Object detection and recognition Cengiz Öztireli

Object Detection

The task of assigning a label and a bounding box to all predefined objects in the image

Localization

Use a bounding box to localize the objects of interests

Object Detection

The task of assigning a label and a bounding box to all predefined objects in the image.

Classification

Box-level classification

Applications

Applications

Counting crowd

Sliding windows: Classification

Class: Dog, Cat, Human, Background

Dog: Yes

Cat : No

Human: No

Background: No

Sliding windows: Classification

Class: Dog, Cat, Human, Background

Dog: No

Cat : Yes

Human: No

Background: No

Sliding windows: Classification

Class: Dog, Cat, Human, Background

Dog: No

Cat : No

Human: No

Background: Yes

Sliding windows: Classification

Class: Dog, Cat, Human, Background

- 1. Compute features on multiple resolutions
- 2. Scoring every sliding windows
- 3. Applying Non-maxima suppression

Non-maxima Suppression (NMS)

- Input: A list of proposal boxes B, corresponding confidence scores S and overlap threshold N.
- Output: A list of filtered proposals D.


```
D = []
while B is not empty:
    i = Argmax(S)
    D.append[Bi]
    B.delete[Bi]
    for Br in B:
        if iou[Br,Bi] > th:
            B.delete[Br]
Return D
```

Before NMS

Non-maxima Suppression (NMS)

- Input: A list of proposal boxes B, corresponding confidence scores S and overlap threshold N.
- Output: A list of filtered proposals D.


```
D = []
while B is not empty:
    i = Argmax(S)
    D.append[Bi]
    B.delete[Bi]
    for Br in B:
        if iou[Br,Bi] > th:
            B.delete[Br]
```

Return D

Two stage vs. One stage

Input image

Proposals

Classify the proposals

Two stage methods

Two stage vs. One stage

Input image

Predict classified boxes

One stage methods

RCNN

Step 1: Selective Search \rightarrow ~2k proposals

Find image regions that likely contain objects

Uijlings, J. R R, Sande V D, et al. Selective Search for Object Recognition[J]. International Journal of Computer Vision, 2013, 104(2):154-171.

RCNN

Step 2: CNN extract features

Affine image warping: Get a fixed input size

RCNN

Step 3: Classification and regression

Classify with a linear SVM, linear regression for the bounding box offset

Fast-RCNN

2. Input image to CNN

Girshick, Ross. "Fast r-cnn." In Proceedings of the IEEE international conference on computer vision, pp. 1440-1448. 2015.

Fast-RCNN

2. Input image to CNN

ROI Pooling

Feature map

ROI Pooling: max pooling for each grid

Fast-RCNN

2. Input image to CNN

Girshick, Ross. "Fast r-cnn." In Proceedings of the IEEE international conference on computer vision, pp. 1440-1448. 2015.

Fast-RCNN

Details of the CNN head

Girshick, Ross. "Fast r-cnn." In Proceedings of the IEEE international conference on computer vision, pp. 1440-1448. 2015.

Faster-RCNN

Main difference: Use a CNN to generate region proposals instead of selective search

2. Input image into CNN

Faster-RCNN

Main difference: Use a CNN to generate region proposals instead of selective search

Ren, Shaoqing, et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." Advances in neural information processing systems 28 (2015): 91-99.

Faster-RCNN: RPN

Anchors: pre-defined boxes

9 pre-defined shapes

Ren, Shaoqing, et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." Advances in neural information processing systems 28 (2015): 91-99.

Faster-RCNN: RPN

Anchors: pre-defined boxes

Ren, Shaoqing, et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." Advances in neural information processing systems 28 (2015): 91-99.

Test Performance

	RCNN	Fast-RCNN	Faster RCNN	
Time	50 s	2 s	0.2 s	
mAP on Pascal VOC	66.0	66.9	66.9	

Mean Average Precision

$$Precision = \frac{TP}{TP + FP} \qquad Recall = \frac{TP}{TP + FN}$$

TP = True Positives (Predicted as positive as was correct)
FN = False Negatives (Failed to predict an object)
FP = False Positives (Predicted as positive but was incorrect)

image: Waymo

= Predicted Bounding Box

= Ground Truth Bounding Box

TP=1, FP=0, FN=1

Two-stage vs One-stage

One stage: No region proposal networks Directly regress the bbox (dx, dy, dh, dw, confidence) YOLO, SSD

Two-stage vs One-stage

One stage: No region proposal networks YOLO, SSD Directly regress the bbox (dx, dy, dh, dw, confidence)

YOLO V1: only one estimation per predefined region \rightarrow low recall

7*7 grids

Two-stage vs One-stage

One stage: No region proposal networks YOLO, SSD Directly regress the bbox (dx, dy, dh, dw, confidence)

YOLO V1: only one estimation per predefined region \rightarrow low recall

YOLOV2, 3: Use anchors \rightarrow improve recall

7*7 grids

Anchor-free vs Anchor-based

Anchor-free: do not rely on anchors

YOLOv1: only one estimation per pre-defined region

FCOS: for each point on the image plane, regress to the distances to the bounding box edges \rightarrow high recall

Tian, Zhi, Chunhua Shen, Hao Chen, and Tong He. "Fcos: Fully convolutional one-stage object detection." In Proceedings of the IEEE/CVF international conference on computer vision, pp. 9627-9636. 2019.

