
Logic and Proof

Computer Science Tripos Part IB
Lent Term

Lawrence C Paulson

Computer Laboratory

University of Cambridge

lp15@cam.ac.uk

Copyright © 2021 by Lawrence C. Paulson

I Logic and Proof 101

Introduction to Logic

Logic concerns statements in some language.

The language can be natural (English, Latin, . . .) or formal.

Some statements are true, others false or meaningless.

Logic concerns relationships between statements: satisfiability,

entailment, . . .

Logical proofs model human reasoning (supposedly).

Lawrence C. Paulson University of Cambridge

I Logic and Proof 102

Statements

Statements are declarative assertions:

Black is the colour of my true love’s hair.

They are not greetings, questions or commands:

What is the colour of my true love’s hair?

I wish my true love had hair.

Get a haircut!

Lawrence C. Paulson University of Cambridge

I Logic and Proof 103

Schematic Statements

Now let the variables X, Y, Z, . . . range over ‘real’ objects

Black is the colour of X’s hair.

Black is the colour of Y.

Z is the colour of Y.

Schematic statements can even express questions:

What things are black?

Lawrence C. Paulson University of Cambridge

I Logic and Proof 104

Interpretations and Validity

An interpretation maps variables to real objects:

The interpretation Y 7→ coal satisfies the statement

Black is the colour of Y.

but the interpretation Y 7→ strawberries does not!

A statement A is valid if all interpretations satisfy A.

Lawrence C. Paulson University of Cambridge

I Logic and Proof 105

Satisfiability

A set S of statements is satisfiable if some interpretation satisfies all

elements of S at the same time. Otherwise S is unsatisfiable.

Examples of unsatisfiable sets:

{X ⊆ Y, Y ⊆ Z, ¬(X ⊆ Z)}

{n is a positive integer, n 6= 1, n 6= 2, . . .}

Lawrence C. Paulson University of Cambridge

I Logic and Proof 106

Entailment, or Logical Consequence

A set S of statements entails A if every interpretation that satisfies all

elements of S, also satisfies A. We write S |= A.

{X ⊆ Y, Y ⊆ Z} |= X ⊆ Z

{n 6= 1, n 6= 2, . . .} |= n is NOT a positive integer

S |= A if and only if {¬A} ∪ S is unsatisfiable.

If S is unsatisfiable, then S |= A for any A.

|= A if and only if A is valid, if and only if {¬A} is unsatisfiable.

Lawrence C. Paulson University of Cambridge

I Logic and Proof 107

Formal Proof

How can we prove that A is valid? We can’t test infinitely many cases.

A formal system is a model of mathematical reasoning

• theorems are inferred from axioms using inference rules.

• formal systems are themselves mathematical objects, hence we

have meta-mathematics

Lawrence C. Paulson University of Cambridge

I Logic and Proof 108

Inference Rules

An inference rule yields a conclusion from one or more premises.

Let {A1, . . . , An} |= B. If A1, . . ., An are true then B must be true.

This entailment suggests the inference rule

A1 . . . An

B

A system’s axioms and inference rules must be selected carefully.

Theorems are constructed inductively from the axioms using rules.

Lawrence C. Paulson University of Cambridge

I Logic and Proof 109

Schematic Inference Rules

X ⊆ Y Y ⊆ Z

X ⊆ Z

• A proof is correct if it has the right syntactic form, regardless of

• Whether the conclusion is desirable

• Whether the premises or conclusion are true

• Who (or what) created the proof

Lawrence C. Paulson University of Cambridge

I Logic and Proof 110

Consistency vs Satisfiability

A formal system defines a set of theorems.

If every statement is a theorem, then the system is inconsistent.

An unsatisfiable set of axioms leads to an inconsistent formal system

(in normal circumstances).

Satisfiability is the semantic counterpart of consistency.

Lawrence C. Paulson University of Cambridge

I Logic and Proof 111

Richard’s Paradox

Consider the list of all English phrases that define real numbers, e.g.

“the base of the natural logarithm” or “the positive solution to x2 = 2.”

• Sort this list alphabetically, yielding a series {rn} of real numbers.

• Now define a new real number such that its nth decimal place is 1

if the nth decimal place of rn is not 1; otherwise 2.

• This is a real number not in our list of all definable real numbers.

Lawrence C. Paulson University of Cambridge

I Logic and Proof 112

Why Should we use a Formal Language?

And again: consider this ‘definition’: (Berry’s paradox)

The smallest positive integer not definable using nine words

Greater than The number of atoms in the Milky Way galaxy

This number is so large, it is greater than itself!

A formal language prevents ambiguity.

Lawrence C. Paulson University of Cambridge

I Logic and Proof 113

Survey of Formal Logics

propositional logic is traditional boolean algebra.

first-order logic can say for all and there exists.

higher-order logic reasons about sets and functions.

modal/temporal logics reason about what must, or may, happen.

type theories support constructive mathematics.

All have been used to prove correctness of computer systems.

Lawrence C. Paulson University of Cambridge

II Logic and Proof 201

Syntax of Propositional Logic

P, Q, R, . . . propositional letter

t true

f false

¬A not A

A ∧ B A and B

A ∨ B A or B

A → B if A then B

A ↔ B A if and only if B

Lawrence C. Paulson University of Cambridge

II Logic and Proof 202

Semantics of Propositional Logic

¬, ∧, ∨, → and ↔ are truth-functional: functions of their operands.

A B ¬A A ∧ B A ∨ B A → B A ↔ B

1 1 0 1 1 1 1

1 0 0 0 1 0 0

0 1 1 0 1 1 0

0 0 1 0 0 1 1

Later we shall see things like ✷A that are not.

Lawrence C. Paulson University of Cambridge

II Logic and Proof 203

Interpretations of Propositional Logic

An interpretation is a function from the propositional letters to {1, 0}.

Interpretation I satisfies a formula A if it evaluates to 1 (true).

Write |=I A

A is valid (a tautology) if every interpretation satisfies A.

Write |= A

S is satisfiable if some interpretation satisfies every formula in S.

Lawrence C. Paulson University of Cambridge

II Logic and Proof 204

Implication, Entailment, Equivalence

A → B means simply ¬A ∨ B.

A |= B means if |=I A then |=I B for every interpretation I.

A |= B if and only if |= A → B.

Equivalence

A ≃ B means A |= B and B |= A.

A ≃ B if and only if |= A ↔ B.

Lawrence C. Paulson University of Cambridge

II Logic and Proof 205

An Issue: A → B Versus ¬A ∨ B

It’s called material implication, and it admits “paradoxes”* such as

P → (Q → P) and (P → Q) ∨ (Q → R)

Some say that if A → B is true then A should somehow cause B

Some “solutions”:

• Relevance logic: still investigated by philosophers

• An interpretation in modal logic: see lecture 11

*these are not paradoxes

Lawrence C. Paulson University of Cambridge

II Logic and Proof 206

Aside: Propositions as Types

Idea: instead of “A is true”, say “a is evidence for A”, written a : A

• If a : A and b : B then (a, b) : A × B Looks like conjunction!

• If a : A then Inl(a) : A + B

If b : B then Inr(b) : A + B Looks like disjunction!

• if f(x) : B for all x : A

then λx : A.b(x) : A→ B Looks like implication!

Also works for quantifiers, etc.: the basis of constructive type theory

Lawrence C. Paulson University of Cambridge

II Logic and Proof 207

Constructive Logic is Weird

If A ∨ B then we know which one

of A, B is true

A ∨ ¬A is not a tautology

If ∃xA then we know what x is ∃, ∀ are not duals

A → B isn’t the same as ¬A ∨ B no material implication

(P → Q) ∨ (Q → R) is not a tautology, but P → (Q → P) still is

Constructive (aka intuitionistic) logic is popular in theoretical CS

this material on constructive logic is NOT examinable

Lawrence C. Paulson University of Cambridge

II Logic and Proof 208

Equivalences

A ∧ A ≃ A

A ∧ B ≃ B ∧ A

(A ∧ B) ∧ C ≃ A ∧ (B ∧ C)

A ∨ (B ∧ C) ≃ (A ∨ B) ∧ (A ∨ C)

A ∧ f ≃ f

A ∧ t ≃ A

A ∧ ¬A ≃ f

Dual versions: exchange ∧ with ∨ and t with f in any equivalence

Lawrence C. Paulson University of Cambridge

II Logic and Proof 209

Equivalences Linking ∧, ∨ and →

(A ∨ B) → C ≃ (A → C) ∧ (B → C)

C → (A ∧ B) ≃ (C → A) ∧ (C → B)

The same ideas will be realised later in the sequent calculus

Lawrence C. Paulson University of Cambridge

II Logic and Proof 210

Normal Forms in Computational Logic

Formal logics aim for readability,

hence have a lot of redundancy

The connective NAND expresses

all propositional formulas!

Negation normal form (NNF)

Conjunctive normal form (CNF)

Clause form and Prolog

Normal forms make proof procedures more efficient.

