
L98: Introduction to Computational Semantics
Lecture 6: Truth

Weiwei Sun and Simone Teufel

Natural Language and Information Processing Research Group
Department of Computer Science and Technology

University of Cambridge

Lent 2021/22



Do we see truth? Do we see truth? Do we see truth? Do we see
truth? Do we see truth? Do we see truth? Do we see truth? Do we
see truth? Do we see truth? Do we see truth? Do we see truth? Do
we see truth? Do we see truth? Do we see truth? Do we see truth?
Do we see truth? Do we see truth? Do we see truth? Do we see
truth? Do we see truth? Do we see truth? Do we see truth? Do we
see truth? Do we see truth? Do we see truth? Do we see truth? Do
we see truth? Do we see truth? Do we see truth?

Lecture 6: Truth

1. Ferdinand de Saussure

2. World model and discourse referents

3. Functions and λs

4. Truth conditions

5. First-Order Predicate Logic



Ferdinand de Saussure



Sign

De Saussure: The linguistic sign is a two-sided psychological entity:

• signifier: ‘sound-image’

• signified: ‘concept’

1 of 32



Example: 止戈为武

• 止 initially meant foot, walk, go

• 戈 is an old-fashioned weapon

• 武 means military

• When 武 was created, the meaning of was “take your weapon and walk,
go to war”

• So initially, there is semantic compositionality

• After many years, the meanings of the parts shifted and people could
no longer see the compositionality.

• 止 now means “stop”.

• Now some philosophers reinterpret 武 as: Stop using weapons; that is
what a military should do.

2 of 32



Arbitrariness of the sign

• De Saussure stated that the link between the signified and signifier is
arbitrary.

• The example of 武 shows that it does not matter if language users
know the complicated (non-arbitrary) history of this sign.

• The connection has become arbitrary.

• All you need to know to communicate is to know that武 means military.

• Triumph of arbitrariness of the sign.

3 of 32



Old: mind and language

Mind

Language

4 of 32



Reality, mind and language
world: an animal

speaker’s thought

black swan

speaker’s words

listener’s thought

signifier

signifier

signified

5 of 32



Reality, mind and language
world: Trump elected speaker’s thought

a black swan event

speaker’s words

listener’s thought

???

signifier

signifier

signified

6 of 32



Reality, mind and language
world: Trump elected

speaker’s thought

a black swan event

speaker’s words

listener’s thought

???

signifier

signifier

signified

6 of 32



Natural Language Understanding

Example: Visual QA

Something gets lost if a system goes directly from words to images
(diagonal)

• Idea of such a system is that the meaning of the language string creates
something like a image in the mind.

• But we have just seen that it’s not a picture that is in the mind,
otherwise the misunderstanding between listener and speaker would not
have happened.

• This is why deep NLU needs to model the thought

• Rest of this lecture: how can we model the thought

7 of 32



World Model and Discourse Referent



Domains of interpretation

• the real world

• a part of the real world
• a hypothesized model of the real world Bworld model

• e.g. Shapeworld: objects with properties in positions
• or something more complicated

• some constructed model in the case of an artificial language

8 of 32



Desired properties of a world model

A world model is an abstracted, simplified version of our world.

• The world model should be precise.

• reflect the complexity of the phenomena we think are improtant

• drop other things we don’t care about

• should have a systematic way to be constructed

• Its components should be transparent, ie, it should be easy to see what
in our world is what in the model.

• There should be a close link between our model and those phenomena
in the real world we care about

9 of 32



Our world model

It consists of

• discourse referents. unique variables standing in for actual people and
objects in the world

• semantic predicates. functions representing “buckets” (certain nouns)
and properties and events

We will start with proper names and simple predicates. . .

Trump gave Johnson a golden lighter.

The term “predicate” is also often used to describe a particular syntactic elements. We

use“semantic predicate” to distinguish these two concepts.

10 of 32



Extension and intension

The extension of a linguistic expression is the set of things it extends to, or
applies to.

Example: politician

{Trump, Johnson, . . . }

The above set could also be the extension of lier .

