Logic and Proof

Computer Science Tripos Part IB

Lawrence C Paulson
Computer Laboratory
University of Cambridge

lpl5@cam.ac.uk

Copyright © 2021 by Lawrence C. Paulson

Contents

9

Introduction and Learning Guide

Propositional Logic

Proof Systems for Propositional Logic

First-order Logic

Formal Reasoning in First-Order Logic

Clause Methods for Propositional Logic

Skolem Functions, Herbrand’s Theorem and Unification
First-Order Resolution and Prolog

Decision Procedures and SMT Solvers

10 Binary Decision Diagrams

11 Modal Logics

12 Tableaux-Based Methods

11

14

17

22

25

28

29

31

1 INTRODUCTION AND LEARNING GUIDE

1 Introduction and Learning Guide

This course is a brief introduction to logic, including the
resolution method of theorem-proving and its relation to the
language Prolog. Formal logic is used for specifying and
verifying computer systems.

The course should help you to understand Prolog and
is a prerequisite for more advanced verification courses.
It describes many techniques used in automated theorem
provers. Understanding the various deductive methods is a
crucial part of the course, but you should also try to acquire
some intuitions about logic.

Although the course notes are self-contained, some stu-
dents will want to read alternative treatments of the mate-
rial. A suitable course text is

Michael Huth and Mark Ryan, Logic in
Computer Science: Modelling and Reasoning
about Systems, 2nd edition (CUP, 2004)

It covers most topics save resolution theorem proving. It
includes material (symbolic model checking) that could be
useful later.

The following book may be a useful supplement to Huth
and Ryan. It covers resolution and other relevant topics.

Mordechai Ben-Ari, Mathematical Logic for
Computer Science, 2nd edition (Springer, 2001)

The following book provides a different perspective on
modal logic, and it develops propositional logic carefully.

Sally Popkorn, First Steps in Modal Logic (CUP,
2008)

The following paper is a wonderful exposition of the
workings and power of SAT solvers. It is available for
download within the University.

Marijn Heule and Oliver Kullmann. The Science
of Brute Force. CACM 60 (2017), 70-79.
http://dl.acm.org/citation.cfm?
id=3107239

There are numerous exercises in these notes, and they are
suitable for supervision purposes. Most old examination
questions for Foundations of Logic Programming (the for-
mer name of this course) are still relevant. As of 2013/14,
Herbrand’s theorem has been somewhat deprecated, still
mentioned but no longer in detail. Some unification the-
ory has also been removed. These changes created space
for a new lecture on Decision Procedures and SMT Solvers.

2013 Paper 6 Q6:
2012 Paper 6 Q6:
2011 Paper 6 Q5:
2011 Paper 6 Q6:

resolution problems
sequents / tableaux, modal logic, BDDs
resolution, linear resolution, BDDs

unification, modal logic

e 2010 Paper 6 Q5: BDDs and models

e 2010 Paper 6 Q6: sequent or tableau calculus, DPLL. Note:
the formula should be (Ax P(x) — Q) — Vx (P(x) — Q).

e 2008 Paper 3 Q6: BDDs, DPLL, sequent calculus

e 2008 Paper 4 Q5: (dis)proving first-order formulas, resolu-
tion

e 2009 Paper 6 Q7: modal logic
e 2009 Paper 6 Q8: resolution, tableau calculi

e 2007 Paper 5 Q9: propositional methods, resolution, modal
logic

e 2007 Paper 6 Q9: proving or disproving first-order formulas
e 2006 Paper 5 Q9: proof and disproof in FOL and modal logic
e 2005 Paper 5 Q9: resolution

e 2005 Paper 6 Q9: DPLL, BDDs, tableaux

e 2004 Paper 5 Q9: semantics and proof in FOL

e 2003 Paper 5 Q9: BDDs; clause-based proof methods

e 2003 Paper 6 Q9: sequent calculus

e 2002 Paper 5 Q11: semantics of first-order logic

e 2002 Paper 6 Q11: resolution; proof systems

e 2001 Paper 5 Q11: satisfaction relation; logical equivalences

e 2001 Paper 6 Q11: clause methods; fernary decision dia-
grams

2000 Paper 5 Q11:
1999 Paper 5 Q10:
1998 Paper 5 Q10:
1998 Paper 6 Q10:
1997 Paper 5 Q10:
1997 Paper 6 Q10:
1996 Paper 5 Q10:
1996 Paper 6 Q10:

tautology checking; sequent calculus
Prolog versus general resolution
BDDs, sequent calculus, etc.

modal logic; resolution

first-order logic

sequent rules for quantifiers

sequent calculus

DPLL versus Resolution

1995 Paper 5 Q9: BDDs

1995 Paper 6 Q9: outline logics; sequent calculus

Acknowledgements.

Chloé Brown, Jonathan Davies and

2017 Paper 6 Q5:
2017 Paper 6 Q6:
2016 Paper 6 Q5:
2016 Paper 6 Q6:
2015 Paper 6 Q5:
2015 Paper 6 Q6:
2014 Paper 6 QS5:
2014 Paper 6 Q6:
2013 Paper 6 Q5:

modal logic and resolution

BDDs and the sequent calculus

clause methods and resolution

SMT solving and BDDs

resolution and factoring

Boolean satisfiability; sequent / tableaux
propositional proof: BDDs and DPLL
decision procedures; variant of resolution

DPLL, sequent or tableau calculus

Reuben Thomas pointed out numerous errors in these notes.
David Richerby and Ross Younger made detailed sugges-
tions. Thanks also to Nathanael Alcock, Julia Bibik, Dar-
ren Foong, Thomas Forster, Simon Frankau, Adam Hall,
Ximin Luo, Roddy MacSween, Priyesh Patel, Steve Payne,
Kuba Perlin, Tom Puverle, Max Spencer, Nik Sultana, Ben
Thorner, Tjark Weber and John Wickerson.

2 PROPOSITIONAL LOGIC

2 Propositional Logic

Propositional logic deals with truth values and the logical
connectives and, or, not, etc. Most of the concepts in propo-
sitional logic have counterparts in first-order logic. Here are
the most fundamental concepts.

Syntax refers to the formal notation for writing assertions.
It also refers to the data structures that represent asser-
tions in a computer. At the level of syntax, 1 + 2 is a
string of three symbols, or a tree with a node labelled
+ and having two children labelled 1 and 2.

Semantics expresses the meaning of a formula in terms of
mathematical or real-world entities. While 1 + 2 and
2 4 1 are syntactically distinct, they have the same se-
mantics, namely 3. The semantics of a logical state-
ment will typically be true or false.

Proof theory concerns ways of proving statements, at least
the true ones. Typically we begin with axioms and
arrive at other true statements using inference rules.
Formal proofs are typically finite and mechanical:
their correctness can be checked without understand-
ing anything about the subject matter.

Syntax can be represented in a computer. Proof methods
are syntactic, so they can be performed by computer. On
the other hand, as semantics is concerned with meaning, it
exists only inside people’s heads. This is analogous to the
way computers handle digital photos: the computer has no
conception of what your photos mean to you, and internally
they are nothing but bits.

2.1 Syntax of propositional logic

Take a set of propositional symbols P, Q, R, A formula
consisting of a propositional symbol is called atomic. We
use t and f to denote true and false.

Formulas are constructed from atomic formulas using the
logical connectives!

- (not)
A (and)
Vv (or)
— (implies)
< (if and only if)

These are listed in order of precedence; — is highest. We
shall suppress needless parentheses, writing, for example,

(((=P)ANQ)VR) = ((—=P)vQ)as =PAQVR — —PVQ.

In the metalanguage (these notes), the letters A, B, C, ...
stand for arbitrary formulas. The letters P, Q, R, ... stand
for atomic formulas.

2.2 Semantics

Propositional Logic is a formal language. Each formula
has a meaning (or semantics) — either 1 or 0 — relative to

1Using D for implies and = for if-and-only-if is archaic.

the meaning of the propositional symbols it contains. The
meaning can be calculated using the standard truth tables.

A B|—-A AAB AVvVB A— B A< B

1 1] 0 1 1 1 1
1 0] 0 0 1 0 0
0 1 1 0 1 1 0
0 0] 1 0 0 1 1

By inspecting the table, we can see that A — B is equiv-
alent to A Vv B and that A <> B is equivalent to (A —
B) A (B — A). (The latter is also equivalent to —=(A & B),
where @ is exclusive-or.)

Note that we are using t and f in the language as symbols
to denote the truth values 1 and 0. The former belongs to
syntax, the latter to semantics. When it comes to first-order
logic, we shall spend some time on the distinction between
symbols and their meanings.

We now make some definitions that will be needed
throughout the course.

Definition 1 An interpretation, or truth assignment, for a
set of formulas is a function from its set of propositional
symbols to {1, 0}.

An interpretation satisfies a formula if the formula eval-
uates to 1 under the interpretation.

A set S of formulas is valid (or a tautology) if every in-
terpretation for § satisfies every formula in S.

A set S of formulas is satisfiable if there is some inter-
pretation for S that satisfies every formula in S.

A set S of formulas is unsatisfiable if it is not satisfiable.

A set S of formulas entails A if every interpretation that
satisfies all elements of S, also satisfies A. Write S = A.

Formulas A and B are equivalent, A >~ B, provided A =
Band B E A.

Some relationships hold among these primitives. Note
the following in particular:

e S = Aifandonly if {—A} U S is unsatisfiable.

e If S is unsatisfiable, then S |= A for any A. This is an
instance of the phenomenon that we can deduce any-
thing from a contradiction.

e = A if and only if A is valid, if and only if {—A} is
unsatisfiable.

It is usual to write A = B instead of {A} &= B. We may
similarly identify a one-element set with a formula in the
other definitions.

Note that = and >~ are not logical connectives but rela-
tions between formulas. They belong not to the logic but to
the metalanguage: they are symbols we use to discuss the
logic. They therefore have lower precedence than the logi-
cal connectives. No parentheses are neededin A A A >~ A
because the only possible reading is (A A A) >~ A. We may
not write A A (A >~ A) because A >~ A is not a formula.

In propositional logic, a valid formula is also called a
tautology. Here are some examples of these definitions.

e The formulas A — A and —(A A —A) are valid for
every formula A.

2 PROPOSITIONAL LOGIC

e The formulas P and P A (P — Q) are satisfiable:
they are both true under the interpretation that maps P
and Q to 1. But they are not valid: they are both false
under the interpretation that maps P and Q to 0.

e If A is a valid formula then —A is unsatisfiable.

e This set of formulas is unsatisfiable: {P, Q, —P V

-0}

2.3 Applications of propositional logic

In hardware design, propositional logic has long been used
to minimize the number of gates in a circuit, and to show
the equivalence of combinational circuits. There now exist
highly efficient tautology checkers, such as BDDs (Binary
Decision Diagrams), which can verify complex combina-
tional circuits. This is an important branch of hardware ver-
ification. The advent of efficient SAT solvers has produced
an explosion of applications involving approximating var-
ious phenomena as large propositional formulas, typically
through some process of iterative refinement.

Chemical synthesis is a more offbeat example.> Under
suitable conditions, the following chemical reactions are
possible:

HCI 4+ NaOH — NaCl + H,O
C+ 0, - COy
CO;, + HO — HyCO3

Show we can make H,CO3 given supplies of HCI, NaOH,
0O,, and C.

Chang and Lee formalize the supplies of chemicals as
four axioms and prove that H>COj3 logically follows. The
idea is to formalize each compound as a propositional sym-
bol and express the reactions as implications:

HCI A NaOH — NaCl A H,O
CAO; —» COy
CO, A Hy;O — H;CO3

Note that this involves an ideal model of chemistry. What
if the reactions can be inhibited by the presence of other
chemicals? Proofs about the real world always depend upon
general assumptions. It is essential to bear these in mind
when relying on such a proof.

2.4 Equivalences

Note that A <> B and A ~ B are different kinds of asser-
tions. The formula A <> B refers to some fixed interpre-
tation, while the metalanguage statement A ~ B refers to
all interpretations. On the other hand, = A <> B means the
same thing as A ~ B. Both are metalanguage statements,
and A ~ B is equivalent to saying that the formula A < B
is a tautology.

Similarly, A — B and A | B are different kinds of
assertions, while = A — B and A &= B mean the same

2Ch.amg and Lee, page 21, as amended by Ross Younger, who knew
more about Chemistry!

thing. The formula A — B is a tautology if and only if
A E= B.

Here is a listing of some of the more basic equivalences
of propositional logic. They provide one means of reason-
ing about propositions, namely by transforming one propo-
sition into an equivalent one. They are also needed to con-
vert propositions into various normal forms.

idempotency laws

ANA>A
AVA~A

commutative laws

AANB>~BAA
AVB>~BVA

associative laws

(AAB)AC~AAN(BACQC)
(AVB)VC~AvV(BVC(C)

distributive laws

AV(BAC)~(AVB)YA(AVO)
AANBVC)~(AAB)V(AANC)

de Morgan laws

—(AAB)~—-AvV-B
—(AV B) ~—=AAN-B

other negation laws

—-(A— B)~AA—-B
—(A < B) ~(—A) < B~ A« (—B)

laws for eliminating certain connectives

A< B>~(A— B)A(B— A)
—“A~A—>f
A—> B>~—-AVB

simplification laws

Anf>f
ANt~ A
AVvEi~A
Avtx>t
——A~A
AvVv-Ax>~t
AN—-Af

Propositional logic enjoys a principle of duality: for ev-
ery equivalence A >~ B there is another equivalence A" >~
B’, derived by exchanging A with v and t with f. Before ap-
plying this rule, remove all occurrences of — and <>, since
they implicitly involve A and V.

2 PROPOSITIONAL LOGIC

2.5 Normal forms

The language of propositional logic has much redundancy:
many of the connectives can be defined in terms of others.
By repeatedly applying certain equivalences, we can trans-
form a formula into a normal form. A typical normal form
eliminates certain connectives and uses others in a restricted
manner. The restricted structure makes the formula easy to
process, although the normal form may be much larger than
the original formula, and unreadable.

Definition 2 (Normal Forms)

e A literal is an atomic formula or its negation. Let K, L,
L', ... stand for literals.

e A formula is in Negation Normal Form (NNF) if the
only connectives in it are A, V, and —, where — is only
applied to atomic formulas.

e A formula is in Conjunctive Normal Form (CNF) if
it has the form A; A --- A A,,, where each A; is a
disjunction of one or more literals.

e A formula is in Disjunctive Normal Form (DNF) if it
has the form Ay v --- Vv A,,, where each A; is a con-
junction of one or more literals.

An atomic formula like P is in all the normal forms NNF,
CNEF, and DNF. The formula

(PVOAEPVS)A(RYVP)

is in CNF. Unlike in some hardware applications, the dis-
juncts in a CNF formula do not have to mention all the vari-
ables. On the contrary, they should be as simple as possible.
Simplifying the formula

(PVOANEPVOIARYVS)

to O A (R Vv S) counts as an improvement, because it will
make our proof procedures run faster. For examples of DNF
formulas, exchange A and V in the examples above. As
with CNF, there is no need to mention all combinations of
variables.

NNF can reveal the underlying nature of a formula. For
example, converting =(A — B) to NNF yields A A —B.
This reveals that the original formula was effectively a con-
junction. Every formula in CNF or DNF is also in NNF, but
the NNF formula ((—P A Q) V R) A P is in neither CNF
nor DNF.

2.6 Translation to normal form
Every formula can be translated into an equivalent formula

in NNF, CNF, or DNF by means of the following steps.

Step 1. Eliminate <> and — by repeatedly applying the
following equivalences:

A< B~(A— B)A(B— A)
A— B~—-AVB

Step 2. Push negations in until they apply only to atoms,
repeatedly replacing by the equivalences

——A~A
—(AAB)~—-AvV-B
—(AV B) ~—=AA-B

At this point, the formula is in Negation Normal Form.

Step 3. To obtain CNF, push disjunctions in until they ap-
ply only to literals. Repeatedly replace by the equivalences

AV(BAC)~(AVB)A(AVO)
(BAC)VA~(BVAYA(CVA)

These two equivalences obviously say the same thing, since
disjunction is commutative. In fact, we have

(AAB)V(CAD) ~ (AVCOAN(AVD)A(BVC)AN(BV D).

Use this equivalence when you can, to save writing.

Step 4. Simplify the resulting CNF by deleting any dis-
junction that contains both P and — P, since it is equivalent
to t. Also delete any conjunct that includes another con-
junct (meaning, every literal in the latter is also present in
the former). This is correct because (A VvV B) A A >~ A. Fi-
nally, two disjunctions of the form P v A and =P Vv A can
be replaced by A, thanks to the equivalence

(PVAYA(—PVA) ~A.

This simplification is related to the resolution rule, which
we shall study later.

Since V is commutative, a conjunct of the form A v B
could denote any possible way of arranging the literals into
two parts. This includes A V f, since one of those parts may
be empty and the empty disjunction is false. So in the last
simplification above, two conjuncts of the form P and —P
can be replaced by f.

Steps 3’ and 4°.
distributive law:

To obtain DNF, apply instead the other

AANBVC)~(AAB)V(AANC)
(BVC)AA=(BAA)V(CAA)

Exactly the same simplifications can be performed for DNF
as for CNF, exchanging the roles of A and V.

2.7 Tautology checking using CNF

Here is a (totally impractical) method of proving theorems
in propositional logic. To prove A, reduce it to CNF. If
the simplified CNF formula is t then A is valid because
each transformation preserves logical equivalence. And if
the CNF formula is not t, then A is not valid.

To see why, suppose the CNF formulais A1 A --- A A,.
If A is valid then each A; must also be valid. Write A; as
Ly vV ---Vv Ly, where the L; are literals. We can make an

3 PROOF SYSTEMS FOR PROPOSITIONAL LOGIC

interpretation / that falsifies every L ;, and therefore falsi-
fies A;. Define [such that, for every propositional letter P,

1Py = 0 %ij%storsomej.
1 if L is =P for some j

This definition is legitimate because there cannot exist lit-
erals L; and Ly such that L ; is —Ly; if there did, then sim-
plification would have deleted the disjunction A;.

The powerful BDD method is based on similar ideas, but
uses an if-then-else data structure, an ordering on the propo-
sitional letters, and some standard algorithmic techniques
(such as hashing) to gain efficiency.