Lawrence C. Paulson University of Cambridge

II Logic and Proof 211

Negation Normal Form

1. Get rid of ↔ and →, leaving just ∧, ∨, ¬:

A ↔ B ≃ (A → B) ∧ (B → A)

A → B ≃ ¬A ∨ B

2. Push negations in, using de Morgan’s laws:

¬¬A ≃ A

¬(A ∧ B) ≃ ¬A ∨ ¬B

¬(A ∨ B) ≃ ¬A ∧ ¬B

Lawrence C. Paulson University of Cambridge

II Logic and Proof 212

From NNF to Conjunctive Normal Form

3. Push disjunctions in, using distributive laws:

A ∨ (B ∧ C) ≃ (A ∨ B) ∧ (A ∨ C)

(B ∧ C) ∨ A ≃ (B ∨ A) ∧ (C ∨ A)

4. Simplify:

• Delete any disjunction containing P and ¬P

• Delete any disjunction that includes another: for example, in

(P ∨ Q) ∧ P, delete P ∨ Q.

• Replace (P ∨ A) ∧ (¬P ∨ A) by A

Lawrence C. Paulson University of Cambridge

II Logic and Proof 213

Converting a Non-Tautology to CNF

P ∨ Q → Q ∨ R

1. Elim →: ¬(P ∨ Q) ∨ (Q ∨ R)

2. Push ¬ in: (¬P ∧ ¬Q) ∨ (Q ∨ R)

3. Push ∨ in: (¬P ∨ Q ∨ R) ∧ (¬Q ∨ Q ∨ R)

4. Simplify: ¬P ∨ Q ∨ R

Not a tautology: try P 7→ t, Q 7→ f, R 7→ f

Lawrence C. Paulson University of Cambridge

II Logic and Proof 214

Tautology checking using CNF

((P → Q) → P) → P

1. Elim →: ¬[¬(¬P ∨ Q) ∨ P] ∨ P

2. Push ¬ in: [¬¬(¬P ∨ Q) ∧ ¬P] ∨ P

[(¬P ∨ Q) ∧ ¬P] ∨ P

3. Push ∨ in: (¬P ∨ Q ∨ P) ∧ (¬P ∨ P)

4. Simplify: t ∧ t

t It’s a tautology!

Lawrence C. Paulson University of Cambridge

II Logic and Proof 215

In A1 ∧ . . . ∧ An each Ai can falsify the conjunction, if n > 0

Dually, DNF can detect unsatisfiability.

DNF was investigated in the 1960s for theorem proving by

contradiction. We shall look at superior alternatives:

• Davis-Putnam methods, aka SAT solving

• binary decision diagrams (BDDs)

All can take exponential time—propositional satisfiability is

NP-complete—but can solve big problems

Lawrence C. Paulson University of Cambridge

III Logic and Proof 301

A Simple Proof System

Axiom Schemes

K A → (B → A)

S (A → (B → C)) → ((A → B) → (A → C))

DN ¬¬A → A

Inference Rule: Modus Ponens

A → B A
B

This system regards ¬, ∨, ∧ as abbreviations

Lawrence C. Paulson University of Cambridge

III Logic and Proof 302

A Simple (?) Proof of A → A

(A → ((D → A) → A)) → (1)

((A → (D → A)) → (A → A)) by S

A → ((D → A) → A) by K (2)

(A → (D → A)) → (A → A) by MP, (1), (2) (3)

A → (D → A) by K (4)

A → A by MP, (3), (4) (5)

Lengths of proofs here grow exponentially

Lawrence C. Paulson University of Cambridge

III Logic and Proof 303

Aside: Propositions as Types Again*

Those axioms are not arbitrary (though many other such systems are)

Ever see a type-checking rule for function application?

f : A → B a : A

f(a) : B
looks like Modus Ponens!

Axioms S and K give the types of combinators for expressing functions

A correspondence between terms and proofs, with links to λ-calculus

*not examinable

Lawrence C. Paulson University of Cambridge

III Logic and Proof 304

Some Facts about Deducibility

A is deducible from the set S if there is a finite proof of A starting from

elements of S. Write S ⊢ A. We have some fundamental resuilts:

Soundness Theorem. If S ⊢ A then S |= A.

Completeness Theorem. If S |= A then S ⊢ A.

Deduction Theorem. If S ∪ {A} ⊢ B then S ⊢ A → B.

But meta-theory does not help us use the proof system.

Lawrence C. Paulson University of Cambridge

III Logic and Proof 305

Gentzen’s Natural Deduction Systems

The context of assumptions may vary.

To deduce A → B, we get to assume A temporarily:

A.
.
.
.
B

A → B

Each logical connective is defined independently.

Introduction and elimination rules: how to deduce and use A ∧ B:

A B
A ∧ B

A ∧ B
A

A ∧ B
B

Lawrence C. Paulson University of Cambridge

III Logic and Proof 306

A Typical Natural Deduction Proof

✘✘✘❳❳❳A ∨ B
�❅A

B ∨ A
✓❙B

B ∨ A
B ∨ A

A ∨ B → B ∨ A

Nice simple rules like

A
A ∨ B

B
A ∨ B

A → B A
B

But the “crossing-out” process is confusing, and Natural Deduction

works better for constructive logic

Lawrence C. Paulson University of Cambridge

III Logic and Proof 307

The Sequent Calculus

Sequent A1, . . . , Am⇒B1, . . . , Bn means,

if A1 ∧ . . . ∧ Am then B1 ∨ . . . ∨ Bn

A1, . . ., Am are assumptions; B1, . . ., Bn are goals

Γ and ∆ are sets in Γ⇒∆

A, Γ⇒A,∆ is trivially true (and is called a basic sequent).

Lawrence C. Paulson University of Cambridge

III Logic and Proof 308

Sequent Calculus Rules

Γ⇒∆,A A, Γ⇒∆

Γ⇒∆
(cut)

Γ⇒∆,A

¬A, Γ⇒∆
(¬l)

A, Γ⇒∆

Γ⇒∆,¬A
(¬r)

A,B, Γ⇒∆

A ∧ B, Γ⇒∆
(∧l)

Γ⇒∆,A Γ⇒∆,B

Γ⇒∆,A ∧ B
(∧r)

Lawrence C. Paulson University of Cambridge

III Logic and Proof 309

More Sequent Calculus Rules

A, Γ⇒∆ B, Γ⇒∆

A ∨ B, Γ⇒∆
(∨l)

Γ⇒∆,A,B

Γ⇒∆,A ∨ B
(∨r)

Γ⇒∆,A B, Γ⇒∆

A → B, Γ⇒∆
(→l)

A, Γ⇒∆,B

Γ⇒∆,A → B
(→r)

Lawrence C. Paulson University of Cambridge

III Logic and Proof 310

Proving the Formula A ∧ B → A

A,B⇒A

A ∧ B⇒A
(∧l)

⇒ (A ∧ B) → A
(→r)

• Begin by writing down the sequent to be proved

• Be careful about skipping or combining steps

• You can’t mix-and-match proof calculi. Just use sequent rules.

Lawrence C. Paulson University of Cambridge

III Logic and Proof 311

Another Easy Sequent Calculus Proof

A,B⇒B,C

A⇒B,B → C
(→r)

⇒A → B, B → C
(→r)

⇒ (A → B) ∨ (B → C)
(∨r)

this was a “paradox of material implication”

Lawrence C. Paulson University of Cambridge

III Logic and Proof 312

Part of a Distributive Law

A⇒A,B

B,C⇒A,B

B ∧ C⇒A,B
(∧l)

A ∨ (B ∧ C)⇒A,B
(∨l)

A ∨ (B ∧ C)⇒A ∨ B
(∨r)

similar

A ∨ (B ∧ C)⇒ (A ∨ B) ∧ (A ∨ C)
(∧r)

Second subtree proves A ∨ (B ∧ C)⇒A ∨ C similarly

Lawrence C. Paulson University of Cambridge

III Logic and Proof 313

A Failed Proof

A⇒B,C B⇒B,C

A ∨ B⇒B,C
(∨l)

A ∨ B⇒B ∨ C
(∨r)

⇒ (A ∨ B) → (B ∨ C)
(→r)

A 7→ t, B 7→ f, C 7→ f falsifies the unproved sequent!

Lawrence C. Paulson University of Cambridge

III Logic and Proof 314

Relevance to Automatic Theorem Proving

• Hao Wang’s “Toward mechanical mathematics” (1960):

spectacular results for both propositional and first-order logic

• Based on backward proof using the sequent calculus rules

• Modern tableaux calculi generalise these ideas

The sequent calculus is not practical for proving theorems on paper, as

you will soon discover!

Lawrence C. Paulson University of Cambridge

IV Logic and Proof 401

The Tradeoffs in Formal Logic

We start with propositional logic

We enrich the language to first-order logic

We can enrich the language further with types, etc.

The price of expressiveness is difficulty of automation

Automation sometimes involves reversing the process of enrichment

this is basically the course plan

Lawrence C. Paulson University of Cambridge

IV Logic and Proof 402

Outline of First-Order Logic

Reasons about functions and relations over a set of individuals:

father(father(x)) = father(father(y))

cousin(x, y)

Reasons about all and some individuals:

All men are mortal Socrates is a man

Socrates is mortal

Cannot reason about all functions or all relations, etc.

Lawrence C. Paulson University of Cambridge

IV Logic and Proof 403

Aside: Example of Syllogisms by Lewis Carroll

“All soldiers are strong; All soldiers are brave.

∴ Some strong men are brave.”

“None but the brave deserve the fair; Some braggarts are cowards.

∴ Some braggarts do not deserve the fair.”

“All soldiers can march; Some babies are not soldiers.