Intensional semantics

e.g. a description from wikipedia
A politician is a person active in party politics, or a person holding or
seeking an elected seat in government.

• intensional, but imprecise description

11 of 32



Extension and intension

The extension of a linguistic expression is the set of things it extends to, or
applies to.

Example: politician

{Trump, Johnson, . . . }

The above set could also be the extension of lier .

Intensional semantics

e.g. a description from wikipedia
A politician is a person active in party politics, or a person holding or
seeking an elected seat in government.

• intensional, but imprecise description

11 of 32



Extension and intension

The extension of a linguistic expression is the set of things it extends to, or
applies to.

Example: politician

{Trump, Johnson, . . . }

The above set could also be the extension of lier .

Intensional semantics

e.g. a description from wikipedia
A politician is a person active in party politics, or a person holding or
seeking an elected seat in government.

• intensional, but imprecise description

11 of 32



Discourse referents

World Model Language

i12

i23

i34

i45

i56

i123i234

i345i456

“Donald Trump”

“Boris Johnson”

“Angela Merkel”

“politician”

“lighter”

“silver”

“golden”

“golden lighter”. . .

12 of 32



Discourse referents

World Model Language

i12

i23

i34

i45

i56

i123i234

i345i456

“Donald Trump”

“Boris Johnson”

“Angela Merkel”

“politician”

“lighter”

“silver”

“golden”

“golden lighter”. . .

12 of 32



Discourse referents

World Model Language

i12

i23

i34

i45

i56

i123i234

i345i456

“Donald Trump”

“Boris Johnson”

“Angela Merkel”

“politician”

“lighter”

“silver”

“golden”

“golden lighter”. . .

12 of 32



Discourse referents

World Model Language

i12

i23

i34

i45

i56

i123i234

i345i456

“Donald Trump”

“Boris Johnson”

“Angela Merkel”

“politician”

“lighter”

“silver”

“golden”

“golden lighter”. . .

12 of 32



Discourse referents

World Model Language

i12

i23

i34

i45

i56

i123i234

i345i456

“Donald Trump”

“Boris Johnson”

“Angela Merkel”

“politician”

“lighter”

“silver”

“golden”

“golden lighter”. . .

12 of 32



Discourse referents

World Model Language

i12

i23

i34

i45

i56

i123i234

i345i456

“Donald Trump”

“Boris Johnson”

“Angela Merkel”

“politician”

“lighter”

“silver”

“golden”

“golden lighter”

. . .

12 of 32



Discourse referents

World Model Language

i12

i23

i34

i45

i56

i123i234

i345i456

“Donald Trump”

“Boris Johnson”

“Angela Merkel”

“politician”

“lighter”

“silver”

“golden”

“golden lighter”

. . .

12 of 32



Extensional interpretation

• An interpretation function (J K) maps language expressions onto
objects, sets of objects, sets of sets of..., of the world model.

e.g JpoliticianK = {i12, i23, i34, i45, i56}
• In this lecture, objects of the world model are discourse referents.

• To simplify, proper names are mapped to unique discourse referents.

e.g JAngela MerkelK = i34

13 of 32



Functions and λs



Buckets/sets → functions

i12

i23

i34

i45

i56

i123i234

i345i456

1

0

politician’(x)lighter’(x)silver’(x)golden’(x)

14 of 32



Buckets/sets → functions

i12

i23

i34

i45

i56

i123i234

i345i456

1

0

politician’(x)

lighter’(x)silver’(x)golden’(x)

14 of 32



Buckets/sets → functions

i12

i23

i34

i45

i56

i123i234

i345i456

1

0

politician’(x)

lighter’(x)

silver’(x)golden’(x)

14 of 32



Buckets/sets → functions

i12

i23

i34

i45

i56

i123i234

i345i456

1

0

politician’(x)lighter’(x)

silver’(x)

golden’(x)

14 of 32



Buckets/sets → functions

i12

i23

i34

i45

i56

i123i234

i345i456

1

0

politician’(x)lighter’(x)silver’(x)

golden’(x)

14 of 32



Predicates are functions; predicates are sets.