Example 1 Start with
PvQO— QOVR.
Step 1, eliminate —, gives
~(PVQ)V(QVR).
Step 2, push negations in, gives
(=PA=Q)V(QVR).
Step 3, push disjunctions in, gives
("PVOVR)ACEQVOVR).
Simplifying yields (=P Vv Q V R) A t and then
—-PV QVR.

The interpretation P +— 1, Q@ +— 0, R — O falsifies this
formula, which is equivalent to the original formula. So the
original formula is not valid.

Example 2 Start with
PAQ— QAP
Step 1, eliminate —, gives
“(PAQ)VOAP
Step 2, push negations in, gives
(=PV—=Q)V(QAP)
Step 3, push disjunctions in, gives
(=PV—-QOQVO)AEPV-QVP)

Simplifying yields t A t, which is t. Both conjuncts are
valid since they contain a formula and its negation. Thus
P AQ— QA P isvalid.

Example 3 Peirce’s law is another example. Start with
(P—->Q)— P)— P
Step 1, eliminate —, gives

=(=(=PVvQ)VP)VP

Step 2, push negations in, gives
(= (=PV Q)A=P)VP

(=PVQ)A—=P)VP

Step 3, push disjunctions in, gives
(=PVQVP)A(—PVP)

Simplifying again yields t. Thus Peirce’s law is valid.

There is a dual method of refuting A (proving inconsis-
tency). To refute A, reduce it to DNF, say A1 V --- V A,
If A is unsatisfiable then so is each A;. Suppose A; is
Ly A--- A Ly, where the L; are literals. If there is some
literal L’ such that the L; include both L" and —L’, then
A; is unsatisfiable. If not then there is an interpretation that
verifies every L ;, and therefore A;.

To prove A, we can use the DNF method to refute —A.
The steps are exactly the same as the CNF method because
the extra negation swaps every V and A. Gilmore imple-
mented a theorem prover based upon this method in 1960.

Exercise 1 Is the formula P — — P satisfiable, or valid?

Exercise 2 Verify the de Morgan and distributive laws us-
ing truth tables.

Exercise 3 Each of the following formulas is satisfiable but
not valid. Exhibit an interpretation that makes the formula
true and another that makes the formula false.

P— Q
—(PV QVR)

PvQ—PAQ
“(PAQ)A=(QV R)AN(PVR)

Exercise 4 Convert each of the following propositional for-
mulas into Conjunctive Normal Form and also into Disjunc-
tive Normal Form. For each formula, state whether it is
valid, satisfiable, or unsatisfiable; justify each answer.

(P—> Q)N (Q—P)
(PAQ)VRYA—=(PVR)
“(PVOVR)YV((PAQ)VR)

Exercise 5 Using ML, define datatypes for representing
propositions and interpretations. Write a function to test
whether or not a proposition holds under an interpretation
(both supplied as arguments). Write a function to convert a
proposition to Negation Normal Form.

3 Proof Systems for Propositional
Logic

We can verify any tautology by checking all possible in-
terpretations, using the truth tables. This is a semantic ap-
proach, since it appeals to the meanings of the connectives.

The syntactic approach is formal proof: generating the-
orems, or reducing a conjecture to a known theorem, by
applying syntactic transformations of some sort. We have
already seen a proof method based on CNF. Most proof
methods are based on axioms and inference rules.

3 PROOF SYSTEMS FOR PROPOSITIONAL LOGIC

What about efficiency? Deciding whether a propositional
formula is satisfiable is an NP-complete problem (Aho,
Hopcroft and Ullman 1974, pages 377-383). Thus all ap-
proaches are likely to be exponential in the length of the
formula. Technologies such as BDDs and SAT solvers,
which can decide huge problems in propositional logic, are
all the more stunning because their success was wholly un-
expected. But even they require a “well-behaved” input for-
mula and are exponential in the worst case.

3.1 A Hilbert-style proof system

Here is a simple proof system for propositional logic. There
are countless similar systems. They are often called Hilbert
systems after the logician David Hilbert, although they ex-
isted before him.

This proof system provides rules for implication only.
The other logical connectives are not taken as primitive.
They are instead defined in terms of implication:

—AL At

AvBY A B

AABE ~(=Av-B)

Obviously, these definitions apply only when we are dis-
cussing this proof system!

Note that A — (B — A) is atautology. Call it Axiom K.
Also,

(A—-(B—->0C)— (A= B)— (A—= ()

is a tautology. Call it Axiom S. The Double-Negation Law
——A — A, is a tautology. Call it Axiom DN.

These axioms are more properly called axiom schemes,
since we assume all instances of them that can be obtained
by substituting formulas for A, B and C. For example, Ax-
iom K is really an infinite set of formulas.

Whenever A — B and A are both valid, it follows that B
is valid. We write this as the inference rule

A— B A
B.

This rule is traditionally called Modus Ponens. Together
with Axioms K, S, and DN and the definitions, it suf-
fices to prove all tautologies of classical propositional
logic.However, this formalization of propositional logic is
inconvenient to use. For example, try proving A — A!

A variant of this proof system replaces the Double-
Negation Law by the Contrapositive Law:

(=B - —A) > (A — B)

Remark: If the Double-Negation Law is simply omitted,
we get intuitionistic logic. This formal system is motivated
by a philosophy of constructive mathematics. It has close
connections with advanced topics including type theory and
the combinators S and K in the A-calculus. Many of the
familiar identities of boolean algebra, even A vV —A, do not
hold in intuitionistic logic.

Another formalization of propositional logic consists of
the Modus Ponens rule plus the following axioms:

AVA— A
B— AVB
AVB—->BVA
B—>C)—- (AvB—> AVC()

Here AA B and A — B are defined in terms of — and V.

Where do truth tables fit into all this? Truth tables define
the semantics, while proof systems define what is some-
times called the proof theory. A proof system must respect
the truth tables. Above all, we expect the proof system to
be sound: every theorem it generates must be a tautology.
For this to hold, every axiom must be a tautology and every
inference rule must yield a tautology when it is applied to
tautologies.

The converse property is completeness: the proof system
can generate every tautology. Completeness is harder to
achieve and show. There are complete proof systems even
for first-order logic. (And Godel’s incompleteness theo-
rem uses the word “completeness” with a different technical
meaning.)

Soundness and completeness are all we need for the case
of propositional logic. But if we generalise and consider
formal systems without an obvious semantics, then sound-
ness and completeness are not applicable. A more general
property of a proof system is consistency: not generating
contradictory theorems, such as A and —A for some A. Typ-
ically, an inconsistent formal system makes A a theorem for
every formula A. In this case the very concept of a theo-
rem becomes vacuous. Any formal system that is sound for
propositional logic must necessarily be consistent.

3.2 Gentzen’s Natural Deduction Systems

Natural proof systems do exist. Natural deduction, devised
by Gerhard Gentzen, is based upon three principles:

1. Proof takes place within a varying context of assump-
tions.

2. Each logical connective is defined independently of the
others. (This is possible because item 1 eliminates the
need for tricky uses of implication.)

3. Each connective is defined by introduction and elimi-
nation rules.

For example, the introduction rule for A describes how to
deduce A A B:

The elimination rules for A describe what to deduce from

AN B:
AANB

(Ael) A 2 B (Ae2)
The elimination rule for — says what to deduce from A —

B. It is just Modus Ponens:

A—>B A
B

(—e)

3 PROOF SYSTEMS FOR PROPOSITIONAL LOGIC

The introduction rule for — says that A — B is proved by
assuming A and deriving B:

[A]

B
A— B

(=)

For simple proofs, this notion of assumption is pretty intu-
itive. Here is a proof of the formula A A B — A:

[A A B]

= - (A
A
AANB— A

el)

(=)

The key point is that rule (—i) discharges its assumption:
the assumption could be used to prove A from A A B, but is
no longer available once we conclude A A B — A.

The introduction rules for Vv are straightforward:

A ,
1
AvB(Vl) AV B

(Vi2)
The elimination rule says that to show some C from A v B
there are two cases to consider, one assuming A and one
assuming B:
[A] [B]
AVB C C
C

(ve)

The scope of assumptions can get confusing in complex
proofs. Let us switch attention to the sequent calculus,
which is similar in spirit but easier to use.

3.3 The sequent calculus

The sequent calculus resembles natural deduction, but it
makes the set of assumptions explicit. Thus, it is more con-
crete.

A sequent has the form I' = A, where I" and A are finite
sets of formulas.? These sets may be empty. The sequent

A, ..., An=B, ..., B,
is true (in a particular interpretation) if AjA. . .AA,, implies
BiVv...VvB,. Inother words, ifeachof A1, ..., A, are true,
then at least one of By, ..., B, must be true. The sequent is
valid if it is true in all interpretations.

A basic sequent is one in which the same formula appears
on both sides, as in P, B= B, R. This sequent is valid
because, if all the formulas on the left side are true, then in
particular B is; so, at least one right-side formula (B again)
is true. Our calculus therefore regards all basic sequents as
proved.

Every basic sequent might be written in the form {A} U
I'={A} U A, where A is the common formula and I" and
A are the other left- and right-side formulas, respectively.
The sequent calculus identifies the one-element set { A} with
its element A and denotes union by a comma. Thus, the
correct notation for the general form of a basic sequent is
A, I'= A A

3With minor changes, sequents can instead be lists or multisets.

Sequent rules are almost always used backward. We start
with the sequent that we would like to prove. We view the
sequent as saying that Ay, ..., A,, are true, and we try to
show that one of By, ..., B, is true. Working backwards, we
use sequent rules to reduce it to simpler sequents, stopping
when those sequents become trivial. The forward direction
would be to start with known facts and derive new facts,
but this approach tends to generate random theorems rather
than ones we want.

Sequent rules are classified as right or left, indicating
which side of the = symbol they operate on. Rules that op-
erate on the right side are analogous to natural deduction’s
introduction rules, and left rules are analogous to elimina-
tion rules.

The sequent calculus analogue of (—i) is the rule

A, '=A,B
's>A,A— B

(=nr)

Working backwards, this rule breaks down some implica-
tion on the right side of a sequent; I' and A stand for the
sets of formulas that are unaffected by the inference. The
analogue of the pair (vi1) and (vi2) is the single rule

'=A,A B

- 5 ")
'=sA,AVB

This breaks down some disjunction on the right side, re-
placing it by both disjuncts. Thus, the sequent calculus is a
kind of multiple-conclusion logic. Figure 1 summarises the
rules.

Let us prove that the rule (vi) is sound. We must show
that if both premises are valid, then so is the conclusion. For
contradiction, assume that the conclusion, A vV B, ' = A,
is not valid. Then there exists an interpretation / under
which the left side is true while the right side is false; in
particular, A vV B and I" are true while A is false. Since
A V B is true under interpretation I, either A is true or B
is. In the former case, A, I' = A is false; in the latter case,
B,T" = A is false. Either case contradicts the assumption
that the premises are valid.

3.4 Examples of Sequent Calculus Proofs

To illustrate the use of multiple formulas on the right, let us
prove the classical theorem (A — B) Vv (B — A). Working
backwards (or upwards), we reduce this formula to a basic
sequent:

A,B=B,A
A=B,B—~ A
=A—> B, B—> A
=(A—> B)v(B— A)

(—=r)

(=)

(vr)

The basic sequent has a line over it to emphasize that it is
provable.

This example is typical of the sequent calculus: start with
the desired theorem and work upward. Notice that inference
rules still have the same logical meaning, namely that the
premises (above the line) imply the conclusion (below the
line). Instead of matching a rule’s premises with facts that
we know, we match its conclusion with the formula we want

3 PROOF SYSTEMS FOR PROPOSITIONAL LOGIC

basic sequent: A,T' = A, A
Negation rules:

'=sAA
-AT'=A

A=A

EYNEY

Conjunction rules:

A,B,F:>A(l) I'sAA F:>A,B(:
—_— (A A
AANB T=A T=A,AAB '
Disjunction rules:
A,l'=A B, I'=A I'=A,A,B
(vl —_— (Vr)
AV B T'=A '=A,AVB
Implication rules:
'=sA,A B, I'sA A T=A,B
(=) (—r)
A— B,IT=A '=>A,A—> B

Figure 1: Sequent Rules for Propositional Logic

to prove. That way, the form of the desired theorem controls
the proof search.

The distributive law A V (BAC) ~ (AV B) A(AV C)
is proved (one direction at least) as follows:

B,C=A,B
A=A,B BAC=A,B
AV(BAC)=A,B
AV(BAC)=>AVB similar
AVBANC)=(AVB)AAVC(O)

(AD)
(vh
(vr)

(A1)

The second, omitted proof tree proves AV (BAC)= AV C
similarly.

Finally, here is a failed proof of the invalid formula A v
B— BvVvC.

A=B,C B=B,C
AvB=B,C
AVvVB=BvVvVC

==AVvB—>BVvC

(vI)

(vr)

(=)

The sequent A = B, C has no line over it because it is not
valid! The interpretation A — 1, B +— 0, C > O falsifies
it. We have already seen this as Example 1 (page 5).

3.5 Further Sequent Calculus Rules

Structural rules concern sequents in general rather than par-
ticular connectives. They are little used in this course, be-
cause they are not useful for proof procedures. However, a
brief mention is essential in any introduction to the sequent
calculus.

The weakening rules allow additional formulas to be in-
serted on the left or right side. Obviously, if I' = A holds
then the sequent continues to hold after further assumptions
or goals are added. When writing a proof from the bottom
up, these rules are useful for discarding unwanted formulas.

'=A '=A
——— (weaken:l) _
A, T=A '=AA

(weaken:r)

Exchange rules allow formulas in a sequent to be re-
ordered. We do not need them because our sequents are
sets rather than lists. Contraction rules allow formulas to
be used more than once, for when writing a proof from the
bottom upwards, their effect is to duplicate a formula.

AA T= A
A, T=A

I'=sAAA
'=AA

(contract:l) (contract:r)

Because the sets {A} and {A, A} are identical, we don’t need
contraction rules either. Moreover, it turns out that we al-
most never need to use a formula more than once. Excep-
tions are Vx A (when it appears on the left) and 3x A (when
it appears on the right).

The cut rule allows the use of lemmas. Some formula A
is proved in the first premise, and assumed in the second
premise. A famous result, the cut-elimination theorem,
states that this rule is not required. All uses of it can be re-
moved from any proof (at the cost of exponential blowup).

'=AA A T=A
'=A

(cut)

This special case of cut may be easier to understand. We
prove lemma A from I' and use A and I' together to reach
the conclusion B.

'=B,A AT=B
I'=sB

Since I' contains as much information as A, it is natural to
expect that such lemmas should not be necessary, but the
cut-elimination theorem is hard to prove.

Historical note Backward proof using the sequent calcu-
lus is the foundation of Wang’s [?] algorithms for propo-
sitional and first-order logic. His work was a landmark in
the history of artificial intelligence. Curiously enough, his-
torians of Al often highlight more heuristic approaches (no-
tably the Logic Theorist of Newell, Shaw and Simon), done
a couple of years earlier, although Wang achieved spectac-
ularly better results.

Exercise 6 Prove the following sequents:

——A=A
AAB=BAA
AVB=BVA

Exercise 7 Prove the following sequents:

(AANB)AC=AAN(BAC)
(AVB)A(AVC)=AV (BAC)
—-(AV B)=—-AA—-B
Exercise 8 Derive the sequent calculus rules for the con-

nectives <> and @ (exclusive or). Note that other connec-
tives must not appear in these rules.

Exercise 9 Prove the following sequents:

= (AA—-A)—> B
=((A—B)—>A)—> A

4 FIRST-ORDER LOGIC

Extension: a sequent calculus for intuitionistic first-order
logic can be obtained by using the one above but imposing
the restriction that at no point in a proof may more than one
formula appear on the right side. Determine whether the
two sequents above can be proved under that condition.

4 First-order Logic

First-order logic (FOL) extends propositional logic to allow
reasoning about the members (such as numbers) of some
non-empty universe. It uses the quantifiers V (for all) and
3 (there exists). First-order logic has variables ranging over
so-called individuals, but not over functions or predicates;
such variables are found in second- or higher-order logic.

4.1 Syntax of first-order Logic

Terms stand for individuals while formulas stand for truth
values. We assume there is an infinite supply of variables x,
v, ... that range over individuals. A first-order language
specifies symbols that may appear in terms and formulas.
A first-order language £ contains, for all n > 0, a set of n-
place function symbols f, g, ... and n-place predicate sym-
bols P, Q, These sets may be empty, finite, or infinite.

Constant symbols a, b, ... are simply O-place function
symbols. Intuitively, they are names for fixed elements of
the universe. It is not required to have a constant for each
element; conversely, two constants are allowed to have the
same meaning.

Predicate symbols are also called relation symbols. Pro-
log programmers refer to function symbols as functors.

Definition 3 The terms ¢, u, ...
are defined recursively as follows:

of a first-order language

e A variable is a term.
e A constant symbol is a term.

e If 71, ..., t, are terms and f is an n-place function
symbol then f (¢, ..., t,) is a term.

Definition 4 The formulas A, B, ... of a first-order lan-
guage are defined recursively as follows:

o If 11, ..., #, are terms and P is an n-place predi-
cate symbol then P (71, ...,1t,) is a formula (called an
atomic formula).

e If A and B are formulas then —A, AAB, AV B, A —
B, A <> B are also formulas.

e If x is a variable and A is a formula then Vx A and
dx A are also formulas.

Brackets are used in the conventional way for grouping.
Terms and formulas are tree-like data structures, not strings.

The quantifiers Vx A and dx A bind tighter than the bi-
nary connectives; thus Vx A A B is equivalent to (Vx A) A B.
Frequently, you will see an alternative quantifier syntax,
Vx.A and 3x. B, which binds more weakly than the bi-
nary connectives: Vx.A A B is equivalent to Vx (A A B).
The dot is the give-away; look out for it!

Nested quantifications such as Vx Vy A are abbreviated
toVxy A.

Example4 A language for arithmetic might have the con-
stant symbols 0, 1, 2, ..., and function symbols +, —, X,
/, and the predicate symbols =, <, >, We informally
may adopt an infix notation for the function and predicate
symbols. Terms include 0 and (x +3) — y; formulas include
y=0andx+y<y+z

4.2 Examples of first-order statements

Here are some sample formulas with a rough English trans-
lation. English is easier to understand but is too ambiguous
for long derivations.

