4: Significance Testing Machine Learning and Real-world Data

Simone Teufel

Computer Laboratory University of Cambridge

Last session: Zipf's Law and Heaps' Law

- Zipf's Law: small number of very high-frequency words; large number of low-frequency words ("long tail").
- Heaps' Law: as more text is gathered, there will be diminishing returns in terms of discovery of new word types in the tail.
 - We will systematically always encounter new unseen words in new texts.
- Smoothing works by
 - lowering the MLE estimate for seen types
 - redistributing this probability to unseen types (e.g. for words in long tail we might encounter during our experiment).

Observed system improvement

- This produced a better system.
- Or at least, you observed higher accuracies.
- Today: we use a statistical test to gather evidence that one system is really better than another system.
- really = "significantly"

Variation in the data

- Documents are different (writing style, length, type of words used, ...)
- Some documents will make it easier for your system to score well, some will make it easier for some other system.
- Maybe you were just lucky and all documents in the test set are in the smoothed system's favour?
 - This could be the case if you don't have enough data.
 - This could be the case if the difference in accuracy is small.
- Maybe both systems perform equally well in reality?
- We need to show that the smoothed system is significantly better.

Statistical Significance Testing

- Let's say we observe that System 1 returns a higher overall accuracy than System 2 in our experiment, and now we want to show that System 1 is significantly better.
- Null Hypothesis: two result sets come from the same distribution
 - System 1 is (really) equally good as System 2.
- First, choose a significance level (α), e.g., $\alpha = 0.01$ or 0.05.
- We then try to reject the null hypothesis with confidence $1-\alpha$ (99% or 95% in this case)
- Rejecting the null hypothesis means showing that the observed result is unlikely to have occurred by chance.

Reporting significance

If we successfully pass the significance test, and only then, we can report:

"System 1 is significantly better than System 2." \equiv "The difference between System 1 and System 2 is statistically significant at $\alpha=0.01$."

- Any statements about differences without mentioning significance are strictly speaking meaningless if all they are based on is a difference in raw accuracy alone (without a stat test).
- Also note: it is never a measured value (such as accuracy) that is significant; it is always differences between values that are significant.

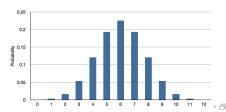
Sign Test (non-parametric, paired)

- The sign test uses a binary event model.
- Here, events correspond to documents.
- Events have binary outcomes:
 - Positive: System 1 beats System 2 on this document.
 - Negative: System 2 beats System 1 on this document.
 - (Tie: System 1 and System 2 do equally well on this document / have identical results – more on this later).
- Binary distribution allows us to calculate the probability that, say, (at least) 1,247 out of 2,000 such binary events are positive.
- Which is identical to the probability that (at most) 753 out of 2,000 are negative.

Binomial Distribution B(N,q)

- Call the probability of a negative outcome q (here q=0.5)
- Probability of observing X = k negative events out of N:

$$P_q(X = k|N) = \binom{N}{k} q^k (1-q)^{N-k}$$



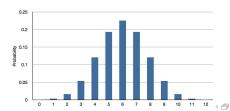
Binomial Distribution B(N,q)

- Call the probability of a negative outcome q (here q=0.5)
- Probability of observing X = k negative events out of N:

$$P_q(X = k|N) = \binom{N}{k} q^k (1-q)^{N-k}$$

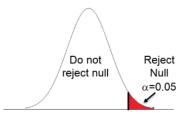
■ At most *k* negative events:

$$P_q(X \le k|N) = \sum_{i=0}^{k} {N \choose i} q^i (1-q)^{N-i}$$



Binary Event Model and Statistical Tests

- If the probability of observing the event we saw under the Null Hypothesis is very small (smaller than our pre-selected significance level α , e.g., 0.05), we can safely reject the Null hypothesis.
- The $P(X \le k)$ we just calculated directly gives us the probability we are interested in.
- If $P(X \le k) \le 0.05$, this means there is less than a 5% chance that the effect is due to chance.



Two-Tailed vs. One-Tailed Tests

A more conservative, rigorous test would be a non-directional one (though some debate on this!)

- Testing for statistically significant difference regardless of direction: a two-tailed test
- We are now interested in the value of k at which 0.05 of the probability exists in the two tails.
- Due to symmetry of B(N,0.5): if $2P(X \le k) \le 0.05$, then there is less than a 5% chance that System 1 does not actually beat System 2.
- You have now measured significance wrt. the chance of an event which is as extreme as the one you observed, or even more extreme
- We'll be using the two-tailed test for this practical.

Specificity and Power of a Test

When we perform significance testing, there are two things we don't want to happen:

- That a test declares a difference when it it doesn't exist (Type 1 error).
 - \blacksquare 1- α is the specificity of a test.
 - If you suspect that this is happening, change your test!
- That a test declares no difference when it does exist (Type 2 error).
 - \blacksquare β is the probability that this happens. 1- β is called the power of a test.

What to do if you suspect a problem

Power issues (Type 2 errors):

- Use more data
- Change your system so there is a stronger effect
- Use a more powerful test, for instance permutation test rather than sign test.
- quite common
- Hopefully, your p will decrease and finally reach below α .

Specificity issues (Type 1 errors):

■ This could be a problem of how you apply the test

Claims supported by Significance Testing

- Significance tests cannot show that two distributions are the same, they can only potentially ever show a difference.
- As a result, if you pass the test and are able to reject the Null hypothesis, you can report "better".
- If you fail the test, you have an inconclusive result.
- You are unable to reject the Null hypothesis, but the Null hypothesis is not proven.
- You failed the test because there was too little data or because there was no effect.
- If your system performs below your competitor's system, but you cannot prove a difference with a test, this is not proof that your system is equally good as your competitor's.

Treatment of Ties

- When comparing two systems in classification tasks, it is common for a large number of ties to occur.
- Disregarding ties will lead to unjustifed rejection of Null hypothesis (Type 1 error).
- Here, we will treat ties by adding 0.5 events to the positive and 0.5 events to the negative side (and round up at the end).

Today's Tasks I

- Implement the above-introduced test for statistical significance, so that you can compare two systems.
- Implementation details on moodle (including helper code as before)

Today's Tasks II

- Create more (potentially better) systems to use the significance test on.
- Improve the simple lexicon-based classifier by weighting terms with stronger sentiment more.
 - You can empirically find out the optimal weight.
 - We call this process parameter tuning.
 - Use the training corpus to set your parameters, then test on the 200 documents as before.
 - We should really use a validation corpus, but I haven't given you one yet... More on this in Session 5.

Starred Tick — Parameter tuning for NB Smoothing

■ Formula for smoothing with a constant ω :

$$\hat{P}(w_i|c) = \frac{count(w_i, c) + \omega}{(\sum_{w \in V} count(w, c)) + \omega|V|}$$

- We used add-one smoothing in Task 2 ($\omega = 1$).
- Using the training corpus, we can optimise the smoothing parameter ω .

Literature

- Siegel and Castellan (1988). *Non-parametric statistics for the behavioral sciences*, McGraw-Hill, 2nd. Edition.
 - Chapter 2: The use of statistical tests in research
 - Sign test: p. 80–87