Semantic Segmentation Cengiz Öztireli

MAMP

Semantic Segmentation Cengiz Öztireli

Semantic Segmentation

Pixel level classification Problem

Semantic Segmentation

 Label each pixel with a pre-defined class

• Dense prediction problem

• Does not differentiate instances

Semantic Segmentation

 Label each pixel with a pre-defined class

Dense prediction problem

• Do not differentiate instances

Applications

Autonomous Driving

Liver Tumor Segmentation

Representation

Input

segmented 3 segmented 5 4 1: Person 4 2: Purse 3 3: Plants/Grass 3 4: Sidewalk 3 5: Building/Structures 3

Semantic labels

Representation

Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE conference on CVPP. 2015: 3431-3440

Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE conference on CVPP. 2015: 3431-3440

Upsampling

4x4

Nearest neighbor interpolation

			10	12	17	20
10	20	2x	15	17	22	25
30	40		25	27	32	35
2x2		30	32	37	40	

4x4

Bilinear interpolation

Deconvolution

Upsampling first version with fix the parameters

Upsampling second version with learnable parameters

Upsampling second version with learnable parameters

Results

Pixel cross entropy

W * H C $\sum y_{c,i} * \log(y_{c,i})$ i c=1

Pixel cross entropy

$$\sum_{i}^{W * H} \sum_{c=1}^{C} y_{c,i} * \log(y'_{c,i})$$

Logits on position *i*: 0.1 0.1 0.1 0.02 0.03 0.5 0.15 Target on position *i*: 0 0 0 0 0 1 0

$$\ell_i = 1 * \log(0.5)$$

- Other loss functions: weighted cross entropy
 - Add different weights for different classes
 - Widely-used in long-tail class distributions

$$\sum_{i}^{W * H} \sum_{c=1}^{C} w_{c} * y_{c,i} * \log(y_{c,i}')$$

- Other loss functions:
 Dice coefficient
 - Focus more on small regions
 - Widely-used in medical image processing
 - Dice loss for the class c:

$$1 - 2 * \frac{\sum_{i}^{W * H} y_{c,i} * y'_{c,i}}{\sum_{i}^{W * H} (y_{c,i})^2 + \sum_{i}^{W * H} (y'_{c,i})^2}$$

Repeat for all classes and average the score

Evaluation Metric

Pixel accuracy: the percent of pixels in your image that are classified correctly

Input

Ground truth

Prediction

Evaluation Metric

IoU: the area of overlap between the predicted segmentation and the ground truth divided by the area of the union between the predicted segmentation and the ground truth

Evaluation Metric

mIoU: the area of overlap between the predicted segmentation and the ground truth divided by the area of the union between the predicted segmentation and the ground truth

Assume we calculate a two classes mIoU: (0 / 5 + 95 / 100) / 2= 47.5

General Problem

 Classification: global information

 We need to get rich context information for semantic classes

- Localization: local information
 - We need to predict fine-grained results for each pixel.

General Structure

Focus on solving the classification problem

General Structure

Skip connections

Outline

62.2 FCN 8S 696 Zoom Out 71.6 DeeplabV1 72.5 DeconvNet 79.7 🌒 DeeplabV2 83.1 Tusimple 83.6 large Kernel 84 2 • **Refine Net** 84.9 Resnet38 **PSPnet** 85.4 • 85.7 deeplabV3 deeplabV3+ 87.8 •

Segmentation

models

mloU on Pascal VOC 2012

Decoder

Baseline

Fully convolutional network

Rich context information (Encoder)

Multi scale & Enlarge the reception field: Deeplab, DenseNet, PSPNet

DeconvNet, SegNet, Tusimple, DeelabV3+

Deeplab v1-v3

Chen L C, Papandreou G, Kokkinos I, et al. Semantic image segmentation with deep convolutional nets and fully connected crfs[J]. ICLR. 2015

Deeplab v1-v3

Chen L C, Papandreou G, Kokkinos I, et al. Semantic image segmentation with deep convolutional nets and fully connected crfs[J]. ICLR. 2015

Deeplab v2

Chen L C, Papandreou G, Kokkinos I, et al. Semantic image segmentation with deep convolutional nets and fully connected crfs[J]. ICLR. 2015

Deeplab v3

Chen L C, Papandreou G, Kokkinos I, et al. Semantic image segmentation with deep convolutional nets and fully connected crfs[J]. ICLR. 2015

Zhao H, Shi J, Qi X, et al. Pyramid scene parsing network[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 2881-2890.