All professors are brilliant:

Vx (professor(x) — brilliant(x))

The income of any banker is greater than the income of
any bedder:

Vxy (banker(x) A bedder(y) — income(x) > income(y))

Note that > is a 2-place relation symbol. The infix notation
is simply a convention.
Every student has a supervisor:

Vx (student(x) — Ty supervises(y, x))

This does not preclude a student having several supervisors.
Every student’s tutor is a member of the student’s Col-
lege:

Vxy (student(x) A college(y) A member(x, y)

— member(tutor(x), y))

Formalising the notion of tutor as a function incorporates
the assumption that every student has exactly orne tutor.

A mathematical example: there exist infinitely many Py-
thagorean triples:

Vndijk (i >nAi*+ j2 =k

Here the superscript 2 refers to the squaring function.
Equality (=) is just another relation symbol (satisfying suit-
able axioms) but there are many special techniques for it.
First-order logic requires a non-empty domain: thus
Vx P(x) implies 3x P(x). If the domain could be empty,
even 3x t could fail to hold. Note also that Vx Iy y2 = x is
true if the domain is the complex numbers, and is false if the
domain is the integers or reals. We determine properties of
the domain by asserting the set of statements it must satisfy.
There are many other forms of logic. Many-sorted first-
order logic assigns types to each variable, function sym-
bol and predicate symbol, with straightforward type check-
ing; types are called sorts and denote non-empty domains.
Second-order logic allows quantification over functions and
predicates. It can express mathematical induction by

VP [P(0) AVk (P(k) — P(k+ 1)) — Yn P(n)],

using quantification over the unary predicate P. In second-
order logic, these functions and predicates must themselves
be first-order, taking no functions or predicates as argu-
ments. Higher-order logic allows unrestricted quantifica-
tion over functions and predicates of any order. The list of
logics could be continued indefinitely.

4 FIRST-ORDER LOGIC

4.3 Formal semantics of first-order logic

Let us rigorously define the meaning of formulas. An inter-
pretation of a language maps its function symbols to actual
functions, and its relation symbols to actual relations. For
example, the predicate symbol “student” could be mapped
to the set of all students currently enrolled at the University.

Definition 5 Let £ be a first-order language. An interpre-
tation T of L is a pair (D, I). Here D is a nonempty set,
the domain or universe. The operation I maps symbols to
individuals, functions or sets:

e if ¢ is a constant symbol (of £) then I[c] € D

e if f is an n-place function symbol then I[f] € D" —
D (which means I[f] is an n-place function on D)

e if P is an n-place relation symbol then /[P] € D" —
{1, 0} (equivalently, I[P] € D", which means I[P] is
an n-place relation on D)

It is natural to regard predicates as truth-valued functions.
But in first-order logic, relations and functions are distinct
concepts because no term can denote a truth value. One
of the benefits of higher-order logic is that relations are a
special case of functions, and formulas are simply boolean-
valued terms.

An interpretation does not say anything about variables.
An environment or valuation can be used to represent the
values of variables.

Definition 6 A valuation V of L over D is a function from
the variables of £ into D. Write Zy[¢] for the value of ¢
with respect to Z and V, defined by

Tvix) ¥ vx) ifxis a variable

Tylel & I1c]

def

Ivlf,....t)]1 = ILf1Qvinl, ..., Zvt.])

Write V{a/x} for the valuation that maps x to a and is
otherwise the same as V. Typically, we modify a valua-
tion one variable at a time. This is a semantic analogue of
substitution for the variable x.

4.4 Whatis truth?

We can define truth in first-order logic. This formidable def-
inition formalizes the intuitive meanings of the connectives.
Thus it almost looks like a tautology. It effectively specifies
each connective by English descriptions. Valuations help
specify the meanings of quantifiers. Alfred Tarski first de-
fined truth in this manner.

Definition 7 Let A be a formula. Then for an interpretation
Z = (D, I) write =7,y A to mean that A is true in 7 un-
der V. This is defined by cases on the construction of the
formula A:

Fzv P, ..

I[P1Zv[n],.... Iy[D) =1

., ty) is defined to hold if

10

(that is, the actual relation /[P] is true for the
given values)

Fz.v t =uifZy[t] equals Ty [u] (if = is a pred-
icate symbol of the language, then we insist
that it really denotes equality)

=z.v —Bif =z v B does not hold

Fzv BACifl=ry Band =7y C

Ezv BvCiflEry Borlzy C

F=z.v B — Cif =7y B doesnothold or =7y
C holds

':I,V B < Cif ':I,V B and ':I,V C both hold
or neither hold

=7 v dx B if there exists some m € D such that
E1,vim/x) B holds (that is, B holds when x
has the value m)

Ez,v Vx B if =7 y(/x) B holds forallm € D

The cases for A, vV, — and < follow the propositional truth
tables.

Write =7 A provided =7 v A for all V. Clearly, if A is
closed (contains no free variables) then its truth is indepen-
dent of the valuation. The definitions of valid, satisfiable,
etc. carry over almost verbatim from Sect. 2.2.

Definition 8 Let A be a formula having no free variables.
e An interpretation 7 satisfies a formula if =7 A holds.

e A et S of formulas is valid if every interpretation of S
satisfies every formula in S.

e A et S of formulas is satisfiable if there is some inter-
pretation that satisfies every formula in S.

e A set S of formulas is unsatisfiable if it is not satisfi-
able. (Each interpretation falsifies some formula of S.)

e A model of a set S of formulas is an interpretation that
satisfies every formula in S. We also consider models
that satisfy a single formula.

Unlike in propositional logic, models can be infinite and
there can be an infinite number of models. There is no
chance of proving validity by checking all models. We must
rely on proof.

Example 5 The formula P(a) A —P(b) is satisfiable.
Consider the interpretation with D = {London, Paris} and 7
defined by

I[a] = Paris
I1[b] = London
I[P] = {Paris}

On the other hand, Vxy (P (x) A —P(y)) is unsatisfiable be-
cause it requires P(x) to be both true and false for all x.
Also unsatisfiable is P(x) A =P (y): its free variables are
taken to be universally quantified, so it is equivalent to
Vxy (P(x) A =P (y)).

The formula (3x P(x)) — P(c) holds in the interpreta-
tion (D, I) where D = {0, 1}, I[P] = {0}, and I[c] = 0.

5 FORMAL REASONING IN FIRST-ORDER LOGIC

(Thus P(x) means “x equals 0” and ¢ denotes 0.) If we
modify this interpretation by making /[c] = 1 then the for-
mula no longer holds. Thus it is satisfiable but not valid.

The formula (Vx P(x)) — (Vx P(f(x))) is valid, for let
(D, I) be an interpretation. If Vx P(x) holds in this inter-
pretation then P (x) holds for all x € D, thus I[P] = D.
The symbol f denotes some actual function I[f] € D —
D. Since I[P] = D and I[f](x) € D for all x € D,
formula Vx P(f(x)) holds.

The formula Vxy x = y is satisfiable but not valid; it is
true in every domain that consists of exactly one element.
(The empty domain is not allowed in first-order logic.)

Example 6 Let £ be the first-order language consisting
of the constant 0 and the (infix) 2-place function symbol +.
An interpretation Z of this language is any non-empty do-
main D together with values /[0] and I[+], with I[0] € D
and I[+] € D x D — D. In the language £ we may
express the following axioms:

x+0=x
O+x=x
x+y+tz=x+Q+2)
(Remember, free variables in effect are universally quanti-
fied, by the definition of =7 A.) One model of these ax-
ioms is the set of natural numbers, provided we give 0 and

+ the obvious meanings. But the axioms have many other
models.* Below, let A be some set.

1. The set of all strings (in ML say) letting O denote the
empty string and + string concatenation.

2. The set of all subsets of A, letting O denote the empty
set and + union.

3. The set of functions in A — A, letting 0 denote the
identity function and + composition.

Exercise 10 To test your understanding of quantifiers, con-
sider the following formulas: everybody loves somebody vs
there is somebody that everybody loves:

Vx 3y loves(x, y) @)
2
Does (1) imply (2)? Does (2) imply (1)? Consider both the
informal meaning and the formal semantics defined above.

dy Vx loves(x, y)

Exercise 11 Describe a formula that is true in precisely
those domains that contain at least m elements. (We say it
characterises those domains.) Describe a formula that char-
acterises the domains containing fewer than m elements.

Exercise 12 Let ~ be a 2-place predicate symbol, which
we write using infix notation as x ~ y instead of &~ (x, y).
Consider the axioms

Vxx ~x (D
Vxy(x Xy —> y ~ x) 2)
VXyz(X R yAYR 7 —> X X 7) 3)

Let the universe be the set of natural numbers, N =
{0, 1, 2, ...}. Which axioms hold if 7[~] is

4Models of these axioms are called monoids.

11

1. the empty relation, ¢?

the universal relation, {(x, y) | x, y € N}?

the equality relation, {(x, x) | x € N}?

the relation {(x, y) | x,y € N Ax + y is even}?

the relation {(x, y) | x,y € N Ax +y = 100}?

A i

the relation {(x, y) |x,y e N Ax < y?

Exercise 13 Taking = and R as 2-place relation symbols,
consider the following axioms:

Vx —R(x, x) @))
Vxy —~(R(x, y) A R(y, x)) (2)
Vxyz (R(x,y) A R(y,z) = R(x,2)) 3)
Vxy (R(x,y) V (x =y) V R(y, x)))
Vxz (R(x,z) = 3y (R(x, y) A R(y, 2))) (5)

Exhibit two interpretations that satisfy axioms 1-5. Exhibit
two interpretations that satisfy axioms 1-4 and falsify ax-
iom 5. Exhibit two interpretations that satisfy axioms 1-3
and falsify axioms 4 and 5. Consider only interpretations
that make = denote the equality relation. (This exercise
asks whether you can make the connection between the ax-
ioms and typical mathematical objects satisfying them. A
start is to say that R(x, y) means x < y, but on what do-
main?)

S Formal Reasoning in First-Order
Logic

This section reviews some syntactic notations: free vari-
ables versus bound variables and substitution. It lists some
of the main equivalences for quantifiers. Finally it describes
and illustrates the quantifier rules of the sequent calculus.

5.1 Free vs bound variables

The notion of bound variable occurs widely in mathemat-
ics: consider the role of x in f f(x)dx and the role of k
in lim{2) a;. Similar concepts occur in the A-calculus. In
first-order logic, variables are bound by quantifiers (rather
than by A).

Definition 9 An occurrence of a variable x in a formula is
bound if it is contained within a subformula of the form
Vx Aor3dx A.

An occurrence of the form Vx or 3x is called the binding
occurrence of x.

An occurrence of a variable is free if it is not bound.

A closed formula is one that contains no free variables.

A ground term, formula, etc. is one that contains no vari-
ables at all.

In Vx 3y R(x, y, z), the variables x and y are bound
while z is free.

In (3x P(x)) A Q(x), the occurrence of x just after P
is bound, while that just after Q is free. Thus x has
both free and bound occurrences. Such situations can be

5 FORMAL REASONING IN FIRST-ORDER LOGIC

avoided by renaming bound variables, for example obtain-
ing (3y P(y)) A Q(x). Renaming can also ensure that all
bound variables in a formula are distinct. The renaming of
bound variables is sometimes called a-conversion.

Example 7 Renaming bound variables in a formula pre-
serves its meaning, if done properly. Consider the following
renamings of Vx 3y R(x, y, 2):

Yu3dy R(u, y, z)
Vx3dw R(x, w, 2)
Yudy R(x,y,2)
Vy3y R(y, . 2)
Vz3Ay R(z, Y, 2)

OK

OK

not done consistently

clash with bound variable y
clash with free variable z

5.2 Substitution

If A is a formula, 7 is a term, and x is a variable, then A[z/x]
is the formula obtained by substituting ¢ for x throughout A.
The substitution only affects the free occurrences of x. Pro-
nounce A[t/x] as “A with ¢ for x”. We also use u[t/x]
for substitution in a term u# and C[t/x] for substitution in a
clause C (clauses are described in Sect. 6 below).
Substitution is only sensible provided all bound variables
in A are distinct from all variables in ¢. This can be achieved
by renaming the bound variables in A. For example, if Vx A
then A[t/x]is true for all ¢; the formula holds when we drop
the Vx and replace x by any term. But Vx Jy x = y is true
in all models, while 3yy + 1 = y is not. We may not
replace x by y + 1, since the free occurrence of y in y + 1
gets captured by the Iy . First we must rename the bound y,
getting say Vx 3z x = z; now we may replace x by y + 1,
getting 3z y + 1 = z. This formula is true in all models,
regardless of the meaning of the symbols + and 1.

5.3 Equivalences involving quantifiers

These equivalences are useful for transforming and simpli-
fying quantified formulas. They can be to convert formulas
into prenex normal form, where all quantifiers are at the
front, or conversely to move quantifiers into the smallest
possible scope.

pulling quantifiers through negation
(infinitary de Morgan laws)
—(Vx A) ~@3x —-A
—(3x A) ~Vx—-A

pulling quantifiers through conjunction and disjunction
(provided x is not free in B)

(VxA)AB ~Vx(AAB)
(VxA)v B>~Vx(AV B)
(Ax A)AB~3Ix(AAB)
(Ax A) v B>~3x(AV B)

distributive laws

Vx A) A(Vx B) ~Vx (A A B)
3xA)v (@xB)~3x(AV B)

12

implication: A — B as —-AV B
(provided x is not free in B)

(VxA) > B~3x (A — B)
(3x A) > B~Vx(A — B)

expansion: ¥ and 3 as infinitary conjunction and
disjunction

Vx A >~ (Vx A) A Alt/x]
dx A~ @x A) Vv Alt/x]

With the help of the associative and commutative laws
for A and V, a quantifier can be pulled out of any conjunct
or disjunct.

The distributive laws differ from pulling: they replace
two quantifiers by one. (Note that the quantified variables
will probably have different names, so one of them will have
be renamed.) Depending upon the situation, using distribu-
tive laws can be either better or worse than pulling. There
are no distributive laws for V over Vv and 3 over A. If in
doubt, do not use distributive laws!

Two substitution laws do not involve quantifiers explic-
itly, but let us use x = ¢ to replace x by ¢ in a restricted
context:

(x=tANA) =x=tANA[t/x])
x=t—>A)=x=t— Alt/x])

Many first-order formulas have easy proofs using equiv-
alences:

Ix(x=aAPx)~Ix(x =aA P(a))

~dx (x =a) A P(a)
~ P(a)

The following formula is quite hard to prove using the
sequent calculus, but using equivalences it is simple:

3z (P(z) = P(a) A P(b)) 2Vz P(z) — P(a) A P(b)
~VzP(z) A P(a) A P(b) - P(a) A P(b)
~t

If you are asked to prove a formula, but no particular formal
system (such as the sequent calculus) has been specified,
then you may use any convincing argument. Using equiv-
alences as above can shorten the proof considerably. Also,
take advantage of symmetries; in proving A A B >~ B A A,
it obviously suffices to prove A A B = B A A.

5.4 Sequent rules for the universal quantifier
Here are the sequent rules for V:

Alt/x], T = A

'sAA)
Vx A, T'=A

Vi —_
M rAvea "

Rule (vr) holds provided x is not free in the conclusion!
Note that if x were indeed free somewhere in I" or A, then
the sequent would be assuming properties of x. This restric-
tion ensures that x is a fresh variable, which therefore can
denote an arbitrary value. Contrast the proof of the theorem

5 FORMAL REASONING IN FIRST-ORDER LOGIC

Vx [P(x) — P(x)] with an attempted proof of the invalid
formula P(x) — Vx P(x). Since x is a bound variable, you
may rename it to get around the restriction, and obviously
P(x) — Vy P(y) should have no proof.

Rule (vi) lets us create many instances of Vx A. The exer-
cises below include some examples that require more than
one copy of the quantified formula. Since we regard se-
quents as consisting of sets, we may regard them as con-
taining unlimited quantities of each of their elements. But
except for the two rules (v/) and 3r) (see below), we only
need one copy of each formula.

Example 8 In this elementary proof, rule (v/) is applied to
instantiate the bound variable x with the term f(y). The
application of (vr) is permitted because y is not free in the
conclusion (which, in fact, is closed).

P(f(y)=P(f(y)
Vx P(x)= P(f(y))
Vx P(x)=Vy P(f(y))

v
(vr)

Example 9 This proof concerns part of the law for pulling
universal quantifiers out of conjunctions. Rule (v/) just dis-
cards the quantifier, since it instantiates the bound vari-
able x with the free variable x.

P(x), 0= P(x)

P(x)AN Q= P(x)

Vx (P(x) A Q)= P(x)
Vx (P(x) A Q)= Vx P(x)

(AD)

(VD)
(Vr)

Example 10 The sequent Vx (A — B)= A — Vx B is
valid provided x is not free in A. That condition is required
for the application of (vr) below:

A=>A,B A,B=B
A, A— B=1B
A,Vx(A— B)=B
A,Vx(A— B)=VxB
Vx(A— B)=A —> VxB

(=D

What if the condition fails to hold? Let A and B both be
the formula x = 0. Then Vx (x = 0 — x = 0) is valid,
but x = 0 — Vx (x = 0) is not valid (it fails under any
valuation that sets x to 0).

Note. The proof on the slides of

Vx (P — Q)= P — Vy O(y)

is essentially the same as the proof above, but uses different
variable names so that you can see how a quantified formula
like Vx (P — Q(x)) is instantiated to produce P — Q(y).
The proof given above is also correct: the variable names
are identical, the instantiation is trivial and Vx (A — B)
simply produces A — B. In our example, B may be any
formula possibly containing the variable x; the proof on the
slides uses the specific formula Q(x).

13

5.5 Sequent rules for existential quantifiers

Here are the sequent rules for 3:

A=A I'=s A, Alt/x]

— - 7= @ — @3
dx A, I'= A '=>A,Ix A

Rule @) holds provided x is not free in the conclusion—
that is, not free in the formulas of I" or A. These rules
are strictly dual to the V-rules; any example involving V
can easily be transformed into one involving 3 and hav-
ing a proof of precisely the same form. For example, the
sequent Vx P(x)=Vy P(f(y)) can be transformed into
Ay P(f(y))=3x P(x).

