
L95: Natural Language Syntax and Parsing
3) Dependency Parsing

Paula Buttery

Dept of Computer Science & Technology, University of Cambridge

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 1 / 17

Generative Parsing Models

Reminder:

So far we have:

(for statistical parsing more generally we need...)

Used CFGs to define a set of strings through legal structures

(a grammar)

Used the CKY algorithm to find all structures for a given string

(a parsing algorithm)

Used PCFGs to assign probabilities to the structures deriving the
string

(a scoring model for parses)

Used a modified CKY algorithm to find the best structure from all the
possibilities

(an algorithm for finding best parse)

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 2 / 17

Generative Parsing Models

Reminder:

So far we have: (for statistical parsing more generally we need...)

Used CFGs to define a set of strings through legal structures
(a grammar)

Used the CKY algorithm to find all structures for a given string
(a parsing algorithm)

Used PCFGs to assign probabilities to the structures deriving the
string (a scoring model for parses)

Used a modified CKY algorithm to find the best structure from all the
possibilities (an algorithm for finding best parse)

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 2 / 17

Generative Parsing Models

Reminder:

Recall that:

T̂ (W) = argmax
trees that yield W

P(T |W)

finding T s that yield W requires a parsing algorithm over a grammar

knowing P(T |W) requires a probabilistic model over T

argmax requires an algorithm for finding best parse

More generally:

T̂ (W) = argmax
trees that yield W

Score(T |W)

Generative models use the product of estimated probabilities of parse
pieces to find P(T |W) but we could use other scoring functions...

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 3 / 17

Generative Parsing Models

Reminder:

Recall that:

T̂ (W) = argmax
trees that yield W

P(T |W)

finding T s that yield W requires a parsing algorithm over a grammar

knowing P(T |W) requires a probabilistic model over T

argmax requires an algorithm for finding best parse

More generally:

T̂ (W) = argmax
trees that yield W

Score(T |W)

Generative models use the product of estimated probabilities of parse
pieces to find P(T |W) but we could use other scoring functions...

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 3 / 17

Generative Parsing Models

Generative models have some issues

Recall that:

P(T ,W) =
n∏

i=1
P(Ai → Bi)

But P(T ,W) = P(T)P(W |T) and that P(W |T) = 1 so

P(T ,W) = P(T) and thus P(T) =
n∏

i=1
P(Ai → Bi)

How do we know how to break the parse into pieces?

Is the independence assumption valid?

Generative models simultaneously model the tree and the
string—discriminative models define P(T |W) directly

Models are discriminative because they compare the correct parse
against incorrect parses in training to set parameters... can use
machine learning approaches.

First we’re going to learn about a grammar that we will use to define
T within a discriminative model—dependency grammars.

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 4 / 17

Generative Parsing Models

Generative models have some issues

Recall that:

P(T ,W) =
n∏

i=1
P(Ai → Bi)

But P(T ,W) = P(T)P(W |T) and that P(W |T) = 1 so

P(T ,W) = P(T) and thus P(T) =
n∏

i=1
P(Ai → Bi)

How do we know how to break the parse into pieces?

Is the independence assumption valid?

Generative models simultaneously model the tree and the
string—discriminative models define P(T |W) directly

Models are discriminative because they compare the correct parse
against incorrect parses in training to set parameters... can use
machine learning approaches.

First we’re going to learn about a grammar that we will use to define
T within a discriminative model—dependency grammars.

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 4 / 17

Generative Parsing Models

Generative models have some issues

Recall that:

P(T ,W) =
n∏

i=1
P(Ai → Bi)

But P(T ,W) = P(T)P(W |T) and that P(W |T) = 1 so

P(T ,W) = P(T) and thus P(T) =
n∏

i=1
P(Ai → Bi)

How do we know how to break the parse into pieces?

Is the independence assumption valid?

Generative models simultaneously model the tree and the
string—discriminative models define P(T |W) directly

Models are discriminative because they compare the correct parse
against incorrect parses in training to set parameters... can use
machine learning approaches.

First we’re going to learn about a grammar that we will use to define
T within a discriminative model—dependency grammars.

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 4 / 17

Dependency grammars

A dependency tree is a directed graph

A dependency tree is a directed graph representation of a string—each
edge represents a grammatical relationship between the symbols.

S

NP

N

alice

VP

VP

V

plays

NP

N

croquet

PP

P

with

NP

N

A

pink

N

flamingos

⇒

plays

alice croquet with

flamingos

pink

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 5 / 17

Dependency grammars

A dependency grammar deriving dependency trees

Formally Gdep = (Σ,D, s,⊥,P) where:

Σ is the finite set of alphabet symbols

D is the set of symbols to indicate whether the dependent symbol
(the one on the RHS of the rule) will be located on the left or right of
the current item within the string D = {L,R}
s is the root symbol for the dependency tree (we will use s ∈ Σ but
sometimes a special extra symbol is used)

⊥ is a symbol to indicate an allowed endpoint to the graph

P is a set of rules for generating dependencies:
P = {(α→ β, d) | α ∈ (Σ ∪ s), β ∈ (Σ ∪ ⊥), d ∈ D}

In dependency grammars we refer to the term on the LHS of a rule as the
head and the RHS as the dependent (as opposed to parents and children
in phrase structure grammars).