∴ Some babies cannot march”.*

*not valid

Lawrence C. Paulson University of Cambridge

IV Logic and Proof 404

Function Symbols; Terms

Each function symbol stands for an n-place function.

A constant symbol is a 0-place function symbol.

A variable ranges over all individuals.

A term is a variable, constant or a function application

f(t1, . . . , tn)

where f is an n-place function symbol and t1, . . ., tn are terms.

We choose the language, adopting any desired function symbols.

Lawrence C. Paulson University of Cambridge

IV Logic and Proof 405

Relation Symbols; Formulae

Each relation symbol stands for an n-place relation.

Equality is the 2-place relation symbol =

An atomic formula has the form R(t1, . . . , tn) where R is an n-place

relation symbol and t1, . . ., tn are terms.

A formula is built up from atomic formulæ using ¬, ∧, ∨, and so forth.

Later, we can add quantifiers.

Lawrence C. Paulson University of Cambridge

IV Logic and Proof 406

P

c

f

Lawrence C. Paulson University of Cambridge

IV Logic and Proof 407

Aside: The Power of Quantifier-Free FOL

It is surprisingly expressive, if we include strong induction rules.

We can easily prove the equivalence of mathematical functions:

p(z, 0) = 1

p(z, n + 1) = p(z, n) × z

q(z, 1) = z

q(z, 2 × n) = q(z × z, n)

q(z, 2 × n + 1) = q(z × z, n) × z

The prover ACL2 uses this logic to do major hardware proofs.

based on early work by Robert Boyer and J Moore

Lawrence C. Paulson University of Cambridge

IV Logic and Proof 408

Universal and Existential Quantifiers

∀xA for all x, the formula A holds

∃xA there exists x such that A holds

Syntactic variations:

∀xyzA abbreviates ∀x∀y∀zA

∀z .A ∧ B is an alternative to ∀z (A ∧ B)

The variable x is bound in ∀xA; compare with
∫

f(x)dx

Lawrence C. Paulson University of Cambridge

IV Logic and Proof 409

The Expressiveness of Quantifiers

All men are mortal:

∀x (man(x) → mortal(x))

All mothers are female:

∀x female(mother(x))

There exists a unique x such that A, sometimes written ∃!xA

∃x [A(x) ∧ ∀y (A(y) → y = x)]

Lawrence C. Paulson University of Cambridge

IV Logic and Proof 410

The Point of Semantics

We have to attach meanings to symbols like 1, +, <, etc.

Why is this necessary? Why can’t 1 just mean 1??

The point is that mathematics derives its flexibility from allowing

different interpretations of symbols.

• A group has a unit 1, a product x · y and inverse x−1.

• In the most important uses of groups, 1 isn’t a number but a ‘unit

permutation’, ‘unit rotation’, etc.

Lawrence C. Paulson University of Cambridge

IV Logic and Proof 411

Constants: Interpreting mortal(Socrates)

An interpretation I = (D, I) defines the semantics of a first-order

language.

D is a non-empty set, called the domain or universe.

I maps symbols to ‘real’ elements, functions and relations:

c a constant symbol I[c] ∈ D

f an n-place function symbol I[f] ∈ Dn → D

P an n-place relation symbol I[P] ∈ Dn → {1, 0}

Lawrence C. Paulson University of Cambridge

IV Logic and Proof 412

Variables: Interpreting father(y)

A valuation V : Var→ D supplies the values of free variables.

V and I together determine the value of any term t, by recursion.

This value is written IV [t], and here are the recursion rules:

IV [x]
def
= V(x) if x is a variable

IV [c]
def
= I[c]

IV [f(t1, . . . , tn)]
def
= I[f](IV [t1], . . . ,IV [tn])

Lawrence C. Paulson University of Cambridge

IV Logic and Proof 413

Tarski’s Truth-Definition

An interpretation I and valuation function V similarly specify the truth

value (1 or 0) of any formula A.

Quantifiers are the only problem, as they bind variables.

V{a/x} is the valuation that maps x to a and is otherwise like V .

Using V{a/x}, we formally define |=I,V A, the truth value of A.

automated theorem provers need to be based on rigorous theory

Lawrence C. Paulson University of Cambridge

IV Logic and Proof 414

The Meaning of Truth—In FOL!

For interpretation I and valuation V , define |=I,V by recursion.

|=I,V P(t) if I[P](IV [t]) equals 1 (is true)

|=I,V t = u if IV [t] equals IV [u]

|=I,V A ∧ B if |=I,V A and |=I,V B

|=I,V ∃xA if |=I,V{m/x} A holds for some m ∈ D

Finally, we define

|=I A if |=I,V A holds for all V .

A closed formula A is satisfiable if |=I A for some I .

Lawrence C. Paulson University of Cambridge

IV Logic and Proof 415

A Final Remark On Syllogisms

Started with Aristotle and continued into the 19th Century

A highly technical subject with four “categorical sentences”:

Type A Every B is A

Type I Some B is A

Type E No B is A

Type O Some B is not A

And their 24 valid combinations, etc., etc. Be grateful for quantifiers!

Lawrence C. Paulson University of Cambridge

V Logic and Proof 501

Reminder: Free vs Bound Variables

All occurrences of x in ∀xA and ∃xA are bound

An occurrence of x is free if it is not bound:

∀y∃z R(y, z, f(y, x))

In this formula, y and z are bound while x is free.

We may rename bound variables without affecting the meaning:

∀w∃z ′ R(w, z ′, f(w, x))

Lawrence C. Paulson University of Cambridge

V Logic and Proof 502

Substitution for Free Variables

A[t/x] means substitute t for x in A:

(B ∧ C)[t/x] is B[t/x] ∧ C[t/x]

(∀xB)[t/x] is ∀xB

(∀yB)[t/x] is ∀yB[t/x] (x 6= y)

(P(u))[t/x] is P(u[t/x])

When substituting A[t/x], no variable of t may be bound in A!

Example: (∀y (x = y)) [y/x] is not equivalent to ∀y (y = y)

Lawrence C. Paulson University of Cambridge

V Logic and Proof 503

Some Equivalences for Quantifiers

As with propositional logic, we shall need normal forms!

¬(∀xA) ≃ ∃x¬A

∀xA ≃ ∀xA ∧ A[t/x]

(∀xA) ∧ (∀xB) ≃ ∀x (A ∧ B)

But we do not have (∀xA) ∨ (∀xB) ≃ ∀x (A ∨ B).

Dual versions: exchange ∀ with ∃ and ∧ with ∨

Lawrence C. Paulson University of Cambridge

V Logic and Proof 504

Further Quantifier Equivalences

These hold only if x is not free in B.

(∀xA) ∧ B ≃ ∀x (A ∧ B)

(∀xA) ∨ B ≃ ∀x (A ∨ B)

(∀xA) → B ≃ ∃x (A → B)

These let us expand or contract a quantifier’s scope.

Lawrence C. Paulson University of Cambridge

V Logic and Proof 505

Aside: Reasoning by Equivalences

We saw an example of theorem proving by transformations in Lecture 2

[More sophisticated transformational approaches exist than CNF!]

Some say these are better than Gentzen methods (for hand proofs)

Trivial example: In P ∨ Q can simplify Q assuming P = f

In P ∧ Q and P → Q can simplify Q assuming P = t

For both of those, simply by case analysis on P

Lawrence C. Paulson University of Cambridge

V Logic and Proof 506

Reasoning by Equivalences with Quantifiers

∃x (x = a ∧ P(x)) ≃ ∃x (x = a ∧ P(a))

≃ ∃x (x = a) ∧ P(a)

≃ P(a)

∃z (P(z) → P(a) ∧ P(b))

≃ ∀z P(z) → P(a) ∧ P(b)

≃ ∀z P(z) ∧ P(a) ∧ P(b) → P(a) ∧ P(b)

≃ t

Lawrence C. Paulson University of Cambridge

V Logic and Proof 507

Whitehead and Russell’s Principia Mathematica

Includes a proof system for a sort

of higher-order logic

Attempts to show that maths can

be reduced to logic

Includes a valuable discussion of

logical paradoxes

It’s still in print including an

abridged paperback edition.

CUP predicted that it would lose £600 — requested that the authors

cover £100 of this. The Royal Society covered a further £200.

That was in 1910. For today’s money, multiply by 100!

Lawrence C. Paulson University of Cambridge

V Logic and Proof 508

Lawrence C. Paulson University of Cambridge

V Logic and Proof 509

Sequent Calculus Rules for ∀

A[t/x], Γ⇒∆

∀xA, Γ⇒∆
(∀l)

Γ⇒∆,A

Γ⇒∆,∀xA
(∀r)

Rule (∀l) can create many instances of ∀xA

Rule (∀r) holds provided x is not free in the conclusion!

Not allowed to prove

P(y)⇒P(y)

P(y)⇒∀yP(y)
(∀r)

This is nonsense!

Lawrence C. Paulson University of Cambridge

V Logic and Proof 510

A Simple Example of the ∀ Rules

P(f(y))⇒P(f(y))

∀x P(x)⇒P(f(y))
(∀l)

∀x P(x)⇒∀yP(f(y))
(∀r)

Lawrence C. Paulson University of Cambridge

V Logic and Proof 511

A Not-So-Simple Example of the ∀ Rules

P⇒Q(y), P P,Q(y)⇒Q(y)

P, P → Q(y)⇒Q(y)
(→l)

P, ∀x (P → Q(x))⇒Q(y)
(∀l)

P, ∀x (P → Q(x))⇒ ∀yQ(y)
(∀r)

∀x (P → Q(x))⇒P → ∀yQ(y)
(→r)

In (∀l), we must replace x by y.

