L98: Introduction to Computational Semantics Lecture 6: Truth

Weiwei Sun and Simone Teufel

Natural Language and Information Processing Research Group Department of Computer Science and Technology University of Cambridge

Lent 2021/22

Lecture 6: Truth

- 1. Ferdinand de Saussure
- 2. World model and discourse referents
- 3. Functions and λs
- 4. Truth conditions
- 5. First-Order Predicate Logic

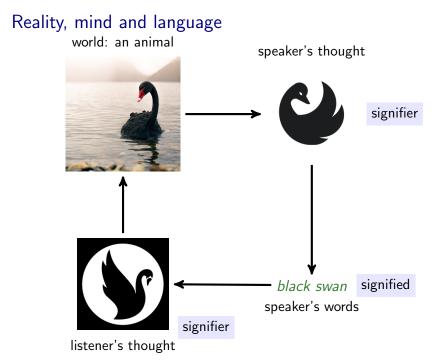
Ferdinand de Saussure

De Saussure: The linguistic sign is a two-sided psychological entity:

- signifier: 'sound-image'
- signified: 'concept'

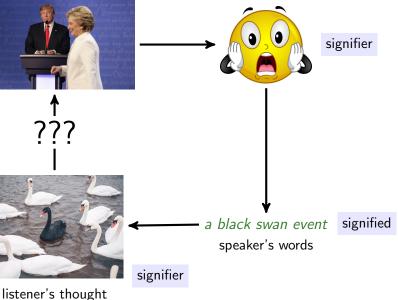
Example: 止戈为武

- 止 initially meant foot, walk, go
- $\stackrel{}{\mathcal{I}}$ is an old-fashioned weapon
- 武 means military
- When $\overrightarrow{\mathbb{R}}$ was created, the meaning of was "take your weapon and walk, go to war"
- So initially, there is semantic compositionality
- After many years, the meanings of the parts shifted and people could no longer see the compositionality.
- 止 now means "stop".
- Now some philosophers reinterpret $\vec{\mathbb{R}}$ as: Stop using weapons; that is what a military should do.


Arbitrariness of the sign

- De Saussure stated that the link between the signified and signifier is *arbitrary*.
- The example of 武 shows that it does not matter if language users know the complicated (non-arbitrary) history of this sign.
- The connection has become arbitrary.
- All you need to know to communicate is to know that $\vec{\mathbb{R}}$ means military.
- Triumph of arbitrariness of the sign.

Old: mind and language


Language

Reality, mind and language world: Trump elected

speaker's thought

Reality, mind and language world: Trump elected

a black swan event speaker's words

Natural Language Understanding

Example: Visual QA

Something gets lost if a system goes directly from words to images (diagonal)

- Idea of such a system is that the meaning of the language string creates something like a image in the mind.
- But we have just seen that it's not a picture that is in the mind, otherwise the misunderstanding between listener and speaker would not have happened.
- This is why deep NLU needs to model the thought
- Rest of this lecture: how can we model the thought

World Model and Discourse Referent

Domains of interpretation

- the real world
- a part of the real world
- a hypothesized model of the real world
 - e.g. Shapeworld: objects with properties in positions
 - or something more complicated
- some constructed model in the case of an artificial language

 \triangleright world model

Desired properties of a world model

A world model is an abstracted, simplified version of our world.

- The world model should be precise.
- reflect the complexity of the phenomena we think are improtant
- drop other things we don't care about
- should have a systematic way to be constructed
- Its components should be transparent, ie, it should be easy to see what in our world is what in the model.
- There should be a close link between our model and those phenomena in the real world we care about

Our world model

It consists of

- **discourse referents.** unique variables standing in for actual people and objects in the world
- semantic predicates. functions representing "buckets" (certain nouns) and properties and events

We will start with proper names and simple predicates... *Trump gave Johnson a golden lighter.*

The term "predicate" is also often used to describe a particular syntactic elements. We use "semantic predicate" to distinguish these two concepts.

