Machine Learning and Bayesian Inference How to evaluate Gaussian integrals

Sean B. Holden © 2020

1 Introduction

The following notes show how to evaluate the standard integral required in deriving the approximation to the Bayes-optimal neural network.

2 Gaussian integrals: the simple case

The simplest version of the problem is to evaluate the integral

$$
I=\int_{-\infty}^{\infty} \exp \left(-\frac{a x^{2}}{2}\right) d x
$$

This is a fairly standard integration problem and several solutions are available in text books. For example, start by squaring it, so

$$
\begin{aligned}
I^{2} & =\int_{-\infty}^{\infty} \exp \left(-\frac{a x^{2}}{2}\right) d x \times \int_{-\infty}^{\infty} \exp \left(-\frac{a y^{2}}{2}\right) d y \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp \left(-\frac{a}{2}\left(x^{2}+y^{2}\right)\right) d x d y
\end{aligned}
$$

Then convert to polar co-ordinates, so $x=r \cos \theta, y=r \sin \theta$ and the Jacobian is

$$
J=\left|\begin{array}{ll}
\frac{\partial x}{\partial r} & \frac{\partial y}{\partial r} \\
\frac{\partial x}{\partial \theta} & \frac{\partial y}{\partial \theta}
\end{array}\right|=\left|\begin{array}{cc}
\cos \theta & \sin \theta \\
-r \sin \theta & r \cos \theta
\end{array}\right|=r \cos ^{2} \theta+r \sin ^{2} \theta=r .
$$

We now have

$$
I^{2}=\int_{0}^{2 \pi} \int_{0}^{\infty} r \exp \left(-\frac{a r^{2}}{2}\right) d r d \theta
$$

and as

$$
-\frac{1}{a} \frac{d}{d r}\left(\exp \left(-\frac{a r^{2}}{2}\right)\right)=r \exp \left(-\frac{a r^{2}}{2}\right)
$$

this is

$$
I^{2}=\int_{0}^{2 \pi}\left[-\frac{1}{a} \exp \left(-\frac{a r^{2}}{2}\right)\right]_{0}^{\infty} d \theta=\frac{1}{a} \int_{0}^{2 \pi} d \theta=\frac{2 \pi}{a}
$$

and so

$$
I=\sqrt{\frac{2 \pi}{a}} .
$$

3 Gaussian integrals: the general case

The problem now is to evaluate the more general integral

$$
I=\int_{\mathbb{R}^{n}} \exp \left(-\frac{1}{2}\left(\mathbf{x}^{T} \mathbf{A} \mathbf{x}+\mathbf{b}^{T} \mathbf{x}+c\right)\right) d \mathbf{x}
$$

where \mathbf{A} is an $n \times n$ symmetric matrix with real-valued elements, $\mathbf{b} \in \mathbb{R}^{n}$ is a real-valued vector and $c \in \mathbb{R}$. First of all, we can dispose of the constant part of the integrand as

$$
I=\int_{\mathbb{R}^{n}} \exp \left(-\frac{1}{2}\left(\mathbf{x}^{T} \mathbf{A} \mathbf{x}+\mathbf{b}^{T} \mathbf{x}\right)\right) \exp \left(-\frac{c}{2}\right) d \mathbf{x}=\exp \left(-\frac{c}{2}\right) I^{\prime}
$$

where

$$
I^{\prime}=\int_{\mathbb{R}^{n}} \exp \left(-\frac{1}{2}\left(\mathbf{x}^{T} \mathbf{A} \mathbf{x}+\mathbf{b}^{T} \mathbf{x}\right)\right) d \mathbf{x}
$$

We're now going to make a change of variables, based on the fact that \mathbf{A} has n eigenvalues v_{i} and n eigenvectors \mathbf{e}_{i} such that

$$
\begin{equation*}
\mathbf{A} \mathbf{e}_{i}=v_{i} \mathbf{e}_{i} \tag{1}
\end{equation*}
$$

for $i=1, \ldots, n$. The eigenvalues can be found such that they are orthonormal

$$
\mathbf{e}_{i}^{T} \mathbf{e}_{j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { otherwise }\end{cases}
$$

Multiplying (1) on both sides by \mathbf{A}^{-1} gives

$$
\mathbf{A}^{-1} \mathbf{A} \mathbf{e}_{i}=\mathbf{I}_{n} \mathbf{e}_{i}=\mathbf{e}_{i}=\mathbf{A}^{-1} v_{i} \mathbf{e}_{i}
$$

for $i=1, \ldots, n$, where \mathbf{I}_{n} is the $n \times n$ identity matrix. Consequently

$$
\mathbf{A}^{-1} \mathbf{e}_{i}=\frac{1}{v_{i}} \mathbf{e}_{i}
$$

for $i=1, \ldots, n$ and \mathbf{A}^{-1} has the same eigenvectors as \mathbf{A}, but eigenvalues $1 / v_{i}$. As the eigenvectors are orthonormal, any vector \mathbf{x} can be written as

$$
\mathbf{x}=\sum_{i=1}^{n} \lambda_{i} \mathbf{e}_{i}
$$

for suitable values λ_{i}, and we can represent \mathbf{b} as

$$
\mathbf{b}=\sum_{i=1}^{n} \beta_{i} \mathbf{e}_{i}
$$

in the same way. Next, we make a change of variables from x to

$$
\boldsymbol{\lambda}^{T}=\left[\begin{array}{llll}
\lambda_{1} & \lambda_{2} & \cdots & \lambda_{n}
\end{array}\right] .
$$

