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�estion and Answer Session 1

Question:

“In the iteratively reweighted least squares algorithm we use the Newton method,
potentially because calculating the Hessian is tractable and we can calculate it ex-
plicitly.

According to a quick Google search, second-order methods are not used much for
perceptron training (e.g., Adam is a �rst order method).

In theory, couldn’t we calculate second derivatives with a backpropagation algo-
rithm, or with the automated di�erentiation feature of dedicated languages such as
PyTorch?

Would it be computationally too expensive to be worth the increased precision per
iteration?”
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�estion and Answer Session 1

Answer: part 1

Beware of the “quick Google search”!

• Numerous methods exploiting the matrix of second derivatives (the Hessian)
have been used over several decades.

• We will see later an instance that requires them when the course discusses
the use of Bayesian inference to estimate error bars.

�e issue of acknowledgement of prior art is currently rather controversial in
neural network research.

See:

https : //people.idsia.ch/ ∼ juergen/scientific− integrity− turing− award− deep− learning.html

and the extensive discussion on:

https : //mailman.srv.cs.cmu.edu/mailman/listinfo/connectionists
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Here is the relevant slide…

Iterative re-weighted least squares

�e Newton-Raphson method generalizes easily to functions of a vector :

To minimize E : Rn → R iterate as follows:

wt+1 = wt −H−1(wt)
∂E(w)

∂w

∣∣∣∣
wt

.

Here the Hessian is the matrix of second derivatives of E(w)

Hij(w) =
∂2E(w)

∂wi∂wj
.

All we need to do now is to work out the derivatives. . .

To see what’s going on, I’m going to show a sequence of slides that comes up
later on…
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Reminder: Taylor expansion

In one dimension the Taylor expansion about a point x0 ∈ R for a function f :
R→ R is

f (x) ≈ f (x0) +
1

1!
(x− x0)f

′(x0)

+
1

2!
(x− x0)

2f ′′(x0)

+ · · · + 1

k!
(x− x0)

kf k(x0).

What does this look like for the kinds of function we’re interested in? As an
example We can try to approximate

exp (−f (x))

where
f (x) = x4 − 1

2
x3 − 7x2 − 5

2
x + 22.

�is has a form similar to S(w), but in one dimension.
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Reminder: Taylor expansion

�e functions of interest look like this:
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By replacing −f (x) with its Taylor expansion about its maximum, which is at

xmax = 2.1437

we can see what the approximation to exp(−f (x)) looks like. Note that the exp
hugely emphasises peaks.
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Reminder: Taylor expansion

Here are the approximations for k = 1, k = 2 and k = 3.
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�e use of k = 2 looks promising…
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Reminder: Taylor expansion

In multiple dimensions the Taylor expansion for k = 2 is

f (x) ≈ f (x0) +
1

1!
(x− x0)

T ∇f (x)|x0

+
1

2!
(x− x0)

T ∇2f (x)
∣∣
x0
(x− x0)

where ∇ denotes gradient

∇f (x) =
(

∂f(x)
∂x1

∂f(x)
∂x2
· · · ∂f(x)

∂xn

)
and ∇2f (x) is the matrix with elements

Mij =
∂2f (x)

∂xi∂xj

(Looks complicated, but it’s just the obvious extension of the 1-dimensional case.)
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Ge�ing back to business…

• Writing H for the Hessian evaluated at wt, the Taylor expansion of E(w) at
some point wt is an approximation

E(w) ' E(wt) + (w −wt)
T ∂E(w)

∂w

∣∣∣∣
wt

+
1

2
(w −wt)

TH(wt)(w −wt).

• What happens if I solve for the minimum of the approximation?
• Well, di�erentiation the approximation, set to 0 and solve.
• We get

wmin = wt −H−1(wt)
∂E(w)

∂w

∣∣∣∣
wt

.

Hooray—we’ve derived the Newton update!
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So, what are the issues here?

• If E(w) is quadratic then the Newton update goes to the minimum in a single
step.

• If E(w) is convex then you can iterate the Newton update.
• But, E(w) is generally not convex for neural networks.

And there are other issues:

• �e Hessian needs O(d2) space.
• Computing H−1 is O(d3).
• You need to compute H−1 at every iteration!
• Saddle points can be particularly problematic. (And numerically tricky…)

So for various reasons Newton updates in their basic form, and use ofH in gen-
eral, can be problematic.
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Nonetheless, there have been many a�empts to gain the advantages without the
drawbacks:

• �e Conjugate Gradient Method: do line searches in a sequence of directions
that are, in a sense, conjugate to one-another .

• �e Broyden-Fletcher-Goldfarb-Shanno (BFGS) method: use a sequence of ap-
proximations to H−1 that are computed using e�cient updates.

• �e reduced memory BFGS method and so on…
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