Extension and intension

The extension of a linguistic expression is the set of things it extends to, or applies to.

Example: politician

{Trump, Johnson, ...}

Extension and intension

The extension of a linguistic expression is the set of things it extends to, or applies to.

Example: politician

{Trump, Johnson, ...}

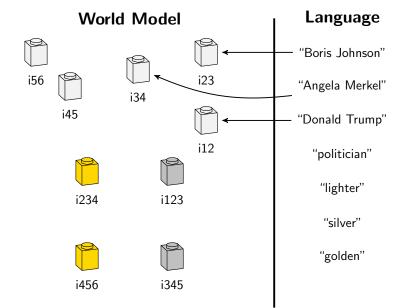
The above set could also be the extension of *lier*.

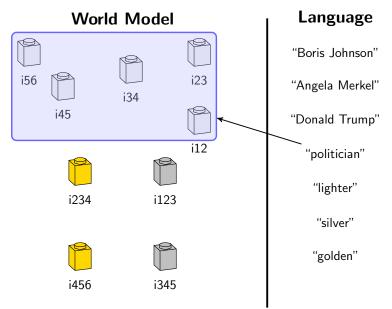
Extension and intension

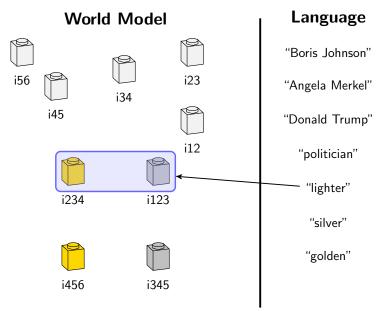
The extension of a linguistic expression is the set of things it extends to, or applies to.

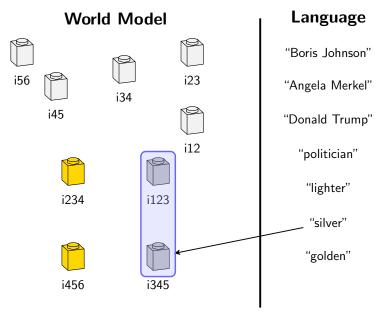
Example: politician

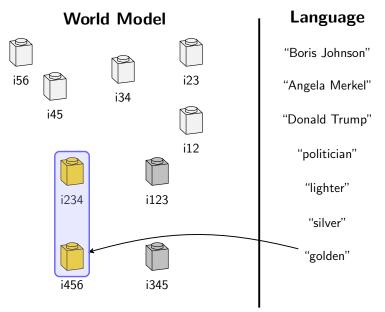
```
{Trump, Johnson, . . . }
```

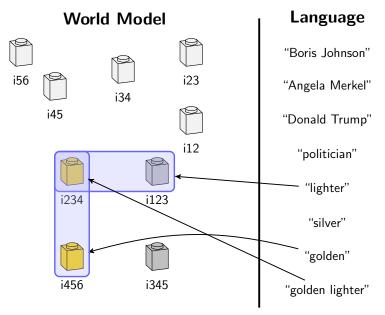

The above set could also be the extension of lier.

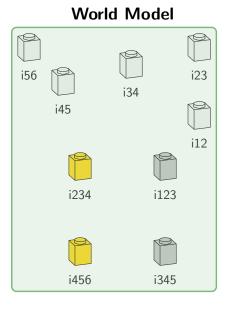

Intensional semantics

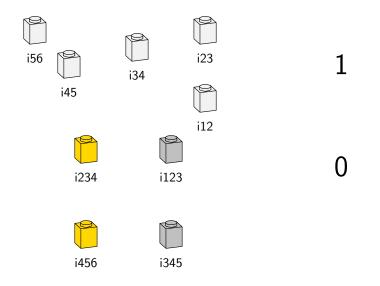

e.g. a description from wikipedia

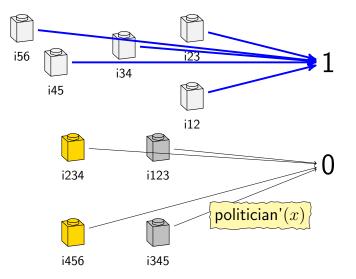

A *politician* is a person active in party politics, or a person holding or seeking an elected seat in government.

