
L98: Introduction to Computational Semantics
Lecture 14: Scope

Simone Teufel and Weiwei Sun

Natural Language and Information Processing Research Group
Department of Computer Science and Technology

University of Cambridge

Lent 2021/22

(1) Every cat loves a cat.

Lecture 14: Scope

1. What is scope?

2. Quantifier scope

3. Presuppositions of
quantifiers

3. Negative scope

4. Other types of scope

5. Representing scope

What Is Scope?

Scope

Scope is an effect in syntax and semantics

• where a scopal lexical item casts its semantic effect over a particular
part of the clause or phrase

• the entire part of the clause is then said to be in the scope of the scopal
element

• e.g negative scope:

(2) a. He didn’t see the cow

b. He saw no cow

c. He didn’t only see the cow, but also the bull

1 of 33

Universal and Existential Scope

Reminder from lecture 8

(3) a. No student smokes
@x(student’(x) ∧ smoke’(x))

b. All/every student(s) smoke(s)
∀x(student’(x)→ smoke’(x))

Lexical entries for the quantifiers:

JnoK = λP.[λQ.[@x(P (x) ∧Q(x))]]
JeveryK = λP.[λQ.[∀x(P (x)→ Q(x))]]

In order to do what they need to do (namely return a quantified NP of
type 〈〈e, t〉, t〉), such quantifiers must be of type 〈〈e, t〉, 〈〈e, t〉, t〉〉, which
indicates that a quantifier identifies a relation between two sets.

2 of 33

Analysis from Lecture 8 (every student)
S

∀x(student’(x) → smoke’(x))

t

VP
λx.smoke’(x)

〈e, t〉

V
smokes

λx.smoke’(x)

NP
λQ.[∀x(student’(x) → Q(x))]

〈〈e, t〉, t〉

NP
〈e, t〉

N
student

λy.student’(y)

DET
〈〈e, t〉, 〈〈e, t〉, t〉〉

every
λP.[λQ.[∀x(P (x) → Q(x))]]

! Only Functional Application used

3 of 33

Analysis from Lecture 8 (no student)
S

@x(student’(x) ∧ smoke’(x))

t

VP
λx.smoke’(x)

〈e, t〉

V
smokes

λx.smoke’(x)

NP
λQ.[@x(student’(x) ∧Q(x))]

〈〈e, t〉, t〉

NP
〈e, t〉

N
student

λy.student’(y)

DET
〈〈e, t〉, 〈〈e, t〉, t〉〉

no
λP.[λQ.[@x(P (x) ∧Q(x))]]

! Only Functional Application used

4 of 33

Nothing

S
@x(vanish’(x))

t

VP
〈e, t〉

V
vanished

λx.vanish’(x)

NP
〈〈e, t〉, t〉

N
nothing

λQ.[@x(Q(x)]

S
vanish’(Kim’)

t

VP
〈e, t〉

V
vanished

λx.vanish’(x)

NP
e

N
Kim
Kim’

FUNCTOR

5 of 33

Syntax–semantics mismatch

(4) Kim loves every cat B∀x(cat’(x)→ love’(Kim’, x))

S(loves)

VP(loves)

NP(cat)

NP

N
cat

DET
every

V
loves

NP(Kim)

N
Kim

〈∀,→〉

love’

xKim’

cat’

x

x

An alternative analysis of noun phrases: DET is the syntactic head.

6 of 33

Syntax–semantics mismatch

(4) Kim loves every cat B∀x(cat’(x)→ love’(Kim’, x))

S(loves)

VP(loves)

NP(cat)

NP

N
cat

DET
every

V
loves

NP(Kim)

N
Kim

〈∀,→〉

love’

xKim’

cat’

x

x

An alternative analysis of noun phrases: DET is the syntactic head.

6 of 33

Syntax–semantics mismatch

(4) Kim loves every cat B∀x(cat’(x)→ love’(Kim’, x))

S(loves)

VP(loves)

NP(cat)

NP

N
cat

DET
every

V
loves

NP(Kim)

N
Kim

〈∀,→〉

love’

xKim’

cat’

x

x

An alternative analysis of noun phrases: DET is the syntactic head.

6 of 33

Syntax–semantics mismatch

(4) Kim loves every cat B∀x(cat’(x)→ love’(Kim’, x))

S(loves)

VP(loves)

NP(cat)

NP

N
cat

DET
every

V
loves

NP(Kim)

N
Kim

〈∀,→〉

love’

xKim’

cat’

x

x

An alternative analysis of noun phrases: DET is the syntactic head.

