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[...] you can get away with incomplete semantics when you are
doing parsing, but when you’re doing generation, you have to specify
everything in semantics. And we don’t know how to do that. At
least we don’t know how to do that completely or properly.

Mark Steedman

ACL lifetime archievement award lecture (vimeo.com/288152682)

Lecture 10: Meaning Representations in Natural Language Generation

1. Several NLG tasks

2. Parsing a Graph

3. The constructivist hypothesis

4. Small clause

vimeo.com/288152682


Several NLG Tasks



Example 1: Question generation
• X. Du, J. Shao and C. Cardie. Learning to Ask: Neural Question

Generation for Reading Comprehension.
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Example 2: Knowledge graph to string generation

• R. Koncel-Kedziorski, D. Bekal, Y. Luan, M. Lapata, and H. Hajishirzi.
Text Generation from Knowledge Graphs with Graph Transformers.

2 of 15



Alchemy

a type of chemistry, especially in the Middle Ages, that dealt with trying
to find a way to change ordinary metals into gold and with trying to find
a medicine that would cure any disease

https://dictionary.cambridge.org
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Surface realisation

The boy wants the girl to believe him

BV

top

ARG2

ARG1 BV ARG2ARG1

Meaning

want v 1the q

boy n 1the q believe v 1 pronoun q

girl n 1
pron

BV

BV

ARG1 ARG2

ARG1 ARG2 BV

λx.λy.boy’(x) ∧ girl’(y) ∧ . . .

· · · · · ·

The boys
wants the girl
to believe him

Text

Understanding

Generation

The task

Map meaning representations to sentences.
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A very brief history
GraphBank � Symbolic + statistical/neural � Neural end-to-end �

≤ 2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

Unification grammar
[28, 6, 5]

Categorial Grammar [36]
Logic-based MRs [19]

ERS-EDS [22]
ERS-DMRS [9]

ERS-Redwoods [23]
ERS-DeepBank [12]

UCCA [1]
AMR [2]

Chinese AMR [18]
GraphBank [17]

HRG [7]

S-grammar [14]

RGG [13]
SNRG [30]

SHRG [33]

DAG-to-tree [24]

JAMR [11]

DAG Automata [8]

DAG Transducer [34]

Seq2seq [16, 15]

Seq2seq+PLM [20, 25]Seq2seq+PLM [20, 25]

Graph2seq
GCN/GAT/GIN/GraphLSTM/GGNN. . . [21, 3, 26, 10, 27, 38]

Transformer [35, 31, 37, 4, 39, 29]

Based on symbolic system:

• Theoretical: modeling syntax–semantics correspondence

• Empirical: building comprehensive rules, improving efficiency. . .
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Semantic relation to syntactic relation

man n 1 book n of child n 1

the q the q the q

give v 1

becuase x

unknown

BV BV BV

ARG1

ARG2

ARG3

ARG1ARG2

(the.dat) dem Kind

(the.nom) der Mann

(the.acc) das Buch
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Semantic relation to syntactic construction
The Principle of Compositionality

The meaning of an expression is a function of the meanings of
its parts and of the way they are syntactically combined.

B. Partee

pandablue
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Parsing a Semantic Graph



Recursively decompose a graph

S

VP

VP

VP

NP

apples

V

eat

COMP

to

V

want

NP

I

apple n 1

udef qeat v 1

want v 1pron

pronoun q

BVARG2ARG2

ARG1

ARG1BV

apple n 1

udef qeat v 1

want v 1

BVARG2ARG2

apple n 1

udef qeat v 1

BVARG2

∅

apple n 1

udef qeat v 1

BVARG2

eat v 1

apple n 1

udef q

BV

want v 1

pron

pronoun q

BV
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Graph parsing with an HRG

A dynamic programming algorithm [7]

A

CB D

E F G

arg1

arg1

arg1

arg1

cjt-l

cjt-r
cjt-l

cjt-r

2 3

1

Y1

2

3

4

X=⇒Z

arg1
arg1

arg1
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Graph-to-tree parsing

A B C

DEF

canafford neg

waitvisitorthe

BV ARG1

ARG1
ARG2

ARG1 ARG1

A B C

DE
can

afford

neg

wait

ARG1

ARG1
ARG2

ARG1

ARG1

G1 G2

1

2

VCP V−→VP

γ5
Alignment
1 7→ E

2 7→ A

· · ·

G

β1

β2 β3 β4 β5

β6 β7 β8 β9 β10 β11β12

G

G1 G2
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Scoring a derivation tree step-by-step

boysome

want
go

arg1arg1

bv

arg2S

want
go

arg1arg1

arg2VP

go
arg1VP

go
arg1V

go

∅

to

want
arg1

arg2 V

want

boysome
bvNP

boy
N

boys

some
bvD

Some

⇐=

X Y

V

Z

=⇒VP

X

Z
1

2

3

VP

Parsing Semantic Graphs

arg max
T∈T (G)

score(T )
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The Constructivist Hypothesis



Locality as terminal edge–adjacency

The Principle of Adjacency [32]

Combinatory rules may only apply to finitely many phonologically
realized and string-adjacent entities.

A graph-based view of string-adjacency

The boy

next

really

next

seems

next

to

next

care

next

1 2 3 4
NP VPnext

co-recognizable
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Locality as terminal edge–adjacency

In a to-be-recognized subgraph which consists of only terminal edges, if
one node is identified in an input graph, the possible positions of the other
nodes are highly restricted.

Example

4

5

6

8
7

1
2

X
1

2
3

9

3
Y

1

2

3
4

RDη1
RDη2

RDη

Shadowed areas mean subgraphs which consists of only terminal edges. If
4 is identified, then the cost to recognize 6 95 is highly restricted.

13 of 15



Distributed Argument-Structure
Lexicalized Grammar

ABCD
careseemreally

arg1 arg1 arg1VP

ABC
careseem

arg1 arg1VRP

B A
arg1

care

VPC B
arg1

seem

VD C
really

arg1
ADV

2

1

ADV VRP

γ4

1 2

3
V VP

γ5

Construction Grammar

BCD

careseemreally

arg1 arg1
VP

BC

careseem

arg1
VRP

B
care

VPC
seem

VD
really

ADV

12
VRPADV

arg1
γ12

1 2
V VP

arg1
γ13

Lexicalism vs. Constructivism
• Lexicalist approaches were dominant in theoretical linguistics.

• Lexicalist approaches are dominant in computational linguistics: HPSG,
LFG, CCG, . . .

• HRG-based parsing (as a derivational model) favors the constructivist
approach. Parsing a graph can be as fast as parsing a string.

• Roughly speaking, we lexicalise concepts and constructionalise relations
of concepts.
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Small Clause



Small Clause

1

23

4

pron

want

exciting

thing

arg1arg1

arg2

1

23

4

pron

want

exciting

thing

arg1arg1

arg2

S

VP

VP

to be exciting

VP

wants things

NP

PRP

she

S

VP

VP

things to be exciting

VP

wants

NP

PRP

she
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