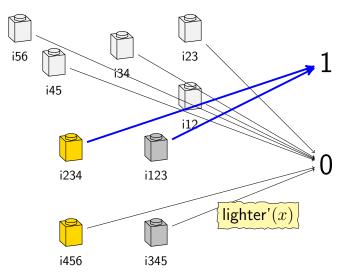

• intensional, but imprecise description

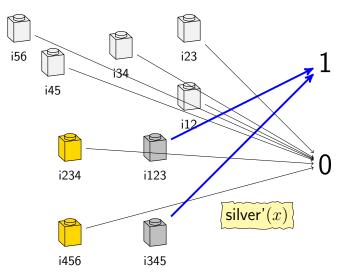


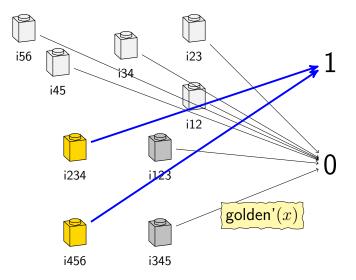



Language




Extensional interpretation


- An interpretation function ([[]]) maps language expressions onto objects, sets of objects, sets of sets of..., of the world model.
 e.g [[politician]] = {i12, i23, i34, i45, i56}
- In this lecture, objects of the world model are discourse referents.
- To simplify, proper names are mapped to **unique** discourse referents. e.g [Angela Merkel] = i34


Functions and λs

Predicates are functions; predicates are sets.

- Q What is the meaning of *politician*?
- A politician'
- politician' is a semantic predicate which is a set and also a function.
- Discourse referents are mapped to either 0 or 1 through politician'. The referents mapped to 1 indicate politicians.
- It is a great idea to define functions with a minimal programming language $\lambda\text{-calculus.}$

Building functions

 $\lambda\text{-calculus}$ — a simple notation for functions and application

• *β*-reduction/function application:

$$[\lambda x.M](N) \longrightarrow M[x := N]$$

• Apply a λ -term to an argument, and get a value.

More online: https://plato.stanford.edu/entries/lambda-calculus/

Example

• $f(x) = x^2 \longleftrightarrow [\lambda x.[x^2]]$ • $f(5) = 25 \longleftrightarrow [\lambda x.[x^2]](5) = 25$ • $g(x, y) = x^2 + y^2 \longleftrightarrow [\lambda x.[\lambda y.[x^2 + y^2]]]$ • $g(2, 1) = 5 \longleftrightarrow [\lambda x.[\lambda y.[x^2 + y^2]]](2)(1) = 5$

Simple types

From a nonempty set ${\bf BasTyp}$ of *basic types*, the set ${\bf Typ}$ is the smallest set such that

- $\mathbf{BasTyp} \subseteq \mathbf{Typ}$,
- $\langle \sigma, \tau \rangle \in \mathbf{Typ}$ if $\sigma, \tau \in \mathbf{Typ}$.

A type of the form $\langle \sigma, \tau \rangle$ is said to be a *functional type*.

Example

- Assume e for individuals and t for <code>true/false</code>,
- then $\langle \boldsymbol{e}, \boldsymbol{t} \rangle$ is the type for unary relations,
- and $\langle\langle e,t\rangle,\langle e,t\rangle\rangle$ is for the type of a function mapping unary relations into unary relations.

