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Lecture 2: Word Sense Disambiguation Algorithms

1. WSD, the task
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5. Neuralising the old



WSD, the Task



Word Sense Disambiguation

Helps in various NLP tasks:

• Machine Translation

• Question Answering

• Information Retrieval

• Text Classification

What counts as “one sense”?

• Task-specific senses

• dictionary-defined senses.

Sense-tagged corpora exist, e.g., SemCor

• 186 texts with all open class words WN synset tagged (192,639)

• 166 texts with all verbs WN synset tagged (41,497)

1 of 39



Types of Algorithms for WSD

• Supervised
• range of classification algorithms, cf. end of lecture

• Unsupervised
• Dictionary glosses (Lesk)
• Lexical chains (Barzilay and Elhadad)
• Graph properties of WN graph (Navigli and Lapata)

• Semi-supervised
• Bootstrapping of context words (Yarowsky)
• Active Learning

• Word Sense Induction
• Always fully unsupervised
• Typically, clustering-based
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The Lesk Algorithm



Idea behind the Original Lesk: Mutual disambiguation

Typically there is more than one ambiguous word in the sentence.

Example

• Several rare ferns grow on the steep banks of the burn where it runs
into the lake.

Ambiguous: rare, steep, bank, burn, run

But: humans do not perceive this sentence as ambiguous at all.
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Algorithm 1

function SIMPLIFIED LESK(word, sentence) returns best sense of word

best-sense := most frequent sense for word

max-overlap := 0

context := set of words in sentence

foreach sense in senses of word do

signature := set of words in gloss and examples of sense

overlap := COMPUTE OVERLAP(signature, context)

if overlap > max-overlap then

max-overlap := overlap

best-sense := sense

end

return best-sense

• Algorithm chooses the sense of target word whose gloss shares most words
with sentence

• COMPUTE OVERLAP returns the number of words in common between two sets,
ignoring function words or other words on a stop list.

4 of 39



Solution to Pre-lecture exercise

1 → D
2 → A
3 → G
4 → I
5 → C
6 → B
7 → F
8 → H
9 → E
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And this is why

[home/1, place] : (where you live at a particular time) ”deliver the package to my home”;
”he doesn’t have a home to go to”; ”your place or mine?”
[home/2, dwelling, domicile, abode, habitation, dwelling house]: (housing that some-
one is living in) “he built a modest dwelling near the pond”; “they raise money to provide
homes for the homeless”
[home/3]: (the country or state or city where you live) “Canadian tariffs enabled United
States lumber companies to raise prices at home”; “his home is New Jersey”
[home/4, home plate, home base, plate] : ((baseball) base consisting of a rubber slab
where the batter stands; it must be touched by a base runner in order to score) “he ruled
that the runner failed to touch home”
[home/5, base]: (the place where you are stationed and from which missions start and
end)
[home/6]: (place where something began and flourished) “the United States is the home
of basketball”
[home/7]: (an environment offering affection and security) “home is where the heart is”;
“he grew up in a good Christian home”; “there’s no place like home”
[home/8, family, household, house, menage]: (a social unit living together) “he moved
his family to Virginia”; “It was a good Christian household”; “I waited until the whole
house was asleep”; “the teacher asked how many people made up his home”; “the family
refused to accept his will”
[home/9, nursing home, rest home]: (an institution where people are cared for) ”a home
for the elderly”
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Example: Disambiguation of bank

Context: The bank can guarantee deposits will eventually cover future
tuition costs because it invests in adjustable-rate mortgage securities.

bank/1 (a financial institution that accepts deposits and channels the
money into lending activities) “he cashed a check at the bank”,
“that bank holds the mortgage on my home”

bank/2 (sloping land (especially the slope beside a body of water))
“they pulled the canoe up on the bank”, “he sat on the bank
of the river and watched the currents”

• Sense bank/1 has two (non-stop) words overlapping with the context
(deposits and mortgage)