To make a change of variables we need to compute the Jacobian and rewrite the integral. The Jacobian for this transformation is

$$
J=\left|\begin{array}{cccc}
\frac{\partial x_{1}}{\partial \lambda_{1}} & \frac{\partial x_{2}}{\partial \lambda_{1}} & \cdots & \frac{\partial x_{n}}{\partial \lambda_{1}} \\
\frac{\partial x_{1}}{\partial \lambda_{2}} & \frac{\partial x_{2}}{\partial \lambda_{2}} & \cdots & \frac{\partial x_{n}}{\partial \lambda_{2}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial x_{1}}{\partial \lambda_{n}} & \frac{\partial x_{2}}{\partial \lambda_{n}} & \cdots & \frac{\partial x_{n}}{\partial \lambda_{n}}
\end{array}\right| .
$$

As we saw above that

$$
\mathbf{x}=\sum_{i=1}^{n} \lambda_{i} \mathbf{e}_{i}
$$

we have

$$
x_{j}=\sum_{i=1}^{n} \lambda_{i} \mathbf{e}_{i}^{(j)}
$$

where $\mathbf{e}_{i}^{(j)}$ is the j th element of \mathbf{e}_{i}, and so

$$
\frac{\partial x_{j}}{\partial \lambda_{k}}=\mathbf{e}_{k}^{(j)}
$$

Thus

$$
J=\left|\begin{array}{cccc}
\vdots & \vdots & \cdots & \vdots \\
\mathbf{e}_{1} & \mathbf{e}_{2} & \cdots & \mathbf{e}_{n} \\
\vdots & \vdots & \cdots & \vdots
\end{array}\right|
$$

That is, the determinant of the matrix having the eigenvectors as its columns. Define

$$
\mathbf{E}=\left(\begin{array}{cccc}
\vdots & \vdots & \cdots & \vdots \\
\mathbf{e}_{1} & \mathbf{e}_{2} & \cdots & \mathbf{e}_{n} \\
\vdots & \vdots & \cdots & \vdots
\end{array}\right)
$$

such that $J=|\mathbf{E}|$. As the eigenvectors are orthonormal we have

$$
J^{2}=|\mathbf{E}||\mathbf{E}|=|\mathbf{E}|\left|\mathbf{E}^{T}\right|=\left|\mathbf{E E}^{T}\right|=\left|\mathbf{I}_{n}\right|=1
$$

and so $J=1$.
Let's now look at the integrand

$$
\mathbf{x}^{T} \mathbf{A} \mathbf{x}+\mathbf{b}^{T} \mathbf{x}
$$

Looking at the first term

$$
\begin{aligned}
\left(\sum_{i=1}^{n} \lambda_{i} \mathbf{e}_{i}^{T}\right) \mathbf{A}\left(\sum_{i=1}^{n} \lambda_{i} \mathbf{e}_{i}\right) & =\left(\sum_{i=1}^{n} \lambda_{i} \mathbf{e}_{i}^{T}\right)\left(\sum_{i=1}^{n} \lambda_{i} \mathbf{A} \mathbf{e}_{i}\right) \\
& =\left(\sum_{i=1}^{n} \lambda_{i} \mathbf{e}_{i}^{T}\right)\left(\sum_{i=1}^{n} \lambda_{i} v_{i} \mathbf{e}_{i}\right) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{i} \lambda_{j} v_{i} \mathbf{e}_{j}^{T} \mathbf{e}_{i} \\
& =\sum_{i=1}^{n} v_{i} \lambda_{i}^{2} .
\end{aligned}
$$

The second term simplifies in a similar way

$$
\begin{aligned}
\mathbf{b}^{T} \mathbf{x} & =\left(\sum_{i=1}^{n} \beta_{i} \mathbf{e}_{i}^{T}\right)\left(\sum_{j=1}^{n} \lambda_{j} \mathbf{e}_{j}\right) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} \beta_{i} \lambda_{j} \mathbf{e}_{i}^{T} \mathbf{e}_{j} \\
& =\sum_{i=1}^{n} \beta_{i} \lambda_{i}
\end{aligned}
$$

and so the integrand becomes

$$
\mathbf{x}^{T} \mathbf{A} \mathbf{x}+\mathbf{b}^{T} \mathbf{x}=\sum_{i=1}^{n}\left(v_{i} \lambda_{i}^{2}+\beta \lambda_{i}\right)
$$