Lawrence C. Paulson University of Cambridge

V Logic and Proof 512

Sequent Calculus Rules for ∃

A, Γ⇒∆

∃xA, Γ⇒∆
(∃l)

Γ⇒∆,A[t/x]

Γ⇒∆,∃xA
(∃r)

Rule (∃l) holds provided x is not free in the conclusion!

Rule (∃r) can create many instances of ∃xA

For example, to prove this counter-intuitive formula:

∃z (P(z) → P(a) ∧ P(b))

Lawrence C. Paulson University of Cambridge

V Logic and Proof 513

Part of the ∃ Distributive Law

P(x)⇒P(x),Q(x)

P(x)⇒P(x) ∨ Q(x)
(∨r)

P(x)⇒∃y (P(y) ∨ Q(y))
(∃r)

∃x P(x)⇒∃y (P(y) ∨ Q(y))
(∃l)

similar

∃xQ(x)⇒ ∃y . . .
(∃l)

∃x P(x) ∨ ∃xQ(x)⇒∃y (P(y) ∨ Q(y))
(∨l)

Second subtree proves ∃xQ(x)⇒ ∃y (P(y) ∨ Q(y)) similarly

In (∃r), we must replace y by x.

Lawrence C. Paulson University of Cambridge

V Logic and Proof 514

A Failed Proof

P(x),Q(y)⇒P(x) ∧ Q(x)

P(x),Q(y)⇒ ∃z (P(z) ∧ Q(z))
(∃r)

P(x),∃xQ(x)⇒ ∃z (P(z) ∧ Q(z))
(∃l)

∃x P(x),∃xQ(x)⇒ ∃z (P(z) ∧ Q(z))
(∃l)

∃x P(x) ∧ ∃xQ(x)⇒ ∃z (P(z) ∧ Q(z))
(∧l)

We cannot use (∃l) twice with the same variable

This attempt renames the x in ∃xQ(x), to get ∃yQ(y)

Lawrence C. Paulson University of Cambridge

VI Logic and Proof 601

Clause Form

Clause: a disjunction of literals

¬K1 ∨ · · · ∨ ¬Km ∨ L1 ∨ · · · ∨ Ln

Set notation: {¬K1, . . . ,¬Km, L1, . . . , Ln}

Kowalski notation: K1, · · · , Km → L1, · · · , Ln

L1, · · · , Ln ← K1, · · · , Km

Empty clause: {} or �

Empty clause is equivalent to f, meaning contradiction!

Lawrence C. Paulson University of Cambridge

VI Logic and Proof 602

Outline of Clause Form Methods

To prove A, get a contradiction from ¬A:

1. Translate ¬A into CNF as A1 ∧ · · · ∧ Am

2. This is the set of clauses A1, . . ., Am

3. Transform this clause set, preserving satisfiability

Deducing the empty clause shows unsatisfiability, refuting ¬A.

An empty clause set (all clauses deleted) means ¬A is satisfiable.

The basis for SAT solvers and resolution provers.

Lawrence C. Paulson University of Cambridge

VI Logic and Proof 603

Clause Methods: Historical Background

Herbrand’s theorem (1930) reduces first-order logic to propositional.

The prospect of fully automatic mathematics attracted logicians:

W V O Quine, Paul Gilmore, Martin Davis, Hilary Putnam, . . .

• Sequent calculus: handles quantifiers but useless for big problems

• Conversion to DNF (1960): shows unsatisfiability; exponential time

• Davis–Putnam and DPLL (1962): good only for propositional logic

• J. A. Robinson’s resolution and unification (1965)

Lawrence C. Paulson University of Cambridge

VI Logic and Proof 604

Aside: Why Does a Contradiction imply Everything?

A challenge to Russell: “Given 1 = 0, prove that you are the Pope.”

Russell: “Then 2 = 1. . .

and the set {Russell, Pope} has only one element.”

A special case if a and b are integers, reals, etc:

if 1 = 0 then a = a × 1 = a × 0 = b × 0 = b × 1 = b

hence a = b, and also 0 < 0 and therefore a < b, etc.

Lawrence C. Paulson University of Cambridge

VI Logic and Proof 605

The Davis-Putnam-Logeman-Loveland Method

1. Delete tautological clauses: {P,¬P, . . .}

2. For each unit clause {L},

• delete all clauses containing L

• delete ¬L from all clauses

3. Delete all clauses containing pure literals

4. Perform a case split on some literal; stop if a model is found

DPLL is a decision procedure: it finds a contradiction or a model.

Lawrence C. Paulson University of Cambridge

VI Logic and Proof 606

DPLL on a Non-Tautology

Consider P ∨ Q → Q ∨ R

Clauses are {P,Q} {¬Q} {¬R}

{P,Q} {¬Q} {¬R} initial clauses

{P} {¬R} unit ¬Q

{¬R} unit P (also pure)

unit ¬R (also pure)

All clauses deleted! Clauses satisfiable by P 7→ t, Q 7→ f, R 7→ f

Lawrence C. Paulson University of Cambridge

VI Logic and Proof 607

Example of a Case Split on P

{¬Q,R} {¬R, P} {¬R,Q} {¬P,Q, R} {P,Q} {¬P,¬Q}

{¬Q,R} {¬R,Q} {Q,R} {¬Q} if P is true

{¬R} {R} unit ¬Q

{} unit R

{¬Q,R} {¬R} {¬R,Q} {Q} if P is false

{¬Q} {Q} unit ¬R

{} unit ¬Q

Both cases yield contradictions: the clauses are unsatisfiable!

Lawrence C. Paulson University of Cambridge

VI Logic and Proof 608

SAT solvers in the Real World

• Progressed from joke to killer technology in 10 years.

• Princeton’s zChaff (2001) has solved problems with more than one

million variables and 10 million clauses.

• Applications include finding bugs in device drivers (Microsoft’s

SLAM project).

• SMT solvers (satisfiability modulo theories) extend SAT solving to

handle arithmetic, arrays and bit vectors.

Lawrence C. Paulson University of Cambridge

VI Logic and Proof 609

The Resolution Rule*

From B ∨ A and ¬B ∨ C infer A ∨ C

In set notation,

{B,A1, . . . , Am} {¬B,C1, . . . , Cn}

{A1, . . . , Am, C1, . . . , Cn}

Some special cases: (remember that � is just {})

{B} {¬B,C1, . . . , Cn}

{C1, . . . , Cn}

{B} {¬B}

�

*but resolution is only useful for first-order logic

Lawrence C. Paulson University of Cambridge

VI Logic and Proof 610

Simple Example: Proving P ∧ Q → Q ∧ P

Hint: use ¬(A → B) ≃ A ∧ ¬B

1. Negate! ¬[P ∧ Q → Q ∧ P]

2. Push ¬ in: (P ∧ Q) ∧ ¬(Q ∧ P)

(P ∧ Q) ∧ (¬Q ∨ ¬P)

Clauses: {P} {Q} {¬Q,¬P}

Resolve {P} and {¬Q,¬P} getting {¬Q}.

Resolve {Q} and {¬Q} getting �: we have refuted the negation.

Lawrence C. Paulson University of Cambridge

VI Logic and Proof 611

Another Example

Refute ¬[(P ∨ Q) ∧ (P ∨ R) → P ∨ (Q ∧ R)]

From (P ∨ Q) ∧ (P ∨ R), get clauses {P,Q} and {P, R}.

From ¬ [P ∨ (Q ∧ R)] get clauses {¬P} and {¬Q,¬R}.

Resolve {¬P} and {P,Q} getting {Q}.

Resolve {¬P} and {P, R} getting {R}.

Resolve {Q} and {¬Q,¬R} getting {¬R}.

Resolve {R} and {¬R} getting �, contradiction.

Lawrence C. Paulson University of Cambridge

VI Logic and Proof 612

The Saturation Algorithm

At start, all clauses are passive. None are active.

1. Transfer a clause (current) from passive to active.

2. Form all resolvents between current and an active clause.

3. Use new clauses to simplify both passive and active.

4. Put the new clauses into passive.

Repeat until contradiction found or passive becomes empty.

Lawrence C. Paulson University of Cambridge

VI Logic and Proof 613

Lawrence C. Paulson University of Cambridge

VI Logic and Proof 614

A Resolution Heuristic: Clause Selection by Weight

assign weights to constants (penalising “bad” constants)

the weight of a clause is the sum of the weights of its constants

the lightest clause is likely to be shortest or the “simplest”

But we want to keep completeness: all theorems can be proved

completeness requires fairness: every clause is selected eventually

Lawrence C. Paulson University of Cambridge

VI Logic and Proof 615

Other Heuristics and Hacks for Resolution

Orderings to focus the search on specific literals and exploit symmetry

Subsumption to delete redundant clauses {P,Q} subsumes {P,Q, R}

Indexing: elaborate data structures for speed

Preprocessing: removing tautologies, symmetries . . . at the very start

Lawrence C. Paulson University of Cambridge

VII Logic and Proof 701

DPLL is extremely effective—

but in its pure form only works for propositional logic

How can we extend it to quantifiers?

