L98: Introduction to Computational Semantics Lecture 6: Truth

Weiwei Sun and Simone Teufel

Natural Language and Information Processing Research Group
Department of Computer Science and Technology
University of Cambridge

Lent 2021/22

Lecture 6: Truth

1. Ferdinand de Saussure
2. World model and discourse referents
3. Functions and $\lambda \mathrm{s}$
4. Truth conditions
5. First-Order Predicate Logic

Ferdinand de Saussure

Sign

De Saussure: The linguistic sign is a two-sided psychological entity:

- signifier: ‘sound-image'
- signified: 'concept'

Example：止戈为武

- 止 initially meant foot，walk，go
- 戈 is an old－fashioned weapon
- 武 means military
- When 武 was created，the meaning of was＂take your weapon and walk， go to war＂
－So initially，there is semantic compositionality
－After many years，the meanings of the parts shifted and people could no longer see the compositionality．
- 止 now means＂stop＂．
- Now some philosophers reinterpret 武 as：Stop using weapons；that is what a military should do．

Arbitrariness of the sign

- De Saussure stated that the link between the signified and signifier is arbitrary.
- The example of 武 shows that it does not matter if language users know the complicated (non-arbitrary) history of this sign.
- The connection has become arbitrary.
- All you need to know to communicate is to know that 武 means military.
- Triumph of arbitrariness of the sign.

Old: mind and language

Mind

Reality, mind and language

world: an animal
speaker's thought

listener's thought

Reality, mind and language

world: Trump elected
speaker's thought

Reality, mind and language

world: Trump elected

S
a black swan event speaker's words

Natural Language Understanding

Example: Visual QA

Something gets lost if a system goes directly from words to images (diagonal)

- Idea of such a system is that the meaning of the language string creates something like a image in the mind.
- But we have just seen that it's not a picture that is in the mind, otherwise the misunderstanding between listener and speaker would not have happened.
- This is why deep NLU needs to model the thought
- Rest of this lecture: how can we model the thought

World Model and Discourse Referent

Domains of interpretation

- the real world
- a part of the real world
- a hypothesized model of the real world
- e.g. Shapeworld: objects with properties in positions
- or something more complicated
- some constructed model in the case of an artificial language

Desired properties of a world model

A world model is an abstracted, simplified version of our world.

- The world model should be precise.
- reflect the complexity of the phenomena we think are improtant
- drop other things we don't care about
- should have a systematic way to be constructed
- Its components should be transparent, ie, it should be easy to see what in our world is what in the model.
- There should be a close link between our model and those phenomena in the real world we care about

Our world model

It consists of

- discourse referents. unique variables standing in for actual people and objects in the world
- semantic predicates. functions representing "buckets" (certain nouns) and properties and events

We will start with proper names and simple predicates...
Trump gave Johnson a golden lighter.

The term "predicate" is also often used to describe a particular syntactic elements. We use "semantic predicate" to distinguish these two concepts.

Extension and intension

The extension of a linguistic expression is the set of things it extends to, or applies to.

Example: politician
\{Trump, Johnson, ... \}

Extension and intension

The extension of a linguistic expression is the set of things it extends to, or applies to.

Example: politician

$$
\{\text { Trump, Johnson, ... }\}
$$

The above set could also be the extension of lier.

Extension and intension

The extension of a linguistic expression is the set of things it extends to, or applies to.

Example: politician

$$
\{\text { Trump, Johnson, ... }\}
$$

The above set could also be the extension of lier.
Intensional semantics
e.g. a description from wikipedia

A politician is a person active in party politics, or a person holding or seeking an elected seat in government.

- intensional, but imprecise description

Discourse referents

World Model

Language

"Boris Johnson"
"Angela Merkel"
"Donald Trump"
"politician"
"lighter"
"silver"
"golden"

Extensional interpretation

- An interpretation function ($\llbracket \rrbracket)$ maps language expressions onto objects, sets of objects, sets of sets of..., of the world model.
e.g $\llbracket p o l i t i c i a n \rrbracket=\{i 12, i 23, i 34, i 45, i 56\}$
- In this lecture, objects of the world model are discourse referents.
- To simplify, proper names are mapped to unique discourse referents. e.g \llbracket Angela Merke $\rrbracket=i 34$

Functions and λs

Buckets/sets \rightarrow functions

Predicates are functions; predicates are sets.