• Sense bank/2 has zero, so sense bank/1 is chosen.
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Algorithm 2

function LESK(word, sentence) returns best sense of word

best-sense := most frequent sense for word

max-overlap := 0

context := set of words in sentence

foreach sense in senses of word do

signature := set of words in gloss of sense

foreach context-word in context do

foreach context-sense of context word do

context signature := set of words in gloss of context sense

overlap := COMPUTE OVERLAP(signature, context signature)

if overlap > max-overlap then

max-overlap := overlap

best-sense := sense

end

end

end

return best-sense

• Compare each target word’s signature (sense-related words) with each
of the context words’ signatures.

• sense–sense comparison
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Example: Disambiguation of cone and pine

Context: pine cone

pine/1 kinds of evergreen tree with needle-shaped leaves
pine/2 waste away through sorrow or illness

cone/1 solid body which narrows to a point
cone/2 something of this shape whether solid or hollow
cone/3 fruit of a certain evergreen tree

cone/3 and pine/1 are selected:

• overlap for entries pine/1 and cone/3 (evergreen and tree)

• no overlap in other entries
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Two “Lesk” algorithms

• Algorithm II is the one that was first published

• It is now called the Original Lesk (1986) Algorithm.

• In almost all situations it is beaten by Algorithm I (“Simplified Lesk”),
due to Kilgarriff and Rosenzweig (2000)

• “Corpus” version of Algorithm I additionally expands glosses by all
known contexts of that sense from SEMCOR.
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Intrinsic evaluation

Sense accuracy: percentage of words where the system tag is identical to
gold standard tag

How can we get annotated material cheaply?
• Pseudo-words

• create artificial corpus by conflating unrelated words
• example: replace all occurrences of banana and door with banana-door

• Multi-lingual parallel corpora
• translated texts aligned at the sentence level
• translation indicates sense

Competitive evaluations exist

• SENSEVAL; annotated corpora in many languages

• “Lexical Sample” Task for supervised WSD

• “All-word” Task for unsupervised WSD (SemCor corpus)
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Baselines for supervised WSD

• First (most frequent) sense

• LeskCorpus (Simplified, weighted Lesk, with all the words in the labeled
SEMEVAL corpus sentences for a word sense added to the signature for
that sense)

• LeskCorpus is the best-performing of all symbolic Lesk variants, was
used for a long time (Kilgarriff and Rosenzweig, 2000; Vasilescu et al.,
2004)

• Nowadays, embedded version of Lesk is used; called 1-NN
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The Yarowsky Algorithm



Semi-supervision and bootstrapping

• Baron Münchhausen, the famous lier.
• “I pulled myself out of the swamp, by pulling on my own hair”
• Term “bootstrapping” co-opted by Machine Learning
• Weakly supervised (semi-supervised): use only few labelled training
examples

• Also called “seed” examples
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Bootstrapping principle
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Semi-supervised WSD by bootstrapping

• The Yarowsky algorithm is an example of a bootstrapping algorithm

• That means it only requires a small amount of annotated data.

• However, many such algorithms use a large amount of non-annotated
corpus material.

• This is an advantage, because hand-annotation is expensive.
• The algorithm steps:

• It starts with a small seed set, trains a classifier on it, and then applies it
to the whole data set (bootstrapping);

• Reliable examples are kept, and the classifier is re-trained.
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Yarowsky’s algorithm

Yarowsky’s (1995) algorithm uses two powerful heuristics for WSD:

• One sense per collocation: nearby words provide clues to the sense of
the target word, conditional on distance, order, syntactic relationship.

• The algorithm uses this to find good features

• One sense per discourse: the sense of a target words is consistent
within a given document.

• In 50% of all documents, the target word occurs more than once.
• In 98% of these cases, they have the same sense.
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Bootstrapping: Yarowsky
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Seed set

Step 1: Extract all instances of a polysemous or homonymous word.

Step 2: Generate a seed set of labeled examples:

• either by manually labeling them;

• or by using a reliable heuristic.