6 of 33

Problem with quantified NPs in object position

S

VP U

NP
λQ.[∀x(cat’(x) → Q(x))]

〈〈e, t〉, t〉

every cat

V
λx.[λy.love’(y, x)]

〈e, 〈e, t〉〉
loves

NP

N
Kim

U Type mismatch

i VP: ∀x(cat’(x)→ λy.love’(y, x))

7 of 33

Problem with quantified NPs in object position

∀x(cat’(x)→ love’(Kim’,x))

“slot” for the expected subject

“semantic materials” correspond to every cat

“semantic materials” correspond to loves

Jevery catK is separated into two parts

• an unbound variable x

• universal quantifier ∀x(cat’(x)→ . . .)

8 of 33

We now need some heavy machinery

• Movement

• Traces

• Predicate abstraction rule for binding of traces

• Different shaped trees

9 of 33

Movement and traces

What if in reality the tree looks like this:

S

.

S

VP

t1
V

loves

NP

N
Kim

1

NP

every cat

∀x(cat’(x)→ love’(Kim’,x))

λx.[love’(Kim’,x)]

love’(Kim’,x)

λy.[love’(y,x)]

• When a constituent is moved, a trace (here: t1) is left in its place. It’s
bound to its index (here: 1).

• What is the functionality of 1 ?
Binding x – adding λx. This is function abstraction in λ-calculus.

10 of 33

Movement and traces

What if in reality the tree looks like this:

S

.

S

VP

t1
V

loves

NP

N
Kim

1

NP

every cat

∀x(cat’(x)→ love’(Kim’,x))

λx.[love’(Kim’,x)]

love’(Kim’,x)

λy.[love’(y,x)]

• When a constituent is moved, a trace (here: t1) is left in its place. It’s
bound to its index (here: 1).

• What is the functionality of 1 ?
Binding x – adding λx. This is function abstraction in λ-calculus.

10 of 33

Movement and traces

What if in reality the tree looks like this:

S

.

S

VP

t1
V

loves

NP

N
Kim

1

NP

every cat

∀x(cat’(x)→ love’(Kim’,x))

λx.[love’(Kim’,x)]

love’(Kim’,x)

λy.[love’(y,x)]

• When a constituent is moved, a trace (here: t1) is left in its place. It’s
bound to its index (here: 1).

• What is the functionality of 1 ?
Binding x – adding λx. This is function abstraction in λ-calculus.

10 of 33

Movement and traces

What if in reality the tree looks like this:

S

.

S

VP

t1
V

loves

NP

N
Kim

1

NP

every cat

∀x(cat’(x)→ love’(Kim’,x))

λx.[love’(Kim’,x)]

love’(Kim’,x)

λy.[love’(y,x)]

• When a constituent is moved, a trace (here: t1) is left in its place. It’s
bound to its index (here: 1).

• What is the functionality of 1 ?
Binding x – adding λx. This is function abstraction in λ-calculus.

10 of 33

Movement and traces

What if in reality the tree looks like this:

S

.

S

VP

t1
V

loves

NP

N
Kim

1

NP

every cat

∀x(cat’(x)→ love’(Kim’,x))

λx.[love’(Kim’,x)]

love’(Kim’,x)

λy.[love’(y,x)]

• When a constituent is moved, a trace (here: t1) is left in its place. It’s
bound to its index (here: 1).

• What is the functionality of 1 ?
Binding x – adding λx. This is function abstraction in λ-calculus.

10 of 33

Movement and traces

What if in reality the tree looks like this:

S

.

S

VP

t1
V

loves

NP

N
Kim

1

NP

every cat

∀x(cat’(x)→ love’(Kim’,x))

λx.[love’(Kim’,x)]

love’(Kim’,x)

λy.[love’(y,x)]

• When a constituent is moved, a trace (here: t1) is left in its place. It’s
bound to its index (here: 1).

• What is the functionality of 1 ?
Binding x – adding λx. This is function abstraction in λ-calculus.

10 of 33

Now our types work out

S
t

〈e, t〉

S
t

VP
〈e, t〉

t1
e

V
〈e, 〈e, t〉〉

loves

NP
e

Kim

1
e

NP
〈〈e, t〉, t〉

every cat

a new rule based on
function abstraction

λx+M

Heim and Kratzer, p. 112 and chapter 5.4 on Variable binding
11 of 33

Multiple quantification

HP sent one representative to every meeting.