How do we come up with witnessing terms?

• In 1962, the idea was ad-hoc guessing (still being used today)

• Robinson’s answer in 1965: unification

Lawrence C. Paulson University of Cambridge

VII Logic and Proof 702

Reducing FOL to Propositional Logic

NNF: Leaving only ∀, ∃, ∧, ∨, and ¬ on atoms

Skolemize: Remove quantifiers, preserving satisfiability

Herbrand models: Reduce the class of interpretations

Herbrand’s Thm: Contradictions have finite, ground proofs

Unification: Automatically find the right instantiations

Finally, combine unification with resolution

Lawrence C. Paulson University of Cambridge

VII Logic and Proof 703

Skolemization, or Getting Rid of ∃

Start with a formula in NNF, with quantifiers nested like this:

∀x1 (· · · ∀x2 (· · · ∀xk (· · · ∃yA · · ·) · · ·) · · ·)

Choose a fresh k-place function symbol, say f

Delete ∃y and replace y by f(x1, x2, . . . , xk). We get

∀x1 (· · · ∀x2 (· · · ∀xk (· · ·A[f(x1, x2, . . . , xk)/y] · · ·) · · ·) · · ·)

Repeat until no ∃ quantifiers remain

Lawrence C. Paulson University of Cambridge

VII Logic and Proof 704

Example of Conversion to Clauses

For proving ∃x [P(x) → ∀yP(y)]

¬ [∃x [P(x) → ∀yP(y)]] negated goal

∀x [P(x) ∧ ∃y¬P(y)] conversion to NNF

∀x [P(x) ∧ ¬P(f(x))] Skolem term f(x)

{P(x)} {¬P(f(x))} Final clauses

Lawrence C. Paulson University of Cambridge

VII Logic and Proof 705

Correctness of Skolemization

The formula ∀x∃yA is satisfiable

⇐⇒ it holds in some interpretation I = (D, I)

⇐⇒ for all x ∈ D there is some y ∈ D such that A holds

⇐⇒ some function f̂ in D→ D yields suitable values of y

⇐⇒ A[f(x)/y] holds in some I ′ extending I so that f denotes f̂

⇐⇒ the formula ∀xA[f(x)/y] is satisfiable.

Lawrence C. Paulson University of Cambridge

VII Logic and Proof 706

Simplifying the Search for Models

S is satisfiable if even one model makes all of its clauses true.

There are infinitely many models to consider!

Also many duplicates: “states of the USA” and “the integers 1 to 50”

Fortunately, canonical models exist.

• They have a uniform structure based on the language’s syntax.

• They satisfy the clauses if any model does.

Lawrence C. Paulson University of Cambridge

VII Logic and Proof 707

The Herbrand Universe for a Set of Clauses S

H0
def
= the set of constants in S (must be non-empty)

Hi+1
def
= Hi ∪ {f(t1, . . . , tn) | t1, . . . , tn ∈ Hi

and f is an n-place function symbol in S}

H
def
=

⋃

i≥0

Hi Herbrand Universe

Hi contains just the terms with at most i nested function applications.

H consists of all ground terms built using symbols from S.

Our semantics will interpret function symbols by operations on terms.

Lawrence C. Paulson University of Cambridge

VII Logic and Proof 708

The Herbrand Semantics of Terms

Herbrand models are syntactic: every constant stands for itself.

Every function symbol stands for a term-forming operation:

f denotes the function that puts ‘f’ in front of the given arguments.

The Herbrand universe with 0, 1, minus and binary + is

0 1 −0 −1 0 + 0 0 + 1 1 + 0 1 + 1 −−0 · · ·

X + 0 is not equal to X!!

Every ground term denotes itself.

This is the promised uniform structure!

Lawrence C. Paulson University of Cambridge

VII Logic and Proof 709

The Herbrand Semantics of Predicates

An Herbrand interpretation defines an n-place predicate P to denote a

truth-valued function in Hn → {1, 0}, making P(t1, . . . , tn) true . . .

• if and only if the formula P(t1, . . . , tn) holds in our desired “real”

interpretation I of the clauses.

• Thus, an Herbrand interpretation can imitate any other

interpretation.

Lawrence C. Paulson University of Cambridge

VII Logic and Proof 710

Example of an Herbrand Model

¬even(1)

even(2)

even(X · Y)← even(X), even(Y)

clauses

H = {1, 2, 1 · 1, 1 · 2, 2 · 1, 2 · 2, 1 · (1 · 1), . . .}

HB = {even(1), even(2), even(1 · 1), even(1 · 2), . . .}

I[even] = {even(2), even(1 · 2), even(2 · 1), even(2 · 2), . . .}

(for the model where · denotes product; could instead denote sum!)

Lawrence C. Paulson University of Cambridge

VII Logic and Proof 711

Herbrand’s Theorem for a Set of Clauses, S

S is unsatisfiable ⇐⇒ no Herbrand interpretation satisfies S

⇐⇒ there is a finite unsat set S ′ of ground instances of clauses of S.

• Finite: we can compute it

• Instance: result of substituting for variables

• Ground: no variables remain—this problem is propositional!

Example: S could be {P(x)} {¬P(f(y))},

and S ′ could be {P(f(a))} {¬P(f(a))}.

Lawrence C. Paulson University of Cambridge

VII Logic and Proof 712

Unification

Finding a common instance of two terms. Lots of applications:

• Prolog and other logic programming languages

• Theorem proving: resolution and other procedures

• Tools for reasoning with equations or satisfying constraints

• Polymorphic type-checking (ML and other functional languages)

It is an intuitive generalization of pattern-matching.

Lawrence C. Paulson University of Cambridge

VII Logic and Proof 713

Four Unification Examples

f(x, b) f(x, x) f(x, x) j(x, x, z)

f(a, y) f(a, b) f(y, g(y)) j(w,a, h(w))

f(a, b) None None j(a, a, h(a))

[a/x, b/y] Fail Fail [a/w,a/x, h(a)/z]

The output is a substitution, mapping variables to terms.

Other occurrences of those variables also must be updated.

Unification yields a most general substitution (in a technical sense).

Lawrence C. Paulson University of Cambridge

VII Logic and Proof 714

Theorem-Proving Example 1

(∃y∀xR(x, y)) → (∀x∃yR(x, y))

After negation, the clauses are {R(x, a)} and {¬R(b, y)}.

The literals R(x, a) and R(b, y) have unifier [b/x, a/y].

We have the contradiction R(b, a) and ¬R(b, a).

The theorem is proved by contradiction!

Lawrence C. Paulson University of Cambridge

VII Logic and Proof 715

Theorem-Proving Example 2

(∀x∃yR(x, y)) → (∃y∀xR(x, y))

After negation, the clauses are {R(x, f(x))} and {¬R(g(y), y)}.

The literals R(x, f(x)) and R(g(y), y) are not unifiable.

(They fail the occurs check.)

We can’t get a contradiction. Formula is not a theorem!

Lawrence C. Paulson University of Cambridge

VIII Logic and Proof 801

The Binary Resolution Rule

{B,A1, . . . , Am} {¬D,C1, . . . , Cn}

{A1, . . . , Am, C1, . . . , Cn}σ
provided Bσ = Dσ

(σ is a most general unifier of B and D.)

[Most general is a notion of minimality. E.g. to unify

f(x, y) f(a, z)

we could get f(a, y) or f(a, z) but not f(a, a).]

Lawrence C. Paulson University of Cambridge

VIII Logic and Proof 802

Reminder: the Scope of Variables in a Clause

Variables are local to a clause

Variables must be renamed prior to each resolution to prevent clashes

[renaming variables apart]

For example, given

{P(x)} and {¬P(g(x))},

we must rename x in one of the clauses. Otherwise, unification fails.

Lawrence C. Paulson University of Cambridge

VIII Logic and Proof 803

The Factoring Rule

Resolution tends to make clauses longer!

Though {P, P,Q} = {P,Q} simply because they are sets.

A factoring inference collapses unifiable literals in one clause:

{B1, . . . , Bk, A1, . . . , Am}

{B1, A1, . . . , Am}σ
provided B1σ = · · · = Bkσ

Resolution + factoring is complete for first-order logic:

Every valid formula will be proved (given enough space and time)

Lawrence C. Paulson University of Cambridge

VIII Logic and Proof 804

Example of Resolution with Factoring

Prove ∀x∃y¬(P(y, x) ↔ ¬P(y, y))

The clauses are {¬P(y, a),¬P(y, y)} {P(y, y), P(y, a)}

the lack of unit clauses shows we need factoring

Factoring yields {¬P(a, a)} {P(a, a)}

And now, resolution yields the empty clause!

Lawrence C. Paulson University of Cambridge

VIII Logic and Proof 805

A Non-Trivial Proof

∃x [P → Q(x)] ∧ ∃x [Q(x) → P] → ∃x [P ↔ Q(x)]

Clauses are {P,¬Q(b)} {P,Q(x)} {¬P,¬Q(x)} {¬P,Q(a)}

Resolve {P,¬Q(b)} with {P,Q(x)} getting {P, P}

Factor {P, P} getting {P}

Resolve {¬P,¬Q(x)} with {¬P,Q(a)} getting {¬P,¬P}

Factor {¬P,¬P} getting {¬P}

Resolve {P} with {¬P} getting �

Lawrence C. Paulson University of Cambridge

VIII Logic and Proof 806

The Problem of Relevance

Real-world problems may have

1000s of irrelevant clauses

Our examples here are minimal:

every clause is necessary

For example, axioms of

background theories

Part of the theorem prover’s task

is to keep focused

Heuristics to constrain the proof effort to the negated conjecture

Lawrence C. Paulson University of Cambridge

VIII Logic and Proof 807

What About Equality?

