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Object Detection

Ø Localization
Ø Use a bounding box to 

localize the objects of 
interests

The task of assigning a label and a bounding box to all predefined objects 
in the image
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Object Detection

Ø Classification
Ø Box-level classification

The task of assigning a label and a bounding box to all predefined objects 
in the image. Horse



Applications

4Tian, Zhi, et al. “FCOS: A Simple and Strong Anchor-free Object Detector.” IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI). 2020.



Applications
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Counting crowd

https://www.youtube.com/watch?v=u_XOczajfRI
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Traditional Methods
Sliding windows: Classification 
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Traditional Methods

1. Compute features on multiple 
resolutions

2. Scoring every sliding windows

3. Applying Non-maxima 
suppression

Dalal and Triggs. Histograms of Oriented Gradients for Human Detection. CVPR 2005

Sliding windows: Classification 
Class: Dog, Cat, Human, Background



Non-maxima Suppression (NMS)
• Input: A list of proposal boxes B, corresponding confidence scores S 

and overlap threshold N.
• Output: A list of filtered proposals D.

D = []
while B is not empty:

i = Argmax(S)
D.append[Bi]
B.delete[Bi]

for Br in B:
if iou[Br,Bi] > th:

B.delete[Br]
Return D

Before NMS



Non-maxima Suppression (NMS)
• Input: A list of proposal boxes B, corresponding confidence scores S 

and overlap threshold N.
• Output: A list of filtered proposals D.

After NMS

D = []
while B is not empty:

i = Argmax(S)
D.append[Bi]
B.delete[Bi]

for Br in B:
if iou[Br,Bi] > th:

B.delete[Br]
Return D
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Two stage vs. One stage

Input image Proposals Classify the proposals

Two stage methods



Two stage vs. One stage

Input image Predict classified boxes

One stage methods



RCNN
Step 1: Selective Search → ~2k proposals

Ø find image regions that likely contain objects

Uijlings, J. R R, Sande V D, et al. Selective Search for Object Recognition[J]. International Journal of Computer Vision, 2013, 104(2):154-171.



RCNN

Warped region

CNN CNN features

Step 2: CNN extract features 
Ø Affine image warping: Get a fixed input size



RCNN

CNN CNN features

Warped region
SVM

Linear
Regression

SVM

Linear
Regression

Step 3: Classification and regression
Ø Classify with a linear SVM, linear regression for the bounding box offset



Fast-RCNN

Girshick, Ross. "Fast r-cnn." In Proceedings of the IEEE international conference on computer vision, pp. 1440-1448. 2015.

1. Selective search

2. Input image to CNN
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Fast-RCNN

Girshick, Ross. "Fast r-cnn." In Proceedings of the IEEE international conference on computer vision, pp. 1440-1448. 2015.

3. ROI pooling
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ROI Pooling

Feature map ROI Pooling: max pooling for each grid

7*7



Fast-RCNN

Girshick, Ross. "Fast r-cnn." In Proceedings of the IEEE international conference on computer vision, pp. 1440-1448. 2015.

Softmax: class

Regress: bbox

4. CNN heads
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Fast-RCNN

Girshick, Ross. "Fast r-cnn." In Proceedings of the IEEE international conference on computer vision, pp. 1440-1448. 2015.

Details of the CNN head

ROI Pooling FC ROI Features FC

Regressor

Softmax



Faster-RCNN
Main difference: Use a CNN to generate region proposals instead of selective search

Ren, Shaoqing, et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." Advances in neural information processing 
systems 28 (2015): 91-99.

Softmax: class

Regress: bbox

4. CNN heads
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1. Selective search

2. Input image into CNN

3. ROI pooling



Faster-RCNN
Main difference: Use a CNN to generate region proposals instead of selective search

Ren, Shaoqing, et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." Advances in neural information processing 
systems 28 (2015): 91-99.

Softmax: class

Regress: bbox

4. CNN heads1. Input image into CNN 3. ROI pooling

2. Region Proposal Network

RPN
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Faster-RCNN: RPN
Anchors: pre-defined boxes

Ren, Shaoqing, et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." Advances in neural information processing 
systems 28 (2015): 91-99.