If you have a choice, apply rules that have provisos —
namely 3/) and (vr) — before applying the other quantifier
rules as you work upwards. The other rules introduce terms
and therefore new variables to the sequent, which could pre-
vent you from applying (3/) and (vr) later.

Example 11 Figure 2 presents half of the 3 distributive
law. Rule (3r) just discards the quantifier, instantiating the
bound variable x with the free variable x. In the general
case, it can instantiate the bound variable with any term.

The restriction on the sequent rules, namely “x is not free
in the conclusion”, can be confusing when you are building
a sequent proof working backwards. One simple way to
avoid problems is always to rename a quantified variable if
the same variable appears free in the sequent. For example,
when you see the sequent P(x),3x Q(x) = A, replace it
immediately by P(x), 3y Q(y) = A.

Example 12 The sequent
dx P(x) Adx Q(x) = 3Ix (P(x) A Q(x))

is not valid: the value of x that makes P (x) true could differ
from the value of x that makes Q(x) true. This comes out
clearly in the proof attempt, where we are not allowed to
apply @1 twice with the same variable name, x. As soon as
we are forced to rename the second variable to y, it becomes
obvious that the two values could differ. Turning to the right
side of the sequent, no application of (3) can lead to a proof.
We have nothing to instantiate x with:

P(x), Qy)= Px) A Q(x))

P(x), 0(y)=3Ix (P(x) A Q(x)) @

P(x),3x O(x)=3x (P(x) A O(x)) an
(

3r

dx P(x),3dx O(x)=3Ix (P(x) A Q(x))
dx P(x) Adx Q(x)=3x (P(x) A Q(x))

Al)

Note On the course website, there is a simple theorem
prover called folderol.ML. It can prove easy first-order
theorems using the sequent calculus, and outputs a sum-
mary of each proof. The file includes basic instructions
describing how to run it. See testsuite.ML contains
further instructions and numerous examples.

Exercise 14 Verify the following equivalences by appeal-
ing to the truth definition for first-order logic:

—(3x P(x)) ~ Vx —=P(x)
Vx P(x)AR>=Vx(P(x) AR)
(Fx P(x)) vV (3x Q(x)) = 3x (P(x) V Q(x))

6 CLAUSE METHODS FOR PROPOSITIONAL LOGIC

P() = P(x), 0(x)
PW=PHOVO®

(vr)

14

similar

P@=H(PO)VOE)
dx P(x)=3Ax (P(x) VvV Q(x))

Z 0= (P v Oow)

(v

dx P(x) vVIx Q(x)=3Ix (P(x) vV O(x))

Figure 2: Half of the 3 distributive law

Exercise 15 Explain why the following are not equiva-
lences. Are they implications? In which direction?

(Vx A) v (Vx B) 2Vx (A V B)
(3x A)A 3x B) 23x (AA B)

Exercise 16 Prove —=Vy [(Q(a) vV Q(b)) A =Q(y)] using
equivalences, and then formally using the sequent calculus.

Exercise 17 Prove the following sequents. Note that the
last one requires two uses of the (v/) rule!

(Vx P(x)) A (Vx Q(x)) = Vy (P(y) A Q(y))
Vx (P(x) A Q(x)) = (Vy P(y)) A (Vy Q(¥))
Vx [P(x) = P(f(x))], P(a)= P(f(f(a)))

Exercise 18 Prove Vx [P(x) VvV P(a)] >~ P(a).

Exercise 19 Prove the following using the sequent calcu-
lus. The last one is difficult and requires two uses of (3r).

P(a) v3x P(f(x))=3y P(y)
Ix (P(x) Vv Ox)=@3yP(y) Vv 3y Q®»))
=3z (P(z) — P(a) A P(b))

6 Clause Methods for Propositional
Logic

This section discusses two proof methods in the context of
propositional logic.

The Davis-Putnam-Logeman-Loveland procedure dates
from 1960, and its application to first-order logic has been
regarded as obsolete for decades. However, the procedure
has been rediscovered and high-performance implementa-
tions built. In the 1990s, these “SAT solvers” were applied
to obscure problems in combinatorial mathematics, such as
the existence of Latin squares. Recently, they have been
generalised to SMT solvers, also handling arithmetic, with
an explosion of serious applications.

Resolution is a powerful proof method for first-order
logic. We first consider ground resolution, which works for
propositional logic. Though of little practical use, ground
resolution introduces some of the main concepts. The res-
olution method is not natural for hand proofs, but it is easy
to automate: it has only one inference rule and no axioms.
(For first-order logic, resolution must be augmented with a
second rule: factoring.)

Both methods require the original formula to be negated,
then converted into CNF. Recall that CNF is a conjunction

of disjunction of literals. A disjunction of literals is called
a clause, and written as a set of literals. Converting the
negated formula to CNF yields a set of such clauses. Both
methods seek a contradiction in the set of clauses; if the
clauses are unsatisfiable, then so is the negated formula, and
therefore the original formula is valid.

To refute a set of clauses is to prove that they are unsatis-
fiable. The proof is called a refutation.

6.1 Clausal notation
Definition 10 A clause is a disjunction of literals
—KiV---VaK,VLV---VL,,
written as a set
{—Ki,...

9_'Km3L17"'1Ln}‘

A clause is true (in some interpretation) just when one
of the literals is true. Thus the empty clause, namely {},
indicates contradiction. It is normally written L.

Since V is commutative, associative, and idempotent, the
order of literals in a clause does not matter. The above
clause is logically equivalent to the implication

(KiyAN---AKy)—> (L1 V---V Ly
Kowalski notation abbreviates this to
Ki,-+ ,Km— L1, , Ly
and when n = 1 we have the familiar Prolog clauses, also
known as definite or Horn clauses.
6.2 The DPLL Method

The Davis-Putnam-Logeman-Loveland (DPLL) method is
based upon some obvious identities:

tAA~A
AN(AVB)~A
AN(—AV B)~AAB
A~ (AANB)V(AA—-B)

Here is an outline of the algorithm:
1. Delete tautological clauses: {P, —P, ...}
2. Unit propagation: for each unit clause {L},

e delete all clauses containing L

6 CLAUSE METHODS FOR PROPOSITIONAL LOGIC

e delete —L from all clauses

3. Delete all clauses containing pure literals. A literal L
is pure if there is no clause containing —L.

4. If the empty clause is generated, then we have a refu-
tation. Conversely, if all clauses are deleted, then the
original clause set is satisfiable.

5. Perform a case split on some literal L, and recursively
apply the algorithm to the L and —L subcases. The
clause set is satisfiable if and only if one of the sub-
cases is satisfiable.

This is a decision procedure. It must terminate because each
case split eliminates a propositional symbol. Modern imple-
mentations such as zChaff and MiniSat add various heuris-
tics. They also rely on carefully designed data structures
that improve performance by reducing the number of cache
misses, for example.

Historical note. Davis and Putnam introduced the first
version of this procedure. Logeman and Loveland intro-
duced the splitting rule, and their version has completely su-
perseded the original Davis-Putnam method. Both methods
fell into disuse after the invention of resolution and unifica-
tion, because they cope well with quantifiers. The DPLL al-
gorithm described here works for propositional logic only!

Tautological clauses are deleted because they are always
true, and thus cannot participate in a contradiction. A pure
literal can always be assumed to be true; deleting the clauses
containing it can be regarded as a degenerate case split, in
which there is only one case.

Example 13 DPLL can show that a formula is not a theo-
rem. Consider the formula P v Q — Q V R. After negat-
ing this and converting to CNF, we obtain the three clauses
{P, O}, {—Q} and {—=R}. The DPLL method terminates
rapidly:

{P, 0}
{P}

initial clauses

unit —Q

unit P (also pure)
unit =R (also pure)

{=0} {—R}
{—R}

{—R}

All clauses have been deleted, so execution terminates. The
clauses are satisfiable by P — 1, Q +— 0, R +— 0. This
interpretation falsifies P v Q — Q V R.

Example 14 Here is an example of a case split. Consider
the clause set

{—=0.R}
{(=P, 0. R}

{=R. P} {-R,0}
{P,Q} {—P,—0Q}

There are no unit clauses or pure literals, so we arbitrarily
select P for case splitting:

{—=0,R} {—=R, 0} {Q,R} {—0Q} ifPistrue
{=R} {R} unit = Q
{} unit R
{=0,R} {—=R} {—=R,0} {0} ifPisfalse
{(—0} {Q} unit—=R

{4 uwnit—Q

15

The empty clause is written {} above to make the pattern of
execution clearer; traditionally, however, the empty clause
is written [J. When we encounter a contradiction, we aban-
don the current case and consider any remaining cases. If
all cases are contradictory, then the original set of clauses is
unsatisfiable. If they arose from some negated formula —A,
then A is a theorem.

You might find it instructive to download MiniSat’,
which is a very concise open-source SAT solver. It is coded
in C++. These days, SAT solvers are largely superseded by
SMT solvers, which also handle arithmetic, rays, bit vec-
tors, arrays, bit vectors, etc.

6.3 Introduction to resolution

Resolution combines two clauses containing complemen-
tary literals. It is essentially the following rule of inference:

BvA -BvC

AvC

To convince yourself that this rule is sound, note that B
must be either false or true.

e if B is false, then B Vv A is equivalent to A, so we get
AvC

e if B is true, then =B V C is equivalent to C, so we get
AvC

You might also understand this rule via transitivity of —

-A—- B B—>C
-A—>C

A special case of resolution is when A and C are empty:

B —B
f

This detects contradictions.

Resolution works with disjunctions. The aim is to prove
a contradiction, refuting a formula. Here is the method for
proving a formula A:

1. Translate —A into CNF as A| A --- A Ay,.

2. Break this into a set of clauses: Ay, ..., A;.

3. Repeatedly apply the resolution rule to the clauses,
producing new clauses. These are all consequences of
—A.

4. If a contradiction is reached, we have refuted —A.

In set notation the resolution rule is
{B,A1,...,An} {=B,Cy,...
{A19"'1Amacl7-"7cl’l}

» Cn}

Resolution takes two clauses and creates a new one. A col-
lection of clauses is maintained; the two clauses are cho-
sen from the collection according to some strategy, and the
new clause is added to it. If m = 0 or n = O then the
new clause will be smaller than one of the parent clauses; if
m = n = (0 then the new clause will be empty. If the empty
clause is generated, resolution terminates successfully: we
have found a contradiction!

Shttp://minisat.se/

6 CLAUSE METHODS FOR PROPOSITIONAL LOGIC

6.4 Examples of ground resolution

Let us try to prove
PAQ—> QAP
Convert its negation to CNF:
—(PANQ— QOAP)

We can combine steps 1 (eliminate —) and 2 (push nega-
tions in) using the law —=(A — B) ~ A A —B:

(PANQ)AN—=(QAP)
(PANOYAN(=QV—=P)

Step 3, push disjunctions in, has nothing to do. The clauses
are

{r} {0} {—=Q,—P}
We resolve { P} and {—Q, — P} as follows:

(P} {—=P,—0}
(=0}

The resolvent is {—Q}. Resolving { O} with this new clause
gives
{0} (-0}

{}

The resolvent is the empty clause, properly written as [.
We have proved P A Q — Q A P by assuming its negation
and deriving a contradiction.
It is nicer to draw a tree like this:
{P} {-Q,—P}
{Q} {-Q}

\/
O

Another example is (P < Q) < (Q < P). The steps
of the conversion to clauses is left as an exercise; remember
to negate the formula first! The final clauses are

{p,oy (=P, 0} ({P,—0} {=P,—0}
A tree for the resolution proof is
{P, Q} {-=P.Q} {P,—Q} {—=P,—Q}
{Q} {-Q}
_—
|

Note that the tree contains {Q} and {—Q} rather than
{0, 0} and {—Q, —Q}. If we forget to suppress repeated
literals, we can get stuck. Resolving {Q, O} and {—Q, =0}
(keeping repetitions) gives {Q, —Q}, a tautology. Tautolo-
gies are useless. Resolving this one with the other clauses
leads nowhere. Try it.

These examples could mislead. Must a proof use each
clause exactly once? No! A clause may be used repeatedly,
and many problems contain redundant clauses. Here is an
example:

16

{=P.R} {P}

\/

{R}

{-Q. R}
(unused)

(=R}

O

Redundant clauses can make the theorem-prover flounder;
this is a challenge facing the field.

6.5 A proof using a set of assumptions
In this example we assume

H— MVN M — KAP N—->LAP

and prove H — P. It turns out that we can generate clauses
separately from the assumptions (taken positively) and the
conclusion (negated).

If we call the assumptions Aq, ..
sion B, then the desired theorem is

., A and the conclu-

(AynN---ANAp) > B

Try negating this and converting to CNF. Using the law
—(A — B) ~ A A —B, the negation converts in one step to

AN~ NAr AN—B

Since the entire formula is a conjunction, we can separately
convert Ay, ..., Ax, and =B to clause form and pool the
clauses together.
Assumption H — M Vv N is essentially in clause form
already:
{—=H, M, N}

Assumption M — K A P becomes two clauses:

{—-M, K} {—M, P}

Assumption N — L A P also becomes two clauses:

{—N, L} {—=N, P}

The negated conclusion, —=(H — P), becomes two clauses:

{H} {—=P}

A tree for the resolution proof is

{H} {=H, M. N}

{M, N} {—M, P}

{N, P} {—=N, P}

\/

{P} {=P}

O

The clauses were not tried at random. Here are some
points of proof strategy.

Ignoring irrelevance. Clauses {—M, K} and {—N, L}
lead nowhere, so they were not tried. Resolving with one
of these would make a clause containing K or L. There is
no way of getting rid of either literal, for no clause contains
—K or —L. So this is not a way to obtain the empty clause.
(K and L are pure literals.)

7 SKOLEM FUNCTIONS, HERBRAND’S THEOREM AND UNIFICATION 17

Working from the goal. In each resolution step, at least
one clause involves the negated conclusion (possibly via
earlier resolution steps). We do not attempt to find a con-
tradiction in the assumptions alone, provided (as is often
the case) we know them to be satisfiable: any contradiction
must involve the negated conclusion. This strategy is called
set of support. Although largely obsolete, it’s very useful
when working problems by hand.

Linear resolution. The proof has a linear structure: each
resolvent becomes the parent clause for the next resolution
step. Furthermore, the other parent clause is always one
of the original set of clauses. This simple structure is very
efficient because only the last resolvent needs to be saved.
It is similar to the execution strategy of Prolog.

Exercise 20 Apply the DPLL procedure to the clause set
{p,oy {=P.0} ({P.—0Q} {=P.—0Q}
Exercise 21 Use resolution to prove
(A—->BvC)—[(A— B)V((A— O]

Exercise 22 Explain in more detail the conversion into
clauses for the example of §6.5.

Exercise 23 Prove Peirce’s law, (P — Q) — P) — P,
using resolution.

Exercise 24 Use resolution (showing the steps of convert-
ing the formula into clauses) to prove these two formulas:

Q—->RAR—->PANOA(P—->QVR)— (P Q)
(PAQ—-RANPVOVR)— (P« Q) — R

Exercise 25 Prove that (P A Q) — (R A S) follows from
P — Rand R A P — S using linear resolution.

Exercise 26 Convert these axioms to clauses, showing all
steps. Then prove Winterstorm — Miserable by resolution:

Rain A (Windy vV —Umbrella) — Wet
Winterstorm — Storm A Cold
Wet A Cold — Miserable
Storm — Rain A Windy

7 Skolem Functions, Herbrand’s
Theorem and Unification

Propositional logic is the basis of many proof methods for
first-order logic. Eliminating the quantifiers from a first-
order formula reduces it “almost” to propositional logic.
This section describes how to do so.

7.1 Removing quantifiers: Skolem form

Skolemisation replaces every existentially bound variable
by a Skolem constant or function. This transformation does
not preserve the meaning of a formula. However, it does
preserve inconsistency, which is the critical property: reso-
lution works by detecting contradictions.

How to Skolemize a formula

Take a formula in negation normal form. Starting from the
outside, follow the nesting structure of the quantifiers. If the
formula contains an existential quantifier, then the series of
quantifiers must have the form
VX -o-Vap -+ Vag ---3y A
where A is a formula, £ > 0, and 3y is the leftmost exis-
tential quantifier. Choose a k-place function symbol f not
present in A (that is, a new function symbol). Delete the Jy
and replace all other occurrences of y by f(x1, x2, ..., Xk).
The result is another formula:
Vxp oo Vxg - - Vxg oo ALf (1, x2, .0, X0 /Y]

If some existential quantifier is not enclosed in any uni-
versal quantifiers, then the formula contains simply Jy A
as a subformula. Then this quantifier is deleted and occur-
rences of y are replaced by a new constant symbol c¢. The
resulting subformula is A[c/y].

Then repeatedly eliminate all remaining existential quan-
tifiers as above. The new symbols are called Skolem func-
tions (or Skolem constants).

After Skolemization, the formula has only universal
quantifiers. The next step is to throw the remaining quan-
tifiers away. This step is correct because we are converting
to clause form, and a clause implicitly includes universal
quantifiers over all of its free variables.

We are almost back to the propositional case, except the
formula typically contains terms. We shall have to handle
constants, function symbols, and variables.

Prenex normal form—where all quantifiers are moved to
the front of the formula—would make things easier to fol-
low. However, increasing the scope of the quantifiers prior
to Skolemization makes proofs much more difficult. Push-
ing quantifiers in as far as possible, instead of pulling them
out, yields a better set of clauses.

Examples of Skolemization

For simplicity, we start with prenex normal form. The af-
fected expressions are underlined.