In theory, it’s enough to add the equality axioms:

• The reflexive, symmetric and transitive laws.

• Substitution laws like {x 6= y, f(x) = f(y)} for each f.

• Substitution laws like {x 6= y,¬P(x), P(y)} for each P.

In practice, we need something special: the paramodulation rule

{B[t ′], A1, . . . , Am} {t = u,C1, . . . , Cn}

{B[u], A1, . . . , Am, C1, . . . , Cn}σ (if tσ = t ′σ)

Lawrence C. Paulson University of Cambridge

VIII Logic and Proof 808

The Origins of Prolog

People hoped theorem proving could “think”: robot planning, , . . .

Those early experiments with resolution were disappointing!

Restricted forms of resolution were studied to improve performance

• A procedural interpretation of Horn clauses

• Cool behaviours not possible in standard languages or even LISP

• Plus lots of non-logical hacks for arithmetic, I/O, etc.

[Alain Colmerauer, Phillipe Roussel, Robert Kowalski]

Lawrence C. Paulson University of Cambridge

VIII Logic and Proof 809

Horn (Prolog) Clauses

Prolog clauses have a restricted form, with at most one positive literal.

The definite clauses form the program. Procedure B with body

“commands” A1, . . . , Am is

B← A1, . . . , Am

The single goal clause is like the “execution stack”, with say m tasks

left to be done.

← A1, . . . , Am

Lawrence C. Paulson University of Cambridge

VIII Logic and Proof 810

Prolog Execution

Linear resolution:

• Always resolve some program clause with the goal clause.

• The result becomes the new goal clause.

Try the program clauses in left-to-right order.

Solve the goal clause’s literals in left-to-right order.

Use depth-first search. (Performs backtracking, using little space.)

Do unification without occurs check. (Unsound, but needed for speed)

Lawrence C. Paulson University of Cambridge

VIII Logic and Proof 811

A (Pure) Prolog Program

parent(elizabeth,charles).

parent(elizabeth,andrew).

parent(charles,william).

parent(charles,henry).

parent(andrew,beatrice).

parent(andrew,eugenia).

grand(X,Z) :- parent(X,Y), parent(Y,Z).

cousin(X,Y) :- grand(Z,X), grand(Z,Y).

Lawrence C. Paulson University of Cambridge

VIII Logic and Proof 812

Prolog Execution

:- cousin(X,Y).

:- grand(Z1,X), grand(Z1,Y).

:- parent(Z1,Y2), parent(Y2,X), grand(Z1,Y).

* :- parent(charles,X), grand(elizabeth,Y).

X=william :- grand(elizabeth,Y).

:- parent(elizabeth,Y5), parent(Y5,Y).

* :- parent(andrew,Y).

Y=beatrice :- �.

* = backtracking choice point

16 solutions including cousin(william,william)

and cousin(william,henry)

Lawrence C. Paulson University of Cambridge

VIII Logic and Proof 813

Some Prolog Applications

• Deductive databases, as we’ve just seen

• Definite clause grammars: a direct way to code natural language

syntax and semantics into Prolog systems

• AI applications based on backtracking (replacing specialised

languages like Carl Hewitt’s PLANNER)

In the 1980s, people went mad about Prolog

Lawrence C. Paulson University of Cambridge

VIII Logic and Proof 814

Another FOL Proof Procedure: Model Elimination

A Prolog-like method to run on fast Prolog architectures.

Contrapositives: treat clause {A1, . . . , Am} like the m clauses

A1 ← ¬A2, . . . ,¬Am

A2 ← ¬A3, . . . ,¬Am,¬A1

.

.

.

Am ← ¬A1, . . . ,¬Am−1

Extension rule: when proving goal P, assume ¬P.

Lawrence C. Paulson University of Cambridge

VIII Logic and Proof 815

A Survey of Automatic Theorem Provers

Model Elimination: Prolog Technology Theorem Prover, SETHEO, etc.

Connection calculus (evolved from model elimination): leanCoP

Higher-Order Logic: TPS, LEO-III, Satallax

Tableau (sequent) based: LeanTAP, 3TAP, . . .

First-order Resolution: E (eprover), SPASS, Vampire, . . .

Lawrence C. Paulson University of Cambridge

IX Logic and Proof 901

The Limitations of Pure Logic

Imagine using resolution or DPLL to prove

354

113
< π <

355

113

Program verification involves

integers • reals • lists • booleans • arrays

How can we combine logical reasoning with

specialised theories?

Decision procedures are one answer.

Lawrence C. Paulson University of Cambridge

IX Logic and Proof 902

Decision Problems

Precise yes/no questions:

is n prime or not? Is this string accepted by that grammar?

Unfortunately, most decision problems for logic are hard:

• Propositional satisfiability NP-complete.

• The halting problem is undecidable. Therefore there is no decision

procedure to identify first-order theorems.

• The theory of integer arithmetic is undecidable (Gödel).

Lawrence C. Paulson University of Cambridge

IX Logic and Proof 903

Solvable Decision Problems

Propositional formulas are decidable: use the DPLL algorithm.

Linear arithmetic formulas are decidable:

• comparisons using <, ≤, =

• arithmetic using +, −, but × and ÷ only with constants, e.g.

• 2x < y ∧ y < x (satisfiable by y = −3, x = −2) or

2x < y ∧ y < x ∧ 3x > 2 (unsatisfiable)

• the integer and real (or rational) cases require different algorithms

Polynomial arithmetic is decidable; hence, so is Euclidean geometry.

Lawrence C. Paulson University of Cambridge

IX Logic and Proof 904

Fourier-Motzkin Variable Elimination

Decides conjunctions of linear constraints over reals/rationals

m
∧

i=1

n∑

j=1

aijxj ≤ bi

Eliminate variables one-by-one until one remains, or contradiction

Devised by Fourier (1826) — resembles Gaussian elimination

One of the first arithmetic decision procedures to be implemented

Worst-case complexity: O(m2n

)

Lawrence C. Paulson University of Cambridge

IX Logic and Proof 905

Basic Idea: Upper and Lower Bounds

To eliminate variable xn, consider constraint i, for i = 1, . . . , m:

Define βi = bi −
∑n−1

j=1 aijxj. Rewrite constraint i:

If ain > 0 then xn ≤ βi

ain

if ain < 0 then −xn ≤ − βi

ain

Adding two such constraints yields 0 ≤ βi

ain

−
β

i ′

a
i ′n

Do this for all combinations with opposite signs

Then delete original constraints (except where ain = 0)

Lawrence C. Paulson University of Cambridge

IX Logic and Proof 906

Fourier-Motzkin Elimination Example

initial problem eliminate x eliminate z result

x ≤ y z ≤ 0 0 ≤ −1 UNSAT

x ≤ z y + z ≤ 0 y ≤ −1

−x + y + 2z ≤ 0

−z ≤ −1 −z ≤ −1

Lawrence C. Paulson University of Cambridge

IX Logic and Proof 907

Two Worked Out Examples

x ≤ y

(+) − x + y + 2z ≤ 0

y + 2z ≤ y

and so z ≤ 0

x ≤ z

(+) − x + y + 2z ≤ 0

y + 2z ≤ z

and so y + z ≤ 0

Lawrence C. Paulson University of Cambridge

IX Logic and Proof 908

Quantifier Elimination (QE)

Skolemization removes quantifiers but only preserves satisfiability.

QE transforms a formula to a quantifier-free but equivalent formula.

The idea of Fourier-Motzkin is that (e.g.)

∃xy (2x < y ∧ y < x) ⇐⇒ ∃x 2x < x ⇐⇒ t

In general, the quantifier-free formula is enormous.

• With no free variables, the end result must be t or f.

• But even then, the time complexity tends to be hyper-exponential!

Lawrence C. Paulson University of Cambridge

IX Logic and Proof 909

Other Decidable Theories

QE for real polynomial arithmetic:

∃x [ax2 + bx + c = 0] ⇐⇒

b2 ≥ 4ac ∧ (c = 0 ∨ a 6= 0 ∨ b2 > 4ac)

Linear integer arithmetic: use Omega test or Cooper’s algorithm, but

any decision algorithm has a worst-case runtime of at least 22cn

There exist decision procedures for arrays, lists, bit vectors, . . .

Sometimes, they can cooperate to decide combinations of theories.

Lawrence C. Paulson University of Cambridge

IX Logic and Proof 910

Problem: To Combine Theories with Boolean Logic

These procedures expect existentially quantified conjunctions.

Formulas must be converted to disjunctive normal form.

Universal quantifiers must be eliminated using ∀xA ≃ ¬(∃x (¬A)).

Doing logic with DNF is poor

Is there a better way? Maybe using DPLL?

Lawrence C. Paulson University of Cambridge

IX Logic and Proof 911

Satisfiability Modulo Theories

Idea: use DPLL for logical reasoning, decision procedures for theories

Clauses can have literals like 2x < y, which are used as names.