9 pre-defined shapes
…



Faster-RCNN: RPN
Anchors: pre-defined boxes

Ren, Shaoqing, et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." Advances in neural information processing 
systems 28 (2015): 91-99.

9 pre-defined shapes
…

Positive/Negative

Regress bbox (x,y,w,h)

For each anchor

Output positive bbox



Test Performance

RCNN Fast-RCNN Faster RCNN
Time 50 s 2 s 0.2 s
mAP on Pascal VOC 66.0 66.9 66.9



Mean Average Precision
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Recall =
TP

TP + FN

TP = True Positives (Predicted as positive as was correct)
FN = False Negatives (Failed to predict an object)
FP = False Positives (Predicted as positive but was incorrect)
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TP=1, FP=0, FN=1



Timeline

…

Traditional Detection 
Methods

Deep learning based 
detection methods

2001 02 03 2004 05 2006 07 2008
2012

2014         2015            2016

2014        2015        2016        2017       2018       2019

One-stage

Two-stage

Anchor-based

Anchor-free

2017   2018    2019    2020

2018    2019    2020    2021

DJ Det HOG Det DPM

AlexNet

YOLO1,2 SSD

Retina Net

RCNN

Fast-RCNN
Faster-RCNN

FPN RepPoint (Anchor-free)

+Anchor boxes

FCO
S

YOLOv3 YOLOv4



Two-stage vs One-stage
One stage: No region proposal networks

YOLO, SSD

Directly regress the bbox (dx, dy, dh, dw, confidence)
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YOLO V1: only one estimation per pre-
defined region → low recall

7*7 grids



Two-stage vs One-stage
One stage: No region proposal networks

YOLO, SSD

Directly regress the bbox (dx, dy, dh, dw, confidence)

7*7 grids

YOLOV2, 3: Use anchors → improve recall

YOLO V1: only one estimation per pre-
defined region → low recall



Anchor-free vs Anchor-based
Anchor-free: do not rely on anchors

YOLOv1: only one estimation per 
pre-defined region

FCOS: for each point on the image
plane, regress to the distances to
the bounding box edges → high
recall

Tian, Zhi, Chunhua Shen, Hao Chen, and Tong He. "Fcos: Fully convolutional one-stage object detection." In Proceedings of the IEEE/CVF international conference on computer 
vision, pp. 9627-9636. 2019.
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Fig. 2. The network architecture of FCOS, where C3, C4, and C5 denote the feature maps of the backbone network and P3 to P7 are the feature
levels used for the final prediction. H ⇥W is the height and width of feature maps. ‘/s’ (s = 8, 16, ..., 128) is the down-sampling ratio of the feature
maps at the level to the input image. As an example, all the numbers are computed with an 800⇥ 1024 input.

hyper-parameters to label each anchor box as a positive,
ignored or negative sample. In previous works, they often
employ intersection over union (IOU) between anchor boxes
and ground-truth boxes to determine the label of an anchor
box (e.g., a positive anchor if its IOU is in [0.5, 1]). These
hyper-parameters have shown a great impact on the final
accuracy, and require heuristic tuning. Meanwhile, these
hyper-parameters are specific to detection tasks, making
detection tasks deviate from a neat fully convolutional net-
work architectures used in other dense prediction tasks such
as semantic segmentation.

Anchor-free Detectors. The most popular anchor-free
detector might be YOLOv1 [31]. Instead of using anchor
boxes, YOLOv1 predicts bounding boxes at points near the
center of objects. Only the points near the center are used
since they are considered to be able to produce higher-
quality detection. However, since only points near the cen-
ter are used to predict bounding boxes, YOLOv1 suffers
from low recall as mentioned in YOLOv2 [30]. As a result,
YOLOv2 [30] employs anchor boxes as well. Compared
to YOLOv1, FCOS can take advantages of all points in a
ground truth bounding box to predict the bounding boxes
and the low-quality detected bounding boxes can be sup-
pressed by the proposed “center-ness” branch. As a result,
FCOS is able to provide comparable recall with anchor-
based detectors as shown in our experiments.

