Motion Modeling Cengiz Öztireli

SCOTT EATON

DIESINMOTION.PHC

- Rigging
 - Attaching a skeleton to a model
 - Skeleton is key-framed to move the model

- Rigging
 - Embed the skeleton
 - Attach the bones to the model

Rigging

- Rigging
 - What is stored in a skeleton
 - Rigid transformations
 - On bones or joints
 - Bones can be transformed rigidly

Rigging

Bones can be transformed rigidly

Rigging

Attach the bones to the model

Weights indicate
how much a vertex
is effected by a bone

- Rigging
 - Attach the bones to the model

- Rigging
 - Attach the bones to the model

$$T(\mathbf{x}) = \arg(T_1, T_2, w_1, w_2)$$

- Rigging
 - How to blend (average) transformations
 - Linear Blend Skinning

Represent T_i with T_i in homogenous coordinates

$$\mathbf{T}(\mathbf{x}) = w_1(\mathbf{x})\mathbf{T}_1 + w_2(\mathbf{x})\mathbf{T}_2$$
$$\mathbf{x}' = \mathbf{T}(\mathbf{x})\mathbf{x}$$

$$T(\mathbf{x}) = \operatorname{avg}(T_1, T_2, w_1, w_2)$$

- Rigging
 - How to blend (average) transformations

Linear Blend Skinning

Forward vs. inverse kinematics

Forward vs. inverse kinematics

- Controllers
 - Classical controllers e.g. in Autodesk Maya

- Controllers
 - Sketch-based controllers

Key-framing controllers

Motion Capture

- Special suits with markers
- Controlled
 - Lighting
 - Cameras
- Track markers
- Real-time monitoring

Motion Estimation

Motion Estimation

- Face is the most delicate part of a character
- Hard not to fall into the uncanny valley

The uncanny valley: don't fall into it

- How can we control facial animation
- Blendshapes
 - Provides a linear space of facial expessions

 How can we control facial animation Blendshapes

How can we control facial animation

Facial Motion Capture

- Fine scale details
 - Solution:Capture

Facial Motion Capture

- Fine scale details
 - Solution:Capture
 - Use as examples to define shape spaces, e.g. with blendshapes