FCOS

Aside: Key-point Detection

Tian, Zhi, Hao Chen, and Chunhua Shen. "Directpose: Direct end-to-end multi-person pose estimation." arXiv preprint arXiv:1911.07451 (2019).

Aside: Keypoint Detection

Estimated Ground Truth

Estimated

Ground Truth

Aside: Instance Segmentation

Aside: Instance Segmentation

Based on Faster-RCNN

Based on FCOS

He, Kaiming, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. "Mask r-cnn." In Proceedings of the IEEE international conference on computer vision, pp. 2961-2969. 2017

Multiple Variations

- Input: Image, Patch, Image Pyramid
- Backbones:
 - VGG16, ResNet-50, SpineNet, EfficientNet-B0/B7, CSPResNeXt50, CSPDarknet53
- Neck:
 - Additional block: SPP, ASPP, RFB, SAM
 - Feature Fusion: FPN, PAN, NAS-FPN, Fully-connected FPN, BiFPN, ASFF, SFAM
- Head:
 - One-stage:
 - RPN, SSD, YOLO, RetinaNet (anchor based)
 - CornerNet, CenterNet, MatrixNet, FCOS (anchor free)
 - Two-stage:
 - Faster R-CNN, R-FCN, Mask RCNN (anchor based)
 - RepPoints (anchor free)

New Framework based on Transformers

- Examples:
 - DETR: End-to-End Object Detection with Transformers
 - Swin Transformer: Hierarchical Vision Transformer using Shifted Windows

COCO dataset

	FasterRCNN	FasterRCNN-fpn	FCOS	Retinanet	DETR	SWIN-L
mAP	41.1	42.0	43.1	40.4	44.9	58

Carion, Nicolas, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey Zagoruyko. "End-to-end object detection with transformers." In European Conference on Computer Vision, pp. 213-229. Springer, Cham, 2020.

Liu, Ze, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. "Swin transformer: Hierarchical vision transformer using shifted windows." arXiv preprint arXiv:2103.14030 (2021).

Reference List

- 1) Viola, Paul, and Michael Jones. "Robust real-time object detection." International journal of computer vision 4, no. 34-47 (2001): 4.
- Dalal, Navneet, and Bill Triggs. "Histograms of oriented gradients for human detection." In 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR'05), vol. 1, pp. 886-893. leee, 2005.
- 3) Felzenszwalb, Pedro F., Ross B. Girshick, David McAllester, and Deva Ramanan. "Object detection with discriminatively trained part-based models." IEEE transactions on pattern analysis and machine intelligence 32, no. 9 (2009): 1627-1645.
- 4) He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Spatial pyramid pooling in deep convolutional networks for visual recognition." IEEE transactions on pattern analysis and machine intelligence 37, no. 9 (2015): 1904-1916.
- 5) Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2014: 580-587.
- 6) Girshick, Ross. "Fast r-cnn." In Proceedings of the IEEE international conference on computer vision, pp. 1440-1448. 2015.
- 7) Ren, Shaoqing, et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." Advances in neural information processing systems 28 (2015): 91-99.
- 8) Lin, Tsung-Yi, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie. "Feature pyramid networks for object detection." In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2117-2125. 2017.
- 9) Lin, Tsung-Yi, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. "Focal loss for dense object detection." In Proceedings of the IEEE international conference on computer vision, pp. 2980-2988. 2017.
- 10) Yang, Ze, Shaohui Liu, Han Hu, Liwei Wang, and Stephen Lin. "Reppoints: Point set representation for object detection." In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9657-9666. 2019.
- 11) Redmon, Joseph, Santosh Divvala, Ross Girshick, and Ali Farhadi. "You only look once: Unified, real-time object detection." In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 779-788. 2016.
- 12) Redmon, Joseph, and Ali Farhadi. "YOLO9000: better, faster, stronger." In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7263-7271. 2017.
- 13) Redmon, Joseph, and Ali Farhadi. "Yolov3: An incremental improvement." arXiv preprint arXiv:1804.02767 (2018).
- 14) Bochkovskiy, Alexey, Chien-Yao Wang, and Hong-Yuan Mark Liao. "Yolov4: Optimal speed and accuracy of object detection." arXiv preprint arXiv:2004.10934 (2020).

