNotFound fnf) {

}

If it can’t happen then throw

a chained Run9meExcep9on

198

Advantages of Exceptions

 Advantages:

 Class name can be descriptive (no need to look up error
codes)

 Doesn't interrupt the natural flow of the code by requiring
constant tests

 The exception object itself can contain state that gives lots of
detail on the error that caused the exception

 Can't be ignored, only handled

 Disadvantages:

 Surprising control flow – exceptions can be thrown from
anywhere

 Lends itself to single threads of execution

 Unrolls control flow, doesn’t unroll state changes

&RYDULDQFH�DQG�&RQWUDYDULDQFH
2EMHFWLYHV�

Ɣ 'HILQH�FRYDULDQFH�DQG�FRQWUDYDULDQFH
Ɣ *LYH�DQ�H[DPSOH�DUJXLQJ�IRU�WKH�FRUUHFWQHVV�RI�FRYDULDQW�UHWXUQ�W\SHV
Ɣ *LYH�DQ�H[DPSOH�DUJXLQJ�IRU�WKH�FRUUHFWQHVV�RI�FRQWUDYDULDQW�SDUDPHWHU�W\SHV
Ɣ 6KRZ�ZKDW�SUREOHPV�DULVH�ZLWK�FRYDULDQW�DUUD\V�LQ�-DYD
Ɣ 6KRZ�KRZ�ZLOGFDUG�W\SHV�LQ�JHQHULFV�DOORZ�XV�WR�FDSWXUH�FRYDULDQFH

201

Remember the substitution principle?

 If A extends B then I should be able to use
B everywhere I expect an A

void process(A o) {
 drawShape(o.getShape());
}
process(new B());

class A {

 Polygon getShape() {
 return new Polygon(…);
 }

}

class B extends A {

 Polygon getShape() {
 return …
 }

}

202

Covariant return types are substitutable

void process(A o) {
 drawShape(o.getShape());
}
process(new B());

class A {

 Polygon getShape() {
 return new Polygon(…);
 }

}

class B extends A {

 Triangle getShape() {
 return …
 }

} o.getShape() returns

a Triangle but Triangle

is a subtype of Polygon

and so by subs9tutability

we can pass it to

drawShape

 Overriding methods are covariant in their
return types

203

Contravariant parameters also substitute

 Overriding methods can be contravariant
in their parameters

void process(A o) {
 o.setShape(new Triangle());
}
process(new B());

class A {

 void setShape(Triangle o) {
 …
 }

}

class B extends A {

 void setShape(Polygon o) {
 …
 }

} o.setShape() wants a

Polygon and by

subs9tutability its ok

to pass it a Triangle

You can’t actually

do this in Java! The

two setShapes are

overloads not

overrides

204

Java arrays are covariant

String[] s = new String[] { “v1”, “v2” };

Object[] t = s;

Object v = t[0];

t[1] = new Integer(4);

 If B is a subtype of A then B[] is a subtype
of A[]

Compiles – arrays are covariant

Works – t[0] is actually a String

but we can assign that to Object

Fails (at run9me) – t[] is actually

an array of Strings, you can’t

put an Integer in it

205

Imagine if Arrays were a generic class

class Array<Object> {

 // Object x = array[i]
 Object get(int index) {
 …
 }

 // array[i] = value
 void set(int index,
 Object value) {
 …
 }
}

class Array<String> {

 // String x = array[i]
 String get(int index) {

 }

 // array[i] = value
 void set(int index,
 String value) {

 }
}

Covariant return type – all is good!

Covariant parameter type – bad news

206

Generics in Java are not covariant

 if B is a subtype of A then T is not a
subtype of T<A>

List<String> s = List.of(“v1”, “v2”);

List<Object> t = s;

Object v = t.get(0);

t.set(1,new Integer(4));

Does not compile

Would be safe – we can

assign String to Object

Is not safe

207

Wildcards let us capture this

 if B is a subtype of A then T is a
subtype of T<? extends A>

List<String> s = List.of(“v1”, “v2”);

List<? extends Object> t = s;

Object v = t.get(0);

t.set(1,new Integer(4));

Compiles

Works: ‘? extends Object’

is assignable to Object

Does not compile – the compiler knows it needs

something that extends object but it doesn’t

know what it is!