Q What is the meaning of politician?

A politician’

• politician’ is a semantic predicate which is a set and also a function.

• Discourse referents are mapped to either 0 or 1 through politician’.
The referents mapped to 1 indicate politicians.

• It is a great idea to define functions with a minimal programming
language — λ-calculus.

15 of 32



Building functions

λ-calculus — a simple notation for functions and application

• β-reduction/function application:

[λx.M ](N) −→M [x := N ]

• Apply a λ-term to an argument, and get a value.

More online: https://plato.stanford.edu/entries/lambda-calculus/

Example

• f(x) = x2 ←→ [λx.[x2]]

• f(5) = 25←→ [λx.[x2]](5) = 25

• g(x, y) = x2 + y2 ←→ [λx.[λy.[x2 + y2]]]

• g(2, 1) = 5←→ [λx.[λy.[x2 + y2]]](2)(1) = 5

16 of 32

https://plato.stanford.edu/entries/lambda-calculus/


Simple types

From a nonempty set BasTyp of basic types, the set Typ is the smallest
set such that

• BasTyp ⊆ Typ,

• 〈σ, τ〉 ∈ Typ if σ, τ ∈ Typ.

A type of the form 〈σ, τ〉 is said to be a functional type.

Example

• Assume e for individuals and t for true/false,

• then 〈e, t〉 is the type for unary relations,

• and 〈〈e, t〉, 〈e, t〉〉 is for the type of a function mapping unary relations
into unary relations.

C/C++/Java/Typescript vs Python/Javascript

17 of 32



Simple types

From a nonempty set BasTyp of basic types, the set Typ is the smallest
set such that

• BasTyp ⊆ Typ,

• 〈σ, τ〉 ∈ Typ if σ, τ ∈ Typ.

A type of the form 〈σ, τ〉 is said to be a functional type.

Example

• Assume e for individuals and t for true/false,

• then 〈e, t〉 is the type for unary relations,

• and 〈〈e, t〉, 〈e, t〉〉 is for the type of a function mapping unary relations
into unary relations.

C/C++/Java/Typescript vs Python/Javascript

17 of 32



e, t and e to t

Gottlob Frege

There are only two atomic things, truth values and individuals. All other
things are created by function application.

i12

i23

i34

i45

i56

i123i234

i345i456

1

0

entity e truth value t

λx.politician’(x) : 〈e, t〉
λx.lighter’(x) : 〈e, t〉
λx.silver’(x) : 〈e, t〉
λx.golden’(x) : 〈e, t〉

18 of 32



e, t and e to t

Gottlob Frege

There are only two atomic things, truth values and individuals. All other
things are created by function application.

i12

i23

i34

i45

i56

i123i234

i345i456

1

0

entity e truth value t

λx.politician’(x) : 〈e, t〉
λx.lighter’(x) : 〈e, t〉
λx.silver’(x) : 〈e, t〉
λx.golden’(x) : 〈e, t〉

18 of 32



Syntactico-semantic composition

S
JVPK(JNPK)

= smoke’(i23)

VP
JVPK

= λx.smoke’(x)

V
JsmokesK

= λx.smoke’(x)

smokes

NP
JNPK
= i23

N
JJohnsonK

=i23

Johnson

Lexicon
Look up

Lexicon
Look up

Function
Application

JTrumpK

JJohnsonK
i34

i45

i56

i123i234

i345i456

1

0
λx.smoke’(x)
〈e, t〉

19 of 32



Syntactico-semantic composition

S
JVPK(JNPK)

= smoke’(i23)

VP
JVPK

= λx.smoke’(x)

V
JsmokesK

= λx.smoke’(x)

smokes

NP
JNPK
= i23

N
JJohnsonK

=i23

Johnson

Lexicon
Look up

Lexicon
Look up

Function
Application

JTrumpK

JJohnsonK
i34

i45

i56

i123i234

i345i456

1

0
λx.smoke’(x)
〈e, t〉

19 of 32



Syntactico-semantic composition

S
JVPK(JNPK)

= smoke’(i23)

VP
JVPK

= λx.smoke’(x)