12 of 33

Double quantification under this analysis: Interpretation 1
S
t

〈e, t〉

S
t

〈e, t〉

S
t

VP
〈e, t〉

PP
e

t2
e

P
to

t1
e

V
〈e, 〈e, 〈e, t〉〉〉

sent

NP
e

N
HP

1
e

NP
〈〈e, t〉, t〉

one representative

2
e

NP
〈〈e, t〉, t〉

every meeting

∀m(∃r(sent’(e) ∧ AGENT(e, hp’) ∧ THEME(e, r) ∧ RECIPIENT(e,m)))
13 of 33

Double quantification under this analysis: Interpretation 2
S
t

〈e, t〉

S
t

〈e, t〉

S
t

VP
〈e, t〉

PP
e

t2
e

P
to

t1
e

V
〈e, 〈e, 〈e, t〉〉〉

sent

NP
e

N
HP

2
e

NP
〈〈e, t〉, t〉

every meeting

1
e

NP
〈〈e, t〉, t〉

one representative

∃r(∀m(sent’(e) ∧ AGENT(e, hp’) ∧ THEME(e, r) ∧ RECIPIENT(e,m)))
14 of 33

Interpretation under this world

• There is exactly one company, c.

• There are exactly two representatives, r1 and r2.

• There are exactly three meetings, m1, m2 and m3.

• c sent r1 to m1, r2 to both m2 and m3, and nobody else to anything
else.

Which truth-value is assigned to the two interpretations on the previous
pages under this world?

15 of 33

In-situ analysis vs. Movement analysis

• What we have just seen here is the movement analysis favoured by
many Chomskyan Generative Linguists

• There is also an “in-situ” analysis

• In-situ means that the quantified NPs stay in their place

• The solution then involves two different types for quantified subject and
object NPs

• CCG chose this solution

• MRS solves the problem with underspecification

• Contentious issue in Computational Linguistics

• Advantages and disadvantages for either

16 of 33

Presupposition and Quantifiers

Presupposition

(5) a. All American kings lived in New York.

b. The vice-president is in the house.

c. The twenty-five cats are in the kitchen.

Observation: Presupposition failure for a) in all cases, and for b) and c) if
there aren’t exactly one (salient) vice-president or twenty-five cats exactly.

So which of the following definitions of the semantics of “every” is correct?

• Fevery = λ 〈A,B〉 : A ⊆ B (Theory 1)

• Fevery = λ 〈A,B〉 : A 6= ∅ ∧A ⊆ B (Theory 2)

17 of 33

Presupposition

(5) a. All American kings lived in New York.

b. The vice-president is in the house.

c. The twenty-five cats are in the kitchen.

Observation: Presupposition failure for a) in all cases, and for b) and c) if
there aren’t exactly one (salient) vice-president or twenty-five cats exactly.

So which of the following definitions of the semantics of “every” is correct?

• Fevery = λ 〈A,B〉 : A ⊆ B (Theory 1)

• Fevery = λ 〈A,B〉 : A 6= ∅ ∧A ⊆ B (Theory 2)

17 of 33

Presuppositional Hypothesis

Presuppositional hypothesis (H&K, page 163)

In natural languages, a lexical item δ with a denotation of type
〈〈e, t〉, 〈〈e, t〉, t〉〉 is presuppositional

iff ∀A ⊆ D,B ⊆ D : ifA = ∅, then 〈A,B〉 6∈ dom(Fδ)

(6) All American kings lived in New York

This means that presupposition failure occurs if A = ∅ (there are no
American kings)

18 of 33

Some doubt about Presuppositional Hypothesis

Speaker intuitions about the following sentences:

(7) a. No American king lived in New York.

b. Two American kings lived in New York.

and more problems:

(8) a. Every unicorn has exactly one horn.

b. All trespassers will be prosecuted.

19 of 33

Negative Scope

Negative scope

(9) a. You cannot not do this.

b. You must/should do it

• Double negation is logically equivalent to positive statement

• Modulo focus effects; modulo presuppositions

• In some langugages, what looks like double negation is in fact a
circumflex morpheme for single negation:

(10) a. I ain’t seen no gun around here. (BAE)

b. Je ne regrette rien (French)

20 of 33

Triple negation

Grand Designs, Episode “The Whirral 2016”

21 of 33

Types of Scope

Types of scope

We have so far seen quantifier scope and negative scope. Other kinds:

• modal scope

• “only” scope

• comparative scope

• contrastive scope (rather than)

• hypothetical scope

• attributive scope (she said that. . .)

• quotation scope (so-called. . .)

• . . .

22 of 33

Problems with negation and modal scope

“Du musst nicht weinen.” (= you needn’t cry)

Informing of lack of need to cry?