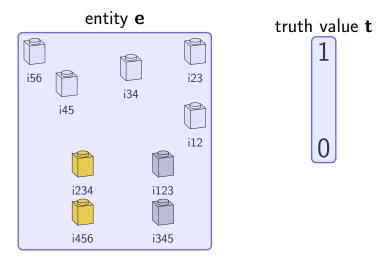
Simple types

From a nonempty set ${\bf BasTyp}$ of *basic types*, the set ${\bf Typ}$ is the smallest set such that

- $\mathbf{BasTyp} \subseteq \mathbf{Typ}$,
- $\langle \sigma, \tau \rangle \in \mathbf{Typ}$ if $\sigma, \tau \in \mathbf{Typ}$.

A type of the form $\langle \sigma, \tau \rangle$ is said to be a *functional type*.

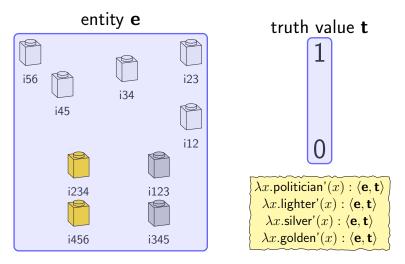
Example

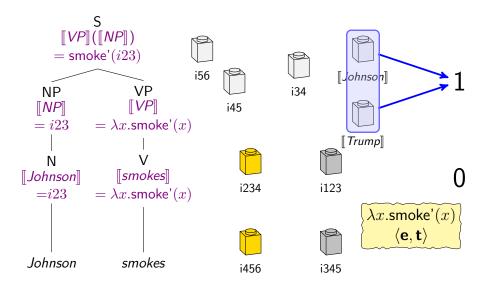

- Assume e for individuals and t for <code>true/false</code>,
- then $\langle \boldsymbol{e}, \boldsymbol{t} \rangle$ is the type for unary relations,
- and $\langle\langle e,t\rangle,\langle e,t\rangle\rangle$ is for the type of a function mapping unary relations into unary relations.

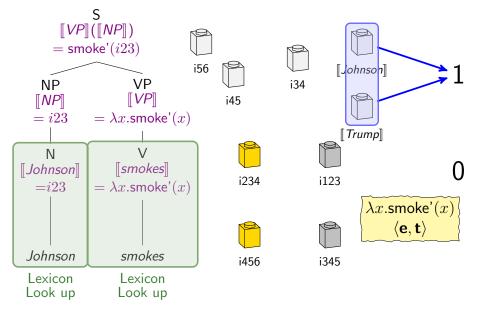
C/C++/Java/Typescript vs Python/Javascript

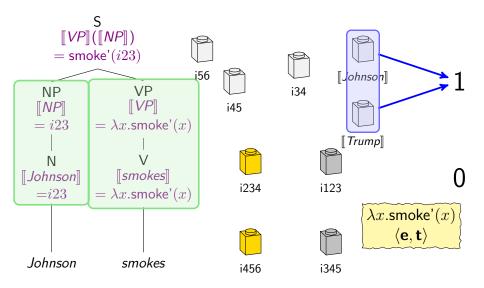
$\boldsymbol{e},\,\boldsymbol{t}$ and \boldsymbol{e} to \boldsymbol{t}

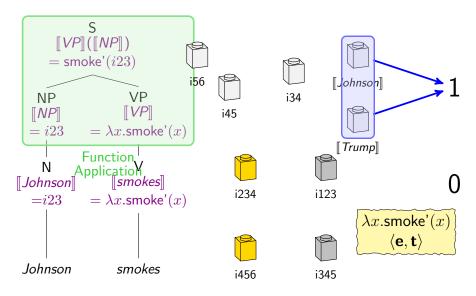
Gottlob Frege

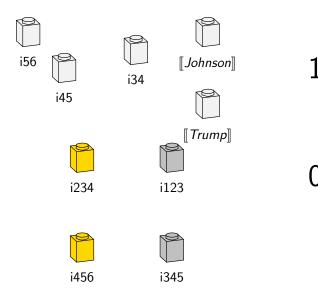

There are only two atomic things, truth values and individuals. All other things are created by function application.