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 6 / 17

Dependency grammars

Dependency trees have several representations

Two diagrammatic representations of a dependency tree for the string
bacdfe generated using Gdep = (Σ,D, s,⊥,P) where:

Σ = {a...f }
D = {L,R}
s = a
P = {(a → b,L | c,R | d ,R)

(d → e,R)
(e → f ,L)
(b →⊥,L | ⊥,R)
(c →⊥,L | ⊥,R)
(f →⊥,L | ⊥,R)}

a

b c d

e

f

b a c d f e

The same rules would have been used to generate the string badfec.
Useful when there is flexibility in the symbol order of grammatical strings.

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 7 / 17

Dependency parsing

Recall: shift-reduce parsers and deterministic languages

LR(k) Shift-reduce parsers are most useful for recognising the strings of
deterministic languages (languages where no string has more than one
analysis) which have been described by an unambiguous grammar.

Quick reminder:

The parsing algorithm has two actions: shift and reduce

Initially the input string is held in the buffer and the stack is empty.

Symbols are shifted from the buffer to the stack

When the top items of the stack match the RHS of a rule in the
grammar then they are reduced, that is, they are replaced with the
LHS of that rule.

k refers to the look-ahead.

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 8 / 17

Dependency parsing

Shift-reduce parsing using a deterministic CFG

Shift-reduce parse for the string abcd generated using Gcfg = (Σ,N , s,P):

Σ = {a, b, c}
N = {S ,A,B,C ,D}
s = S
P = {S → A B,

A → a,
B → b C ,
C → c D,
D → d}

stack buffer action
abcd

shift
a bcd reduce
A bcd shift
Ab cd shift
Abc d shift
Abcd reduce
AbcD reduce
AbC reduce
AB reduce
S

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 9 / 17

Dependency parsing

Shift-reduce parsing using a deterministic CFG

Shift-reduce parse for the string abcd generated using Gcfg = (Σ,N , s,P):

Σ = {a, b, c}
N = {S ,A,B,C ,D}
s = S
P = {S → A B,

A → a,
B → b C ,
C → c D,
D → d}

stack buffer action
abcd shift

a bcd reduce
A bcd shift
Ab cd shift
Abc d shift
Abcd reduce
AbcD reduce
AbC reduce
AB reduce
S

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 9 / 17

Dependency parsing

Shift-reduce parsing using a deterministic CFG

Shift-reduce parse for the string abcd generated using Gcfg = (Σ,N , s,P):

Σ = {a, b, c}
N = {S ,A,B,C ,D}
s = S
P = {S → A B,

A → a,
B → b C ,
C → c D,
D → d}

stack buffer action
abcd shift

a bcd

reduce
A bcd shift
Ab cd shift
Abc d shift
Abcd reduce
AbcD reduce
AbC reduce
AB reduce
S

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 9 / 17

Dependency parsing

Shift-reduce parsing using a deterministic CFG

Shift-reduce parse for the string abcd generated using Gcfg = (Σ,N , s,P):

Σ = {a, b, c}
N = {S ,A,B,C ,D}
s = S
P = {S → A B,

A → a,
B → b C ,
C → c D,
D → d}

stack buffer action
abcd shift

a bcd reduce

A bcd shift
Ab cd shift
Abc d shift
Abcd reduce
AbcD reduce
AbC reduce
AB reduce
S

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 9 / 17

Dependency parsing

Shift-reduce parsing using a deterministic CFG

Shift-reduce parse for the string abcd generated using Gcfg = (Σ,N , s,P):

Σ = {a, b, c}
N = {S ,A,B,C ,D}
s = S
P = {S → A B,

A → a,
B → b C ,
C → c D,
D → d}

stack buffer action
abcd shift

a bcd reduce
A bcd

shift
Ab cd shift
Abc d shift
Abcd reduce
AbcD reduce
AbC reduce
AB reduce
S

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 9 / 17

Dependency parsing

Shift-reduce parsing using a deterministic CFG

Shift-reduce parse for the string abcd generated using Gcfg = (Σ,N , s,P):

Σ = {a, b, c}
N = {S ,A,B,C ,D}
s = S
P = {S → A B,

A → a,
B → b C ,
C → c D,
D → d}

stack buffer action
abcd shift

a bcd reduce
A bcd shift

Ab cd shift
Abc d shift
Abcd reduce
AbcD reduce
AbC reduce
AB reduce
S

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 9 / 17

Dependency parsing

Shift-reduce parsing using a deterministic CFG

Shift-reduce parse for the string abcd generated using Gcfg = (Σ,N , s,P):

Σ = {a, b, c}
N = {S ,A,B,C ,D}
s = S
P = {S → A B,

A → a,
B → b C ,
C → c D,
D → d}

stack buffer action
abcd shift

a bcd reduce
A bcd shift
Ab cd

shift
Abc d shift
Abcd reduce
AbcD reduce
AbC reduce
AB reduce
S

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 9 / 17

Dependency parsing

Shift-reduce parsing using a deterministic CFG

Shift-reduce parse for the string abcd generated using Gcfg = (Σ,N , s,P):