Thus the result of changing the variable is that

$$
\begin{aligned}
I^{\prime} & =\int_{\mathbb{R}^{n}} \exp \left(-\frac{1}{2}\left(\mathbf{x}^{T} \mathbf{A} \mathbf{x}+\mathbf{b}^{T} \mathbf{x}\right)\right) d \mathbf{x} \\
& =\int_{\mathbb{R}^{n}} \exp \left(-\frac{1}{2}\left(\sum_{i=1}^{n}\left(v_{i} \lambda_{i}^{2}+\beta \lambda_{i}\right)\right)\right) d \boldsymbol{\lambda} \\
& =\prod_{i=1}^{n} \int_{-\infty}^{\infty} \exp \left(-\frac{1}{2}\left(v_{i} \lambda_{i}^{2}+\beta_{i} \lambda_{i}\right)\right) d \lambda_{i} .
\end{aligned}
$$

What have we gained by changing the variable?

- We have changed a multiple integral into a product of single integrals.
- Each of these single integrals is almost of a form that can be solved using the simple case above.

How do we proceed? Writing

$$
\left(-\frac{1}{2}\left(v_{i} \lambda_{i}^{2}+\beta_{i} \lambda_{i}\right)\right)=-\frac{v_{i}}{2}\left(\lambda_{i}+\frac{\beta_{i}}{2 v_{i}}\right)^{2}+\frac{\beta_{i}^{2}}{8 v_{i}}
$$

and changing the variable in the simple integral from λ_{i} to

$$
\theta_{i}=\left(\lambda_{i}+\frac{\beta_{i}}{2 v_{i}}\right)
$$

gives

$$
\frac{d \theta_{i}}{d \lambda_{i}}=1
$$

and

$$
\begin{aligned}
\int_{-\infty}^{\infty} \exp \left(-\frac{1}{2}\left(v_{i} \lambda_{i}^{2}+\beta_{i} \lambda_{i}\right)\right) d \lambda_{i} & =\exp \left(\frac{\beta_{i}^{2}}{8 v_{i}}\right) \int_{-\infty}^{\infty} \exp \left(-\frac{v_{i}}{2} \theta_{i}^{2}\right) d \theta_{i} \\
& =\exp \left(\frac{\beta_{i}^{2}}{8 v_{i}}\right)\left(\frac{2 \pi}{v_{i}}\right)^{1 / 2}
\end{aligned}
$$

using the simple case. We now have

$$
I^{\prime}=\prod_{i=1}^{n} \exp \left(\frac{\beta_{i}^{2}}{8 v_{i}}\right)\left(\frac{2 \pi}{v_{i}}\right)^{1 / 2} .
$$

This can be simplified further in two steps. First, if \mathbf{A} has eigenvalues v_{i} then

$$
|\mathbf{A}|=\prod_{i=1}^{n} v_{i}
$$

and so

$$
\prod_{i=1}^{n}\left(\frac{1}{v_{i}}\right)=|\mathbf{A}|^{-1} .
$$

Thus

$$
\prod_{i=1}^{n}\left(\frac{2 \pi}{v_{i}}\right)^{1 / 2}=(2 \pi)^{n / 2}|\mathbf{A}|^{-1 / 2}
$$

Then, we have

$$
\begin{aligned}
\mathbf{b}^{T} \mathbf{A}^{-1} \mathbf{b} & =\left(\sum_{i=1}^{n} \beta_{i} \mathbf{e}_{i}^{T}\right) \mathbf{A}^{-1}\left(\sum_{i=1}^{n} \beta_{i} \mathbf{e}_{i}\right) \\
& =\left(\sum_{i=1}^{n} \beta_{i} \mathbf{e}_{i}^{T}\right)\left(\sum_{i=1}^{n} \frac{\beta_{i}}{v_{i}} \mathbf{e}_{i}\right) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} \beta_{j} \mathbf{e}_{j}^{T} \mathbf{e}_{i} \frac{\beta_{i}}{v_{i}} \\
& =\sum_{i=1}^{n} \frac{\beta_{i}^{2}}{v_{i}} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
\prod_{i=1}^{n} \exp \left(\frac{\beta_{i}^{2}}{8 v_{i}}\right) & =\exp \left(\frac{1}{8} \sum_{i=1}^{n} \frac{\beta_{i}^{2}}{v_{i}}\right) \\
& =\exp \left(\frac{1}{8} \mathbf{b}^{T} \mathbf{A}^{-1} \mathbf{b}\right)
\end{aligned}
$$

and collecting everything together we have

$$
\begin{aligned}
I & =\exp \left(-\frac{c}{2}\right)(2 \pi)^{n / 2}|\mathbf{A}|^{-1 / 2} \exp \left(\frac{1}{8} \mathbf{b}^{T} \mathbf{A}^{-1} \mathbf{b}\right) \\
& =(2 \pi)^{n / 2}|\mathbf{A}|^{-1 / 2} \exp \left(-\frac{1}{2}\left(c-\frac{\mathbf{b}^{T} \mathbf{A}^{-1} \mathbf{b}}{4}\right)\right)
\end{aligned}
$$