Example 15 Start with
IxVy3z R(x, v, 2)
Eliminate the 3x using the Skolem constant a:
Vy3dzR(a,y,2)
Eliminate the 3z using the 1-place Skolem function f:
VyR(a,y, f(y)

Finally, drop the Vy and convert the remaining formula to
a clause:

{R(a,y, fO)}

7 SKOLEM FUNCTIONS, HERBRAND’S THEOREM AND UNIFICATION 18

Example 16 Start with
Ju Vv 3w Ix Vy 3z (P (h(u, v)) vV Q(w)) A R(x, h(y, 2)))
Eliminate the Ju using the Skolem constant c:

Vv 3w 3x Vy 3z ((P(h(c, v)) V Q(w)) A R(x, h(y, 2)))
Eliminate the 3w using the 1-place Skolem function f:

Yudx Vy 3z ((P(h(c,v)) vV Q(f () A R(x, h(y, 2)))

Eliminate the 3x using the 1-place Skolem function g:

Yo Vy 3z (P(h(c,v)) vV Q(f () A R(g(v), h(y, 2)))

Eliminate the 3z using the 2-place Skolem function j (the
function #4 is already used!):

YoVy ((P(h(c,v)) vV Q(f(v)) A R(g(), h(y, j(v,¥))))

Dropping the universal quantifiers yields a set of clauses:

{P(h(c,v)), Q(f()} {R(gW), h(y, j(v, y))}

Each clause is implicitly enclosed by universal quantifiers
over each of its variables. So the occurrences of the vari-
able v in the two clauses are independent of each other.

Let’s try this example again, first pushing quantifiers in
to the smallest possible scopes:

uVv P(h(u,v)) vIw Q(w) AIxVy3Iz R(x, h(y, 2))
Now the Skolem functions take fewer arguments.

{P(h(c,v)), Q(d)} {R(e,h(y, fF(y))}

The difference between this set of clauses and the previous
set may seem small, but in practice it can be huge.

Correctness of Skolemization

Skolemization does not preserve meaning. The version pre-
sented above does not even preserve validity! For example,

dx (P(a) - P(x))

is valid. (Because the required x is just a.)
Replacing the 3x by the Skolem constant b gives

P(a) — P(b)

This has a different meaning since it refers to a constant b
not previously mentioned. And it is not valid! For example,
it is false in the interpretation where P (x) means x equals
0 and a denotes 0 and b denotes 1.

Skolemization preserves consistency.

e The formula Vx 3y A is satisfiable iff it holds in some
interpretation Z = (D, I)

e iff forall x € D thereis some y € D such that A holds

e iff there is some function on D, say f € D — D, such
that for all x € D, if y = f(x) then A holds

o iff the formula Vx A[f (x)/y] is satisfiable.

If a formula is satisfiable then so is the Skolemized version.
If it is unsatisfiable then so is the Skolemized version. And
resolution works by proving that a formula is unsatisfiable.

7.2 Herbrand interpretations

A Herbrand universe consists of all terms that can be writ-
ten using the constant and function symbols in a set of
clauses S (or quantifier-free formula). The data processed
by a Prolog program S is simply its Herbrand universe. A
Herbrand interpretation (or model) of S is based on this uni-
verse. A fundamental theorem states that for consistency
of S we need only consider Herbrand interpretations.

To define the Herbrand universe for the set of clauses S
we start with sets of the constant and function symbols in S,
including Skolem functions.

Definition 11 Let C be the set of all constants in S. If there
are none, let C = {a} for some constant symbol a of the
first-order language. For n > 0 let F,, be the set of all n-
place function symbols in S and let P, be the set of all n-
place predicate symbols in S.

The Herbrand universe is the set H = | J;.o H;, where

Hy=C

Hii1=HU{f(t,....,ty) | t1,...,t, € Hyand f € F,;}

Thus, H consists of all the terms that can be written using
only the constants and function symbols present in S. There
are no variables: the elements of H are ground terms. For-
mally, H turns out to satisfy the recursive equation

H={f(,..

The definition above ensures that C is non-empty. It follows
that H is also non-empty, which is necessary.

The elements of H are ground terms. An interpretation
(H, Iy) is a Herbrand interpretation provided Iy[t] = ¢
for all ground terms ¢. The point of this peculiar exercise is
that we can give meanings to the symbols of S in a purely
syntactic way.

St t,...,ty € Hand f € F,}

Example 17 Given the two clauses

{P(a)} {0(g(y,2), ~P(f(x))}
Then C = {a}, F1 = {f}, F2 = {g} and

H ={a, f(a), g(a,a), f(f(a)),g(f(a),a),
g(a, f(a)),g(f(a), f(a)),...}

Every Herbrand interpretation /g defines each n-place
predicate symbol P to denote some truth-valued function
Iyg[P] € H" — {1, 0}. We take

I[P, ..., t)] =1

if and only if P(#1,...,,) holds in our desired “real” in-
terpretation Z of the clauses. In other words, any specific
interpretation Z = (D, I) over some universe D can be
mimicked by an Herbrand interpretation. One can show the
following two results:

Lemma 12 Let S be a set of clauses. If an interpretation
satisfies S, then an Herbrand interpretation satisfies S.

Theorem 13 A ser S of clauses is unsatisfiable if and only
if no Herbrand interpretation satisfies S.

7 SKOLEM FUNCTIONS, HERBRAND’S THEOREM AND UNIFICATION 19

Equality behaves strangely in Herbrand interpretations.
Given an interpretation Z, the denotation of = is the set of
all pairs of ground terms (¢1, t) such that #; = #, according
to Z. In a context of the natural numbers, the denotation
of = could include pairs like (1 + 1, 2) — the two compo-
nents need not be the same.

7.3 The Skolem-Godel-Herbrand Theorem

This theorem tells us that unsatisfiability can always be de-
tected by a finite process. It provided the original motivation
for research into automated theorem proving.

Definition 14 An instance of a clause C is a clause that
results by replacing variables in C by terms. A ground in-
stance of C is an instance of C that contains no variables.

Since the variables in a clause are taken to be universally
quantified, every instance of C is a logical consequence
of C.

Theorem 15 (Herbrand) A set S of clauses is unsatisfi-
able if and only if there is a finite unsatisfiable set S" of
ground instances of clauses of S.

The theorem is valuable because the new set S’ expresses
the inconsistency in a finite way. However, it only tells us
that S’ exists; it does not tell us how to derive S’. So how
do we generate useful ground instances of clauses? One
answer, outlined below, is unification.

Example 18 To demonstrate the Skolem-Gddel-Herbrand
theorem, consider proving the formula

VxP(x) AVy[P(y) = Q(»)] = Q(a) A QD).

If we negate this formula, we trivially obtain the following
set S of clauses:

{P()} {=P(y), 00} {=Q(a),—~0D)}.

This set is unsatisfiable. Here is a finite set of ground in-
stances of clauses in S:

{P(@)} {P(b)}
{(=P (), Q(b)}

{(=P(a), Q(a)}
{(=Q(a), ~Q()}.

This set reflects the intuitive proof of the theorem. We obvi-
ously have P(a) and P (b); using Vy [P (y) — Q(y)] with
a and b, we obtain Q(a) and Q(b). If we can automate this
procedure, then we can generate such proofs automatically.

7.4 Unification

Unification is the operation of finding a common instance
of two or more terms. Consider a few examples. The terms
f(x, b) and f(a, y) have the common instance f(a, b), re-
placing x by a and y by b. The terms f(x, x) and f(a, b)
have no common instance, assuming that a and b are dis-
tinct constants. The terms f(x, x) and f(y, g(y)) have no
common instance, since there is no way that x can have the
form y and g(y) at the same time — unless we admit the
infinite term g(g(g(---))).

Only variables may be replaced by other terms. Con-
stants are not affected (they remain constant!). Instances of
the term f (¢, u) must have the form f (¢, u’), where ¢’ is an
instance of ¢ and u’ is an instance of u.

Definition 16 A substitution is a finite set of replacements

[t1/x1, ..o, ti/xk]
where x1, ..., x; are distinct variables such that ¢; # x; for
alli =1,...,k. We use Greek letters ¢, 0, o to stand for
substitutions.

A substitution 6 = [t1/x1, ..., t/x;] defines a func-
tion from the variables {xi, ..., x;} to terms. Postfix no-
tation is usual for applying a substitution; thus, for exam-
ple, x;6 = t;. Substitution on terms, literals and clauses is
defined recursively in the obvious way:

Example 19 The substitution 8 = [h(y)/x, b/y] says to
replace x by h(y) and y by b. The replacements occur si-
multaneously; it does not have the effect of replacing x by
h(b). Applying this substitution gives

fx, gw),)0 = f(h(y), gu), b)
R(h(x),2)0 = R(h(h(y)),2)
{P(x),=Q(M}0 = {P(h(y)), ~Q(b)}

Definition 17 If ¢ and 0 are substitutions then so is their
composition ¢ o 6, which satisfies

1(pob) = (1¢)0

for all terms ¢

Example 20 Let
¢ =1jx)/u,0/y]and 6 = [h(2)/x,8(3)/y].

Then ¢ 0 6 = [j(h(z))/u, h(z)/x,0/y].
Notice that y(¢00) = (y¢)0 = 00 = 0; the replacement
g(3)/y has disappeared.

7.5 Unifiers

Definition 18 A substitution 6 is a unifier of terms #; and
tr if 16 = 1O. More generally, 6 is a unifier of terms ¢,
0, . .o tyif 10 = 10 = --- = t,,60. The term 116 is the
common instance.

Two terms can only be unified if they have similar struc-
ture apart from variables. The terms f(x) and h(y, z) are
clearly non-unifiable since no substitution can do anything
about the differing function symbols. It is easy to see that
6 unifies f(#1,...,t,) and f(uy,...,u,) if and only if 6
unifies ¢; and u; foralli =1,...,n.

Example 21 The substitution [3/x, g(3)/y] unifies the
terms g(g(x)) and g(y). The common instance is g(g(3)).
These terms have many other unifiers, such as these:

unifying substitution common instance

[f@)/x, g(fu))/y] g(g(fw))
[z/x,8(2)/y] g(g(2)
[g(x)/y] g(g(x))

7 SKOLEM FUNCTIONS, HERBRAND’S THEOREM AND UNIFICATION

Note that g(g(3)) and g(g(f(u))) are both instances of
g(g(x)). Thus g(g(x)) is more general than g(g(3)) and
g(g(f(u))). Certainly g(g(3)) seems to be arbitrary —
neither of the original terms mentions 3! Also important:
g(g(x)) is as general as g(g(z)), despite the different vari-
able names. Let us formalize these intuitions.

Definition 19 The substitution 6 is more general than ¢ if
¢ = 6 o o for some substitution o .

Example 22 Recall the unifiers of g(g(x)) and g(y). The
unifier [g(x)/y] is more general than the others listed, for

[3/x,8(3)/y] =[g(x)/ylo[3/x]
[fu)/x, g(f(u)/y] =[gx)/y]o[f(u)/x]
[z/x,8(2)/y] = [g(x)/y]olz/x]
[g(x)/y]=[g(x)/ylol]

The last line above illustrates that every substitution 6 is
more general than itself because 0 = 6 o [].

Definition 20 A substitution 6 is a most general unifier
(MGU) of terms ¢, ..., t, if 0 unifies t{, ..., t,;,, and 6
is more general than every other unifier of #1, .. ., #;,.

Thus if 6 is an MGU of terms #1 and 7 and #1¢ = ¢ then
¢ = 6 o o for some substitution o. The natural unification
algorithm returns a most general unifier of two terms.

7.6 A simple unification algorithm

Unification is often presented as operating on the concrete
syntax of terms, scanning along character strings. But terms
are really tree structures and are so represented in a com-
puter. Unification should be presented as operating on trees.
In fact, we need consider only binary trees, since these can
represent n-ary branching trees.

Our trees have three kinds of nodes:

e Avariable x, y, ... — can be modified by substitution

e A constant a, b, ... — handles function symbols also
e A pair (t,u) — where ¢t and u are terms

Unification of two terms considers nine cases, most of
which are trivial. It is impossible to unify a constant with a
pair; in this case the algorithm fails. When trying to unify
two constants a and b, if a = b then the most general unifier
is []; if @ # b then unification is impossible. The interesting
cases are variable-anything and pair-pair.

Unification with a variable

When unifying a variable x with a term 7, where x # f, we
must perform the occurs check. If x does not occur in ¢ then
the substitution [#/x] has no effect on ¢, so it does the job
trivially:

x[t/x] =1t =1t[t/x]

If x does occur in t then no unifier exists, for if x0 = t6
then the term x6 would be a proper subterm of itself.

20

Example 23 The terms x and f(x) are not unifiable. If
x60 = u then f(x)0 = f(u). Thus x6 = f(x)0 would
imply u = f(u). We could introduce the infinite term

u=fFSLECEN)

as a unifier, but this would require a rigorous definition of
the syntax and semantics of infinite terms.

Unification of two pairs

Unifying the pairs (¢,) with (u1, uy) requires two recur-
sive calls of the unification algorithm. If 6 unifies #; with
u1 and 6, unifies 1,0 with u,>6; then 0; o 6, unifies (¢, 1)
with (uy, us).

It is possible to prove that this process terminates, and
that if 61 and 6, are most general unifiers then so is 81 o ;.
If either recursive call fails then the pairs are not unifiable.

As given above, the algorithm works from left to right,
but choosing the reverse direction makes no real difference.

Examples of unification

In most of these examples, the two terms have no variables
in common. Most uses of unification (including resolution
and Prolog) rename variables in one of the terms to ensure
this. Such renaming is not part of unification itself.

Example 24 Unify f(x, b) with f(a, y). Steps:

Unify x and a getting [a/x].

Try to unify bla/x] and y[a/x]. These are b
and y, so unification succeeds with [b/y].

Result is [a/x] o [b/y], whichis [a/x, b/y].

Example 25 Unify f(x, x) with f(a, b). Steps:

Unify x and a getting [a/x].

Try to unify x[a/x] and b[a/x]. These are dis-
tinct constants, a and b. Fail.

Example 26 Unify f(x, g(y)) with f(y, x). Steps:

Unify x and y getting [y/x].

Try to unify g(y)[y/x] and x[y/x]. These are
g(y) and y, violating the occurs check. Fail.

But we can unify f(x, g(y)) with f(y’, x’). The
failure was caused by having the same variables
in both terms.

Example 27 Unify f(x, x) with f(y, g(y)). Steps:

Unify x and y getting [y/x].

Try to unify x[y/x] and g(y)[y/x]. But these
are y and g(y), where y occurs in g(y). Fail.
How can f(x, x) and f(y, g(y)) have a common
instance when the arguments of f must be iden-
tical in the first case and different in the second?

7 SKOLEM FUNCTIONS, HERBRAND’S THEOREM AND UNIFICATION 21

Example 28 Unify j(w, a, h(w)) with j(f(x, y), x, 2).

Unify w and f(x, y) getting [f(x, y)/w].

Unify a and x (the substitution has no effect) get-
ting [a/x]. Then unify

h(w)[f (x, y)/wlla/x] and z[f (x, y)/wlla/x],
namely i (f(a, y)) and z; unifier is

(A (f(a. y))/z].

Result is [f(x, y)/w] o [a/x] o [A(f(a, y))/z].
Performing the compositions, this simplifies to

[f(a,y)/w,a/x, h(f(a,y))/z].

Example 29 Unity j(w, a, h(w)) with j(f(x, y), x, y).
This is the previous example but with a y in place of a z.
Unify w and f(x, y) getting [f(x, y)/w].
Unify a and x getting [a/x]. Then unify
h(w)[f (x, y)/wlla/x] and y[f(x, y)/w][a/x].
These are h(f(a,y)) and y, but y occurs in
h(f(a,y)). Fail

In the diagrams, the lines indicate variable replacements:

j(w, a, h(w)) JOEX Y, X, y)

N r/

arx

f@ y)/w

h(f(a, y))/y?7?

Implementation remarks

To unify terms ¢, 2, ..., t;; for m > 2, compute a unifier
6 of 1 and t,, then recursively compute a unifier o of the
terms #0, .. ., t,,0. The overall unifier is then 6 o o. If any
unification fails then the set is not unifiable.

A real implementation does not need to compose substi-
tutions. Most represent variables by pointers and effect the
substitution [#/x] by updating pointer x to . The compo-
sitions are cumulative, so this works. However, if unifica-
tion fails at some point, the pointer assignments must be
undone! The algorithm sketched here can take exponential
time in unusual cases. Faster algorithms exist, but they are
more complex and seldom adopted.

Prolog systems, for the sake of efficiency, omit the oc-
curs check. This can result in circular data structures and
looping. It is unsound for theorem proving.

7.7 Examples of theorem proving

These two examples are fundamental. They illustrate how
the occurs check enforces correct quantifier reasoning.

Example 30 Consider a proof of
@y Vx R(x, y)) — (Vx3y R(x, y)).

For simplicity, produce clauses separately for the an-
tecedent and for the negation of the consequent.

e The antecedent is Iy Vx R(x, y); replacing y by the
Skolem constant a yields the clause {R(x, a)}.

e In—(Vx 3y R(x, y)), pushing in the negation produces
dx Vy —=R(x,y). Replacing x by the Skolem con-
stant b yields the clause {—=R(b, y)}.

Unifying R(x,a) with R(b,y) detects the contradiction
R(b,a) A—R(b, a).

Example 31 In a similar vein, let us try to prove
(Vx 3y R(x,y)) = (QyVx R(x, y)).

e Here the antecedent is Vx dy R(x, y); replacing y by
the Skolem function f yields the clause {R(x, f(x))}.

e The negation of the consequent is —(3y Vx R(x, y)),
which becomes Yy 3x =R(x, y). Replacing x by the
Skolem function g yields the clause {—=R(g(y), y)}.

Observe that R(x, f(x)) and R(g(y), y) are not unifiable
because of the occurs check. And so it should be, because
the original formula is not a theorem! The best way to
demonstrate that a formula is not a theorem is to exhibit
a counterexample. Here are two:

e The domain is the set of all people who have ever lived.
The relation R(x, y) holds if x loves y. The function
f(x) denotes the mother of x, and {R(x, f(x))} holds
because everybody loves their mother. The function
g(x) denotes the landlord of x, and =R (g(y), y) holds.

e The domain is the set of integers. The relation R(x, y)
holds whenever x = y. The function f is defined by
f(x) = x and {R(x, f(x))} holds. The function g is
defined by g(x) = x + 1 and so {—=R(g(y), y)} holds.

Exercise 27 Skolemize the following formulas, dropping
all quantifiers:

xyVz3Iw P(x, y, z, w)
Yu (3Ix P(x,x) AVv3y O(u, y))
Yu3dxy P(x,y)

Exercise 28 Consider a first-order language with 0 and 1
as constant symbols, with — as a 1-place function symbol
and + as a 2-place function symbol, and with < as a 2-place
predicate symbol.