Σ = {a, b, c}
N = {S ,A,B,C ,D}
s = S
P = {S → A B,

A → a,
B → b C ,
C → c D,
D → d}

stack buffer action
abcd shift

a bcd reduce
A bcd shift
Ab cd shift

Abc d shift
Abcd reduce
AbcD reduce
AbC reduce
AB reduce
S

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 9 / 17

Dependency parsing

Shift-reduce parsing using a deterministic CFG

Shift-reduce parse for the string abcd generated using Gcfg = (Σ,N , s,P):

Σ = {a, b, c}
N = {S ,A,B,C ,D}
s = S
P = {S → A B,

A → a,
B → b C ,
C → c D,
D → d}

stack buffer action
abcd shift

a bcd reduce
A bcd shift
Ab cd shift
Abc d

shift
Abcd reduce
AbcD reduce
AbC reduce
AB reduce
S

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 9 / 17

Dependency parsing

Shift-reduce parsing using a deterministic CFG

Shift-reduce parse for the string abcd generated using Gcfg = (Σ,N , s,P):

Σ = {a, b, c}
N = {S ,A,B,C ,D}
s = S
P = {S → A B,

A → a,
B → b C ,
C → c D,
D → d}

stack buffer action
abcd shift

a bcd reduce
A bcd shift
Ab cd shift
Abc d shift

Abcd reduce
AbcD reduce
AbC reduce
AB reduce
S

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 9 / 17

Dependency parsing

Shift-reduce parsing using a deterministic CFG

Shift-reduce parse for the string abcd generated using Gcfg = (Σ,N , s,P):

Σ = {a, b, c}
N = {S ,A,B,C ,D}
s = S
P = {S → A B,

A → a,
B → b C ,
C → c D,
D → d}

stack buffer action
abcd shift

a bcd reduce
A bcd shift
Ab cd shift
Abc d shift
Abcd

reduce
AbcD reduce
AbC reduce
AB reduce
S

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 9 / 17

Dependency parsing

Shift-reduce parsing using a deterministic CFG

Shift-reduce parse for the string abcd generated using Gcfg = (Σ,N , s,P):

Σ = {a, b, c}
N = {S ,A,B,C ,D}
s = S
P = {S → A B,

A → a,
B → b C ,
C → c D,
D → d}

stack buffer action
abcd shift

a bcd reduce
A bcd shift
Ab cd shift
Abc d shift
Abcd reduce

AbcD reduce
AbC reduce
AB reduce
S

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 9 / 17

Dependency parsing

Shift-reduce parsing using a deterministic CFG

Shift-reduce parse for the string abcd generated using Gcfg = (Σ,N , s,P):

Σ = {a, b, c}
N = {S ,A,B,C ,D}
s = S
P = {S → A B,

A → a,
B → b C ,
C → c D,
D → d}

stack buffer action
abcd shift

a bcd reduce
A bcd shift
Ab cd shift
Abc d shift
Abcd reduce
AbcD

reduce
AbC reduce
AB reduce
S

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 9 / 17

Dependency parsing

Shift-reduce parsing using a deterministic CFG

Shift-reduce parse for the string abcd generated using Gcfg = (Σ,N , s,P):

Σ = {a, b, c}
N = {S ,A,B,C ,D}
s = S
P = {S → A B,

A → a,
B → b C ,
C → c D,
D → d}

stack buffer action
abcd shift

a bcd reduce
A bcd shift
Ab cd shift
Abc d shift
Abcd reduce
AbcD reduce

AbC reduce
AB reduce
S

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 9 / 17

Dependency parsing

Shift-reduce parsing using a deterministic CFG

Shift-reduce parse for the string abcd generated using Gcfg = (Σ,N , s,P):

Σ = {a, b, c}
N = {S ,A,B,C ,D}
s = S
P = {S → A B,

A → a,
B → b C ,
C → c D,
D → d}

stack buffer action
abcd shift

a bcd reduce
A bcd shift
Ab cd shift
Abc d shift
Abcd reduce
AbcD reduce
AbC

reduce
AB reduce
S

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 9 / 17

Dependency parsing

Shift-reduce parsing using a deterministic CFG

Shift-reduce parse for the string abcd generated using Gcfg = (Σ,N , s,P):

Σ = {a, b, c}
N = {S ,A,B,C ,D}
s = S
P = {S → A B,

A → a,
B → b C ,
C → c D,
D → d}

stack buffer action
abcd shift

a bcd reduce
A bcd shift
Ab cd shift
Abc d shift
Abcd reduce
AbcD reduce
AbC reduce

AB reduce
S

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 9 / 17

Dependency parsing

Shift-reduce parsing using a deterministic CFG

Shift-reduce parse for the string abcd generated using Gcfg = (Σ,N , s,P):

