# L98: Introduction to Computational Semantics Lecture 2: Word Sense Disambiguation Algorithms 

Simone Teufel and Weiwei Sun<br>Natural Language and Information Processing Research Group<br>Department of Computer Science and Technology<br>University of Cambridge

Lent 2021/22


Lecture 2: Word Sense Disambiguation Algorithms

1. WSD, the task
2. Lesk
3. Yarowsky
4. Supervised WSD
5. Neuralising the old

WSD, the Task

## Word Sense Disambiguation

Helps in various NLP tasks:

- Machine Translation
- Question Answering
- Information Retrieval
- Text Classification

What counts as "one sense"?

- Task-specific senses
- dictionary-defined senses.

Sense-tagged corpora exist, e.g., SemCor

- 186 texts with all open class words WN synset tagged $(192,639)$
- 166 texts with all verbs WN synset tagged $(41,497)$


## Types of Algorithms for WSD

- Supervised
- range of classification algorithms, cf. end of lecture
- Unsupervised
- Dictionary glosses (Lesk)
- Lexical chains (Barzilay and Elhadad)
- Graph properties of WN graph (Navigli and Lapata)
- Semi-supervised
- Bootstrapping of context words (Yarowsky)
- Active Learning
- Word Sense Induction
- Always fully unsupervised
- Typically, clustering-based


The Lesk Algorithm

## Idea behind the Original Lesk: Mutual disambiguation

Typically there is more than one ambiguous word in the sentence.

## Example

- Several rare ferns grow on the steep banks of the burn where it runs into the lake.

Ambiguous: rare, steep, bank, burn, run

But: humans do not perceive this sentence as ambiguous at all.

## Algorithm 1

function SIMPLIFIED_LESK (word, sentence) returns best sense of word

```
best-sense := most frequent sense for word
```

max-overlap := 0
context := set of words in sentence
foreach sense in senses of word do
signature := set of words in gloss and examples of sense
overlap := COMPUTE_OVERLAP(signature, context)
if overlap > max-overlap then
max-overlap := overlap
best-sense := sense
end
return best-sense

- Algorithm chooses the sense of target word whose gloss shares most words with sentence
- COMPUTE_OVERLAP returns the number of words in common between two sets, ignoring function words or other words on a stop list.


## Solution to Pre-lecture exercise

$$
\begin{aligned}
& 1 \rightarrow \mathrm{D} \\
& 2 \rightarrow \mathrm{~A} \\
& 3 \rightarrow \mathrm{G} \\
& 4 \rightarrow \mathrm{I} \\
& 5 \rightarrow \mathrm{C} \\
& 6 \rightarrow \mathrm{~B} \\
& 7 \rightarrow \mathrm{~F} \\
& 8 \rightarrow \mathrm{H} \\
& 9 \rightarrow \mathrm{E}
\end{aligned}
$$

## And this is why

[home/1, place] : (where you live at a particular time) "deliver the package to my home";
"he doesn't have a home to go to"; "your place or mine?"
[home/2, dwelling, domicile, abode, habitation, dwelling house]: (housing that someone is living in) "he built a modest dwelling near the pond"; "they raise money to provide homes for the homeless"
[home/3]: (the country or state or city where you live) "Canadian tariffs enabled United States lumber companies to raise prices at home"; "his home is New Jersey"
[home/4, home plate, home base, plate] : ((baseball) base consisting of a rubber slab where the batter stands; it must be touched by a base runner in order to score) "he ruled that the runner failed to touch home"
[home/5, base]: (the place where you are stationed and from which missions start and end)
[home/6]: (place where something began and flourished) "the United States is the home of basketball"
[home/7]: (an environment offering affection and security) "home is where the heart is"; "he grew up in a good Christian home"; "there's no place like home"
[home/8, family, household, house, menage]: (a social unit living together) "he moved his family to Virginia"; "It was a good Christian household"; "I waited until the whole house was asleep"; "the teacher asked how many people made up his home"; "the family refused to accept his will"
[home/9, nursing home, rest home]: (an institution where people are cared for) "a home for the elderly"

## Example: Disambiguation of bank

Context: The bank can guarantee deposits will eventually cover future tuition costs because it invests in adjustable-rate mortgage securities.

| bank/1 | (a financial institution that accepts deposits and channels the <br> money into lending activities) "he cashed a check at the bank", <br> "that bank holds the mortgage on my home" |
| :--- | :--- |
| bank/2 | (sloping land (especially the slope beside a body of water)) <br> "they pulled the canoe up on the bank", "he sat on the bank <br> of the river and watched the currents" |

- Sense bank/1 has two (non-stop) words overlapping with the context (deposits and mortgage)
- Sense bank/2 has zero, so sense bank/1 is chosen.


