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About me

 Research interests:
— Dense prediction tasks
— Efficient model training
— Self-supervise/unsupervised training
— Robust models in the wild
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Content

* The power of large model
— Increased model size
— Increased labeled training dataset
— Multimodality

 Efficient model training

— Knowledge distillation
— Network pruning/ Quantization
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Deploying highly efficient,
compact models
on edge devices (e.g., AloT)
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Knowledge Distillation

* Knowledge distillation for classification

» Geoffrey Hinton, (2015)
» Soften output
« Compact model (student) learns from large models (teacher)
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* Knowledge distillation for classification
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Knowledge distillation for semantic segmentation

Baseline: applying KD to
each pixel on the logits

Pixel-wise
loss

Score map
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Structural Knowledge Distillation

* Ours: Knowledge distillation considering
structural correlations Q

|dea1: Learn from correlations
among spatial locations

v Pair-wise

v Holistic

=B UNIVERSITY OF Structured knowledge distillation for semantic segmentation, Liu, Yifan and Chen, Ke and Liu, Chris and Qin, Zengchang and Luo, Zhenbo and Wang, Jingdong, 2L9 ,CVPR
Gl 5 CAMBRIDGE Structured Knowledge Distillation for Dense Prediction, Liu, Yifan and Shu, Changyong and Wang, Jingdong and Shen, Chunhua, TPAMI, 2020




External: GAN
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Generator: try to generate fake
distributions which is similar to the real

ones, to fool the discriminator

Discriminator : try distinguish between
the real distribution and the fake

distribution

First proposed in image generation
tasks



External: GAN
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Structural Knowledge Distillation

* Ours: Knowledge distillation considering
structural correlations

|dea1: Learn from correlations
among spatial locations

v Pair-wise

v" Holistic
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Spatial distillation
* Mimic
Minimize the L2 similarity among features

A 1 x 1 convolution is employed to align the
channel of the feature

* Attention transfer

Get an attention map with one channel from the
feature map.

Merging all the channels into one channel.
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Channel-wise Distillation

* QOurs: Knowledge distillation considering the
information in the channels.
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Channel-wise Knowledge Distillation for Dense Prediction, Yifan Liu *, Changyong Shu*, Jianfei Gao, Zheng Yan, Chunhua Shen, ICCV, 2021
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[d structure_knowledge_distillation Public

The official code for the paper 'Structured Knowledge Distillation for
Semantic Segmentation'. (CVPR 2019 ORAL) and extension to other
tasks.
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Knowledge distillation on video frames

 Core idea:

— Considering the correlations among frames during
training, and inference on single frames:
* Learning from a large temporally consistent model
» Learning the correlations from a large optical flow model

Temporal information

Teacher |:> Student
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Pruning Happens in Human Brain

50 Trillion Synapses — 1000 Trillion Synapses — 500 Trillion Synapses

Newborn 1 year old Adult
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Pruning

[ Network 1. Prune weights
¥ * setting individual parameters to zero
[E"a"j;f;ﬂ}g‘r’]’s‘a"ce @ and making the network sparse.
$
e 2. Remove entire nodes from the
& network
Fine-tuning * make the network architecture itself
) 3 smaller, while aiming to keep the
FEU— I%// accuracy of the initial larger network
& no
Stop pruning
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Channel pruning

Baseline
Network M?
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Network Quantization

* 0.33323134411 — float point — range(0,1)
* 01011010— int8 —range(-127,128)

* First, we normalize the weight of the
network into the range (-127,128)
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Network Quantization

* If the output of the network is (X1,X2),
* For a weight x, we can use

new_w = round((X2-X1)/255*x)
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Network Quantization

* 1. Training
» 2. Quantization
3. Retraining
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Network Quantization

Challenges:

* Non-differentiable quantization functions (e.g., round, sign).
* Quantized structure needs to be re-designed.

« Large gap between theory and reality.
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Network Quantization

How efficient?
NVIDIA INT8: >3x speedup vs. 32-bit

TENSORRT TENSORRT

CAFFE FP32 INTS & mCaffe mTensorRT FP32 = TensorRT INT8
25
Runtime (ms) 242 170 50
20y
Images/sec 4 6 20 15 g"
10
Class loU 48.4 48.4 48.1 5
0
Category loU 76.9 76.9 76.8 Caffe TensorRT FP32 TensorRT INTS\
A\
9 ) ':l;l
Batch Size = 1, Input/Output Resolution = 512 x 1024 %)
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Summary

» Large model:
— Powerful
— Expensive
— Inefficient
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Summary

« Small model:

— Hard to train

« Knowledge distillation: Improve the performance

* Pruning: change the model structure to reduce the
size

* Quantization: keep the structure and change the
type of the weights of the network
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Thanks!
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