Σ = {a, b, c}
N = {S ,A,B,C ,D}
s = S
P = {S → A B,

A → a,
B → b C ,
C → c D,
D → d}

stack buffer action
abcd shift

a bcd reduce
A bcd shift
Ab cd shift
Abc d shift
Abcd reduce
AbcD reduce
AbC reduce
AB

reduce
S

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 9 / 17

Dependency parsing

Shift-reduce parsing using a deterministic CFG

Shift-reduce parse for the string abcd generated using Gcfg = (Σ,N , s,P):

Σ = {a, b, c}
N = {S ,A,B,C ,D}
s = S
P = {S → A B,

A → a,
B → b C ,
C → c D,
D → d}

stack buffer action
abcd shift

a bcd reduce
A bcd shift
Ab cd shift
Abc d shift
Abcd reduce
AbcD reduce
AbC reduce
AB reduce

S

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 9 / 17

Dependency parsing

Shift-reduce parsing using a deterministic CFG

Shift-reduce parse for the string abcd generated using Gcfg = (Σ,N , s,P):

Σ = {a, b, c}
N = {S ,A,B,C ,D}
s = S
P = {S → A B,

A → a,
B → b C ,
C → c D,
D → d}

stack buffer action
abcd shift

a bcd reduce
A bcd shift
Ab cd shift
Abc d shift
Abcd reduce
AbcD reduce
AbC reduce
AB reduce
S

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 9 / 17

Dependency parsing

Dependency parsers use a modified shift-reduce parser

A common method for dependency parsing of natural language
involves a modification of the LR shift-reduce parser

The shift operator continues to move items of the input string from
the buffer to the stack

The reduce operator is replaced with the operations left-arc and
right-arc which reduce the top two stack symbols leaving the head
on the stack

Consider L(Gdep) ⊆ Σ∗, during parsing the stack may hold γab where
γ ∈ Σ∗ and a, b ∈ Σ, and b is at the top of the stack:

left-arc reduces the stack to γb and records use of rule b → a

right-arc reduces the stack to γa and records the use of rule a→ b

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 10 / 17

Dependency parsing

Dependency parsers use a modified shift-reduce parser

Example of shift-reduce parse for the string bacdfe generated using
Gdep = (Σ,D, s,⊥,P)

Σ = {a...z}
D = {L,R}
s = s
P = {(a → b,L | c,R | d ,R)

(d → e,R)
(e → f ,L)}

b a c d f e

stack buffer action record
bacdfe

shift
b acdfe shift
ba cdfe left-arc a → b
a cdfe shift
ac dfe right-arc a → c
a dfe shift
ad fe shift
adf e shift
adfe left-arc e → f
ade right-arc d → e
ad right-arc a → d
a terminate root → a

Note that, for a deterministic parse here, a lookahead is needed

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 11 / 17

Dependency parsing

Dependency parsers use a modified shift-reduce parser

Example of shift-reduce parse for the string bacdfe generated using
Gdep = (Σ,D, s,⊥,P)

Σ = {a...z}
D = {L,R}
s = s
P = {(a → b,L | c,R | d ,R)

(d → e,R)
(e → f ,L)}

b a c d f e

stack buffer action record
bacdfe shift

b acdfe shift
ba cdfe left-arc a → b
a cdfe shift
ac dfe right-arc a → c
a dfe shift
ad fe shift
adf e shift
adfe left-arc e → f
ade right-arc d → e
ad right-arc a → d
a terminate root → a

Note that, for a deterministic parse here, a lookahead is needed

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 11 / 17

Dependency parsing

Dependency parsers use a modified shift-reduce parser

Example of shift-reduce parse for the string bacdfe generated using
Gdep = (Σ,D, s,⊥,P)

Σ = {a...z}
D = {L,R}
s = s
P = {(a → b,L | c,R | d ,R)

(d → e,R)
(e → f ,L)}

b a c d f e

stack buffer action record
bacdfe shift

b acdfe

shift
ba cdfe left-arc a → b
a cdfe shift
ac dfe right-arc a → c
a dfe shift
ad fe shift
adf e shift
adfe left-arc e → f
ade right-arc d → e
ad right-arc a → d
a terminate root → a

Note that, for a deterministic parse here, a lookahead is needed

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 11 / 17

Dependency parsing

Dependency parsers use a modified shift-reduce parser

Example of shift-reduce parse for the string bacdfe generated using
Gdep = (Σ,D, s,⊥,P)

Σ = {a...z}
D = {L,R}
s = s
P = {(a → b,L | c,R | d ,R)

(d → e,R)
(e → f ,L)}

b a c d f e

stack buffer action record
bacdfe shift

b acdfe shift

ba cdfe left-arc a → b
a cdfe shift
ac dfe right-arc a → c
a dfe shift
ad fe shift
adf e shift
adfe left-arc e → f
ade right-arc d → e
ad right-arc a → d
a terminate root → a

Note that, for a deterministic parse here, a lookahead is needed

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 11 / 17

Dependency parsing

Dependency parsers use a modified shift-reduce parser

Example of shift-reduce parse for the string bacdfe generated using
Gdep = (Σ,D, s,⊥,P)

Σ = {a...z}
D = {L,R}
s = s
P = {(a → b,L | c,R | d ,R)

