10: Biological Applications for HMMs Machine Learning and Real-world Data (MLRD)

Andreas Vlachos (based on slides created by Ann Copestake and Simone Teufel)

Last session: dice world and HMM decoding

- You may by now have written a decoder, i.e., an algorithm that can determine the most likely state sequence of an HMM.
- From the task before that, you also have code that can estimate the parameters from a labelled HMM sequence.
- But the dice world is very simple/artificial.
- Let's look at some sequence learning in the real world.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

HMMs for parts of speech tagging

- Goal: determine the parts of speech for text
- States: parts of speech
- Observations: words

Copyright ©2020 Daniel Jurafsky & James H. Martin. From: Speech and Language Processing.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

There are many hidden states in POS tagging

Tag	Description	Example	Tag	Description	Example	Tag	Description	Example
CC	coord. conj.	and, but, or	NNP	proper noun, sing.	IBM	ТО	"to"	to
CD	cardinal number	one, two	NNPS	proper noun, plu.	Carolinas	UH	interjection	ah, oops
DT	determiner	a, the	NNS	noun, plural	llamas	VB	verb base	eat
EX	existential 'there'	there	PDT	predeterminer	all, both	VBD	verb past tense	ate
FW	foreign word	mea culpa	POS	possessive ending	's	VBG	verb gerund	eating
IN	preposition/	of, in, by	PRP	personal pronoun	I, you, he	VBN	verb past partici-	eaten
	subordin-conj						ple	
JJ	adjective	yellow	PRP\$	possess. pronoun	your, one's	VBP	verb non-3sg-pr	eat
JJR	comparative adj	bigger	RB	adverb	quickly	VBZ	verb 3sg pres	eats
JJS	superlative adj	wildest	RBR	comparative adv	faster	WDT	wh-determ.	which, that
LS	list item marker	1, 2, One	RBS	superlatv. adv	fastest	WP	wh-pronoun	what, who
MD	modal	can, should	RP	particle	up, off	WP\$	wh-possess.	whose
NN	sing or mass noun	llama	SYM	symbol	+,%, &	WRB	wh-adverb	how, where

Figure 8.2 Penn Treebank part-of-speech tags.

Copyright ©2020 Daniel Jurafsky & James H. Martin. From: Speech and Language Processing.

HMMs in Automatic Speech Recognition (ASR)

- Goal: determine from signal which words were said
- States: words
- Observations: phones (classified by acoustic classifier from acoustic inputs in signal)

A biological application: Protein analysis

- Goal: Find which sections of proteins are in cell membranes
- States: zones relating to cells
- Observations: amino acids

By Mouagip (talk)This W3C-unspecified vector image was created with Adobe Illustrator. - Transmembrane_receptor.png, CC-BY-SA 3.0 https://commons.wikimedia.org/w/index.php?curid=11317884

<ロト < 同ト < 三ト < 三ト < 三 ・ へのく

Transmembrane Protein analysis

- top line records the amino acid sequence (one character per amino acid)
- bottom line shows the states:
 - i: inside the cell
 - M: within the cell membrane
 - o: outside the cell
- Ignoring the start and end sequence states/labels for simplicity.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Eight minutes about biology of cells

- living organisms are made up of cells
- multicellular organisms have lots of cells
- cells are surrounded by a cell membrane
- cell membranes are lipid bilayers: inside the membrane is hydrophobic (water-hating), the two sides are hydrophilic (water-loving)

Jerome Walker - Own work, CC BY 2.5, https://commons.wikimedia.org/w/index.php?curid=915557

Proteins

- in cell metabolism: proteins make sure the right thing happens in the right place at the right time
- proteins are made up of amino acid sequences
- 20 amino acids are coded for directly by DNA
- amino acid sequences fold into very complex 3-D protein structure

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Cell membranes and proteins

- cell membranes have to let things in and out of the cell (e.g., water, glucose, sodium ions, calcium ions)
- proteins which are part of the cell membrane allow this (membrane proteins do other things too)

By LadyofHats Mariana Ruiz - Own work. https://commons.wikimedia.org/w/index.php?curid=6027169

Transmembrane proteins

- transmembrane proteins go through the membrane one or more times
- the channels formed by the protein allow ions and molecules through, in a controlled way
- the regions of the protein which lie inside and outside the cell tend to have more hydrophilic amino acids
- the regions inside the membranes tend to have more hydrophobic amino acids
- many transmembrane proteins involve one or more α-helixes in the membrane

Types of amino acids

- all amino acids have one amine (NH₂) and one carboxyl (COOH) group
- they also have a sidechain that differs from amino acid to amino acid
- properties of sidechain: weak acid, strong base, hydrophile, hydrophobe
- If alpha-carbon is adjacent to nitrogen atom, amino acid is called alpha amino acid

By Techguy78 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=89198282

Peptides

- two or more amino acids can combine to form a peptide (short chains of between 2 and 50 amino acids)
- in peptides, amino acids are connected by a peptide backbone, and what remains of each amino acid is called a residue (the side chain)
- alpha-peptides and beta-peptides have different secondary protein structure

Alpha helix

- alpha helix is most extreme, most predictable, most prevalent of secondary protein structures
- every backbone N-H group hydrogen bonds to the backbone C=O groups of the amino-acid located 3 or 4 residues earlier
- inner section is formed by tightly-coiled main chain
- side chains extend outwards in helical array
- In crystallographic electron density image left: O atoms red; N atoms blue; hydrogen bonds as green dotted lines

An α -helix in ultra-high-resolution electron density contours

Dcrjsr - Own work, CC BY 3.0,

https://commons.wikimedia.org/w/index.php?curid ←□ ▶ ← @ ▶ ← ≧ ▶ ← ≧ ▶ ⊆ ∽ ♀ ⊘

Transmembrane protein: schematic diagram

1. a single transmembrane α -helix (bitopic membrane protein) 2. a polytopic transmembrane α -helical protein 3. a polytopic transmembrane β -sheet protein (bitopic=single-span, polytopic=multi-span)

By Foobar - self-made by Foobar, CC BY 2.5, https://commons.wikimedia.org/w/index.php?curid=802476

Transmembrane protein: Bovine rhodopsin

- one of the visual pigments
- found in the rods of the retina (vertebrates)
- extremely sensitive to light (photobleaching)
- accurate structure via x-ray crystallography: difficult and time-consuming, membrane location undetermined

A biological application

#MNQGKIWTVVNPAIGIPALLGSVTVIAILVHLAILSHTTWFPAYWQGGVKKAA
iiiiiiiiiiiiiiiiii

- HMM-based modelling: much, much easier and quicker than x-ray crystallography
- distinguish interior of membrane from inside/outside of cell
- simple HMM in practical, but could be improved: more discussion in practical notes

Your Task

Task 9:

- Download the biological dataset and familiarise yourself with it
- Modify your code so that your HMM parameter estimation from Task 7 and decoder from Task 8 works with this data format
- Explore semi-supervised learning via self-training, i.e. using a trained model to annotate unlabelled data which in turn will be used for training
- Use 10-fold cross validation
- Evaluate reporting Precision and Recall