$\boldsymbol{e},\,\boldsymbol{t}$ and \boldsymbol{e} to \boldsymbol{t}

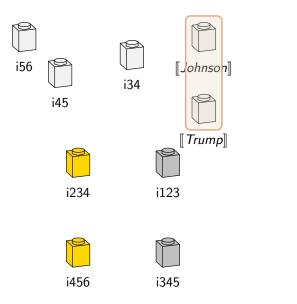

Gottlob Frege


There are only two atomic things, truth values and individuals. All other things are created by function application.

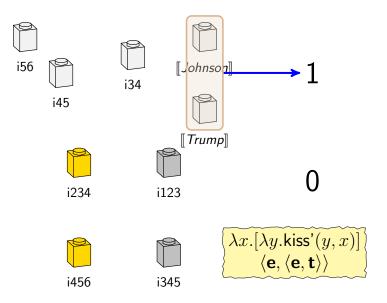


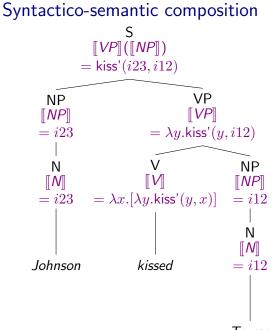
Compositional semantics

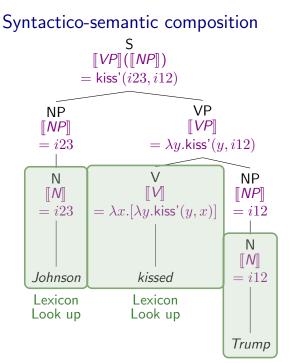
- [Johnson smokes] is not listed in the lexicon.
- But the interpretation of *Johnson smokes* can still be derived from its parts along with a syntactic analysis.
- Finite means make infinite interpretation possible.
- This is exactly the point of compositional semantics
- and note that we have remained precise
- This means we can use this thing we just built as a **meaning** representation of the kind we wanted in Lecture 1.