(d → e,R)
(e → f ,L)}

b a c d f e

stack buffer action record
bacdfe shift

b acdfe shift
ba cdfe

left-arc a → b
a cdfe shift
ac dfe right-arc a → c
a dfe shift
ad fe shift
adf e shift
adfe left-arc e → f
ade right-arc d → e
ad right-arc a → d
a terminate root → a

Note that, for a deterministic parse here, a lookahead is needed

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 11 / 17

Dependency parsing

Dependency parsers use a modified shift-reduce parser

Example of shift-reduce parse for the string bacdfe generated using
Gdep = (Σ,D, s,⊥,P)

Σ = {a...z}
D = {L,R}
s = s
P = {(a → b,L | c,R | d ,R)

(d → e,R)
(e → f ,L)}

b a c d f e

stack buffer action record
bacdfe shift

b acdfe shift
ba cdfe left-arc a → b

a cdfe shift
ac dfe right-arc a → c
a dfe shift
ad fe shift
adf e shift
adfe left-arc e → f
ade right-arc d → e
ad right-arc a → d
a terminate root → a

Note that, for a deterministic parse here, a lookahead is needed

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 11 / 17

Dependency parsing

Dependency parsers use a modified shift-reduce parser

Example of shift-reduce parse for the string bacdfe generated using
Gdep = (Σ,D, s,⊥,P)

Σ = {a...z}
D = {L,R}
s = s
P = {(a → b,L | c,R | d ,R)

(d → e,R)
(e → f ,L)}

b a c d f e

stack buffer action record
bacdfe shift

b acdfe shift
ba cdfe left-arc a → b
a cdfe

shift
ac dfe right-arc a → c
a dfe shift
ad fe shift
adf e shift
adfe left-arc e → f
ade right-arc d → e
ad right-arc a → d
a terminate root → a

Note that, for a deterministic parse here, a lookahead is needed

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 11 / 17

Dependency parsing

Dependency parsers use a modified shift-reduce parser

Example of shift-reduce parse for the string bacdfe generated using
Gdep = (Σ,D, s,⊥,P)

Σ = {a...z}
D = {L,R}
s = s
P = {(a → b,L | c,R | d ,R)

(d → e,R)
(e → f ,L)}

b a c d f e

stack buffer action record
bacdfe shift

b acdfe shift
ba cdfe left-arc a → b
a cdfe shift

ac dfe right-arc a → c
a dfe shift
ad fe shift
adf e shift
adfe left-arc e → f
ade right-arc d → e
ad right-arc a → d
a terminate root → a

Note that, for a deterministic parse here, a lookahead is needed

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 11 / 17

Dependency parsing

Dependency parsers use a modified shift-reduce parser

Example of shift-reduce parse for the string bacdfe generated using
Gdep = (Σ,D, s,⊥,P)

Σ = {a...z}
D = {L,R}
s = s
P = {(a → b,L | c,R | d ,R)

(d → e,R)
(e → f ,L)}

b a c d f e

stack buffer action record
bacdfe shift

b acdfe shift
ba cdfe left-arc a → b
a cdfe shift
ac dfe

right-arc a → c
a dfe shift
ad fe shift
adf e shift
adfe left-arc e → f
ade right-arc d → e
ad right-arc a → d
a terminate root → a

Note that, for a deterministic parse here, a lookahead is needed

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 11 / 17

Dependency parsing

Dependency parsers use a modified shift-reduce parser

Example of shift-reduce parse for the string bacdfe generated using
Gdep = (Σ,D, s,⊥,P)

Σ = {a...z}
D = {L,R}
s = s
P = {(a → b,L | c,R | d ,R)

(d → e,R)
(e → f ,L)}

b a c d f e

stack buffer action record
bacdfe shift

b acdfe shift
ba cdfe left-arc a → b
a cdfe shift
ac dfe right-arc a → c

a dfe shift
ad fe shift
adf e shift
adfe left-arc e → f
ade right-arc d → e
ad right-arc a → d
a terminate root → a

Note that, for a deterministic parse here, a lookahead is needed

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 11 / 17

Dependency parsing

Dependency parsers use a modified shift-reduce parser

Example of shift-reduce parse for the string bacdfe generated using
Gdep = (Σ,D, s,⊥,P)

Σ = {a...z}
D = {L,R}
s = s
P = {(a → b,L | c,R | d ,R)

(d → e,R)
(e → f ,L)}

b a c d f e

stack buffer action record
bacdfe shift

b acdfe shift
ba cdfe left-arc a → b
a cdfe shift
ac dfe right-arc a → c
a dfe

shift
ad fe shift
adf e shift
adfe left-arc e → f
ade right-arc d → e
ad right-arc a → d
a terminate root → a

Note that, for a deterministic parse here, a lookahead is needed

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 11 / 17

Dependency parsing

Dependency parsers use a modified shift-reduce parser

Example of shift-reduce parse for the string bacdfe generated using
Gdep = (Σ,D, s,⊥,P)

Σ = {a...z}
D = {L,R}
s = s
P = {(a → b,L | c,R | d ,R)