V
JsmokesK

= λx.smoke’(x)

smokes

NP
JNPK
= i23

N
JJohnsonK

=i23

Johnson

Lexicon
Look up

Lexicon
Look up

Function
Application

JTrumpK

JJohnsonK
i34

i45

i56

i123i234

i345i456

1

0
λx.smoke’(x)
〈e, t〉

19 of 32



Syntactico-semantic composition

S
JVPK(JNPK)

= smoke’(i23)

VP
JVPK

= λx.smoke’(x)

V
JsmokesK

= λx.smoke’(x)

smokes

NP
JNPK
= i23

N
JJohnsonK

=i23

Johnson

Lexicon
Look up

Lexicon
Look up

Function
Application

JTrumpK

JJohnsonK
i34

i45

i56

i123i234

i345i456

1

0
λx.smoke’(x)
〈e, t〉

19 of 32



Compositional semantics

• JJohnson smokesK is not listed in the lexicon.

• But the interpretation of Johnson smokes can still be derived from its
parts along with a syntactic analysis.

• Finite means make infinite interpretation possible.

• This is exactly the point of compositional semantics

• and note that we have remained precise

• This means we can use this thing we just built as a meaning
representation of the kind we wanted in Lecture 1.

20 of 32



Transitive verbs
Johnson kissed Trump

JTrumpK

JJohnsonK
i34

i45

i56

i123i234

i345i456

1

0

λx.[λy.kiss’(y, x)]
〈e, 〈e, t〉〉

21 of 32



Transitive verbs
Johnson kissed Trump

JTrumpK

JJohnsonK
i34

i45

i56

i123i234

i345i456

1

0

λx.[λy.kiss’(y, x)]
〈e, 〈e, t〉〉

21 of 32



Transitive verbs
Johnson kissed Trump

JTrumpK

JJohnsonK
i34

i45

i56

i123i234

i345i456

1

0

λx.[λy.kiss’(y, x)]
〈e, 〈e, t〉〉

21 of 32



Syntactico-semantic composition
S

JVPK(JNPK)

= kiss’(i23, i12)

VP
JVPK

= λy.kiss’(y, i12)

NP
JNPK
= i12

N
JNK
= i12

Trump

V
JVK

= λx.[λy.kiss’(y, x)]

kissed

NP
JNPK
= i23

N
JNK
= i23

Johnson

Lexicon
Look up

Lexicon
Look up

Lexicon
Look up

Function Application

〈e, t〉

The type of this VP
is the same to

the intransitive verb.

〈e, 〈e, t〉〉

The type of this V
can be inferred from

the type of the result,
i.e. VP, and

the type of the argument,
i.e. the object.

Function Application

22 of 32



Syntactico-semantic composition
S

JVPK(JNPK)

= kiss’(i23, i12)

VP
JVPK

= λy.kiss’(y, i12)

NP
JNPK
= i12

N
JNK
= i12

Trump

V
JVK

= λx.[λy.kiss’(y, x)]

kissed

NP
JNPK
= i23

N
JNK
= i23

Johnson

Lexicon
Look up

Lexicon
Look up

Lexicon
Look up

Function Application

〈e, t〉

The type of this VP
is the same to

the intransitive verb.

〈e, 〈e, t〉〉

The type of this V
can be inferred from

the type of the result,
i.e. VP, and

the type of the argument,
i.e. the object.

Function Application

22 of 32



Syntactico-semantic composition
S

JVPK(JNPK)

= kiss’(i23, i12)

VP
JVPK

= λy.kiss’(y, i12)

NP
JNPK
= i12

N
JNK
= i12

Trump

V
JVK

= λx.[λy.kiss’(y, x)]

kissed

NP
JNPK
= i23

N
JNK
= i23

Johnson

Lexicon
Look up

Lexicon
Look up

Lexicon
Look up

Function Application

〈e, t〉

The type of this VP
is the same to

the intransitive verb.

〈e, 〈e, t〉〉

The type of this V
can be inferred from

the type of the result,
i.e. VP, and

the type of the argument,
i.e. the object.