,QQHU�FODVVHV�DQG�ODPEGD
2EMHFWLYHV�

Ɣ *LYH�H[DPSOHV�VKRZLQJ�WKH�FDSDELOLWLHV�RI��VWDWLF�LQQHU�FODVVHV��LQVWDQFH�LQQHU�
FODVVHV��PHWKRG�ORFDO�FODVVHV��DQRQ\PRXV�LQQHU�FODVVHV�

Ɣ 'HILQH�WKH�FRQFHSW�RI�D�IXQFWLRQDO�LQWHUIDFH
Ɣ *LYH�DQ�H[DPSOH�RI�KRZ�WR�XVH�D�ODPEGD�LQ�-DYD�DQG�KRZ�WR�HQDEOH�RWKHUV�WR�

SDVV�D�ODPEGD�WR�\RXU�PHWKRGV��
Ɣ 5HFRJQLVH�WKH�WHUPV��VWDWHPHQW�ODPEGD��H[SUHVVLRQ�ODPEGD�DQG�PHWKRG�

UHIHUHQFH

208

Inner classes

class Outer {

 private static void f();
 private int x = 4;

 static class StaticInner {

 void g() {
 f();
 new Outer().x = 3;
 }
 }

 class InstanceInner {
 int g() {
 return x + 1;
 }
 }

}

Sta9c inner classes are a member

of the outer class and so can

access private members

Instance inner classes are a member

of the outer object and so can access

outer instance variables:

Outer o = new Outer();

InstanceInner i = o.new InstanceInner()

Inner classes may not have sta9c

members

209

Method-local classes

class Outer {

 int y = 6;

 void f() {
 int x = 5;
 class Foo {
 int g() {
 return x + y + 1;
 }
 }
 Foo foo = new Foo();

 }

}

Method-local classes can

access local variables (and

so are never sta9c classes).

Method-local classes in

instance methods can access

instance variables of the class

210

Anonymous inner classes

class Outer {

 int y = 6;

 Object f() {
 int x = 5;
 Object o = new Object() {
 public String toString() {
 return String.valueOf(x+y+1);
 }
 };
 return o;
 }
}

o is a new class. It extends

Object but it has no name.

It can access all local and

instance variables.

Note: here we return o to the caller and it can be

used anywhere in the program even though it refers

to y and x.

x here is ‘e(ec9vely Znal’ - compile

error if you try to change it

211

Lambda

Consumer<String> c1 = s -> System.out.println(s);
c1.accept(“hello”);

BiFunction<Integer,Integer,Boolean> c2 = (i,j) -> i+j > 5;
boolean a = c2.apply(3,1);

Predicate<Integer> b4 = v -> {
 if (v > 0) {
 return isPrime(v);
 }
 else {
 return isPrime(v*v);
 }
}
boolean a = b4.test(43431);

expression lambda

statement lambda

212

Need a Functional Interface to use them

 A functional interface has only one method
in it

 (this is so the compiler knows which one to
map the lambda on to)

 That’s it

6WUHDPV
2EMHFWLYHV�

Ɣ *LYH�VLPSOH�H[DPSOHV�RI�SURFHVVLQJ�D�FROOHFWLRQ�ZLWK�D�VWUHDP
Ɣ ([SODLQ�WKH�GLIIHUHQFH�EHWZHHQ�PDS�DQG�PDS7R,QW
Ɣ ([SODLQ�ZK\�VLGH�HIIHFWV�LQ�IXQFWLRQV�SDVVHG�WR�PDS�FDQ�FDXVH�LVVXHV

215

Streams

 Collections can be made into streams
(sequences)

 These can be filtered or mapped!

List<Integer> list = ...

list.stream().map(x->x+10).collect(Collectors.toList());

list.stream().Zlter(x->x>5).collect(Collectors.toList());

Demo:streams

create

stream

element-wise

opera9ons

aggrega9on

'HVLJQ�SDWWHUQV
2EMHFWLYHV�

Ɣ ([SODLQ�ZKDW�D�GHVLJQ�SDWWHUQ�LV
Ɣ ([SODLQ�WKH�RSHQ�FORVHG�SULQFLSOH�DQG�ZK\�LW�LV�D�XVHIXO�SURSHUW\�RI�D�GHVLJQ

216

Design Patterns

 A Design Pattern is a general reusable solution to a
commonly occurring problem in software design

 Coined by Erich Gamma in his 1991 Ph.D. thesis

 Originally 23 patterns, now many more. Useful to look at
because they illustrate some of the power of OOP (and
also some of the pitfalls)

 We will only consider a subset

 It’s not a competition to see how many you can use in a
project!

217

The Open-Closed Principle

Classes should be open for extension
but closed for modification

 i.e. we would like to be able to modify the
behaviour without touching its source code

 This rule-of-thumb leads to more reliable
large software and will help us to evaluate
the various design patterns

'HFRUDWRU�SDWWHUQ
2EMHFWLYHV�

Ɣ 'HVFULEH�WKH�GHFRUDWRU�SDWWHUQ
Ɣ 5HFRJQLVH�WKH�GHFRUDWRU�SDWWHUQ�ZKHQ�LW�KDV�EHHQ�XVHG�LQ�D�SURJUDP
Ɣ *LYH�WKH�80/�GLDJUDP�IRU�WKH�SDWWHUQ
Ɣ ([SODLQ�ZK\�WKLV�SDWWHUQ�PHHWV�WKH�RSHQ�FORVHG�SULQFLSOH

218

Decorator

Abstract problem: How can we add state
or methods at runtime?