(d → e,R)
(e → f ,L)}

b a c d f e

stack buffer action record
bacdfe shift

b acdfe shift
ba cdfe left-arc a → b
a cdfe shift
ac dfe right-arc a → c
a dfe shift

ad fe shift
adf e shift
adfe left-arc e → f
ade right-arc d → e
ad right-arc a → d
a terminate root → a

Note that, for a deterministic parse here, a lookahead is needed

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 11 / 17

Dependency parsing

Dependency parsers use a modified shift-reduce parser

Example of shift-reduce parse for the string bacdfe generated using
Gdep = (Σ,D, s,⊥,P)

Σ = {a...z}
D = {L,R}
s = s
P = {(a → b,L | c,R | d ,R)

(d → e,R)
(e → f ,L)}

b a c d f e

stack buffer action record
bacdfe shift

b acdfe shift
ba cdfe left-arc a → b
a cdfe shift
ac dfe right-arc a → c
a dfe shift
ad fe

shift
adf e shift
adfe left-arc e → f
ade right-arc d → e
ad right-arc a → d
a terminate root → a

Note that, for a deterministic parse here, a lookahead is needed

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 11 / 17

Dependency parsing

Dependency parsers use a modified shift-reduce parser

Example of shift-reduce parse for the string bacdfe generated using
Gdep = (Σ,D, s,⊥,P)

Σ = {a...z}
D = {L,R}
s = s
P = {(a → b,L | c,R | d ,R)

(d → e,R)
(e → f ,L)}

b a c d f e

stack buffer action record
bacdfe shift

b acdfe shift
ba cdfe left-arc a → b
a cdfe shift
ac dfe right-arc a → c
a dfe shift
ad fe shift

adf e shift
adfe left-arc e → f
ade right-arc d → e
ad right-arc a → d
a terminate root → a

Note that, for a deterministic parse here, a lookahead is needed

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 11 / 17

Dependency parsing

Dependency parsers use a modified shift-reduce parser

Example of shift-reduce parse for the string bacdfe generated using
Gdep = (Σ,D, s,⊥,P)

Σ = {a...z}
D = {L,R}
s = s
P = {(a → b,L | c,R | d ,R)

(d → e,R)
(e → f ,L)}

b a c d f e

stack buffer action record
bacdfe shift

b acdfe shift
ba cdfe left-arc a → b
a cdfe shift
ac dfe right-arc a → c
a dfe shift
ad fe shift
adf e

shift
adfe left-arc e → f
ade right-arc d → e
ad right-arc a → d
a terminate root → a

Note that, for a deterministic parse here, a lookahead is needed

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 11 / 17

Dependency parsing

Dependency parsers use a modified shift-reduce parser

Example of shift-reduce parse for the string bacdfe generated using
Gdep = (Σ,D, s,⊥,P)

Σ = {a...z}
D = {L,R}
s = s
P = {(a → b,L | c,R | d ,R)

(d → e,R)
(e → f ,L)}

b a c d f e

stack buffer action record
bacdfe shift

b acdfe shift
ba cdfe left-arc a → b
a cdfe shift
ac dfe right-arc a → c
a dfe shift
ad fe shift
adf e shift

adfe left-arc e → f
ade right-arc d → e
ad right-arc a → d
a terminate root → a

Note that, for a deterministic parse here, a lookahead is needed

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 11 / 17

Dependency parsing

Dependency parsers use a modified shift-reduce parser

Example of shift-reduce parse for the string bacdfe generated using
Gdep = (Σ,D, s,⊥,P)

Σ = {a...z}
D = {L,R}
s = s
P = {(a → b,L | c,R | d ,R)

(d → e,R)
(e → f ,L)}

b a c d f e

stack buffer action record
bacdfe shift

b acdfe shift
ba cdfe left-arc a → b
a cdfe shift
ac dfe right-arc a → c
a dfe shift
ad fe shift
adf e shift
adfe

left-arc e → f
ade right-arc d → e
ad right-arc a → d
a terminate root → a

Note that, for a deterministic parse here, a lookahead is needed

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 11 / 17

Dependency parsing

Dependency parsers use a modified shift-reduce parser

Example of shift-reduce parse for the string bacdfe generated using
Gdep = (Σ,D, s,⊥,P)

Σ = {a...z}
D = {L,R}
s = s
P = {(a → b,L | c,R | d ,R)

(d → e,R)
(e → f ,L)}

b a c d f e

stack buffer action record
bacdfe shift

b acdfe shift
ba cdfe left-arc a → b
a cdfe shift
ac dfe right-arc a → c
a dfe shift
ad fe shift
adf e shift
adfe left-arc e → f

ade right-arc d → e
ad right-arc a → d
a terminate root → a

Note that, for a deterministic parse here, a lookahead is needed

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 11 / 17

Dependency parsing

Dependency parsers use a modified shift-reduce parser

Example of shift-reduce parse for the string bacdfe generated using
Gdep = (Σ,D, s,⊥,P)

Σ = {a...z}
D = {L,R}
s = s
P = {(a → b,L | c,R | d ,R)