If DPLL finds a contradiction, then the clauses are unsatisfiable.

Asserted literals are checked by the decision procedure:

• Unsatisfiable conjunctions of literals are noted as new clauses.

• Case splitting is interleaved with decision procedure calls.

Lawrence C. Paulson University of Cambridge

IX Logic and Proof 912

SMT Example

{c = 0, 2a < b} {b < a} {3a > 2, a < 0} {c 6= 0,¬(b < a)}

{c = 0, 2a < b} {3a > 2, a < 0} {c 6= 0} unit b < a

{2a < b} {3a > 2, a < 0} unit c 6= 0

{3a > 2, a < 0} unit 2a < b

Lawrence C. Paulson University of Cambridge

IX Logic and Proof 913

SMT Example (Continued)

Now a case split on 3a > 2 returns a “model”:

b < a, c 6= 0, 2a < b, 3a > 2

But the decision proc. finds these contradictory, killing the 3a > 2 case

It returns a new clause:

{¬(b < a),¬(2a < b),¬(3a > 2)}

Finally get a satisfiable result: b < a ∧ c 6= 0 ∧ 2a < b ∧ a < 0

Lawrence C. Paulson University of Cambridge

IX Logic and Proof 914

Remarks on the Previous Example

DPLL works only for propositional formulas!

We should properly write

{ c = 0 , 2a < b } {¬ c = 0 ,¬ b < a } · · ·

The DPLL part knows nothing about arithmetic.

SMT makes two independent reasoners cooperate!

Lawrence C. Paulson University of Cambridge

IX Logic and Proof 915

SMT Solvers and Their Applications

Popular ones include Z3, Yices, CVC4, but there are many others.

Representative applications:

• Hardware and software verification

• Program analysis and symbolic software execution

• Planning and constraint solving

• Hybrid systems and control engineering

Lawrence C. Paulson University of Cambridge

X Logic and Proof 1001

BDDs: Binary Decision Diagrams

A canonical form for boolean expressions: decision trees with sharing.

• ordered propositional symbols (the variables)

• sharing of identical subtrees

• hashing and other optimisations

Detects if a formula is tautologous (=1) or unsatisfiable (=0).

Exhibits models (paths to 1) if the formula is satisfiable.

Excellent for verifying digital circuits, with many other applications.

Lawrence C. Paulson University of Cambridge

X Logic and Proof 1002

Decision Diagram for (P ∨ Q) ∧ R

P

Q

R R

1000 0 01 1

Q

R R

Lawrence C. Paulson University of Cambridge

X Logic and Proof 1003

Converting a Decision Diagram to a BDD

P

Q

R

Q

R

0 1

P

Q

R

0 1

No duplicates No redundant tests

Lawrence C. Paulson University of Cambridge

X Logic and Proof 1004

Efficiently Converting a Formula to a BDD

Do not construct the full binary tree!

Do not expand →, ↔, ⊕ (exclusive OR) to other connectives!!

• Recursively convert operands to BDDs.

• Combine operand BDDs, respecting the ordering and sharing.

• Delete redundant variable tests.

BDD packages can handle 100 million nodes

Lawrence C. Paulson University of Cambridge

X Logic and Proof 1005

Canonical Form Algorithm for Negation

Here is how to convert ¬Z, where Z is a BDD:

• If Z = if(P,X, Y) then recursively convert if(P, ¬X, ¬Y).

• if Z = 1 then return 0, and if Z = 0 then return 1.

(We copy the BDD but exchange the 1 and 0 at the bottom.)

The treatment of Z → 0 and Z ↔ 0 turns out the same way.

Lawrence C. Paulson University of Cambridge

X Logic and Proof 1006

Canonical Form Algorithm for Binary Connectives

To convert Z ∧ Z ′, where Z and Z ′ are already BDDs:

Trivial if either operand is 1 or 0.

Let Z = if(P,X, Y) and Z ′ = if(P ′, X ′, Y ′)

• If P = P ′ then recursively convert if(P, X ∧ X ′, Y ∧ Y ′).

• If P < P ′ then recursively convert if(P, X ∧ Z ′, Y ∧ Z ′).

• If P > P ′ then recursively convert if(P ′, Z ∧ X ′, Z ∧ Y ′).

similarly for Z ∨ Z ′, Z → Z ′ and even Z ↔ Z ′

Lawrence C. Paulson University of Cambridge

X Logic and Proof 1007

Canonical Form (that is, BDD) of P ∨ Q

P

0 1

Q

0 1

P

∨

Lawrence C. Paulson University of Cambridge

X Logic and Proof 1008

Canonical Form of P ∨ Q → Q ∨ R

Q

0 1

P →

R

0 1

Q

R

0 1

Q

P

is

Lawrence C. Paulson University of Cambridge

X Logic and Proof 1009

A Exam Question: 2010 P5 Q5

BDD for [p→ (q ∧ s)] ∧ [s ∨ (r→ s)], alphabetic ordering.

T F

s

q

p

T F

s

r

Lawrence C. Paulson University of Cambridge

X Logic and Proof 1010

T F

s

r q

p

Lawrence C. Paulson University of Cambridge

X Logic and Proof 1011

Tricks for Doing BDDs by Hand

“Two Finger Method”

Treat the cases of the variables strictly in order

Insert “redundant tests” to make the top variables match

Be careful to preserve sharing rather than copy

If a variable repeats on any path, you’ve gone wrong!

Lawrence C. Paulson University of Cambridge

X Logic and Proof 1012

Optimisations

Never build the same BDD twice, but share pointers. Advantages:

• If X ≃ Y, then the addresses of X and Y are equal.

• Can see if if(P,X, Y) is redundant by checking if X = Y.

• Can quickly simplify special cases like X ∧ X.

Never convert X ∧ Y twice, but keep a hash table of known canonical

forms. This prevents redundant computations.

Lawrence C. Paulson University of Cambridge

X Logic and Proof 1013

BDDs versus SAT Solvers

Timeline: original DPLL (1962), BDDs (1986), faster SAT (2001)

BDDs SAT solvers

all counterexamples one counterexample*

full logic including XOR clause form only

for hardware: adders, latches general constraint problems

used in model checkers combined with decision procs

*Good for counterexample-driven abstraction refinement

Lawrence C. Paulson University of Cambridge

X Logic and Proof 1014

Final Observations

The variable ordering is crucial. Consider this formula:

(P1 ∧ Q1) ∨ · · · ∨ (Pn ∧ Qn)

A good ordering is P1 < Q1 < · · · < Pn < Qn

• the BDD is linear: exactly 2n nodes

A bad ordering is P1 < · · · < Pn < Q1 < · · · < Qn

• the BDD is exponential: exactly 2n+1 nodes

Lawrence C. Paulson University of Cambridge

X Logic and Proof 1015

Lawrence C. Paulson University of Cambridge

XI Logic and Proof 1101

Modal Operators

W: set of possible worlds (machine states, future times, . . .)

R: accessibility relation between worlds

(W,R) is called a modal frame or Kripke frame

✷A means A is necessarily true

✸A means A is possibly true

}
in all worlds accessible from here

¬✸A ≃ ✷¬A A cannot be true ⇐⇒ A must be false

Lawrence C. Paulson University of Cambridge

XI Logic and Proof 1102

P Q P Q …

P P,Q

Q,R P,R

!Q, ☐R

!R, ☐P

Lawrence C. Paulson University of Cambridge

XI Logic and Proof 1103

Semantics of Propositional Modal Logic

For a particular frame (W,R)

An interpretation I maps the propositional letters to subsets of W

w A means A is true in world w

w P ⇐⇒ w ∈ I(P)

w A ∧ B⇐⇒ w A and w B

w ✷A ⇐⇒ v A for all v such that R(w, v)

w ✸A ⇐⇒ v A for some v such that R(w, v)

sometimes called Kripke semantics

Lawrence C. Paulson University of Cambridge

XI Logic and Proof 1104

Truth and Validity in Modal Logic

For a particular frame (W,R), and interpretation I

w A means A is true in world w

|=W,R,I A means w A for all w in W

|=W,R A means w A for all w and all I

|= A means |=W,R A for all frames; A is universally valid

. . . but typically we constrain R to be, say, transitive.

All propositional tautologies are universally valid!

Lawrence C. Paulson University of Cambridge

XI Logic and Proof 1105

A Hilbert-Style Proof System for K

Extend your favourite propositional proof system with an axiom:

Dist ✷(A → B) → (✷A → ✷B)

And with an inference rule, Necessitation

A
✷A

Treat ✸ as a definition

✸A
def
= ¬✷¬A

Lawrence C. Paulson University of Cambridge

XI Logic and Proof 1106

Variant Modal Logics

Start with pure modal logic, which is called K

Add axioms to constrain the accessibility relation:

T ✷A → A (reflexive) logic T

4 ✷A → ✷✷A (transitive) logic S4

B A → ✷✸A (symmetric) logic S5

And countless others!

We mainly look at S4, which resembles a logic of time.