Function Application

22 of 32



Syntactico-semantic composition
S

JVPK(JNPK)

= kiss’(i23, i12)

VP
JVPK

= λy.kiss’(y, i12)

NP
JNPK
= i12

N
JNK
= i12

Trump

V
JVK

= λx.[λy.kiss’(y, x)]

kissed

NP
JNPK
= i23

N
JNK
= i23

Johnson

Lexicon
Look up

Lexicon
Look up

Lexicon
Look up

Function Application

〈e, t〉

The type of this VP
is the same to

the intransitive verb.

〈e, 〈e, t〉〉

The type of this V
can be inferred from

the type of the result,
i.e. VP, and

the type of the argument,
i.e. the object.

Function Application

22 of 32



Syntactico-semantic composition
S

JVPK(JNPK)

= kiss’(i23, i12)

VP
JVPK

= λy.kiss’(y, i12)

NP
JNPK
= i12

N
JNK
= i12

Trump

V
JVK

= λx.[λy.kiss’(y, x)]

kissed

NP
JNPK
= i23

N
JNK
= i23

Johnson

Lexicon
Look up

Lexicon
Look up

Lexicon
Look up

Function Application

〈e, t〉

The type of this VP
is the same to

the intransitive verb.

〈e, 〈e, t〉〉

The type of this V
can be inferred from

the type of the result,
i.e. VP, and

the type of the argument,
i.e. the object.

Function Application

22 of 32



Syntactico-semantic composition
S

JVPK(JNPK)

= kiss’(i23, i12)

VP
JVPK

= λy.kiss’(y, i12)

NP
JNPK
= i12

N
JNK
= i12

Trump

V
JVK

= λx.[λy.kiss’(y, x)]

kissed

NP
JNPK
= i23

N
JNK
= i23

Johnson

Lexicon
Look up

Lexicon
Look up

Lexicon
Look up

Function Application

〈e, t〉

The type of this VP
is the same to

the intransitive verb.

〈e, 〈e, t〉〉

The type of this V
can be inferred from

the type of the result,
i.e. VP, and

the type of the argument,
i.e. the object.

Function Application

22 of 32



Lexicalised grammar

What should we know for a lexical entry?

• kissed

• syntactic category: V

• semantic type: 〈e, 〈e, t〉〉
• semantic interpretation: λx.[λy.kiss’(y, x)]

23 of 32



Truth-Conditions



Meanings as truth conditions

Ludwig Wittgenstein

To know the meaning of a sentence is to know how the world
would have to be for the sentence to be true.

The meaning of words and sentence parts is their contribution to the
truth-conditions of the whole sentence.

24 of 32



The truth-conditional tradition
Consider three different word models: Different people smoke

S
smoke’(i23) = 1

VP
λx.smoke’(x)

V
λx.smoke’(x)

smokes

NP
i23

N
i23

Johnson

JTrumpK

JJohnsonK
i34

i45

i56

i123i234

i345i456

JsmokesK
Word Model 1

JsmokesK
Word Model 2

JsmokesK
Word Model 3

25 of 32



The truth-conditional tradition
Consider three different word models: Different people smoke

S
smoke’(i23) = 0

VP
λx.smoke’(x)

V
λx.smoke’(x)

smokes

NP
i23

N
i23

Johnson

JTrumpK

JJohnsonK
i34

i45

i56

i123i234

i345i456

JsmokesK
Word Model 1

JsmokesK
Word Model 2

JsmokesK
Word Model 3

25 of 32



The truth-conditional tradition
Consider three different word models: Different people smoke

S
smoke’(i23) = 1

VP
λx.smoke’(x)

V
λx.smoke’(x)

smokes

NP
i23

N
i23

Johnson

JTrumpK

JJohnsonK
i34

i45

i56

i123i234

i345i456

JsmokesK
Word Model 1

JsmokesK
Word Model 2

JsmokesK
Word Model 3

25 of 32



First-Order Predicate Logic (FOPL)



Davidsonian semantics: Adding event variables

i12

JJohnsonK
i34

i45

i56

i123i234

i345i456

eve12

“smokes”

JJohnson smokesK

What is the type of JgivesK? e — individual.