(d → e,R)
(e → f ,L)}

b a c d f e

stack buffer action record
bacdfe shift

b acdfe shift
ba cdfe left-arc a → b
a cdfe shift
ac dfe right-arc a → c
a dfe shift
ad fe shift
adf e shift
adfe left-arc e → f
ade

right-arc d → e
ad right-arc a → d
a terminate root → a

Note that, for a deterministic parse here, a lookahead is needed

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 11 / 17

Dependency parsing

Dependency parsers use a modified shift-reduce parser

Example of shift-reduce parse for the string bacdfe generated using
Gdep = (Σ,D, s,⊥,P)

Σ = {a...z}
D = {L,R}
s = s
P = {(a → b,L | c,R | d ,R)

(d → e,R)
(e → f ,L)}

b a c d f e

stack buffer action record
bacdfe shift

b acdfe shift
ba cdfe left-arc a → b
a cdfe shift
ac dfe right-arc a → c
a dfe shift
ad fe shift
adf e shift
adfe left-arc e → f
ade right-arc d → e

ad right-arc a → d
a terminate root → a

Note that, for a deterministic parse here, a lookahead is needed

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 11 / 17

Dependency parsing

Dependency parsers use a modified shift-reduce parser

Example of shift-reduce parse for the string bacdfe generated using
Gdep = (Σ,D, s,⊥,P)

Σ = {a...z}
D = {L,R}
s = s
P = {(a → b,L | c,R | d ,R)

(d → e,R)
(e → f ,L)}

b a c d f e

stack buffer action record
bacdfe shift

b acdfe shift
ba cdfe left-arc a → b
a cdfe shift
ac dfe right-arc a → c
a dfe shift
ad fe shift
adf e shift
adfe left-arc e → f
ade right-arc d → e
ad

right-arc a → d
a terminate root → a

Note that, for a deterministic parse here, a lookahead is needed

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 11 / 17

Dependency parsing

Dependency parsers use a modified shift-reduce parser

Example of shift-reduce parse for the string bacdfe generated using
Gdep = (Σ,D, s,⊥,P)

Σ = {a...z}
D = {L,R}
s = s
P = {(a → b,L | c,R | d ,R)

(d → e,R)
(e → f ,L)}

b a c d f e

stack buffer action record
bacdfe shift

b acdfe shift
ba cdfe left-arc a → b
a cdfe shift
ac dfe right-arc a → c
a dfe shift
ad fe shift
adf e shift
adfe left-arc e → f
ade right-arc d → e
ad right-arc a → d

a terminate root → a

Note that, for a deterministic parse here, a lookahead is needed

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 11 / 17

Dependency parsing

Dependency parsers use a modified shift-reduce parser

Example of shift-reduce parse for the string bacdfe generated using
Gdep = (Σ,D, s,⊥,P)

Σ = {a...z}
D = {L,R}
s = s
P = {(a → b,L | c,R | d ,R)

(d → e,R)
(e → f ,L)}

b a c d f e

stack buffer action record
bacdfe shift

b acdfe shift
ba cdfe left-arc a → b
a cdfe shift
ac dfe right-arc a → c
a dfe shift
ad fe shift
adf e shift
adfe left-arc e → f
ade right-arc d → e
ad right-arc a → d
a

terminate root → a

Note that, for a deterministic parse here, a lookahead is needed

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 11 / 17

Dependency parsing

Dependency parsers use a modified shift-reduce parser

Example of shift-reduce parse for the string bacdfe generated using
Gdep = (Σ,D, s,⊥,P)

Σ = {a...z}
D = {L,R}
s = s
P = {(a → b,L | c,R | d ,R)

(d → e,R)
(e → f ,L)}

b a c d f e

stack buffer action record
bacdfe shift

b acdfe shift
ba cdfe left-arc a → b
a cdfe shift
ac dfe right-arc a → c
a dfe shift
ad fe shift
adf e shift
adfe left-arc e → f
ade right-arc d → e
ad right-arc a → d
a terminate root → a

Note that, for a deterministic parse here, a lookahead is needed

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 11 / 17

Dependency parsing

Data driven dependency parsing is grammarless

For natural language there would be considerable effort in manually
defining P—this would involve determining the dependencies between
all possible words in the language (although note that e.g. RASP uses
a similar transition-based approach with a manually defined PSG)

Creating a deterministic grammar would be impossible (natural
language is inherently ambiguous).

Natural language dependency parsing can achieved deterministically
by selecting parsing actions using a machine learning classifier.

The features for the classifier include the items in the configuration
as well as properties of those items (including word-embeddings for
the items).

Training is performed on dependency banks (that is, sentences that
have been manually annotated with their correct dependencies).

It is said that the parsing is grammarless—since no grammar is
designed ahead of training.

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 12 / 17

Dependency parsing

Data driven dependency parsing is grammarless

For natural language there would be considerable effort in manually
defining P—this would involve determining the dependencies between
all possible words in the language (although note that e.g. RASP uses
a similar transition-based approach with a manually defined PSG)

Creating a deterministic grammar would be impossible (natural
language is inherently ambiguous).