Q What is the meaning of politician?
A politician'

- politician' is a semantic predicate which is a set and also a function.
- Discourse referents are mapped to either 0 or 1 through politician'. The referents mapped to 1 indicate politicians.
- It is a great idea to define functions with a minimal programming language - λ-calculus.

Building functions

λ-calculus - a simple notation for functions and application

- β-reduction/function application:

$$
[\lambda x \cdot M](N) \longrightarrow M[x:=N]
$$

- Apply a λ-term to an argument, and get a value.

More online: https://plato.stanford.edu/entries/lambda-calculus/
Example

- $f(x)=x^{2} \longleftrightarrow\left[\lambda x .\left[x^{2}\right]\right]$
- $f(5)=25 \longleftrightarrow\left[\lambda x \cdot\left[x^{2}\right]\right](5)=25$
- $g(x, y)=x^{2}+y^{2} \longleftrightarrow\left[\lambda x .\left[\lambda y .\left[x^{2}+y^{2}\right]\right]\right]$
- $g(2,1)=5 \longleftrightarrow\left[\lambda x \cdot\left[\lambda y \cdot\left[x^{2}+y^{2}\right]\right]\right](2)(1)=5$

Simple types

From a nonempty set BasTyp of basic types, the set Typ is the smallest set such that

- BasTyp \subseteq Typ,
- $\langle\sigma, \tau\rangle \in \mathbf{T y p}$ if $\sigma, \tau \in \mathbf{T y p}$.

A type of the form $\langle\sigma, \tau\rangle$ is said to be a functional type.

Example

- Assume \mathbf{e} for individuals and \mathbf{t} for true/false,
- then $\langle\mathbf{e}, \mathbf{t}\rangle$ is the type for unary relations,
- and $\langle\langle\mathbf{e}, \mathbf{t}\rangle,\langle\mathbf{e}, \mathbf{t}\rangle\rangle$ is for the type of a function mapping unary relations into unary relations.

Simple types

From a nonempty set BasTyp of basic types, the set Typ is the smallest set such that

- BasTyp \subseteq Typ,
- $\langle\sigma, \tau\rangle \in \mathbf{T y p}$ if $\sigma, \tau \in \mathbf{T y p}$.

A type of the form $\langle\sigma, \tau\rangle$ is said to be a functional type.

Example

- Assume e for individuals and \mathbf{t} for true/false,
- then $\langle\mathbf{e}, \mathbf{t}\rangle$ is the type for unary relations,
- and $\langle\langle\mathbf{e}, \mathbf{t}\rangle,\langle\mathbf{e}, \mathbf{t}\rangle\rangle$ is for the type of a function mapping unary relations into unary relations.

C/C++/Java/Typescript vs Python/Javascript

\mathbf{e}, \mathbf{t} and \mathbf{e} to \mathbf{t}

Gottlob Frege

There are only two atomic things, truth values and individuals. All other things are created by function application.

entity \mathbf{e}

truth value \mathbf{t}
1

0

\mathbf{e}, \mathbf{t} and \mathbf{e} to \mathbf{t}

Gottlob Frege

There are only two atomic things, truth values and individuals. All other things are created by function application.

entity \mathbf{e}

truth value \mathbf{t}

λx. politician' $(x):\langle\mathbf{e}, \mathbf{t}\rangle$
$\lambda x . \operatorname{lighter}^{\prime}(x):\langle\mathbf{e}, \mathbf{t}\rangle$
λx.silver' $(x):\langle\mathbf{e}, \mathbf{t}\rangle$
$\lambda x . \operatorname{golden}^{\prime}(x):\langle\mathbf{e}, \mathbf{t}\rangle$

Syntactico-semantic composition

Syntactico-semantic composition

Syntactico-semantic composition

Syntactico-semantic composition

Compositional semantics

- 【Johnson smokes】 is not listed in the lexicon.
- But the interpretation of Johnson smokes can still be derived from its parts along with a syntactic analysis.
- Finite means make infinite interpretation possible.
- This is exactly the point of compositional semantics
- and note that we have remained precise
- This means we can use this thing we just built as a meaning representation of the kind we wanted in Lecture 1.

Transitive verbs

> Johnson kissed Trump

Transitive verbs

Johnson kissed Trump

Transitive verbs

Johnson kissed Trump

Syntactico-semantic composition

Syntactico-semantic composition

Syntactico-semantic composition

Trump

Syntactico-semantic composition

Trump

Syntactico-semantic composition

Trump

Syntactico-semantic composition

Lexicalised grammar

What should we know for a lexical entry?