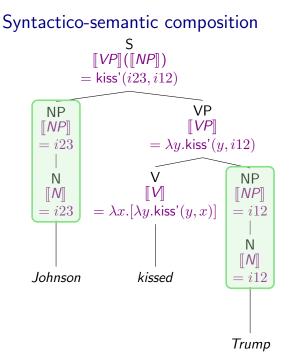

Transitive verbs

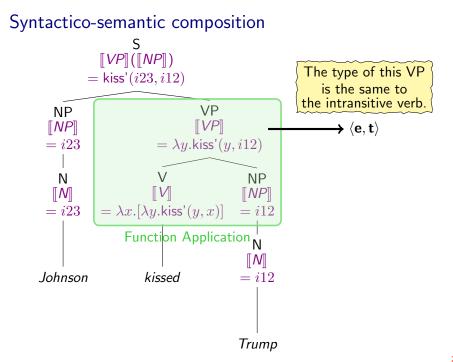
Johnson kissed Trump

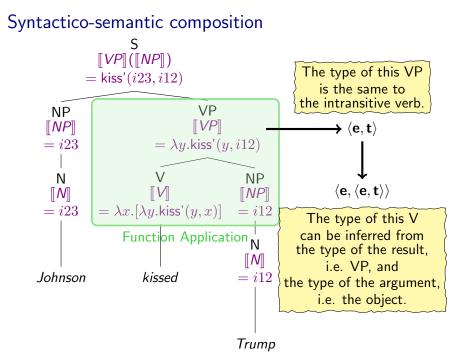

Transitive verbs

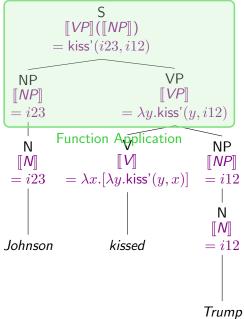

Johnson kissed Trump


Transitive verbs


Johnson kissed Trump




Trump



22 of 32

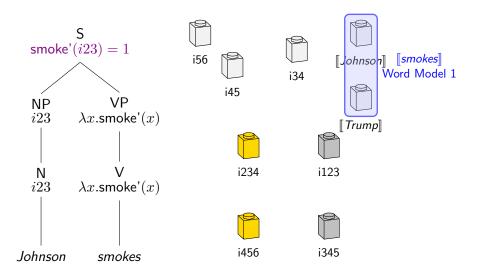
Lexicalised grammar

What should we know for a lexical entry?

- kissed
- syntactic category: V
- semantic type: $\langle e, \langle e, t \rangle \rangle$
- semantic interpretation: $\lambda x.[\lambda y.kiss'(y,x)]$

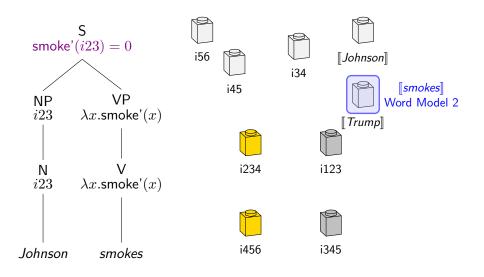
Truth-Conditions

Meanings as truth conditions

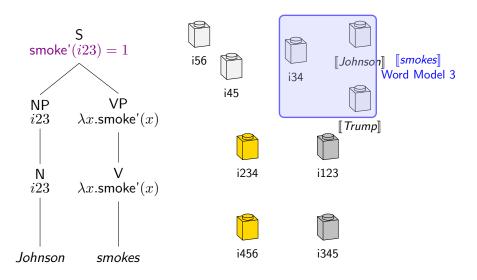

Ludwig Wittgenstein

To know the meaning of a sentence is to know how the world would have to be for the sentence to be true.

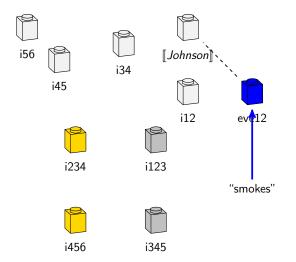
The meaning of words and sentence parts is their contribution to the truth-conditions of the whole sentence.


The truth-conditional tradition

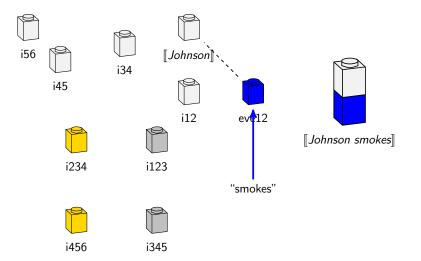
Consider three different word models: Different people smoke


The truth-conditional tradition

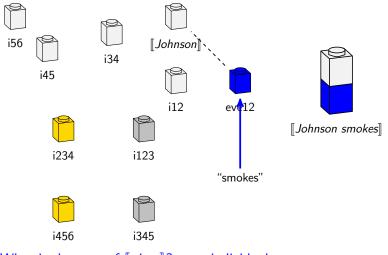
Consider three different word models: Different people smoke


The truth-conditional tradition

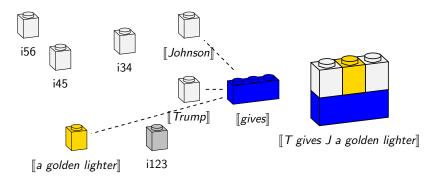
Consider three different word models: Different people smoke



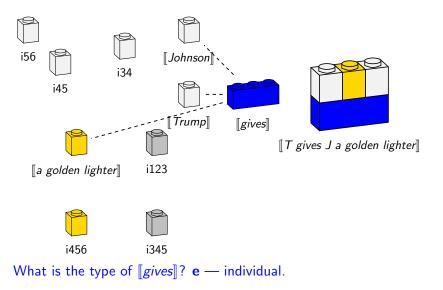
First-Order Predicate Logic (FOPL)


