
5: Overtraining and Cross-validation
Machine Learning and Real-world Data

Simone Teufel

Computer Laboratory
University of Cambridge



Last session: Significance Testing

You have implemented various system improvements, e.g.,
concerning the (Laplace) smoothing parameter.
You have investigated whether a manipulation leads to a
statistically significant difference.
Let us now think about what our NB classifier has learned:

has it has learned that “excellent” is an indicator for positive
sentiment?
or has is learned that certain people are bad actors?



Ability to Generalise

We want a classifier that performs well on new,
never-before seen data.
That is equivalent to saying we want our classifier to
generalise well.
In detail, we want it to:

recognise only those characteristics of the data that are
general enough to also apply to some unseen data
ignore the characteristics of the training data that are
specific to the training data

Because of this, we never test on our training data, but use
separate test data.
But overtraining can still happen even if we use separate
test data.



Overtraining with repeated use of test data

Overtraining is when you think you are making
improvements (because your performance on the test data
goes up) . . .
. . . but in reality you are making your classifier worse
because it generalises less well to data other than your
test data.
You could make repeated improvements to your classifier,
choose the one that performs best on the test data, and
declare that as your final result.
By repeatedly using the test data, you have lost the effect
of it being surprising, really unseen data.
The classifier has now indirectly also picked up accidental
properties of the (small) test data.



Overtraining

Until deployed to real unseen data, there is a danger that
overtraining will go unnoticed.
Other names for this phenomenon:

Overfitting
Type III errors

testing hypotheses suggested by the data
choosing the test falsely to suit the significance of the sample



Overtraining, the hidden danger

ML researchers often overlook their own overtraining. There
are reasons for this:

You have to actively work harder (be vigilant) in order to
notice that it’s happening
But you may be tempted not to notice it

performance “increases” are always tempting
(even if you know they might be unjustified).

It’s a question of scientific ethics and “truth-finding”.

The first principle is that you must not fool yourself, and you are
the easiest person to fool. (Richard Feynman)



Am I overtraining?

You can be confident you are not overtraining if you have
large amounts of test data, and use new (and large
enough) test data each time you make an improvement.
You can’t be sure if you are overtraining if you make
incremental improvements to your classifier and repeatedly
optimise the system based on its performance on the
same small test data.
One way to detect overtraining is to inspect the most
characteristic features for each class (cf. starred tick). You
may find features that are unlikely to generalise; sign of
overtraining.



The “Wayne Rooney” effect

One way to notice overtraining is by time effects.
Time changes public opinion on particular people or effects.
Vampire movies go out of fashion, superhero movies come
into fashion.
People who were hailed as superstars in 2003 might later
get bad press in 2010
Called the “Wayne Rooney” effect

You will test how well your system (trained on data from up
to 2004) performs on reviews from 2015/6



Confusion Matrix

System says:

POS NEG total
POS V W 900

TRUTH: NEG X Y 900
Total V+X W+Y 1800

Note that cells along the diagonal are correct decisions.



Cross-validation: motivation

We can’t afford getting new test data each time.
We must never test on the training set.
We also want to use as much training material as possible
(because ML systems trained on more data are almost
always better).
We can achieve this by using every little bit of training data
for testing – under the right kind of conditions.
By cleverly iterating the test and training split around



N-Fold Cross-validation
Split data randomly into N folds

For each fold X – use all other folds for training, test on fold X only

The final performance is the average of the performances for each fold

“Jack-knifing” = Leave-one-out Cross-validation



N-Fold Cross-validation

Stratified cross-validation: a special case of
cross-validation where each split is done in such a way that
it mirrors the distribution of classes observed in the overall
data.
Significance Testing:

Consider all of the X test folds together as one overall event
Perform one test, counting positives, negatives and null out
of the total number of mini-events
We don’t care which fold a mini-event came from, as there
won’t be any repetition
You might see a significance where there wasn’t one
before, because you now have gained a lot of test data.



N-Fold Cross-Validation and Variance between splits

If all splits perform equally well, this is a good sign
We can calculate variance:

var =
1

n

n∑
i

(xi − µ)2

xi: the score of the ith fold
µ : avgi(xi): the average of the scores



Data splits in our experiment

Training set (1,600)
Validation (development) set (200) – used up to now for
testing
Test set (200) – new today!
Use training + validation corpus for cross-validation



Cross-validation doesn’t solve all our problems

Cross-validation givs us some safety from overtraining.
Nevertheless, even with cross-validation we still use data
that is in some sense “seen”.
So it is no good for incremental, small improvements
reached via feature engineering.
We also cannot use the cross-validation trick to set global
parameters
because we only want to accept parameters that are
independent of any training.
As always, the danger is learning accidental properties that
don’t generalise.
Enter the validation corpus



Validation Corpus

The validation corpus is never used in training or testing.
We can therefore use this corpus for two things which are
useful:

We can use it to set any parameters in any algorithm,
before we start with training/testing.
We can also use this corpus as a stopping criterion for
feature engineering

We can detect “improvements” that help in crossvalidation
over the test and train corpus, but lead to performance
losses on the validation corpus
We stop “fiddling” with the features when the result on
validation corpus start decreasing (in comparison to the
cross-validation results).



First task today

Write code that prints out your best system’s confusion
matrix
We recommend that you write your confusion matrix printer
in a parameterised way so that you can reuse it for different
distributions of classes



Second task today

Implement two different cross-validation schemes:
Random
Random Stratified

Observe results. Calculate variance between splits.



Third task today

Use the precious test data for the first time (on the best
system NB you currently have)
Download the 2015/16 review data and run that system on
it too (original reviews collected before 2004).
Compare results with the accuracies from testing on the
development set (as you did before today)
Test your sentiment lexicon system on the new test data
and on 2015/16 data. Significant difference to NB?



Literature

James, Witten, Hastie and Tibshirani (2013). An
introduction to statistical learning, Springer Texts in
Statistics. Section 5.1.3 p. 181–183 (k-fold
Cross-Validation)