- kissed
- syntactic category: V
- semantic type: $\langle\mathbf{e},\langle\mathbf{e}, \mathbf{t}\rangle\rangle$
- semantic interpretation: λx. $[\lambda y$.kiss' $(y, x)]$

Truth-Conditions

Meanings as truth conditions

Ludwig Wittgenstein
To know the meaning of a sentence is to know how the world would have to be for the sentence to be true.

The meaning of words and sentence parts is their contribution to the truth-conditions of the whole sentence.

The truth-conditional tradition

Consider three different word models: Different people smoke

The truth-conditional tradition

Consider three different word models: Different people smoke

The truth-conditional tradition

Consider three different word models: Different people smoke

First-Order Predicate Logic (FOPL)

Davidsonian semantics: Adding event variables

Davidsonian semantics: Adding event variables

Davidsonian semantics: Adding event variables

What is the type of $\llbracket g i v e s \rrbracket ? \mathbf{e}$ - individual.

Ditransitive verb

Ditransitive verb

Neo－Davidsonian semantics：Further decomposition

i56

i45

«a golden lighter】

i456

i34

i123

【T gives J a golden lighter】
semantic roles

Neo－Davidsonian semantics：Further decomposition

i56

$i 45$

【a golden lighter】

i456

134
【Johnson】

i123

【T gives J a golden lighter】
semantic roles

Further decomposition of the event structure

Lexicalised vs unlexicalised

Before Davidson

－【gives $\rrbracket(\llbracket$ Trump $\rrbracket, \llbracket J o h n s o n \rrbracket, \llbracket a$ golden lighter $\rrbracket)$
－λx ．$\left[\lambda y\right.$ ．$\left[\lambda z\right.$. give＇$\left.\left.^{\prime}(z, x, y)\right]\right]$
－$\langle\mathbf{e},\langle\mathbf{e},\langle\mathbf{e}, \mathbf{t}\rangle\rangle\rangle$
－Lexicalised：the lexical entry contains rich information of arguments．
Davidsonian
－\llbracket gives $\rrbracket(e, \llbracket T r u m p \rrbracket, \llbracket J o h n s o n \rrbracket, \llbracket a$ golden lighter』）
－Lexicalised
Neo－Davidsonian
－【gives $\rrbracket(e) \wedge \operatorname{AGENT}(e, \llbracket$ Trump $\rrbracket) \wedge \operatorname{RECIPIENT}(e, \llbracket$ Johnson $\rrbracket) \wedge$ THEME（e，【a golden lighter】）
－Modularisation of information
－Unlexicalised：the lexical entry doesn＇t need to know argument structure．

First－order predicate logic

- What is 【every student smokes】？
- What is \llbracket some students smoke】？
$\forall x\left(\right.$ student＇$(x) \rightarrow$ smoke＇$\left.^{\prime}(x)\right)$
$\exists x($ student＇$(x) \wedge$ smoke＇$(x))$

M1

$$
x
$$

First－order predicate logic

- What is 【every student smokes】？
- What is \llbracket some students smoke】？
$\forall x\left(\right.$ student＇$(x) \rightarrow$ smoke＇$\left.^{\prime}(x)\right)$
$\exists x($ student＇$(x) \wedge$ smoke＇$(x))$

M1

First－order predicate logic

- What is 【every student smokes』？
- What is \llbracket some students smoke】？
$\forall x\left(\right.$ student＇$(x) \rightarrow$ smoke＇$\left.^{\prime}(x)\right)$
$\exists x($ student＇$(x) \wedge$ smoke＇$(x))$

M1

First－order predicate logic

- What is 【every student smokes】？
- What is \llbracket some students smoke】？
$\forall x\left(\right.$ student＇$(x) \rightarrow$ smoke＇$\left.^{\prime}(x)\right)$
$\exists x($ student＇$(x) \wedge$ smoke＇$(x))$

M1

First－order predicate logic

- What is 【every student smokes】？
- What is \llbracket some students smoke】？
$\forall x\left(\right.$ student＇$(x) \rightarrow$ smoke＇$\left.^{\prime}(x)\right)$
$\exists x($ student＇$(x) \wedge$ smoke＇$(x))$

M1

Truth of these statements in our world model?

In the world where Trump gave Johnson a golden lighter is true, which one of the following is true?

- Johnson gave Trump a lighter
- Trump gave Johnson a silver lighter
- Johnson was given a lighter

Readings

- Heim and Kratzer. Semantics in Generative Grammar. Chapter 1-3.

