Machine Learning and Bayesian Inference

Computer Laboratory, Room FC06
Telephone extension 63725
Email: sbh11@cam.ac.uk

https : //www.cl.cam.ac.uk/ ~ sbhi1

Copyright © Sean Holden 2022.

Question and Answer Session 1

Question:

“In the iteratively reweighted least squares algorithm we use the Newton method,
potentially because calculating the Hessian is tractable and we can calculate it ex-
plicitly.

According to a quick Google search, second-order methods are not used much for

perceptron training (e.g., Adam is a first order method).

In theory, couldn’t we calculate second derivatives with a backpropagation algo-

rithm, or with the automated differentiation feature of dedicated languages such as
PyTorch?

Would it be computationally too expensive to be worth the increased precision per
iteration?”

Question and Answer Session 1

Answer: part 1

« Numerous methods exploiting the matrix of second derivatives (the)
have been used over several decades.

- We will see later an instance that requires them when the course discusses
the use of to estimate

The issue of is currently rather controversial in
neural network research.

See:

https : //people.idsia.ch/ ~ juergen/scientific — integrity — turing — award — deep — learning.html

and the extensive discussion on:

https : //mailman.srv.cs.cmu.edu/mailman/listinfo/connectionists

Question and Answer Session 1

Here is the relevant slide...

()
[terative re-weighted least squares

The Newton-Raphson method

4)
To minimize iterate as follows:

Here the is the matrix of of

. J

All we need to do now is to
_ y,

To see what’s going on, I'm going to show a sequence of slides that comes up
later on...

Reminder: Taylor expansion

In the about a point for a function

1S
()
. J

What does this look like for the kinds of function we’re interested in? As an
We can try to approximate

where

This has a , but in one dimension.

5

Reminder: Taylor expansion

The functions of interest look like this:

600

500

400 |
=300 |
g

200 |

100

By replacing

The function f(z)

with its

we can see what the

06 The function exp(—f(z))

05 r

0.4 r

0.3 r

exp(—f(z))

0.2 r

0.1 r

, which is at

looks like. Note that the

Reminder: Taylor expansion

Here are the approximations for : and
Taylor expansion for k =1 Taylor expansion for k = 2 Taylor expansion for k =3
0 S 0t T 0t
-200 } -200 | 200 }
-400 -400 Y400
600 | : . 600 : :
-600 : :
5 0 . 5 ? 5 -5 ? 5
06 exp(—f (g:vn)) exact ex%(G— f(z)) using Taylor expansion for k = 2
04] 04 |
02|] 02 |
-5 0 5 5 0 5
> X
The use of looks promising...

Reminder: Taylor expansion

In the Taylor expansion for is

where . denotes

and is the matrix with elements

Question and Answer Session 1

Getting back to business...

« Writing | ' for the Hessian evaluated at v, the Taylor expansion of at
some point v, 1s an

- What happens if I solve for the ?
« Well, , set to 0 and solve.
« We get

Hooray—we’ve derived the !

Question and Answer Session 1

So, what are the issues here?

o If is then the Newton update goes in a
o If is then you can the Newton update.
- But, is generally for neural networks.

And there are other issues:

o The Hessian needs space.

« Computing 1S

 You need to compute !

. can be particularly problematic. (And numerically tricky...)

So for various reasons Newton updates in their basic form, and use of !'! in gen-
eral, can be problematic.

10

Question and Answer Session 1

Nonetheless, there have been many attempts to

« The : do
that are, in a sense,
 The
to that are computed using

« The and so on...

11

In a

. us€ a