(a) Describe the Herbrand Universe for this language.

(b) The language can be interpreted by taking the integers
for the universe and giving 0, 1, —, 4, and < their
usual meanings over the integers. What do those sym-
bols denote in the corresponding Herbrand model?

8 FIRST-ORDER RESOLUTION AND PROLOG

Exercise 29 For each of the following pairs of terms, give
a most general unifier or explain why none exists. Do not
rename variables prior to performing the unification.

f(g(x),2) Sy, h(y))
J(x,y,2) JfO,), f(z,2), fla,a))
JC,z,x) jOs f(),2)
JUfx),y,a) j(r.z,2)
Jjgx),a,y) J(z, x, f(z,2)

Exercise 30 Which of the following substitutions are most
general unifiers for the terms f(x, y, z) and f(w, w, v)?

[x/y,x/w,v/z]
[y/x,y/w,v/z]
[y/x,v/z]
(u/x,u/y,u/w,y/z, y/vl]
[x/y,x/z, x/w, x/v]

8 First-Order Resolution and Prolog

By means of unification, we can extend resolution to first-
order logic. As a special case we obtain Prolog. Other the-
orem provers are also based on unification. Other applica-
tions include polymorphic type checking.

DPLL only works for ground formulas. It can be ex-
tended to prove first-order theorems, introducing techniques
to replace variables by constant expressions. But while uni-
fication and resolution come up with good terms automati-
cally, guessing them heuristically is difficult. We shall ex-
clusively use resolution to solve such problems.

A number of resolution theorem provers can be down-
loaded for free from the Internet. Some of the main ones
include Vampire (http://www.vprover.org, SPASS
(http://www.spass—-prover.orqg) and E (http:
//www.eprover.org). It might be instructive to down-
load one of them and experiment with it.

8.1 Binary resolution

We now define the binary resolution rule with unification:

{B, Ay, ...
(A1, ..

s Am} (=D, Ci, ..., Cu}
W Ap,Cr, ..., Chlo

if Bo = Do

As before, the first clause contains B and other literals,
while the second clause contains — D and other literals. The
substitution o is a unifier of B and D (almost always a most
general unifier). This substitution is applied to all remain-
ing literals, producing the conclusion.

The variables in one clause are renamed before resolu-
tion to prevent clashes with the variables in the other clause.
Renaming is sound because the scope of each variable is its
clause. Resolution is sound because it takes an instance of
each clause — the instances are valid, because the clauses
are universally valid — and then applies the propositional
resolution rule, which is sound. For example, the two
clauses

{P(x)} and {=P(g(x))}

22

yield the empty clause in a single resolution step. This
works by renaming variables — say, x to y in the second
clause — and unifying P(x) with P(g(y)). Forgetting to
rename variables is fatal, because P (x) cannot be unified
with P(g(x)).

8.2 Factoring

Factoring is a separate inference rule, but a vital part of the
resolution method. It takes a clause and unifies some liter-
als within it (which must all have the same sign), yielding
a new clause. Starting with the clause {P (x, b), P(a, y)},
factoring derives {P(a, b)}, since P(a, D) is the result of
unifying P(x, b) with P(a,y). This new clause is a unit
clause and therefore especially useful. In this case, how-
ever, it is logically weaker than the original clause.
Here is the factoring inference rule in its general form:

s Am}
, Ao

{B1,..., By, Aq, ...
{B1, Ay, ...

(iff Bijo = --- = Byo)

Factoring is necessary for completeness. Resolution by it-
self tends to make clauses longer and longer. Only short
clauses are likely to lead to a contradiction. If every clause
has at least two literals, then the only way to reach the empty
clause is with the help of factoring.

The search space is huge. Resolution and factoring can
be applied in many different ways at each step of the proof.
Modern resolution systems use complex heuristics to man-
age and limit the search.

Example 32 Prove Vx 3y —=(P(y, x) < —=P(y, y)).
Negate and expand the <>, getting

=Vx Ay =[(=P(y,x) vV =P(y,y))
A (=P, y)V Py, x))]

Its negation normal form is

VY [(=P(y. x) V=P, y) A(P(y,y) V P(y, x))]

Skolemization yields

(=P(y,a) vV =Py, y) A(P(y,y)V P(y,a)).

The problem consists of just two clauses:

{(=P(y,a), =P, y)} {P(y,y), P(y,a)}

At such a situation, it is a common error to imagine that
we can resolve on all the literals at the same time, imme-
diately reaching the empty clause. This is not possible: a
resolution step combines one single pair of complementary
literals. We can, for example, resolve these two clauses on
the literal P(y, a). We obtain {—P(y, y), P(y, y)}, which
is a tautology and therefore worthless.

Factoring is necessary here. Applying the factoring rule
to each of these clauses yields two additional clauses:

{(=P(a,a)} {P(a,a)}

These are complementary unit clauses, so resolution yields
the empty clause. This proof is trivial!

8 FIRST-ORDER RESOLUTION AND PROLOG

As a general rule, if there are no unit clauses to begin
with, then factoring will be necessary. Otherwise, resolu-
tion steps will continue to yield clauses that have at least
two literals. The only exception is when there are repeated
literals, as in the following example.

Example 33 Letusprove 3x [P — Q(x)]AIx [Q(x) —
P] — 3x [P < Q(x)]. The clauses are
{P,—=0(®B)} {P,Q(x)}

{(=P,—0W)} (=P, 0(a)}

A short resolution proof follows. The complementary liter-
als are underlined:

Resolve {P,—Q(b)} with {P, Q(x)} getting {P}

Resolve {—P, —=Q(x)} with {=P, Q(a)} getting {—P}
Resolve {P} with {—=P} getting [

This proof relies on the set identity { P, P} = {P}. We can
view it as a degenerate case of factoring where the literals
are identical, with no need for unification.

8.3 Redundant clauses and subsumption

During resolution, the number of clauses builds up dramat-
ically; it is important to delete all redundant clauses.

Each new clause is a consequence of the existing clauses.
A contradiction can only be derived if the original set of
clauses is unsatisfiable. A clause can be deleted if it does
not affect the consistency of the set. A tautology should
always be deleted: it is true in all interpretations.

Here is a subtler case. Consider the clauses

{S,R} {P,-S} {P,Q, R}

Resolving the first two yields {P, R}. Since each clause is
a disjunction, any interpretation that satisfies {P, R} also
satisfies { P, Q, R}. Thus {P, Q, R} cannot cause inconsis-
tency, and should be deleted. Put another way, P vV R im-
plies PV OV R. Any contradiction derived from PV Q VR
could also be derived from P Vv R. This sort of deletion is
called subsumption; clause { P, R} subsumes {P, Q, R}.

Consider factoring the clause {R(x), R(a)}: the result is
{R(a)}, which is clearly no weaker than what we started
with. It is safe to remove the clause {R(x), R(a)}. However,
not every instance of factoring behaves in this way.

Subsumption typically involves unification. In the gen-
eral case, a clause C subsumes a clause D if CO C D for
some substitution 8 (if some instance of C implies D). For
example, { P (x)} subsumes { P (a), Q(y)}: since x is a vari-
able, { P(x)} implies every formula of the form P (¢).

8.4 Prolog clauses

Prolog clauses, also called Horn clauses, have at most one

positive literal. A definite clause is one of the form
{=Aq,...,0A,, B}

It is logically equivalent to (A; A--- A Ay) — B. Prolog’s

notation is

B «— Ay, ..., Ap.

23

If m = 0O then the clause is simply written as B and is some-
times called a fact.
A negative or goal clause is one of the form

{_|A]5 L] _'Al’ﬂ}

Prolog permits just one of these; it represents the list of
unsolved goals. Prolog’s notation is

<~ A1,..., Ap.

A Prolog database consists of definite clauses. Observe that
definite clauses cannot express negative assertions, since
they must contain a positive literal. From a mathematical
point of view, they have little expressive power; every set of
definite clauses is satisfiable! Even so, definite clauses are
a natural notation for many problems.

8.5 Prolog computations

A Prolog computation takes a database of definite clauses
together with one goal clause. It repeatedly resolves the
goal clause with some definite clause to produce a new goal
clause. If resolution produces the empty goal clause, then
execution succeeds.

Here is a diagram of a Prolog computation step:

definite clause goal clause
{—=Ay, ..., —Ap, B} {(—=Bi,..., —Bpn}
o = unify(B, By)
new goal clause
{(=Ao, ..., —A,0, B0, ..., —Bpo}

This is a linear resolution (§6). Two program clauses are
never resolved with each other. The result of each resolution
step becomes the next goal clause; the previous goal clause
is discarded after use.

Prolog resolution is efficient, compared with general res-
olution, because it involves less search and storage. Gen-
eral resolution must consider all possible pairs of clauses; it
adds their resolvents to the existing set of clauses; it spends
a great deal of effort getting rid of subsumed (redundant)
clauses and probably useless clauses. Prolog always re-
solves some program clause with the goal clause. Because
goal clauses do not accumulate, Prolog requires little stor-
age. Prolog never uses factoring and does not even remove
repeated literals from a clause.

Prolog has a fixed, deterministic execution strategy. The
program is regarded as a list of clauses, not a set; the clauses
are tried strictly in order. With a clause, the literals are also
regarded as a list. The literals in the goal clause are proved
strictly from left to right. The goal clause’s first literal is
replaced by the literals from the unifying program clause,
preserving their order.

Prolog’s search strategy is depth-first. To illustrate what
this means, suppose that the goal clause is simply <« P
and that the program clauses are P <— P and P <« . Pro-
log will resolve P «<— P with < P to obtain a new goal
clause, which happens to be identical to the original one.
Prolog never notices the repeated goal clause, so it repeats
the same useless resolution over and over again. Depth-first
search means that at every choice point, such as between

8 FIRST-ORDER RESOLUTION AND PROLOG

using P <— P and P <, Prolog will explore every avenue
arising from its first choice before considering the second
choice. Obviously, the second choice would prove the goal
trivially, but Prolog never notices this.

8.6 Example of Prolog execution

Here are axioms about the English succession: how y can
become King after x.

Vx Vy (oldestson(y, x) A king(x) — king(y))
Vx Vy (defeat(y, x) A king(x) — king(y))
king(richardIII)
defeat(henryVII, richardIII)
oldestson(henry VIII, henry VII)

The goal is to prove king(henryVIII). Now here is the same
problem in the form of definite clauses:

{—oldestson(y, x), —king(x), king(y)}
{—defeat(y, x), —king(x), king(y)}
{king(richardIII)}
{defeat(henry VII, richardIII)}
{oldestson(henry VIII, henry VII)}

The goal clause is
{—king(henryVIII)}.

Figure 3 shows the execution. The subscripts in the clauses
are to rename the variables.

Note how crude this formalization is. It says nothing
about the passage of time, about births and deaths, about
not having two kings at once. The oldest son of Henry VII,
Arthur, died aged 15, leaving the future Henry VIII as the
oldest surviving son. All formal models must omit some
real-world details: reality is overwhelmingly complex.

The Frame Problem in Artificial Intelligence reveals an-
other limitation of logic. Consider writing an axiom system
to describe a robot’s possible actions. We might include
an axiom to state that if the robot lifts an object at time 7,
then it will be holding the object at time ¢ 4+ 1. But we also
need to assert that the positions of everything else remain
the same as before. Then we must consider the possibil-
ity that the object is a table and has other things on top of
it. Separation Logic, a variant of Hoare logic, was invented
to solve the frame problem, especially for reasoning about
linked data structures.

Prolog is a powerful and useful programming language,
but it is seldom logic. Most Prolog programs rely on special
predicates that affect execution but have no logical mean-
ing. There is a huge gap between the theory and practice of
logic programming.

8.7 Prolog and true theorem proving

Prolog-like technologies yield a number of different ap-
proaches to automatic theorem proving. In the late 1980s,
Stickel [1988] undertook experiments using an alternative
to resolution known as model elimination, and later he dis-
covered that these techniques could be implemented within

24

definite clause goal clause

{=0os(y1, X1), =k(x1), k(y1)} {=k(henryVIID)}

/

{os(henry V111, henryV11)} {—os(henryVIIl, x1), =k(x1)}

/

{—defeat(yz, X2), —k(x2), k(y2)} {=k(henryViD)}

/

{defeat(henryVI1, richardl 1)} {—defeat(henry V11, X2), —=k(x2)}

/

{k(richardIll)} {=k(richardlll)}

/

O

Figure 3: Execution of a Prolog program (os = oldestson,
k = king)

Prolog compilers. The point was to exploit the outstanding
performance of the era’s Prolog implementations to build a
faster theorem prover. The key was to translate the set of
clauses (obtained in the normal way) into a set of Prolog-
like clauses.

Strictly speaking, a Prolog clause has one positive literal
(the head of the clause) and zero or more negative literals.
Stickel’s idea was to replace the clause {A, ..., A, } by its
m contrapositives:

Al < Ay, ..., —Ap
A2 < —'A3,...,ﬁAm,—'A1
Am <__'A17"'5_'Am7]

All we are doing here is giving each of the literals the pos-
sibility of being the head, even if it is negative. Doing this
for each clause, we get a sort of Prolog program, which now
must be executed on a slightly modified Prolog system:

e Unification must be done right (with occurs check).

e Depth-first search must be replaced by depth-first iter-
ative deepening, to ensure completeness.

e The goal —P can be regarded as immediately proved if
it arises within an attempt to prove P (possibly many
layers up). This extension rule embodies a form of
proof by contradiction: whenever you are trying to
prove P, it is legitimate to assume —P.

9 DECISION PROCEDURES AND SMT SOLVERS

Interest in Prolog-based automatic theorem provers de-
clined in the 1990s along with interest in Prolog itself. To-
day, the conception survives as the connection calculus. It
retains the idea that every proof step involves one of the
original clauses (without however bothering with contra-
positives). It replaces Prolog execution by a data structure
called a connection graph. The extension rule still applies.

Exercise 31 Convert the following formula into clauses,
showing your working. Then present two resolution proofs
different from the one shown in Example 33 above.

Ix [P —> 0] AIx[Q(x) > Pl — Ix [P < Q(x)]

Exercise 32 Is the clause {P(x,b), P(a,y)} logically
equivalent to the unit clause {P(a,b)}? Is the clause
{P(y,y), P(y,a)} logically equivalent to {P(y,a)}? Ex-
plain both answers.

Exercise 33 Show that every set of definite clauses is satis-
fiable. (Hint: first consider propositional logic, then extend
your argument to first order logic.)

Exercise 34 Convert these formulas into clauses, showing
each step: negating the formula, eliminating — and <>,
pushing in negations, Skolemizing, dropping the universal
quantifiers, and converting the resulting formula into CNF.
Comment on the likely outcome of resolution in each case.

(Vx3y R(x,y)) = 3y Vx R(x, y))

Ay Vx R(x,y)) = (Vx3y R(x, y))
IxVyz (P(y) = Q(z)) = (P(x) > Q(x)))
—3AyVx (R(x, y) < Iz (R(x, 2) A R(z, x)))

Exercise 35 Consider the Prolog program consisting of the
definite clauses

P(f(x,y)) < Q(x), R(y)
0(g(z)) < R(2)
R(a) <

Describe the Prolog computation starting from the goal
clause <« P(v). Keep track of the substitutions affect-
ing v to determine what answer the Prolog system would
return.

Exercise 36 Find a refutation from the following set of
clauses using resolution and factoring.

{P(x,b), P(a,y)}
{=P(x,D), ~P(c, y)}
{(=P(x,d),—P(a,y)}

Exercise 37 Find a refutation from the following set of
clauses using resolution and factoring.

{—=R(x,a), ~R(x,y), ~R(y, x)}
{R(x, f(x)), R(x,a)}
{R(f(x),x), R(x,a)}

25

Exercise 38 Prove the following formulas by resolution,
showing all steps of the conversion into clauses. Remember
to negate first!

Vx(PV Q(x)) - (PVVYx Q(x))
Axy (R(x, y) — Vzw R(z, w))

Note that P is just a predicate symbol, so in particular, x is
not free in P.

9 Decision Procedures and SMT
Solvers

One of the original objectives of formal logic was to re-
place argumentation with calculation: to answer mathemat-
ical questions mechanically. Unfortunately, this reduction-
istic approach is unrealistic. Researchers soon found out
that most fundamental problems were insoluble, in general.
The Halting Problem was found to be undecidable. Godel
proved that no reasonable system of axioms yielded a com-
plete theory for arithmetic. And problem classes that were
decidable turned out to be very difficult: propositional satis-
fiability is NP-complete (and probably exponential), while
many other decision procedures are of hyper-exponential
complexity, limiting them to the smallest problems.

But as we have seen before, worst-case results can be
overly pessimistic. DPLL solves propositional satisfiabil-
ity for very large formulas. Used in conjunction with other
techniques, it yields highly effective program analysis tools
that can, in particular, identify program loops that could fail
to terminate. Below we shall briefly consider some sim-
ple methods for solving systems of arithmetic constraints.
These decision procedures can be combined with the DPLL
method. A modern Satisfiability Modulo Theories (SMT)
solver brings together a large number of separate, small
reasoning subsystems to solve very large and difficult prob-
lems. As before, we work with negated problems, which we
attempt to show unsatisfiable or else to construct a model.

9.1 Decision procedures and problems

A class of mathematical problems is called decidable if
there exists an algorithm for determining whether a given
problem has a solution or not. Such an algorithm is called a
decision procedure for that class of problems. For example,
it is decidable whether or not a given string is accepted by
a given finite state machine.

In theory, we are only interested in yes/no answers,
though in practice, many decision procedures return addi-
tional information. DPLL answers the yes/no question of
whether a set of clauses is satisfiable, but in the “yes” case
it also delivers a model, and in the “no” case it can even de-
liver a proof. A decidable class of mathematical problems
is called a decision problem.

A number of decidable subcases of first-order logic were
identified in the first half of the 20th century. One of
the more interesting decision problems is Presburger arith-
metic: the first-order theory of the natural numbers with
addition (and subtraction, and multiplication by constants).