## Algorithm 2

```
function LESK(word, sentence) returns best sense of word
    best-sense := most frequent sense for word
    max-overlap := 0
    context := set of words in sentence
    foreach sense in senses of word do
        signature := set of words in gloss of sense
        foreach context-word in context do
            foreach context-sense of context_word do
                context_signature := set of words in gloss of context_sense
                overlap := COMPUTE_OVERLAP(signature, context_signature)
                if overlap > max-overlap then
                max-overlap := overlap
                best-sense := sense
            end
        end
    end
    return best-sense
```

- Compare each target word's signature (sense-related words) with each of the context words' signatures.
- sense-sense comparison


## Example: Disambiguation of cone and pine

Context: pine cone

| pine/1 <br> pine/2 | kinds of evergreen tree with needle-shaped leaves <br> waste away through sorrow or illness |
| :--- | :--- |
| cone/1 | solid body which narrows to a point |
| cone/2 | something of this shape whether solid or hollow <br> cone/3 |
| fruit of a certain evergreen tree |  |

cone $/ 3$ and pine $/ 1$ are selected:

- overlap for entries pine/1 and cone/3 (evergreen and tree)
- no overlap in other entries


## Two "Lesk" algorithms

- Algorithm II is the one that was first published
- It is now called the Original Lesk (1986) Algorithm.
- In almost all situations it is beaten by Algorithm I ("Simplified Lesk"), due to Kilgarriff and Rosenzweig (2000)
- "Corpus" version of Algorithm I additionally expands glosses by all known contexts of that sense from SEMCOR.


## Intrinsic evaluation

Sense accuracy: percentage of words where the system tag is identical to gold standard tag

How can we get annotated material cheaply?

- Pseudo-words
- create artificial corpus by conflating unrelated words
- example: replace all occurrences of banana and door with banana-door
- Multi-lingual parallel corpora
- translated texts aligned at the sentence level
- translation indicates sense

Competitive evaluations exist

- SENSEVAL; annotated corpora in many languages
- "Lexical Sample" Task for supervised WSD
- "All-word" Task for unsupervised WSD (SemCor corpus)


## Baselines for supervised WSD

- First (most frequent) sense
- LeskCorpus (Simplified, weighted Lesk, with all the words in the labeled SEMEVAL corpus sentences for a word sense added to the signature for that sense)
- LeskCorpus is the best-performing of all symbolic Lesk variants, was used for a long time (Kilgarriff and Rosenzweig, 2000; Vasilescu et al., 2004)
- Nowadays, embedded version of Lesk is used; called 1-NN


The Yarowsky Algorithm

## Semi-supervision and bootstrapping



- Baron Münchhausen, the famous lier.
- "I pulled myself out of the swamp, by pulling on my own hair"
- Term "bootstrapping" co-opted by Machine Learning
- Weakly supervised (semi-supervised): use only few labelled training examples
- Also called "seed" examples


## Bootstrapping principle



## Semi-supervised WSD by bootstrapping

- The Yarowsky algorithm is an example of a bootstrapping algorithm
- That means it only requires a small amount of annotated data.
- However, many such algorithms use a large amount of non-annotated corpus material.
- This is an advantage, because hand-annotation is expensive.
- The algorithm steps:
- It starts with a small seed set, trains a classifier on it, and then applies it to the whole data set (bootstrapping);
- Reliable examples are kept, and the classifier is re-trained.


## Yarowsky's algorithm

Yarowsky's (1995) algorithm uses two powerful heuristics for WSD:

- One sense per collocation: nearby words provide clues to the sense of the target word, conditional on distance, order, syntactic relationship.
- The algorithm uses this to find good features
- One sense per discourse: the sense of a target words is consistent within a given document.
- In $50 \%$ of all documents, the target word occurs more than once.
- In $98 \%$ of these cases, they have the same sense.


## Bootstrapping: Yarowsky



## Seed set

Step 1: Extract all instances of a polysemous or homonymous word.
Step 2: Generate a seed set of labeled examples:

- either by manually labeling them;
- or by using a reliable heuristic.

Example: target word plant: As seed set take all instances of

- plant life (sense A) and
- manufacturing plant (sense B).

Figures and tables from now on: taken from Yarowsky (1995).


## Classification

Step 3a: Train classifier on the seed set.
Step 3b: Apply classifier to the entire sample set. Add those examples that are classified reliably (probability above a threshold) to the seed set.

Yarowsky uses a decision list classifier:

- rules of the form: collocation $\rightarrow$ sense
- rules are ordered by log-likelihood:

$$
\log \frac{P\left(\text { sense }_{A} \mid \text { collocation }_{i}\right)}{P\left(\text { sense }_{B} \mid \text { collocation }_{i}\right)}
$$

- Classification is based on the first rule that applies.