CornerNet [32] is a recently proposed one-stage anchor-
free detector, which detects a pair of corners of a bounding
box and groups them to form the final detected bound-
ing box. CornerNet requires much more complicated post-
processing to group the pairs of corners belonging to the
same instance. An extra distance metric is learned for the
purpose of grouping.

Another family of anchor-free detectors such as [19] are
based on DenseBox [16]. The family of detectors have been
considered unsuitable for generic object detection due to
difficulty in handling overlapping bounding boxes and the
recall being relatively low. In this work, we show that both

problems can be largely alleviated with multi-level predic-
tion (i.e., FPNs). Moreover, we also show together with our
proposed center-ness branch, the much simpler detector can
achieve much better detection performance than its anchor-
based counterparts. Recently, FSAF [33] was proposed to
employ an anchor-free detection branch as a complement to
an anchor-based detection branch since they consider that
a totally anchor-free detector cannot achieve good perfor-
mance. They also make use of a feature selection module to
improve the performance of the anchor-free branch, making
the anchor-free detector have a comparable performance
to its anchor-based counterpart. However, in this work,
we surprisingly show that the totally anchor-free detector
can actually obtain better performance than its anchor-
based counterpart, without the need for the feature selection
module in FSAF. Even more surprisingly, it can outperform
the combination of anchor-free and anchor-based detectors
in FSAF. As a result, the long-standing anchor-boxes can
be completely eliminated, making detection significantly
simpler.

There are also some concurrent anchor-free detectors.
For example, CenterNet [34] predicts the center, width and
height of objects with hourglass networks, demonstrating
promising performance. Compared to CenterNet, FCOS en-
joys faster training, and has a better accuracy/speed trade-
off, as shown in Table 9. RepPoints [35] represents the boxes
by a set of points and uses converting functions to get
the target boxes. In contrast, FCOS is a concise and very
straightforward method for box detection.

After the submission of this work, some new anchor-
free detectors appeared. For instance, CPN [36] replaces
the region proposal networks (RPNs) in two-stage detectors
with bottom-up anchor-free networks, achieving improved
results. HoughNet [37] employs a voting mechanism to
improve the performance of anchor-free bottom-up detec-
tion. These detectors require a grouping or voting post-
processing, thus being considerably more complicated and
slower than FCOS. There are also many follow-up works

All points in the feature
space have the ground
truth supervision.



Aside: Key-point Detection
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Figure 2 – The proposed direct end-to-end multi-person pose estimation framework. The framework shares a similar architecture with
one-stage object detectors such as FCOS [28] but the bounding-box branch is replaced with a keypoint branch. KPAlign: the proposed
keypoint alignment module, as described in Sec. 2.2. Heatmaps: the branch for jointly heatmap-based learning and will be removed
when testing. Keypoints: the branch for keypoint detection. Classification is from FCOS and used to classify the locations on the feature
maps into “person” or “not person”. Center-ness is also from FCOS and predicts how far the current location is from the center of its
target object.

The straightforward and effective solution for object de-
tection gives rise to a question: can keypoint detection be
solved with this simple framework as well? It is easy to
see that the keypoints for an instance can be considered as
a special bounding-box with more than two corner points,
and thus the task could be solved by attaching more out-
put heads to the object detection networks. This solution
is intriguing since 1) it is end-to-end trainable (i.e., directly
mapping a raw input image to the desired instance-aware
keypoints). 2) It can avoid the shortcomings of both top-
down and bottom-up methods as it needs neither grouping
or bounding-box detection. 3) It can unify object detection
and keypoint detection in a single simple and elegant frame-
work.

However, we show that such a naive approach performs
unsatisfactorily, mainly due to the fact that these object de-
tectors resort to a single feature vector to regress all the
keypoints of interest for an instance, with the hope that the
single feature vector can faithfully preserve the essential in-
formation (e.g., the precise locations of all the keypoints)
in its receptive field, as shown in Fig. 1. While the single
feature vector may be sufficiently good to carry information
for simple bounding-box detection as shown in [28], where
only two corner points are involved in a bounding-box, it
has difficulties in encoding rich information for the more
challenging keypoint detection. As shown in our experi-
ments, this straightforward approach yields inferior perfor-
mance.