Further reading:

- DenseASPP for Semantic Segmentation in Street Scenes
- Context Encoding for Semantic Segmentation
- Representative Graph Neural Network
- Object-Contextual Representations for Semantic Segmentation
- Not All Pixels Are Equal: Difficulty-Aware Semantic Segmentation via Deep Layer Cascade
- Full-Resolution Residual Networks for Semantic Segmentation in Street Scenes

Outline

62.2 FCN 8S 696 Zoom Out 71.6 DeeplabV1 72.5 DeconvNet 79.7 🌒 DeeplabV2 83.1 Tusimple 83.6 large Kernel 84 2 • **Refine Net** 84.9 Resnet38 **PSPnet** 85.4 • 85.7 deeplabV3 deeplabV3+ 87.8 •

Segmentation

models

mloU on Pascal VOC 2012

Decoder

Baseline

Fully convolutional network

Rich context information (Encoder)

Multi scale & Enlarge the reception field: Deeplab, DenseNet, PSPNet

DeconvNet, SegNet, Tusimple, DeelabV3+

Decoder

SegNet

Decoder

SegNet

Max-pooling

SegNet

Badrinarayanan V, Kendall A, Cipolla R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(12): 2481-2495.

Decoder

Badrinarayanan V, Kendall A, Cipolla R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(12): 2481-2495.

Deeplab v3+

Chen L C, Zhu Y, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the European conference on computer vision (ECCV). 2018: 801-818.

Deeplab v3+

Deeplab v3+

Image

w/ BU

Chen L C, Zhu Y, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the European conference on computer vision (ECCV). 2018: 801-818.

Conclusions

- Take away messages
 - Dense prediction problem
 - Classification: large receptive field and rich context info.
 - Segmentation: localization, fine-grained boundaries
 - Deeplabv3+ is a strong baseline.

Open Questions

Trade-off between accuracy and efficiency

- Generalization to various classes
- Unbalanced training samples
- Semi-supervised, weak-supervised learning

References

- [1] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE conference on CVPP. 2015: 3431-3440.
- [2] Mostajabi M, Yadollahpour P, Shakhnarovich G. Feedforward semantic segmentation with zoom-out features[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 3376-3385.
- [3] Chen L C, Papandreou G, Kokkinos I, et al. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 40(4): 834-848.
- [4] Noh H, Hong S, Han B. Learning deconvolution network for semantic segmentation[C]//Proceedings of the IEEE international conference on computer vision. 2015: 1520-1528.
- [5] Chen L C, Yang Y, Wang J, et al. Attention to scale: Scale-aware semantic image segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 3640-3649.
- [6] Chen L C, Zhu Y, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the European conference on computer vision (ECCV). 2018: 801-818.
- [7] Wang P, Chen P, Yuan Y, et al. Understanding convolution for semantic segmentation[C]//2018 IEEE winter conference on applications of computer vision (WACV). IEEE, 2018: 1451-1460.
- [8] Peng C, Zhang X, Yu G, et al. Large kernel matters--improve semantic segmentation by global convolutional network[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 4353-4361.
- [9] Lin G, Milan A, Shen C, et al. Refinenet: Multi-path refinement networks for high-resolution semantic segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 1925-1934.

References

- [10] Wu Z, Shen C, Van Den Hengel A. Wider or deeper: Revisiting the resnet model for visual recognition[J]. Pattern Recognition, 2019, 90: 119-133.
- [11] Zhao H, Shi J, Qi X, et al. Pyramid scene parsing network[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 2881-2890.
- [12] \Zhang H, Dana K, Shi J, et al. Context encoding for semantic segmentation[C]//Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. 2018: 7151-7160.
- [13] Chen L C, Papandreou G, Schroff F, et al. Rethinking atrous convolution for semantic image segmentation[J]. arXiv preprint arXiv:1706.05587, 2017
- [14] Badrinarayanan V, Kendall A, Cipolla R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(12): 2481-2495.