Natural language dependency parsing can achieved deterministically
by selecting parsing actions using a machine learning classifier.

The features for the classifier include the items in the configuration
as well as properties of those items (including word-embeddings for
the items).

Training is performed on dependency banks (that is, sentences that
have been manually annotated with their correct dependencies).

It is said that the parsing is grammarless—since no grammar is
designed ahead of training.

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 12 / 17

Dependency parsing

Data driven dependency parsing is grammarless

For natural language there would be considerable effort in manually
defining P—this would involve determining the dependencies between
all possible words in the language (although note that e.g. RASP uses
a similar transition-based approach with a manually defined PSG)

Creating a deterministic grammar would be impossible (natural
language is inherently ambiguous).

Natural language dependency parsing can achieved deterministically
by selecting parsing actions using a machine learning classifier.

The features for the classifier include the items in the configuration
as well as properties of those items (including word-embeddings for
the items).

Training is performed on dependency banks (that is, sentences that
have been manually annotated with their correct dependencies).

It is said that the parsing is grammarless—since no grammar is
designed ahead of training.

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 12 / 17

Dependency parsing

Data driven dependency parsing is grammarless

For natural language there would be considerable effort in manually
defining P—this would involve determining the dependencies between
all possible words in the language (although note that e.g. RASP uses
a similar transition-based approach with a manually defined PSG)

Creating a deterministic grammar would be impossible (natural
language is inherently ambiguous).

Natural language dependency parsing can achieved deterministically
by selecting parsing actions using a machine learning classifier.

The features for the classifier include the items in the configuration
as well as properties of those items (including word-embeddings for
the items).

Training is performed on dependency banks (that is, sentences that
have been manually annotated with their correct dependencies).

It is said that the parsing is grammarless—since no grammar is
designed ahead of training.

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 12 / 17

Dependency parsing

Data driven dependency parsing is grammarless

For natural language there would be considerable effort in manually
defining P—this would involve determining the dependencies between
all possible words in the language (although note that e.g. RASP uses
a similar transition-based approach with a manually defined PSG)

Creating a deterministic grammar would be impossible (natural
language is inherently ambiguous).

Natural language dependency parsing can achieved deterministically
by selecting parsing actions using a machine learning classifier.

The features for the classifier include the items in the configuration
as well as properties of those items (including word-embeddings for
the items).

Training is performed on dependency banks (that is, sentences that
have been manually annotated with their correct dependencies).

It is said that the parsing is grammarless—since no grammar is
designed ahead of training.

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 12 / 17

Dependency parsing

We can use feature templates to analyse a configuration

Chen and Manning, ACL, 2014

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 13 / 17

Dependency parsing

There are problems with the features

The features are indispensable but highly sparse.

The feature templates are incomplete.

The features are expensive to compute.

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 14 / 17

Dependency parsing

Chen and Manning present NN dependency parser in 2014

Consider sets Sw , S t ,S l :
e.g. S t = {lc1(s2).t, s2.t, rc1(s2).t, s1.t} → PRP,VBZ ,NULL, JJ
and w t is the concatenation of the tag embeddings.

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 15 / 17

Dependency parsing

Chen and Manning present NN dependency parser in 2014

Consider sets Sw , S t ,S l :
e.g. S t = {lc1(s2).t, s2.t, rc1(s2).t, s1.t} → PRP,VBZ ,NULL, JJ
and w t is the concatenation of the tag embeddings.

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 15 / 17

Dependency parsing

Chen and Manning use a rich feature sets

- Sw contains 18 feature templates:

1 The top 3 words on the stack and buffer

s1, s2, s3, b1, b2, b3

2 The first and second leftmost and rightmost children of the top two
words on the stack

lc1(si), rc1(si), lc2(si), rc2(si) where i = 1, 2

3 The leftmost of leftmost and rightmost of rightmost children of the
top two words on the stack.

lc1(lc1(si)), rc1(rc1(si)) where i = 1, 2

- ST is the corresponding tags
- S l the corresponding arc labels (excludes category 1 above)

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 16 / 17

Dependency parsing

Chen and Manning use a rich feature sets

- Sw contains 18 feature templates:

1 The top 3 words on the stack and buffer

s1, s2, s3, b1, b2, b3

2 The first and second leftmost and rightmost children of the top two
words on the stack

lc1(si), rc1(si), lc2(si), rc2(si) where i = 1, 2

3 The leftmost of leftmost and rightmost of rightmost children of the
top two words on the stack.

lc1(lc1(si)), rc1(rc1(si)) where i = 1, 2

- ST is the corresponding tags
- S l the corresponding arc labels (excludes category 1 above)

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 16 / 17

Dependency parsing

Details of the original Chen and Manning

Generate training examples (pairing real configurations with their gold
parsing actions) from dependancy bank using a shortest stack oracle

Training objective is to minimize cross-entropy loss

Back-propagation to the embeddings during training

During parsing they use greedy decoding.

Further improvements in recent years.

Paula Buttery (Computer Lab) L95: Natural Language Syntax and Parsing 17 / 17

	Generative Parsing Models
	Dependency grammars
	Dependency parsing
	Dependency parsing