## Classification: initial decision list for plant

| LogL | Collocation | Sense |
| :--- | :--- | :--- |
| 8.10 | plant life | $\rightarrow \mathrm{A}$ |
| 7.58 | manufacturing plant | $\rightarrow \mathrm{B}$ |
| 7.39 | life (within $\pm 2-10$ words) | $\rightarrow \mathrm{A}$ |
| 7.20 | manufacturing (in $\pm 2-10$ words) | $\rightarrow \mathrm{B}$ |
| 6.27 | animal (within $\pm 2-10$ words) | $\rightarrow \mathrm{A}$ |
| 4.70 | equipment (within $\pm 2-10$ words) | $\rightarrow \mathrm{B}$ |
| 4.39 | employee (within $\pm 2-10$ words) | $\rightarrow \mathrm{B}$ |
| 4.30 | assembly plant | $\rightarrow \mathrm{B}$ |
| 4.10 | plant closure | $\rightarrow \mathrm{B}$ |
| 3.52 | plant species | $\rightarrow \mathrm{A}$ |
| 3.48 | automate (within $\pm 2-10$ words) | $\rightarrow \mathrm{B}$ |
| 3.45 | microscopic plant | $\rightarrow \mathrm{A}$ |
|  | .. |  |

## Classification: final decision list for plant

| LogL | Collocation | Sense |
| :--- | :--- | :--- |
| 10.12 | plant growth | $\rightarrow \mathrm{A}$ |
| 9.68 | car (within $\pm 2-10$ words) | $\rightarrow \mathrm{B}$ |
| 9.64 | plant height | $\rightarrow \mathrm{A}$ |
| 9.61 | union (in $\pm 2-10$ words) | $\rightarrow \mathrm{B}$ |
| 9.54 | equipment (within $\pm 2-10$ words) | $\rightarrow \mathrm{B}$ |
| 9.51 | assembly plant | $\rightarrow \mathrm{B}$ |
| 9.50 | nuclear plant | $\rightarrow \mathrm{B}$ |
| 9.31 | flower (within $\pm 2-10$ words) | $\rightarrow \mathrm{A}$ |
| 9.24 | job (within $\pm 2-10$ words) | $\rightarrow \mathrm{B}$ |
| 9.03 | fruit (within $\pm 2-10$ words) | $\rightarrow \mathrm{A}$ |
| 9.02 | plant species | $\rightarrow \mathrm{A}$ |
|  | $\ldots$ |  |

## Classification



## One sense per discourse

Step 3c: Use one-sense-per-discourse constraint to expand newly classified examples:

- If several examples in one document have already been annotated as sense $A$, then extend this to all examples of the word in the rest of the document.
- This can bring in new collocations, and even correct erroneously labeled examples.


## One sense per discourse

Step 3c: Use one-sense-per-discourse constraint to filter newly classified examples:

- If you detect a contradiction in one document, one of two cases applies:
- Either your classifier was wrong on at least one of the examples $\rightarrow$ remove the collocation that resulted in this error
- It's one of the rare cases where really two different senses do occur in a document $\rightarrow$ Do not use this document for training
- We don't really know which case applies, but we can use the confidence of the classifier as an approximation.

Step 3d: repeat Steps 3a-d.

## Classification




## Generalization

Step 4: Algorithm converges on a stable residual set (remaining unlabeled instances):

- most training examples will now exhibit multiple collocations indicative of the same sense;
- decision list procedure uses only the most reliable rule, not a combination of rules.
Step 5: The final classifier can now be applied to unseen data.


## Discussion of Yarowsky

## Strengths:

- simple algorithm that uses only minimal features (words in the context of the target word);
- minimal effort required to create seed set;
- does not rely on dictionary or other external knowledge.

Weaknesses:

- uses very simple classifier (but could replace it with a more state-of-the-art one);
- not fully unsupervised: requires seed data;
- does not make use of the structure of a possibly existing dictionary (the sense inventory).



## Supervised WSD

## Supervised WSD

- In Supervised WSD, words in the training data are labelled with their senses:
- She pays $3 \%$ interest/INTEREST-MONEY on the loan.
- He showed a lot of interest/INTEREST-CURIOSITY in the painting.
- You define features that (you hope) will indicate one sense over another
- Train a statistical model that predicts the correct sense given the features
- Classifier is trained for each target word separately


## Features for supervised WSD

An electric guitar and bass player stand off to one side, not really part of the scene, just as a sort of nod to gringo expectations perhaps.