Example: target word plant: As seed set take all instances of

• plant life (sense A) and

• manufacturing plant (sense B).

Figures and tables from now on: taken from Yarowsky (1995).
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Classification

Step 3a: Train classifier on the seed set.

Step 3b: Apply classifier to the entire sample set. Add those examples
that are classified reliably (probability above a threshold) to the seed set.

Yarowsky uses a decision list classifier:

• rules of the form: collocation → sense

• rules are ordered by log-likelihood:

log
P (senseA|collocationi)

P (senseB|collocationi)

• Classification is based on the first rule that applies.
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Classification: initial decision list for plant

LogL Collocation Sense

8.10 plant life → A
7.58 manufacturing plant → B
7.39 life (within ±2-10 words) → A
7.20 manufacturing (in ± 2-10 words) → B
6.27 animal (within ±2-10 words) → A
4.70 equipment (within ±2-10 words) → B
4.39 employee (within ±2-10 words) → B
4.30 assembly plant → B
4.10 plant closure → B
3.52 plant species → A
3.48 automate (within ±2-10 words) → B
3.45 microscopic plant → A

. . .
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Classification: final decision list for plant

LogL Collocation Sense

10.12 plant growth → A
9.68 car (within ±2-10 words) → B
9.64 plant height → A
9.61 union (in ± 2-10 words) → B
9.54 equipment (within ± 2-10 words) → B
9.51 assembly plant → B
9.50 nuclear plant → B
9.31 flower (within ±2-10 words) → A
9.24 job (within ±2-10 words) → B
9.03 fruit (within ±2-10 words) → A
9.02 plant species → A

. . .
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Classification
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One sense per discourse

Step 3c: Use one-sense-per-discourse constraint to expand newly
classified examples:

• If several examples in one document have already been annotated as
sense A, then extend this to all examples of the word in the rest of the
document.

• This can bring in new collocations, and even correct erroneously labeled
examples.
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One sense per discourse

Step 3c: Use one-sense-per-discourse constraint to filter newly classified
examples:
• If you detect a contradiction in one document, one of two cases applies:

• Either your classifier was wrong on at least one of the examples →
remove the collocation that resulted in this error

• It’s one of the rare cases where really two different senses do occur in a
document → Do not use this document for training

• We don’t really know which case applies, but we can use the confidence
of the classifier as an approximation.

Step 3d: repeat Steps 3a–d.
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Generalization

Step 4: Algorithm converges on a stable residual set (remaining unlabeled
instances):

• most training examples will now exhibit multiple collocations indicative
of the same sense;

• decision list procedure uses only the most reliable rule, not a
combination of rules.

Step 5: The final classifier can now be applied to unseen data.
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Discussion of Yarowsky

Strengths:

• simple algorithm that uses only minimal features (words in the context
of the target word);

• minimal effort required to create seed set;

• does not rely on dictionary or other external knowledge.

Weaknesses:

• uses very simple classifier (but could replace it with a more
state-of-the-art one);

• not fully unsupervised: requires seed data;

• does not make use of the structure of a possibly existing dictionary (the
sense inventory).
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Supervised WSD

• In Supervised WSD, words in the training data are labelled with their
senses:

• She pays 3% interest/INTEREST-MONEY on the loan.
• He showed a lot of interest/INTEREST-CURIOSITY in the painting.

• You define features that (you hope) will indicate one sense over another

• Train a statistical model that predicts the correct sense given the
features

• Classifier is trained for each target word separately
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Features for supervised WSD

An electric guitar and bass player stand off to one side, not really part of
the scene, just as a sort of nod to gringo expectations perhaps.