9 DECISION PROCEDURES AND SMT SOLVERS

There is an algorithm to determine whether a given sentence
in Presburger arithmetic is valid or not.

Real numbers behave differently from the natural num-
bers (where m < n <= m + 1 < n) and require their
own algorithms. Once again, the only allowed operations
are addition, subtraction and constant multiplication. Such
a language is called linear arithmetic. The validity of linear
arithmetic formulas over the reals is also decidable.

Even unrestricted arithmetic (with multiplication) is de-
cidable for the reals. Unfortunately, the algorithms are too
complicated and expensive for widespread use. Even Eu-
clidean geometry can be reduced to problems on the reals,
and is therefore decidable. Practical decision procedures
exist for simple data structures such as arrays and lists.

9.2 Fourier-Motzkin variable elimination

Fourier-Motzkin variable elimination is a classic decision
procedure for real (or rational) linear arithmetic. It dates
from 1826 and is very inefficient in general, but relatively
easy to understand. In the general case, it deals with con-
junctions of linear constraints over the reals or rationals:

m n
N D aijx; <bi

i=1 j=1

(6)

It works by eliminating variables in succession. Eventually,
either a contradiction or a trivial constraint will remain.

The key idea is a technique known as quantifier elimi-
nation (QE). We have already seen Skolemization, which
removes quantifiers from a formula, but that technique does
not preserve the formula’s meaning. QE replaces a formula
with an equivalent but quantifier-free formula. It is only
possible for specific theories, and is generally very expen-
sive.

For the reals, existential quantifiers can be eliminated as
follows:

m n
N\ /\ai <b;

m n
Elx(/\ai §x/\/\x <bj)
j=1 i=1j=1

i=1
A system of constraints has many lower bounds, {a; }?”z 1
and upper bounds, {b; };?:1. To eliminate a variable, we
need to form every combination of a lower bound with an
upper bound. Observe that removing one quantifier replaces
a conjunction of m+-n inequalities by a conjunction of m xn
inequalities.

Given a problem in the form (6), we first eliminate the
variable x,. We examine each of the constraints, based on
the sign of the relevant coefficient, a;,, fori = 1, ..., m.
If a;,, = O then it does not constrain x,, at all. Otherwise,
define B; = bi — Y_"_} a;x;. Then
B
Ain
B

Ain

If a;;, > Othenx, <
If a;, < O then x,, >

The first case yields an upper bound for x,, while the second
case yields a lower bound. The lower bound case can also

26

be written —x, < —p;/a;,. Now a pair of constraints i and
i’ involving opposite signs can be added, yielding

o BB
Ain Ai'n
Doing this for every pair of constraints eliminates x;,.
Consider the following small set of constraints:

x<y x <z —x+y+2z<0 —z<-1

Let’s work through the algorithm very informally. The first
two constraints give upper bounds for x, while the third
constraint gives a lower bound, and can be rewritten as
—x < —y —2z. Addingitto x < yyields 0 < —2z
which can be rewritten as z < 0. Doing the same thing with
x < zyields y + z < 0 which can be rewritten as z < —y.
This leaves us with a new set of constraints, where we have
eliminated the variable x:

z<0 Z<—y —z=<-1

Now we have two separate upper bounds for z, as well as
a lower bound, because we know z > 1. There are again
two possible combinations of a lower bound with an upper
bound, and we derive 0 < —1 and 0 < —y—1. Because 0 <
—1 is contradictory, Fourier-Motzkin variable elimination
has refuted the original set of constraints.

Many other decision procedures exist, frequently for
more restrictive problem domains, aiming for greater ef-
ficiency and better integration with other reasoning tools.
Difference arithmetic is an example: arithmetic constraints
are restricted to the form x — y < ¢, where c is an inte-
ger constant. Satisfiability of a set of difference arithmetic
constraints can be determined very quickly by construct-
ing a graph and invoking the Bellman-Ford algorithm to
look for a cycle representing the contradiction 0 < —1.
In other opposite direction, harder decision problems can
handle more advanced applications but require much more
computer power.

9.3 Other decidable theories

One of the most dramatic examples of quantifier elimination
concerns the domain of real polynomial arithmetic:

Elx[ax2+bx+c=0] <—
b?> >4dacA(c=0Va#0Vb*> dac)

The left-hand side asks when a quadratic equation can have
solutions, and the right-hand side gives necessary and suf-
ficient conditions, including degenerate cases (a = ¢ = 0).
But this neat formula is the exception, not the rule. In gen-
eral, QE yields gigantic formulas. Applying QE to a for-
mula containing no free variables yields a sentence, which
simplifies to t or f, but even then, runtime is typically hy-
perexponential.

For linear integer arithmetic, every decision algorithm
has a worst-case runtime of at least 22", People typically
use the Omega test or Cooper’s algorithm.

There exist decision procedures for arrays, for at least the
trivial theory of (where Ik is lookup and up is update)

v ifi=j

lk(up(a, i, v), j) = lk(a, j) ifi#j

9 DECISION PROCEDURES AND SMT SOLVERS

The theory of lists with head, tail, cons is also decidable.
Combinations of decidable theories remain decidable under
certain circumstances, e.g., the theory of arrays with linear
arithmetic subscripts. The seminal publication, still cited
today, is Nelson and Oppen [1980].

9.4 Satisfiability modulo theories

Many decision procedures operate on existentially quanti-
fied conjunctions of inequalities. An arbitrary formula can
be solved by translating it into disjunctive normal form (as
opposed to the more usual conjunctive normal form) and by
eliminating universal quantifiers in favour of negated exis-
tential quantifiers. However, these transformations typically
cause exponential growth and may need to be repeated as
each variable is eliminated.

Satisfiability modulo theories (SMT) is an extension of
DPLL to make use of decision procedures, extending their
scope while avoiding the problems mentioned above. The
idea is that DPLL handles the logical part of the problem
while delegating reasoning about particular theories to the
relevant decision procedures.

We extend the language of propositional satisfiability to
include atomic formulas belonging to our decidable theory
(or theories). For the time being, these atomic formulas are
not interpreted, so a literal such as a < 0 is wholly unrelated
to a > 0. But the decision procedures are invoked during
the execution of DPLL; if we have already asserted a < 0,
then the attempt to assert ¢ > 0 will be rejected by the
decision procedure, causing backtracking. Information can
be fed back from the decision procedure to DPLL in the
form of a new clause, such as =(a < 0) vV =(a > 0).

[Remark: the Fourier-Motzkin decision procedure elim-
inates variables, but all decision procedures in actual use
can deal with constants such as a as well, and satisfiability-
preserving transformations exist between formulas involv-
ing constants and those involving quantified variables.]

9.5 SMT example

Let’s consider an example. Suppose we start with the fol-
lowing four clauses. Note that a, b, ¢ are constants: vari-
ables are not possible with this sort of proof procedure. And
the boxes are to remind us that DPLL regards these arith-
metic formulas as propositional variables. DPLL knows ab-
solutely nothing about arithmetic.

{le=0]
{’3a>2

2a <bl) {b<al
a<0‘} {—-’c:O

,—|’b<a‘}

9

Unit propagation using {} yields three clauses:

=0

g

Unit propagation using —| yields two clauses:

{2a <b)) {3a>2

il

2x <bl) {3a>2

a<0)) {-c=0]

a<0‘}

3

Unit propagation using yields just this:
(Baz2)[a=0)

27

Now a case split on the literal returns a “model”:

b <a|a—{c=0|r[2a <b|A[3a >2]

But the arithmetic decision procedure finds this combi-
nation contradictory and returns a new clause:®

,—-’2a<b

(Hb<a L —{3a > 2))

Finally, DPLL returns another model:

’b<a‘/\—-’c=0‘/\’2a<b‘/\’a<0‘.

As the arithmetic decision procedure finds this to be satisfi-
able, we learn that the original set of clauses is also satisfi-
able. A decision procedure may also return specific values
fora, b and c.

Case splitting operates as usual for DPLL. But note that
pure literal elimination would make no sense here, as there
are connections between literals (considera < O anda > 0
again) that are not visible at the propositional level.

9.6 Final remarks

Here we have seen the concepts of over-approximation
and counterexample-driven refinement. They are frequently
used to extend SAT solving to richer domains than propo-
sitional logic. By over-approximation we mean that every
model of the original problem assigns truth values to the
enriched “propositional letters” (such as a > 0), yielding a
model of the propositional clauses obtained by ignoring the
underlying meaning of the propositional atoms. As above,
any claimed model is then somehow checked against the
richer problem domain, and the propositional model is then
iteratively refined. But if the propositional clauses are un-
satisfiable, then so is the original problem.

SMT solvers are the focus of great interest at the mo-
ment, and have largely superseded SAT solvers (which they
incorporate and generalise). One of the most popular SMT
solvers is Z3, a product of Microsoft Research but free
for non-commercial use. Others include Yices and CVC4.
They are applied to a wide range of problems, including
hardware and software verification, program analysis, sym-
bolic software execution, and hybrid systems verification.

Exercise 39 In Fourier-Motzkin variable elimination, any
variable not bounded both above and below is deleted from
the problem. For example, given the set of constraints

3x>y x=20 y>z z=<1 z>0

the variables x and then y can be removed (with their con-
straints), reducing the problem to z < 1 A z > 0. Explain
how this happens and why it is correct.

Exercise 40 Apply Fourier-Motzkin variable elimination
to the set of constraints

x>z y=>2z z=0 x+y<z.

Exercise 41 Apply Fourier-Motzkin variable elimination
to the set of constraints

x<2y x<y+3 z=<x 0=z y=<éx

6But without ¢ = 0: the decision procedure can see that it’s irrelevant.

10 BINARY DECISION DIAGRAMS

Exercise 42 Apply the SMT algorithm sketched above to
the following set of clauses:

{c=0,¢c>0} {a#b} {c<0,a=0>b}

10 Binary Decision Diagrams

A binary decision tree represents the truth table of a propo-
sitional formula by binary decisions, namely if-then-else
expressions over the propositional letters. (In the relevant
literature, propositional letters are called variables.) Unfor-
tunately, a decision tree may contain much redundancy. A
binary decision diagram is a directed acyclic graph, shar-
ing identical subtrees. An ordered binary decision diagram
is based upon giving an ordering < to the variables: they
must be tested in order. Further refinements ensure that each
propositional formula is mapped to a unique diagram, for a
given ordering. We get a compact and canonical represen-
tation of the truth table of any formula.

The acronym BDD for binary decision diagram is well-
established in the literature. However, many earlier papers
use OBDD or even ROBDD (for “reduced ordered binary
decision diagram”) synonymously.

A BDD must satisfy the following conditions:

e ordering: if P is tested before Q, then P < Q
(thus in particular, P cannot be tested more than once
on a single path)

e uniqueness: identical subgraphs are stored only once
(to do this efficiently, hash each node by its variable
and pointer fields)

e irredundancy: no test leads to identical subgraphs in
the 1 and O cases (thanks to uniqueness, redundant
tests can be detected by comparing pointers)

For a given variable ordering, the BDD representation
of each formula is unique: BDDs are a canonical form.
Canonical forms usually lead to good algorithms — for
a start, you can test whether two things are equivalent by
comparing their canonical forms.

The BDD of a tautology is 1. Similarly, that of any un-
satisfiable formula is 0. To check whether two formulas
are logically equivalent, convert both to BDDs and then —
thanks to uniqueness — simply compare the pointers.

A recursive algorithm converts a formula to a BDD. All
the logical connectives can be handled directly, including
— and <. (Exclusive-or is also used, especially in hard-
ware examples.) The expensive transformation of A <> B
into (A — B) A (B — A) is unnecessary.

Here is how to convert a conjunction A A A’ to a BDD.
In this algorithm, xPy is a decision node that tests the vari-
able P, with a true-link to X and a false-link to Y. In other
words, xPy is the BDD equivalent of the decision “if P then
Xelse Y.

1. Recursively convert A and A’ to BDDs Z and Z’.

2. Check for trivial cases. If Z = Z’ (pointer compari-
son) then the result is Z; if either operand is 0, then the
result is O; if either operand is 1, then the result is the
other operand.

28

3. In the general case, let Z = yPy and Z' = x/P'y.
There are three possibilities:

(a) If P = P’ then build the BDD y . x/Py Ay’ Tecur-
sively. This means convert X A X’ and ¥ A Y’ to BDDs
U and U’, then construct a new decision node from P
to them. Do the usual simplifications. If U = U’ then
the resulting BDD for the conjunction is U.

b If P < P’ then build the BDD xrz'Pyanz’. When
building BDDs on paper, it is easier to pretend that the
second decision node also starts with P: assume that it
has the redundant decision 7Pz and proceed as in (a).

(¢) If P > P’, the approach is analogous to (b).

Other connectives, even @, are treated similarly, differing
only in the base cases. The negation of the BDD xPy is
—~xP-y. In essence we copy the BDD, and when we reach
the leaves, exchange 1 and 0. The BDD of Z — f is the
same as the BDD of —=Z.

During this processing, the same input (consisting of a
connective and two BDDs) may be transformed into a BDD
repeatedly. Efficient implementations therefore have an
additional hash table, which associates inputs to the cor-
responding BDDs. The result of every transformation is
stored in the hash table so that it does not have to be com-
puted again.

Example 34 We apply the BDD Canonicalisation Algo-
rithmto P v Q — Q V R. First, we make tiny BDDs for
P and Q. Then, we combine them using V to make a small
BDD for P v Q:

“

The BDD for Q Vv R has a similar construction, so we omit
it. We combine the two small BDDs using —, then simplify
(removing a redundant test on Q) to obtain the final BDD.

SN

The new construction is shown in grey. In both of these
examples, it appears over the rightmost formula because its
variables come later in the ordering.

The final diagram indicates that the original formula is
always true except if P is true while Q and R are false.
When you have such a simple BDD, you can easily check
that it is correct. For example, this BDD suggests the for-
mula evaluates to 1 when P is false, and indeed we find that

11 MODAL LOGICS

the formula simplifies to @ — Q V R, which simplifies
further to 1.

Huth and Ryan [2004] present a readable introduction to
BDDs. A classic but more formidable source of information
is Bryant [1992].

Exercise 43 Compute the BDD for each of the following
formulas, taking the variables as alphabetically ordered:
PAQ— QAP
-(PVvQO)VvP

PvQ—>PAQ
“(PANQ)<« (PVR)

Exercise 44 Verify these equivalences using BDDs:

(PAQ)AR~PA(QAR)
(PVQ)VR>~PV(QVR)
PV(OAR)=(PVQO)A(PVR)
PA(QVR)Y~(PAQ)V(PAR)

Exercise 45 Verify these equivalences using BDDs:

=(PANQ)>~—=PV-—-Q
(P< Q)< R~P < (Q<«< R
(PVvQ) > R>~(P—->R)A(Q— R)

11 Modal Logics

Modal logic allows us to reason about statements being
“necessary” or “possible”. Some variants are effectively
about time (temporal logic) where a statement might hold
“henceforth” or “eventually”.

There are many forms of modal logic. Each one is based
upon two parameters:

e W is the set of possible worlds (machine states, future
times, . ..)

e R is the accessibility relation between worlds (state
transitions, flow of time, . ..)

The pair (W, R) is called a modal frame.
The two modal operators, or modalities, are O and <:

e A means A is necessarily true
e OA means A is possibly true

Here “necessarily true’ means “true in all worlds accessible
from the present one”. The modalities are related by the law
—<OA ~ O-A; in words, “it is not possible that A is true”
is equivalent to “A is necessarily false”.

Complex modalities are made up of strings of the modal
operators, such as OOA, OCGA, COA, etc. Typically many
of these are equivalent to others; in S4, an important modal
logic, OOA is equivalent to OA.

11.1 Semantics of propositional modal logic

Here are some basic definitions, with respect to a particular
frame (W, R):

An interpretation I maps the propositional letters to sub-
sets of W. For each letter P, the set I (P) consists of those
worlds in which P is regarded as true.

29

If w € W and A is a modal formula, then w I+ A means
A is true in world w. This relation is defined as follows:

wl-P —
wlFO0OA <
wlkFOCA <«—
wlFAV B
wlFAAB &
wlF—A <

we l(P)

v Ik A for all v such that R(w, v)

v Ik A for some v such that R(w, v)
wl-Aorwl- B

wlFAandw IF B

w |- A does not hold

This definition of truth is more complex than we have
seen previously (§2.2), because of the extra parameters W
and R. We shall not consider quantifiers at all; they really
complicate matters, especially if the universe is allowed to
vary from one world to the next.

For a particular frame (W, R), further relations can be
defined in terms of w |- A:

=w.r.1 A means w |- A for all w under interpretation /
=w.r A means w |- A for all w and all /

Now = A means |=w g A for all frames. We say that A
is universally valid. In particular, all tautologies of propo-
sitional logic are universally valid.

Typically we make further assumptions on the accessibil-
ity relation. We may assume, for example, that R is transi-
tive, and consider whether a formula holds under all such
frames. More formulas become universally valid if we re-
strict the accessibility relation, as they exclude some modal
frames from consideration. The purpose of such assump-
tions is to better model the task at hand. For instance, to
model the passage of time, we might want R to be reflex-
ive and transitive; we could even make it a linear ordering,
though branching-time temporal logic is popular.

11.2 Hilbert-style modal proof systems

Start with any proof system for propositional logic. Then
add the distribution axiom

0(A - B) —» (HA — OB)

and the necessitation rule:

A

OA

There are no axioms or inference rules for <. The modal-
ity is viewed simply as an abbreviation:

CAY oA

The distribution axiom clearly holds in our semantics.
The propositional connectives obey their usual truth tables
in each world. If A holds in all worlds, and A — B holds
in all worlds, then B holds in all worlds. Thus if OA and
O(A — B) hold then so does OB, and that is the essence
of the distribution axiom.

The necessitation rule states that all theorems are neces-
sarily true. In more detail, if A can be proved, then it holds
in all worlds; therefore DA is also true.

The modal logic that results from adding the distribution
axiom and necessitation rule is called K. It is a pure modal

11 MODAL LOGICS

logic, from which others are obtained by adding further ax-
ioms. Each axiom corresponds to a property that is assumed
to hold of all accessibility relations. Here are just a few of
the main ones:

T OA— A (reflexive)
4 OA — OOA (transitive)
B A— OCA (symmetric)

Logic T includes axiom T: reflexivity. Logic S4 includes
axioms T and 4: reflexivity and transitivity. Logic S5 in-
cludes axioms T, 4 and B: reflexivity, transitivity and sym-
metry; these imply that the accessibility relation is an equiv-
alence relation, which is a strong condition.