23 of 33

Problems with negation and modal scope

English:

(11) a. you mustn’t cry
must (not (cry))

b. you needn’t cry
not (must (cry))

German:

(12) a. du musst nicht weinen
not (must (cry))

b. du darfst nicht weinen
must (not (cry))

A simple mistranslation

24 of 33

Problems with negation and modal scope

English:

(11) a. you mustn’t cry
must (not (cry))

b. you needn’t cry
not (must (cry))

German:

(12) a. du musst nicht weinen
not (must (cry))

b. du darfst nicht weinen
must (not (cry))

A simple mistranslation

24 of 33

Somebody misheard something

(13) I could care less

What does that possibly mean?

Comparative, modal and negation scope

25 of 33

Somebody misheard something

(13) I could care less

What does that possibly mean?

Comparative, modal and negation scope

25 of 33

“Only” scope

(14) a. Kim loved her cats.

b. Only Kim loved her cats.

c. Kim only loved her cats.

d. Kim loved only her cats.

• Comparison on some scope is involved

• “only” picks out the smaller situation

• Unless the scope is numerical or “big-small”, we need to infer the
comparison ground.

• “only”’s smaller cousin is called “just”

• Writing tip

26 of 33

Trouble with “only” scope

(15) a. If the notice had only said ‘mine-field’ in Welsh as well as in
English, . . .

b. If only the notice had said ‘mine-field’ in Welsh as well as in
English, . . .

c. If the notice had only said (rather than signalled in Morse-code)
‘mine-field’ in Welsh as well as in English, . . .

27 of 33

Only meets not

(16) a. He didn’t only see the cow, but also the bull

b. He only saw the cow, and not the bull

c. It is not the case that he saw only the cow and not the bull

d. He saw the cow and the bull

• We are told explicitly that it is not the case that the cow-seeing alone is
in “only” scope.

• The bull-seeing also happened.

• This type of scope is closely related to the concept of focus (discourse
lecture)

• “ You might be thinking that it’s more likely to see the cow, but hey,
the bull was also seen.”

• There is a “not” in the sentence, but neither the cow-seeing nor the
bull-seeing are negated.

28 of 33

Contrastive scope

(17) a. Instead of using biaffine parse selection in subordinate structures,
my system uses simple black magic.

b. In our interpretation of possible worlds, fictional characters are
treated as semi-translucent slime, rather than as micron-thin gold
plate, as Millovski (2013) does.

Part of the effect of contrastive scope is negation.

29 of 33

Writing tip

!

Avoid scope ambiguity when negative (or partially negative) scope is
involved.

1 Recognise scopal properties of lexical items you want to use.

2 Move clauses which are under scope into positions where the
scope is naturally bounded.

(18) I do X, rather than Y, which causes Z to happen.

 Whoa. Who did Z, you or the people who do Y?

� Reformulations:

(19) a. Rather than doing Y, which would cause Z, I do X.

b. Rather than doing Y, I do X, which then causes Z to happen.

c. In order to avoid Z, I do X, rather than doing Y.

d. In order to achieve Z, I do X, rather than doing Y.

30 of 33

Writing tip

!

Avoid scope ambiguity when negative (or partially negative) scope is
involved.

1 Recognise scopal properties of lexical items you want to use.

2 Move clauses which are under scope into positions where the
scope is naturally bounded.

(18) I do X, rather than Y, which causes Z to happen.

 Whoa. Who did Z, you or the people who do Y?

� Reformulations:

(19) a. Rather than doing Y, which would cause Z, I do X.

b. Rather than doing Y, I do X, which then causes Z to happen.

c. In order to avoid Z, I do X, rather than doing Y.

d. In order to achieve Z, I do X, rather than doing Y.

30 of 33

Special forcus on “careless i.e.”

(20) I wouldn’t do X, i.e., do Y.

 Whoa. Is Y negated or not?

� Avoid careless “i.e.”

31 of 33

Representing Scope in CS

Scope

1

2
3

45

6

7

8

6

pron

die

loc nonsp

day
card

only

after

generic entity

only

arg1
arg2

arg1

bv

arg1

arg1

arg2

arg1

S

S/PP

he died

PP

PRP

four days after that

ADV

only

32 of 33

Reading

• Heim and Kratzer (1999):
• Chapter 6 and 7 for quantifiers and scope
• Chapter 5 for traces and Predicate Abstraction

• Reading for next time: Arcs of Coherence; chapter 5 from Pinker (2014)

33 of 33

	What Is Scope?
	Universal and Existential Scope
	Presupposition and Quantifiers
	Negative Scope
	Types of Scope
	Representing Scope in CS