Davidsonian semantics: Adding event variables

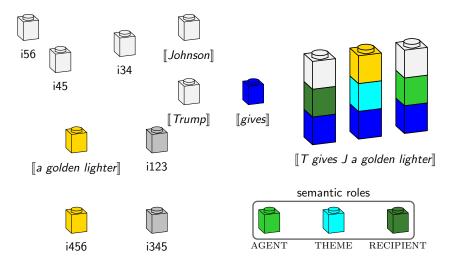
Davidsonian semantics: Adding event variables

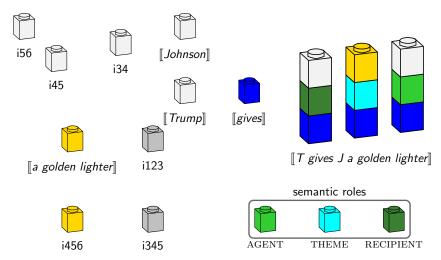


Davidsonian semantics: Adding event variables


What is the type of [[gives]]? **e** — individual.

Ditransitive verb




Ditransitive verb

Neo-Davidsonian semantics: Further decomposition

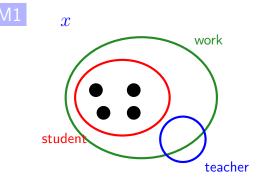
Neo-Davidsonian semantics: Further decomposition

Further decomposition of the event structure

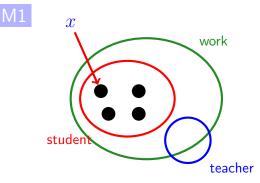
Lexicalised vs unlexicalised

Before Davidson

- [gives]([Trump], [Johnson]], [a golden lighter])
- $\lambda x.[\lambda y.[\lambda z.give'(z, x, y)]]$
- $\langle \mathbf{e}, \langle \mathbf{e}, \langle \mathbf{e}, \mathbf{t} \rangle \rangle \rangle$
- Lexicalised: the lexical entry contains rich information of arguments.

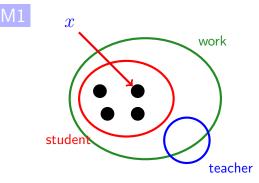

Davidsonian

- [gives](e, [Trump], [Johnson]], [a golden lighter])
- Lexicalised

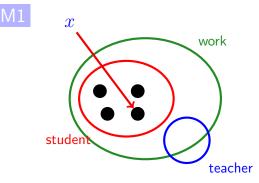

Neo-Davidsonian

- $[[gives]](e) \land AGENT(e, [[Trump]]) \land RECIPIENT(e, [[Johnson]]) \land THEME(e, [[a golden lighter]])$
- Modularisation of information
- Unlexicalised: the lexical entry doesn't need to know argument structure.

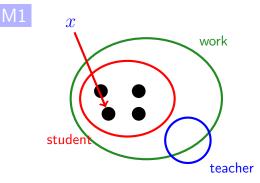
- What is [every student smokes]?
- What is [some students smoke]?



- What is [every student smokes]?
- What is [some students smoke]?



 $\forall x (\mathsf{student'}(x) \to \mathsf{smoke'}(x)) \\ \exists x (\mathsf{student'}(x) \land \mathsf{smoke'}(x))$


- What is [every student smokes]?
- What is [some students smoke]?

- What is [every student smokes]?
- What is [some students smoke]?

- What is [every student smokes]?
- What is [some students smoke]?

Truth of these statements in our world model?

In the world where *Trump gave Johnson a golden lighter* is true, which one of the following is true?

- Johnson gave Trump a lighter
- Trump gave Johnson a silver lighter
- Johnson was given a lighter

• Heim and Kratzer. Semantics in Generative Grammar. Chapter 1-3.