26 of 32



Davidsonian semantics: Adding event variables

i12

JJohnsonK
i34

i45

i56

i123i234

i345i456

eve12

“smokes”

JJohnson smokesK

What is the type of JgivesK? e — individual.

26 of 32



Davidsonian semantics: Adding event variables

i12

JJohnsonK
i34

i45

i56

i123i234

i345i456

eve12

“smokes”

JJohnson smokesK

What is the type of JgivesK? e — individual.

26 of 32



Ditransitive verb

JTrumpK

JJohnsonK
i34

i45

i56

i123Ja golden lighterK

i345i456

JgivesK

JT gives J a golden lighterK

What is the type of JgivesK? e — individual.

27 of 32



Ditransitive verb

JTrumpK

JJohnsonK
i34

i45

i56

i123Ja golden lighterK

i345i456

JgivesK

JT gives J a golden lighterK

What is the type of JgivesK? e — individual.

27 of 32



Neo-Davidsonian semantics: Further decomposition

JTrumpK

JJohnsonK
i34

i45

i56

i123Ja golden lighterK

i345i456 agent theme recipient

semantic roles

JgivesK

JT gives J a golden lighterK

Further decomposition of the event structure

28 of 32



Neo-Davidsonian semantics: Further decomposition

JTrumpK

JJohnsonK
i34

i45

i56

i123Ja golden lighterK

i345i456 agent theme recipient

semantic roles

JgivesK

JT gives J a golden lighterK

Further decomposition of the event structure

28 of 32



Lexicalised vs unlexicalised

Before Davidson
• JgivesK(JTrumpK, JJohnsonK, Ja golden lighterK)
• λx.[λy.[λz.give’(z, x, y)]]

• 〈e, 〈e, 〈e, t〉〉〉
• Lexicalised: the lexical entry contains rich information of arguments.

Davidsonian
• JgivesK(e, JTrumpK, JJohnsonK, Ja golden lighterK)
• Lexicalised

Neo-Davidsonian
• JgivesK(e) ∧ agent(e, JTrumpK) ∧ recipient(e, JJohnsonK) ∧

theme(e, Ja golden lighterK)
• Modularisation of information

• Unlexicalised: the lexical entry doesn’t need to know argument
structure.

29 of 32



First-order predicate logic

• What is Jevery student smokesK? ∀x(student’(x)→ smoke’(x))

• What is Jsome students smokeK? ∃x(student’(x) ∧ smoke’(x))

work

student

teacher

M1 x

30 of 32



First-order predicate logic

• What is Jevery student smokesK? ∀x(student’(x)→ smoke’(x))

• What is Jsome students smokeK? ∃x(student’(x) ∧ smoke’(x))

work

student

teacher

M1 x

30 of 32



First-order predicate logic

• What is Jevery student smokesK? ∀x(student’(x)→ smoke’(x))

• What is Jsome students smokeK? ∃x(student’(x) ∧ smoke’(x))

work

student

teacher

M1 x

30 of 32



First-order predicate logic

• What is Jevery student smokesK? ∀x(student’(x)→ smoke’(x))

• What is Jsome students smokeK? ∃x(student’(x) ∧ smoke’(x))

work

student

teacher

M1 x

30 of 32



First-order predicate logic

• What is Jevery student smokesK? ∀x(student’(x)→ smoke’(x))

• What is Jsome students smokeK? ∃x(student’(x) ∧ smoke’(x))

work

student

teacher

M1 x

30 of 32



Truth of these statements in our world model?

In the world where Trump gave Johnson a golden lighter is true, which one
of the following is true?

• Johnson gave Trump a lighter

• Trump gave Johnson a silver lighter

• Johnson was given a lighter

31 of 32



Readings

• Heim and Kratzer. Semantics in Generative Grammar . Chapter 1–3.

32 of 32


	Ferdinand de Saussure
	World Model and Discourse Referent
	Functions and s
	Truth-Conditions
	First-Order Predicate Logic (FOPL)