- Collocational feature: (directly neighbouring words in specific positions) $\left[\mathrm{w}_{i-2}, \mathrm{POS}_{i-2}, \mathrm{w}_{i-1}, \mathrm{POS}_{i-1}, \mathrm{w}_{i+1}, \mathrm{POS}_{i+1}, \mathrm{w}_{i+2}, \mathrm{POS}_{i+2}\right.$ ] [guitar, NN, and, CC, player, NN, stand, VB]
- Bag of Words feature: (any content words in a 50 word window) 12 most frequent content words from bass collection: [fishing, big, sound, player, fly, rod, pound, double, runs, playing, guitar, band] $\rightarrow[0,0,0,1,0,0,0,0,0,0,1,0]$


## Naive Bayes

- Goal: choose the best sense $\widehat{s}$ out of the set of possible senses $S$ for an input vector $\vec{F}$ :

$$
\widehat{s}=\underset{s \in S}{\arg \max } P(s \mid \vec{F})
$$

- It is difficult to collect statistics for this equation directly.
- Rewrite it using Bayes' rule:

$$
\widehat{s}=\underset{s \in S}{\arg \max }=\frac{P(\vec{F} \mid s) P(s)}{P(\vec{F})}
$$

- Drop $P(\vec{F})$ - it is a constant factor in $\arg \max$
- Assume that $F_{i}$ are independent:

$$
P(\vec{F} \mid s) \approx \prod_{n}^{j=1} P\left(F_{i} \mid s\right)
$$

## Naive Bayesian classifier

- Naive Bayes Classifier:

$$
\widehat{s}=\underset{s \in S}{\arg \max } P(s) \prod_{n}^{j=1} P\left(F_{i} \mid s\right)
$$

- Parameter Estimation (Max. likelihood):
- How likely is sense $s_{i}$ for word form $w_{j}$ ?

$$
P\left(s_{i}\right)=\frac{\operatorname{count}\left(s_{i}, w_{j}\right)}{\operatorname{count}\left(w_{j}\right)}
$$

- How likely is feature $f_{j}$ given sense $s_{i}$ ?

$$
P\left(F_{j} \mid s_{i}\right)=\frac{\operatorname{count}\left(s_{i}, F_{j}\right)}{\operatorname{count}\left(s_{i}\right)}
$$

## Classification based on dense word representations



## Classification based on dense word representations



- manually defined features
- static word embeddings: word2vec, fastText, GloVe etc


## Classification based on dense word representations



- manually defined features
- static word embeddings: word2vec, fastText, GloVe etc
- classifier: Multi-layer perceptron, etc


## +a sentence encoder



- static word embeddings: e.g., word2vec, etc
$\triangleright$ based on word types


## + a sentence encoder



- static word embeddings: e.g., word2vec, etc
$\triangleright$ based on word types
- encoder: e.g. LSTM, transformer, etc


## +a sentence encoder



- static word embeddings: e.g., word2vec, etc
$\triangleright$ based on word types
- encoder: e.g. LSTM, transformer, etc
- classifier: softmax layer, etc


## +contextualised word embeddings



- word vectors: e.g., word2vec, etc


## +contextualised word embeddings



- word vectors: e.g., word2vec, etc
- contextualised word embeddings, e.g. ELMo, BERT, etc


## +contextualised word embeddings



- word vectors: e.g., word2vec, etc
- contextualised word embeddings, e.g. ELMo, BERT, etc
- encoder: e.g. LSTM, transformer, etc


Neuralising the Old

## 1-NN: Lesk with Sense embeddings

- Empirical results: Supervised WSD is better when a good amount of annotation is available.
$\Rightarrow$ The relative lack of annotation is a major limitation.

```
function SIMPLIFIED_LESK(word, sentence)
    best-sense := most frequent sense for word
    max-overlap := 0
    cntxt := set of words in sentence
    ->Embed(sentence)
    foreach sense in senses of word do
        sgn := set of words in gloss and
        overlap := COMPUTE_OVERLAP(sgn, cntxt)
        if overlap > max-overlap then
        max-overlap := overlap
        best-sense := sense
        end
    return best-sense
```


## bag of words $\rightarrow$ vectors

## Summary of lecture

- The Lesk algorithm uses overlap between context and glosses.
- Idea: mutual disambiguation
- The Yarowsky algorithm uses bootstrapping and two key heuristics:
- one sense per collocation;
- one sense per discourse;
- Supervised WSD learns from context and uses ML to learn the best representations for senses (e.g. neurally).
- Fully unsupervised WSD can also be seen as Word sense induction


## Reading

- Jurasfky and Martin, chapter 20.1-20.4.
- Lesk (1986): Automatic sense disambiguation using machine readable dictionaries: how to tell a pine cone from an ice cream cone. In SIGDOC '86, ACM.
- Yarowsky (1995): Unsupervised Word Sense Disambiguation rivaling Supervised Methods. Proceedings of the ACL.
- Raganato, Camacho-Collados and Navigli (2017): Word Sense Disambiguation: A Unified Evaluation Framework and Empirical Comparison.
- Loureiro and Jorge (2019): Language Modelling Makes Sense: Propagating Representations through WordNet for Full-Coverage Word Sense Disambiguation.