Example problem: How can we efficiently
support gift-wrapped books in an online
bookstore?

Demo: Readers

219

Decorator in General

 The decorator pattern adds
state and/or functionality to
an object dynamically

Reader

Bu(eredReader

FileReader

6LQJOHWRQ�SDWWHUQ
2EMHFWLYHV�

Ɣ 'HVFULEH�WKH�VLQJOHWRQ�SDWWHUQ
Ɣ ,GHQWLI\�WKH�VKRUWFRPLQJV�RI�WKLV�SDWWHUQ
Ɣ 5HFRJQLVH�WKH�VLQJOHWRQ�SDWWHUQ�ZKHQ�LW�KDV�EHHQ�XVHG�LQ�D�SURJUDP
Ɣ *LYH�WKH�80/�GLDJUDP�IRU�WKH�SDWWHUQ

220

Singleton

Abstract problem: How can we ensure
only one instance of an object is created
by developers using our code?

Example problem: You have a class that
encapsulates accessing a database over a
network. When instantiated, the object will
create a connection and send the query.
Unfortunately you are only allowed one
connection at a time.

demo: SingletonConnec9on

221

Singleton in General

 The singleton pattern ensures
a class has only one instance
and provides global access to
it

Demo: FanSpeed

6WDWH�SDWWHUQ
2EMHFWLYH�

Ɣ 'HVFULEH�WKH�VWDWH�SDWWHUQ
Ɣ 5HFRJQLVH�WKH�VWDWH�SDWWHUQ�ZKHQ�LW�KDV�EHHQ�XVHG�LQ�D�SURJUDP
Ɣ *LYH�WKH�80/�GLDJUDP�IRU�WKH�SDWWHUQ
Ɣ ([SODLQ�ZK\�WKLV�SDWWHUQ�PHHWV�WKH�RSHQ�FORVHG�SULQFLSOH

222

State

Abstract problem: How can we let an
object alter its behaviour when its internal
state changes?

Example problem: Representing
academics as they progress through the
rank

223

State in General

 The state pattern allows an
object to cleanly alter its
behaviour when internal
state changes

6WUDWHJ\�SDWWHUQ
2EMHFWLYH�

Ɣ 'HVFULEH�WKH�VWUDWHJ\�SDWWHUQ
Ɣ 5HFRJQLVH�WKH�VWUDWHJ\�SDWWHUQ�ZKHQ�LW�KDV�EHHQ�XVHG�LQ�D�SURJUDP
Ɣ *LYH�WKH�80/�GLDJUDP�IRU�WKH�SDWWHUQ
Ɣ ([SODLQ�ZK\�WKLV�SDWWHUQ�PHHWV�WKH�RSHQ�FORVHG�SULQFLSOH

224

Strategy

Abstract problem: How can we select an
algorithm implementation at runtime?

Example problem: We have many possible
change-making implementations. How do
we cleanly change between them?

Demo: ComparatorStrategy

225

Strategy in General

 The strategy pattern allows us to cleanly interchange
between algorithm implementations

Composite pattern
Objectives:

● Describe the composite pattern
● Recognise the composite pattern when it has been used in a program
● Give the UML diagram for the pattern
● Explain why this pattern meets the open-closed principle

226

Composite

Abstract problem: How can we treat a
group of objects as a single object?

Example problem: Representing a DVD
box-set as well as the individual films
without duplicating info and with a 10%
discount

Demo: DVDs

227

Composite in General

 The composite pattern lets
us treat objects and groups
of objects uniformly

2EVHUYHU�SDWWHUQ
2EMHFWLYHV�

Ɣ 'HVFULEH�WKH�REVHUYHU�SDWWHUQ
Ɣ 5HFRJQLVH�WKH�REVHUYHU�SDWWHUQ�ZKHQ�LW�KDV�EHHQ�XVHG�LQ�D�SURJUDP
Ɣ *LYH�WKH�80/�GLDJUDP�IRU�WKH�SDWWHUQ
Ɣ ([SODLQ�ZK\�WKLV�SDWWHUQ�PHHWV�WKH�RSHQ�FORVHG�SULQFLSOH

228

Observer

Abstract problem: When an object
changes state, how can any interested
parties know?

Example problem: How can we write
phone apps that react to accelerator
events?

Demo: Ac9onListener

229

Observer in General

 The observer pattern allows an object to have multiple
dependents and propagates updates to the dependents
automatically.

Final remarks

Remember OOP is about helping with scale
● You'll have a chance to apply this in the 1B group project next year
● Some of the ideas in this course apply to non-OOP languages too

○ e.g. The OCaml module system provides mechanisms for you to hide your implementation

Keep practising your programming
● Do the exercises on Chime
● Remember the take home test

○ 26 April 2022, 9:00am – 28 April 2022, 9:00am
○ This will be done using Chime

Lots more Java to come next year
● Further Java course
● Networking and distributed systems
● Concurrency (multi-threaded)
● Reflection