Other conditions on the accessibility relation concern
forms of confluence. One such condition might state that
if w; and wy are both accessible from w then there exists
some v that is accessible from both w; and w.

11.3 Sequent Calculus Rules for S4

We shall mainly look at §4, which is one of the mainstream
modal logics. It’s more intuitive than many of the other
variants, and has a particularly clean sequent calculus.

As mentioned above, S4 assumes that the accessibility
relation is reflexive and transitive. Think of the flow of time.
Here are some S4 statements with their intuitive meanings:

e A means “A will be true from now on”.

e OA means “A will be true at some point in the future”,
where the future includes the present moment.

e O0CA means “CA will be true from now on”. At any
future time, A must become true some time afterwards.
In short, A will be true infinitely often.

e 0OA means “OA will be true from now on”. At any
future time, A will continue to be true. So OOA and
OA have the same meaning in $4.

COA
<oB

Figure 4: Counterexample to COA AOOB — CO(A A B)

The “time” described by S4 allows multiple futures,
which can be confusing. For example, ¢OA intuitively
means “eventually A will be true forever”. You might ex-
pect COA and $OB to imply OO(A A B), since eventu-
ally A and B should both have become true. However, this
property fails because time can split, with A becoming true
in one branch and B in the other (Fig.4). Note in partic-
ular that OOCOA is stronger than GOA, and means “in all
futures, eventually A will be true forever”.

30

The sequent calculus for S4 extends the usual sequent
rules for propositional logic with additional ones for O and
<. Four rules are required because the modalities may oc-
cur on either the left or right side of a sequent.

A, T=A = A* A
/T (@ —— (@Op
OA, T= A '=s A, 04
A, T*= A* I'=AA

— T ©D — ()
CA, = A '=A,0CA

The (Or) rule is analogous to the necessitation rule. But
now A may be proved from other formulas. This intro-
duces complications. Modal logic is notorious for requiring
strange conditions in inference rules. The symbols I'* and
A* stand for sets of formulas, defined as follows:

r & o |oBer)

A oB | OB e A)

In effect, applying rule (Or) in a backward proof throws
away all left-hand formulas that do not begin with a O and
all right-hand formulas that do not begin with a <.

If you consider why the (Or) rule actually holds, it is not
hard to see why those formulas must be discarded. If we
forgot about the restriction, then we could use (Or) to infer
A = 0OA from A = A, which is ridiculous. The restriction
ensures that the proof of A in the premise is independent of
any particular world.

The rule (¢ is an exact dual of (Or). The obligation to
discard formulas forces us to plan proofs carefully. If rules
are applied in the wrong order, vital information may have
to be discarded and the proof will fail.

11.4 Some sample proofs in 54

A few examples will illustrate how the S4 sequent calculus
is used.

The distribution axiom is assumed in the Hilbert-style
proof system. Using the sequent calculus, we can prove
it (I omit the (—r) steps):

A=A B=B
A— B, A= B
A— B,UA=B
0O0(A— B),0A=B o
0O(A - B),JA= 0B

(=D
@n
@1
)

Intuitively, why is this sequent true? We assume O(A —
B): from now on, if A holds then so does B. We assume
OA: from now on, A holds. Obviously we can conclude
that B will hold from now on, which we write formally as
OB.

The order in which you apply rules is important. Working
backwards, you must first apply rule (Or). This rule discards
non-0O formulas, but there aren’t any. If you first apply (0,
removing the boxes from the left side, then you will get

12 TABLEAUX-BASED METHODS

stuck:
now what?

=B
A— B,A=0OB
A— B,0A=0OB
0O(A - B),JA= 0B

?

(©r)
(D)
@n

Applying (0r) before (01) is analogous to applying (vr) be-
fore (vi). The analogy because O A has an implicit universal
quantifier: for all accessible worlds.

The following two proofs establish the modal equiva-
lence OCOCGA ~ OCGA. Strings of modalities, like 00O
and O, are called operator strings. So the pair of results
establish an operator string equivalence. The validity of this
particular equivalence is not hard to see. Recall that OCA
means that A holds infinitely often. So O OO A means that
O< A holds infinitely often — but that can only mean that
A holds infinitely often, which is the meaning of OCA.

Now, let us prove the equivalence. Here is the first half of
the proof. As usual we apply (Or) before (0r). Dually, and
analogously to the treatment of the 3 rules, we apply (©)
before (¢r):

CA= CA
O0CA=CA
COCA=CA
OCO0CA=CA
O0CO0CA=00CA

)
)
@1
©r)

The opposite entailment is easy to prove:

OOA=00A
0CA = OO0A (D’)
00A= 00004 "

Logic S4 enjoys many operator string equivalences, in-
cluding OOA ~ OA. And for every operator string equiv-
alence, its dual (obtained by exchanging O with <) also
holds. In particular, OOCA ~ GA and COOCOA >~ OOA
hold. So we only need to consider operator strings in which
the boxes and diamonds alternate, and whose length does
not exceed three.

The distinct $4 operator strings are therefore O, &, OO,
<0, 000 and OO,

Finally, here are two attempted proofs that fail — be-
cause their conclusions are not theorems! The modal se-
quent A = OC A states that if A holds now then it necessar-
ily holds again: from each accessible world, another world
is accessible in which A holds. This formula is valid if the
accessibility relation is symmetric; then one could simply
return to the original world. The formula is therefore a the-
orem of §5 modal logic, but not S4.

A
L (()r)
= OA
——— O
A=0O0A

Here, the modal sequent OA, OB = (A A B) states that
if A holds in some accessible world, and B holds in some
accessible world, then both A and B hold in some accessi-
ble world. It is a fallacy because those two worlds need not
coincide. The (¢1) rule prevents us from removing the dia-
monds from both GA and < B; if we choose one we must

31

discard the other:
B=AAB

B=<(AAB)
CA, OB=<{C(AAB)

The topmost sequent may give us a hint as to why the con-
clusion fails. Here we are in a world in which B holds, and
we are trying to show A A B, but there is no reason why A
should hold in that world.

The sequent COA, OOB = CO(A A B) is not valid
because A and B can become true in different futures.
However, the sequents COA, OCOB = GO(A A B) and
OC0OA, OCOB = OOO(A A B) are both valid.

Exercise 46 Why does the dual of an operator string equiv-
alence also hold?

Exercise 47 Prove the sequents O(AV B) = A, OB and
CA vV OB=<(A v B), thus proving the equivalence
O(AV B) ~OAV OB.

Exercise 48 Prove the sequent (A — B), 0A = OB.
Exercise 49 Prove the equivalence (A A B) ~ OAAOB.

Exercise 50 Prove OCOA, OCOB = OCO(A A B).

12 Tableaux-Based Methods

There is a lot of redundancy among the connectives —, A,
VvV, =, <, ¥V, 3. We could get away using only three of
them (two if we allowed exclusive-or), but use the full set
for readability. There is also a lot of redundancy in the se-
quent calculus, because it was designed to model human
reasoning, not to be as small as possible.

One approach to removing redundancy results in the res-
olution method. Clause notation replaces the connectives,
and there is only one inference rule. A less radical ap-
proach still removes much of the redundancy, while pre-
serving much of the natural structure of formulas. The re-
sulting formalism, known as the tableau calculus, is often
adopted by proof theorists because of its simplicity. Adding
unification produces yet another formalism known as free-
variable tableaux; this form is particularly amenable to im-
plementation. Both formalisms use proof by contradiction.

12.1 Simplifying the sequent calculus

The usual formalisation of first-order logic involves seven
connectives, or nine in the case of modal logic. For each
connective the sequent calculus has a left and a right rule.
So, apart from the structural rules (basic sequent and cut)
there are 14 rules, or 18 for modal logic.

Suppose we allow only formulas in negation normal
form. This immediately disposes of the connectives — and
<. Really — is discarded also, as it is allowed only on
propositional letters. So only four connectives remain, six
for modal logic.

The greatest simplicity gain comes in the sequent rules.
The only sequent rules that move formulas from one side
to the other (across the = symbol) are the rules for the

12 TABLEAUX-BASED METHODS

connectives that we have just discarded. Half of the sequent
rules can be discarded too. It makes little difference whether
we discard the left-side rules or the right-side rules.

Let us discard the right-side rules. The resulting system
allows sequents of the form A = . It is a form of refutation
system (proof by contradiction), since the formula A has
the same meaning as the sequent —A = . Moreover, a basic
sequent has the form of a contradiction. We have created a
new formal system, known as the tableau calculus.

-A,I'=s A T'=

~aar= oo r= (et
A BT = AT=> BT>
(AD) vI)
AAB T = AVB,T=
Alt/x], T = A T=
—~ - ™ T = @
Vx A, I'= dx A, T'=>

Rule @ has the usual proviso: it holds provided x is not
free in the conclusion!

We can extend the system to S4 modal logic by adding
just two further rules, one for O and one for <:

AT =
0A, T =

A T*=

m}) _
AT S

)]

As previously, I'* is defined to erase all non-O formulas:
r* o | 0B er)

We have gone from 14 rules to four, ignoring the structural
rules. For modal logic, we have gone from 18 rules to six.

A simple proof will illustrate how the tableau calculus
works. Let us prove Vx (A — B)= A — Vx B, where x
is not free in A. We must negate the formula, convert it to
NNF and finally put it on the left side of the arrow. The re-
sulting sequent is A A 3x =B, Vx (—A VvV B) = . Elaborate
explanations should not be necessary because this tableau
calculus is essentially a subset of the sequent calculus de-
scribed in §5.

A, —=B, -A= A, =B, B=
A, —B, —AVB—=

A, =B, Vx (A V B) =

A, 3x—B, Vx (A V B) =
AA3x—B,Vx (=AV B) =

Vi)
V)
@an
(A

12.2 The free-variable tableau calculus

Some proof theorists adopt the tableau calculus as their for-
malisation of first-order logic. It has the advantages of the
sequent calculus, without the redundancy. But can we use
it as the basis for a theorem prover? Implementing the cal-
culus (or indeed, implementing the full sequent calculus)
requires a treatment of quantifiers. As with resolution, a
good computational approach is to combine unification with
Skolemization.

First, consider how to add unification. The rule (v/) sub-
stitutes some term for the bound variable. Since we do not

32

know in advance what the term ought to be, instead substi-
tute a free variable. The variable ought to be fresh, not used
elsewhere in the proof:

Alz/x], I'=

D)
VxA,T'=

Then allow unification to instantiate variables with terms.
This should occur when trying to solve any goal containing
two formulas, —A and B. Try to unify A with B, producing
a basic sequent. Instantiating a variable updates the entire
proof tree.

Up until now, we have treated rule 31) backward proofs
as creating a fresh variable. That will no longer do: we now
allow variables to become instantiated by terms. To elimi-
nate this problem, we do not include (3) in the free-variable
tableau calculus; instead we Skolemize the formula. All ex-
istential quantifiers disappear, so we can discard rule).
This version of the tableau method is known as the free-
variable tableau calculus.

Warning: if you wish to use unification, you absolutely
must also use Skolemization. If you use unification without
Skolemization, then you are trying to use two formalisms at
the same time and your proofs will be nonsense! This is be-
cause unification is likely to introduce variable occurrences
in places where they are forbidden by the side condition of
the existential rule.

The Skolemised version of Yy 3z O(y, z) A 3x P(x) is
Vy Q(y, f(y)) A P(a). The subformula 3x P(x) goes to
P(a) and not to P(g(y)) because it is outside the scope of
the Vy.

12.3 Proofs using free-variable tableaux

Let us prove the formula 3x Vy [P(x) — P(y)]. First
negate it and convert to NNF, getting Vx 3y [P (x)A—=P(y)].
Then Skolemize the formula, and finally put it on the left
side of the arrow. The sequent to be proved is Vx [P(x) A
—P(f(x))]= . Unification completes the proof by creating
a basic sequent; there are two distinct ways of doing so:

> f(y)ory— f(2)
P(y), =P(f(y), P(z), ~P(f(2)=
P(y), ~P(f(), P A—=P(f(2))=
P(y), =P(f(y), Vx[P(x) A=P(f(x)]=
P(Y) A=P(f(y), VX [P(x) AN=P(f(x))]=
Vx [P(x) A=P(f(x)]=

basic
(AD)
)
(AD
VD)

In the first inference from the bottom, the universal formula
is retained because it must be used again. In principle, uni-
versally quantified formulas ought always to be retained, as
they may be used any number of times. I normally erase
them to save space.

Pulling quantifiers to the front is not merely unnecessary;
it can be harmful. Skolem functions should have as few ar-
guments as possible, as this leads to shorter proofs. Attain-
ing this requires that quantifiers should have the smallest
possible scopes; we ought to push quantifiers in, not pull
them out. This is sometimes called miniscope form.

For example, the formula 3x Vy [P(x) — P(y)]is tricky
to prove, as we have just seen. But putting it in miniscope
form makes its proof trivial. Let us do this step by step:

REFERENCES

Negate; convert to NNF: Vx 3y [P(x) A =P(y)]

Pushinthe dy: Vx[P(x) Ady—P(y)]
PushintheVx: Vx P(x) A dy—=P(y)
Skolemize: Vx P(x) A —P(a)

The formula Vx P(x) A —P(a) is obviously unsatisfiable.
Here is its refutation in the free-variable tableau calculus:

Yy a
P(y), =P(a) =
Vx P(x), =P(a) =
Vx P(x) A =P(a)=>

basic
(V)
(AD)

A failed proof is always illuminating. Let us try to prove
the invalid formula

Vx[P(x)V Q(x)] = [Vx P(x) vVVx Q(x)].
Negation and conversion to NNF gives
Ix—=Px)AIx—=Qx) AVX[P(x)V Q(x)].

Skolemization gives =P (a) A—Q(b)AVx [P (x)V Q(x)].

The proof fails because a and b are distinct constants. It
is impossible to instantiate y to both simultaneously. The
following proof omits the initial (a/) steps.

Yy a Yy b17?
—=P(a),=Q0b), P(y)= —P(a),—00), 0(y)=
—P(a), ~Q(b), P(y) Vv Q(y)=
=P(a), ~Q(b), Vx[P(x) V Q(x)] =

(vh

v

12.4 Tableaux-based theorem provers

A tableau represents a partial proof as a set of branches of
formulas. Each formula on a branch is expanded until this
is no longer possible (and the proof fails) or until the proof
succeeds.

Expanding a conjunction A A B on a branch replaces it
by the two conjuncts, A and B. Expanding a disjunction
AV B splits the branch in two, with one branch containing A
and the other branch B. Expanding the quantification Vx A
extends the branch by a formula of the form A[¢/x]. If a
branch contains both A and —A then it is said to be closed.
When all branches are closed, the proof has succeeded.

A tableau can be viewed as a compact, graph-based rep-
resentation of a set of sequents. The branch operations
above correspond to sequent rules in an obvious way.

Quite a few theorem provers have been based upon free-
variable tableaux. The simplest is due to Beckert and

Posegga [1994] and is called lean T4P. The entire program
appears below! Its deductive system is similar to the re-
duced sequent calculus we have just studied. It relies on
some Prolog tricks, and is certainly not pure Prolog code.
It demonstrates just how simple a theorem prover can be.
leanT"P does not outperform big resolution systems. But
it quickly proves some fairly hard theorems.

prove ((A,B),UnExp,Lits,FreeV,VarLim)
prove (A, [B|UnExp],Lits,FreeV,VarLim) .

prove ((A;B),UnExp, Lits,FreeV,VarLim)
prove (A, UnExp, Lits,FreeV,VarLim),
prove (B, UnExp, Lits,FreeV,VarLim) .

prove (all(X,Fml),UnExp,Lits,FreeV,VarLim) :- !,

P
. .

P
: “r

33

\+ length (FreeV,VarLim),

copy_term((X,Fml,FreeV), (X1,Fmll,FreeV)),

append (UnExp, [all (X,Fml)], UnExpl),

prove (Fmll,UnExpl, Lits, [X1|FreeV],VarLim) .
prove (Lit, _, [L|Lits],_,_) :-

(Lit = -Neg; -Lit = Neg) ->

(unify (Neg,L); prove(Lit, [],Lits,_,_)).
prove (Lit, [Next |UnExp],Lits,FreeV,VarLim) :-—

prove (Next,UnExp, [Lit |Lits],FreeV,VarLim) .

The first clause handles conjunctions, the second disjunc-
tions, the third universal quantification. The fourth line han-
dles literals, including negation. The fifth line brings in the
next formula to be analyzed.

You are not expected to memorize this program or to un-
derstand how it works in detail.

Exercise 51 Use the free variable tableau calculus to prove
these formulas:

FyVx R(x,y)) = (Vx3y R(x, y))
(P(a,b)Vv 3z P(z,2)) — Ixy P(x,y)
AxP(x) = Q) > Vx(P(x) = Q)

Exercise 52 Compare the sequent calculus, the free-
variable tableau calculus and resolution by using each of
them to prove the following formula:

(P(a,b)Vv 3z P(z,z)) = Axy P(x,y)

(From the 2012 exam, Paper 6 Question 6.)

References

B. Beckert and J. Posegga. leanTAP: Lean, tableau-based
theorem proving. In A. Bundy, editor, Automated
Deduction — CADE-12 International Conference, LNAI
814, pages 793-797. Springer, 1994.

R. E. Bryant. Symbolic boolean manipulation with ordered
binary-decision diagrams. Computing Surveys, 24(3):
293-318, Sept. 1992.

M. Huth and M. Ryan. Logic in Computer Science:
Modelling and Reasoning about Systems. Cambridge
University Press, 2nd edition, 2004.

G. Nelson and D. C. Oppen. Fast decision procedures
based on congruence closure. J. ACM, 27(2):356-364,
1980. ISSN 0004-5411. doi:
http://doi.acm.org/10.1145/322186.322198.

M. E. Stickel. A Prolog technology theorem prover:
Implementation by an extended Prolog compiler.
Journal of Automated Reasoning, 4(4):353-380, 1988.