In this work, we propose a keypoint alignment (KPAlign)
mechanism to largely overcome the aforementioned prob-
lem of the solution. Instead of using a single feature vector
to regress all the keypoints for an instance, the proposed

KPAlign aligns the convolutional features with a target key-
point (or a group of keypoints) as possible as it can, and
then predicts the location of the target keypoint(s) with the
aligned features. Since the target keypoints and the used
features are roughly aligned, the features are only required
to encode the information in its neighborhood. It is evi-
dent that encoding the neighborhood is much easier than
encoding the whole receptive field, which thus results in an
improved performance. Moreover, the KPAlign module is
differentiable, thus keeping the model end-to-end trainable.
Additionally, it is well-known that learning a regression-
based model is difficult. However, in this work, we find the
regression task can largely benefit from a heatmap-based
learning. As a result, we propose to jointly learn the two
tasks during training. When testing, the heatmap-based
branch is disabled and thus does not impose any overheads
to the framework.

To summarize, the proposed one-stage regression-based
keypoint detection enjoys the followings advantages over
previous top-down or bottom-up approaches.

• The proposed framework is direct, totally end-to-end
trainable. To predict, it maps an input image to key-
points for each individual instance directly, relying on
neither intermediate operators like RoI feature crop-
ping, nor grouping post-processing, which sets our
work apart from previous frameworks [9, 1] with mul-
tiple steps.

• Our proposed framework can bypass the major short-
comings of both top-down and bottom-up methods.
For example, compared to top-down methods, our
framework can avoid the issue of early commitment

Tian, Zhi, Hao Chen, and Chunhua Shen. "Directpose: Direct end-to-end multi-person pose estimation." arXiv preprint arXiv:1911.07451 (2019).



Aside: Keypoint Detection

Locaƚor Ɛ͛ OƵƚpƵƚƐ Final Detection Ground-Truth Locaƚor Ɛ͛ OƵƚpƵƚƐ Final Detection Ground-Truth

Figure 5 – Visualization results of KPAlign on MS-COCO minival. The first image in each group shows the outputs of the locator in
KPAlign (i.e., the locations where the sampler samples the features used to predict the keypoints). The orange point denotes the original
location where the features will be used if KPAlign is not used. The second image shows the final keypoint detection results. As shown
in the figure, the proposed KPAlign can make use of the features near the keypoints to predict them. The final image shows that the
ground-truth keypoints. Zoom in for a better look.
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Aside: Instance Segmentation

Image credit

https://link.springer.com/chapter/10.1007%2F978-3-030-58452-8_17


Aside: Instance Segmentation

Based on Faster-RCNN

He, Kaiming, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. "Mask r-cnn." In Proceedings of the IEEE international conference on computer vision, pp. 2961-2969. 
2017.

Based on FCOS
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Multiple Variations
l Input: Image, Patch, Image Pyramid
l Backbones: 

l VGG16, ResNet-50, SpineNet, EfficientNet-B0/B7, CSPResNeXt50, CSPDarknet53
l Neck: 

l Additional block: SPP, ASPP, RFB, SAM
l Feature Fusion: FPN, PAN, NAS-FPN, Fully-connected FPN, BiFPN, ASFF, SFAM

l Head:
l One-stage:

l RPN, SSD, YOLO, RetinaNet (anchor based) 
l CornerNet, CenterNet , MatrixNet , FCOS  (anchor free) 

l Two-stage:
l Faster R-CNN, R-FCN, Mask RCNN  (anchor based)
l RepPoints (anchor free)

source

https://arxiv.org/pdf/2004.10934.pdf


New Framework based on Transformers
• Examples:

– DETR: End-to-End Object Detection with Transformers
– Swin Transformer: Hierarchical Vision Transformer using Shifted 

Windows

FasterRCNN FasterRCNN-fpn FCOS Retinanet DETR SWIN-L

mAP 41.1 42.0 43.1 40.4 44.9 58

Carion, Nicolas, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey Zagoruyko. "End-to-end object detection with transformers." In European 
Conference on Computer Vision, pp. 213-229. Springer, Cham, 2020.
Liu, Ze, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. "Swin transformer: Hierarchical vision transformer using shifted windows." arXiv preprint 
arXiv:2103.14030 (2021).

COCO dataset
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