• Collocational feature: (directly neighbouring words in specific positions)
[wi−2, POSi−2, wi−1, POSi−1, wi+1, POSi+1, wi+2, POSi+2]
[guitar, NN, and, CC, player, NN, stand, VB]

• Bag of Words feature: (any content words in a 50 word window)
12 most frequent content words from bass collection: [fishing, big,
sound, player, fly, rod, pound, double, runs, playing, guitar, band]
→ [0,0,0,1,0,0,0,0,0,0,1,0]
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Naive Bayes

• Goal: choose the best sense ŝ out of the set of possible senses S for an

input vector
−→
F :

ŝ = argmax
s∈S

P (s|
−→
F )

• It is difficult to collect statistics for this equation directly.

• Rewrite it using Bayes’ rule:

ŝ = argmax
s∈S

=
P (

−→
F |s)P (s)

P (
−→
F )

• Drop P (
−→
F ) – it is a constant factor in argmax

• Assume that Fi are independent:

P (
−→
F |s) ≈

j=1∏
n

P (Fi|s)
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Naive Bayesian classifier

• Naive Bayes Classifier:

ŝ = argmax
s∈S

P (s)

j=1∏
n

P (Fi|s)

• Parameter Estimation (Max. likelihood):
• How likely is sense si for word form wj?

P (si) =
count(si, wj)

count(wj)

• How likely is feature fj given sense si?

P (Fj |si) =
count(si, Fj)

count(si)
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Classification based on dense word representations

the explosive eruption of Hunga-TongaHunga-Ha’apai sent a shockwave around

adj.1 noun.1 v.1 oops prep.2

feature extraction

classification

• manually defined features

• static word embeddings: word2vec, fastText, GloVe etc

• classifier: Multi-layer perceptron, etc
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+a sentence encoder

the explosive eruption of Hunga-TongaHunga-Ha’apai sent a shockwave around

adj.1 noun.1 v.1 oops prep.2

word2vec

encoder

softmax

• static word embeddings: e.g., word2vec, etc ▷based on word types

• encoder: e.g. LSTM, transformer, etc

• classifier: softmax layer, etc
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+contextualised word embeddings

the explosive eruption of Hunga-TongaHunga-Ha’apai sent a shockwave around

adj.1 noun.1 v.1 oops prep.2

contextualised word embedding

encoder

• word vectors: e.g., word2vec, etc

• contextualised word embeddings, e.g. ELMo, BERT, etc

• encoder: e.g. LSTM, transformer, etc
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Neuralising the Old



1-NN: Lesk with Sense embeddings
• Empirical results: Supervised WSD is better when a good amount of

annotation is available.
⇒ The relative lack of annotation is a major limitation.

function SIMPLIFIED LESK(word, sentence)

best-sense := most frequent sense for word

max-overlap := 0

cntxt := set of words in sentence →Embed(sentence)

foreach sense in senses of word do

sgn := set of words in gloss and ... →Embed(gloss,...)

overlap := COMPUTE OVERLAP(sgn, cntxt) →Sim(sgn, cntxt)

if overlap > max-overlap then

max-overlap := overlap

best-sense := sense

end

return best-sense

bag of words → vectors
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Summary of lecture

• The Lesk algorithm uses overlap between context and glosses.
• Idea: mutual disambiguation

• The Yarowsky algorithm uses bootstrapping and two key heuristics:
• one sense per collocation;
• one sense per discourse;

• Supervised WSD learns from context and uses ML to learn the best
representations for senses (e.g. neurally).

• Fully unsupervised WSD can also be seen as Word sense induction
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Reading

• Jurasfky and Martin, chapter 20.1-20.4.

• Lesk (1986): Automatic sense disambiguation using machine readable
dictionaries: how to tell a pine cone from an ice cream cone. In
SIGDOC ’86, ACM.

• Yarowsky (1995): Unsupervised Word Sense Disambiguation rivaling
Supervised Methods. Proceedings of the ACL.

• Raganato, Camacho-Collados and Navigli (2017): Word Sense
Disambiguation: A Unified Evaluation Framework and Empirical
Comparison.

• Loureiro and Jorge (2019): Language Modelling Makes Sense:
Propagating Representations through WordNet for Full-Coverage Word
Sense Disambiguation.
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