Lawrence C. Paulson University of Cambridge

XI Logic and Proof 1107

Justifying Axiom 4 (Transitivity)

A

So if ✷A then ✷✷A

Lawrence C. Paulson University of Cambridge

XI Logic and Proof 1108

S4 as a Temporal Logic

✷A means A holds at every future time

✸A means A holds some time in the future

✷✸A means A holds infinitely often

✸✷A means A will become permanently true after some time

✷¬(P ∧ Q) implies mutual exclusion for P, Q

✷(P → ✸Q) means P will eventually trigger Q

What about ✷✷A and ✸✸A?

Lawrence C. Paulson University of Cambridge

XI Logic and Proof 1109

Extra Sequent Calculus Rules for S4

A, Γ⇒∆

✷A, Γ⇒∆
(✷l)

Γ∗⇒∆∗, A

Γ⇒∆,✷A
(✷r)

A, Γ∗⇒∆∗

✸A, Γ⇒∆
(✸l)

Γ⇒∆,A

Γ⇒∆,✸A
(✸r)

Γ∗ def
= {✷B | ✷B ∈ Γ } Erase non-✷ assumptions.

∆∗ def
= {✸B | ✸B ∈ ∆} Erase non-✸ goals!

Lawrence C. Paulson University of Cambridge

XI Logic and Proof 1110

A Proof of the Distribution Axiom

A⇒B,A B,A⇒B

A → B,A⇒B
(→l)

A → B,✷A⇒B
(✷l)

✷(A → B),✷A⇒B
(✷l)

✷(A → B),✷A⇒✷B
(✷r)

And thus ✷(A → B) → (✷A → ✷B)

Must apply (✷r) first!

Lawrence C. Paulson University of Cambridge

XI Logic and Proof 1111

Part of an “Operator String Equivalence”

✸A⇒✸A

✷✸A⇒✸A
(✷l)

✸✷✸A⇒✸A
(✸l)

✷✸✷✸A⇒✸A
(✷l)

✷✸✷✸A⇒✷✸A
(✷r)

In fact, ✷✸✷✸A ≃ ✷✸A also ✷✷A ≃ ✷A

The S4 operator strings are ✷ ✸ ✷✸ ✸✷ ✷✸✷ ✸✷✸

Lawrence C. Paulson University of Cambridge

XI Logic and Proof 1112

Two Failed Proofs

⇒A

⇒✸A
(✸r)

A⇒✷✸A
(✷r)

versus

✷A⇒A

✷A⇒✸A
(✸r)

✷A⇒✷✸A
(✷r)

B⇒A ∧ B

B⇒✸(A ∧ B)
(✸r)

✸A,✸B⇒✸(A ∧ B)
(✸l)

Can extract a countermodel from the proof attempt

Lawrence C. Paulson University of Cambridge

XI Logic and Proof 1113

Some Remarks on Model Checking

• Temporal formulas can be proved by state enumeration

• . . . using specially designed temporal logics

• Typically extend the language: “until” modalities, etc.

• branching-time vs linear-time; discrete vs continuous time

• Applications to verifying hardware or concurrent systems

examples of model-checkers: SPIN, NuSMV (which is BDD-based)

Lawrence C. Paulson University of Cambridge

XII Logic and Proof 1201

Simplifying the Sequent Calculus

7 connectives (or 9 for modal logic):

¬ ∧ ∨ → ↔ ∀ ∃ (✷ ✸)

Left and right: so 14 rules (or 18) plus basic sequent, cut

Idea! Work in Negation Normal Form

Fewer connectives: ∧ ∨ ∀ ∃ (✷ ✸)

Sequents need one side only!

Lawrence C. Paulson University of Cambridge

XII Logic and Proof 1202

Tableau Calculus: Left-Only

¬A,A, Γ⇒
(basic) ¬A, Γ⇒ A, Γ⇒

Γ⇒
(cut)

A,B, Γ⇒
A ∧ B, Γ⇒

(∧l)
A, Γ⇒ B, Γ⇒

A ∨ B, Γ⇒
(∨l)

A[t/x], Γ⇒
∀xA, Γ⇒

(∀l)
A, Γ⇒

∃xA, Γ⇒
(∃l)

Rule (∃l) holds provided x is not free in the conclusion!

Lawrence C. Paulson University of Cambridge

XII Logic and Proof 1203

Tableau Rules for S4

A, Γ⇒
✷A, Γ⇒

(✷l)
A, Γ∗⇒

✸A, Γ⇒
(✸l)

Γ∗ def
= {✷B | ✷B ∈ Γ } Erase non-✷ assumptions

From 14 (or 18) rules to 4 (or 6)

Left-side only system uses proof by contradiction

Right-side only system is an exact dual

Lawrence C. Paulson University of Cambridge

XII Logic and Proof 1204

Tableau Proof of ∀x (P → Q(x)) → [P → ∀yQ(y)]

Negate and convert to NNF:

P, ∃y¬Q(y), ∀x (¬P ∨ Q(x))⇒

P, ¬Q(y), ¬P⇒ P, ¬Q(y), Q(y)⇒
P, ¬Q(y), ¬P ∨ Q(y)⇒

(∨l)

P, ¬Q(y), ∀x (¬P ∨ Q(x))⇒
(∀l)

P, ∃y¬Q(y), ∀x (¬P ∨ Q(x))⇒
(∃l)

Lawrence C. Paulson University of Cambridge

XII Logic and Proof 1205

The Free-Variable Tableau Calculus

Rule (∀l) now inserts a new free variable:

A[z/x], Γ⇒
∀xA, Γ⇒

(∀l)

Let unification instantiate any free variable

In ¬A,B, Γ⇒ try unifying A with B to make a basic sequent

Updating a variable affects entire proof tree

What about rule (∃l)? Do not use it! Instead, Skolemize!

Lawrence C. Paulson University of Cambridge

XII Logic and Proof 1206

Skolemization from NNF

Recall e.g. that we Skolemize

[∀y∃zQ(y, z)] ∧ ∃x P(x) to [∀yQ(y, f(y))] ∧ P(a)

Remark: pushing quantifiers in (miniscoping) gives better results.

Example: proving ∃x∀y [P(x) → P(y)]:

Negate; convert to NNF: ∀x∃y [P(x) ∧ ¬P(y)]

Push in the ∃y : ∀x [P(x) ∧ ∃y¬P(y)]

Push in the ∀x : (∀x P(x)) ∧ (∃y¬P(y))

Skolemize: ∀x P(x) ∧ ¬P(a)

Lawrence C. Paulson University of Cambridge

XII Logic and Proof 1207

Free-Variable Tableau Proof of ∃x∀y [P(x) → P(y)]

y 7→ f(z)

P(y), ¬P(f(y)), P(z), ¬P(f(z))⇒
(basic)

P(y), ¬P(f(y)), P(z) ∧ ¬P(f(z))⇒
(∧l)

P(y), ¬P(f(y)), ∀x [P(x) ∧ ¬P(f(x))]⇒
(∀l)

P(y) ∧ ¬P(f(y)), ∀x [P(x) ∧ ¬P(f(x))]⇒
(∧l)

∀x [P(x) ∧ ¬P(f(x))]⇒
(∀l)

Unification chooses the term for (∀l)

Lawrence C. Paulson University of Cambridge

XII Logic and Proof 1208

A Failed Proof

Try to prove ∀x [P(x) ∨ Q(x)] → [∀x P(x) ∨ ∀xQ(x)]

NNF: ∃x¬P(x) ∧ ∃x¬Q(x) ∧ ∀x [P(x) ∨ Q(x)]⇒

Skolemize: ¬P(a), ¬Q(b), ∀x [P(x) ∨ Q(x)]⇒

y 7→ a

¬P(a), ¬Q(b), P(y)⇒
y 7→ b???

¬P(a), ¬Q(b), Q(y)⇒
¬P(a), ¬Q(b), P(y) ∨ Q(y)⇒

(∨l)

¬P(a), ¬Q(b), ∀x [P(x) ∨ Q(x)]⇒
(∀l)

Lawrence C. Paulson University of Cambridge

XII Logic and Proof 1209

The Various Tableau Calculi

Today we’ve seen two separate calculi:

1. First-order tableaux without unification

2. First-order tableaux with unification (free-variable tableau)

mentioned previously: connection tableaux

(related to the model elimination calculus)

All these lend themselves to compact implementations!

Lawrence C. Paulson University of Cambridge

XII Logic and Proof 1210

The World’s Smallest Theorem Prover?

prove((A,B),UnExp,Lits,FreeV,VarLim) :- !, and

prove(A,[B|UnExp],Lits,FreeV,VarLim).

prove((A;B),UnExp,Lits,FreeV,VarLim) :- !, or

prove(A,UnExp,Lits,FreeV,VarLim),

prove(B,UnExp,Lits,FreeV,VarLim).

prove(all(X,Fml),UnExp,Lits,FreeV,VarLim) :- !, forall

\+ length(FreeV,VarLim),

copy_term((X,Fml,FreeV),(X1,Fml1,FreeV)),

append(UnExp,[all(X,Fml)],UnExp1),

prove(Fml1,UnExp1,Lits,[X1|FreeV],VarLim).

prove(Lit,_,[L|Lits],_,_) :- literals; negation

(Lit = -Neg; -Lit = Neg) ->

(unify(Neg,L); prove(Lit,[],Lits,_,_)).

prove(Lit,[Next|UnExp],Lits,FreeV,VarLim) :- next formula

prove(Next,UnExp,[Lit|Lits],FreeV,VarLim).

Lawrence C. Paulson University of Cambridge

